EP1589493B1 - Method for validation of coins - Google Patents

Method for validation of coins Download PDF

Info

Publication number
EP1589493B1
EP1589493B1 EP05006475.7A EP05006475A EP1589493B1 EP 1589493 B1 EP1589493 B1 EP 1589493B1 EP 05006475 A EP05006475 A EP 05006475A EP 1589493 B1 EP1589493 B1 EP 1589493B1
Authority
EP
European Patent Office
Prior art keywords
curve
coin
coins
coil
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05006475.7A
Other languages
German (de)
French (fr)
Other versions
EP1589493A1 (en
Inventor
Wilfried Meyer Dipl.-Ing.
Ulrich Cohrs Dipl.-Ing.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Payment Innovations GmbH
Original Assignee
Crane Payment Innovations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crane Payment Innovations GmbH filed Critical Crane Payment Innovations GmbH
Publication of EP1589493A1 publication Critical patent/EP1589493A1/en
Application granted granted Critical
Publication of EP1589493B1 publication Critical patent/EP1589493B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the invention relates to a method for testing coins with an inductively operating sensor arrangement according to claim 1.
  • Inductive measuring arrangements for coin validators usually use a transmitting coil and on the opposite side of the coin path a receiver coil. As the coin passes through the magnetic field, the receiving coil is attenuated and it is possible, by measuring e.g. Amplitude, phase, frequency or real or imaginary part of current or voltage of the output signal of the receiving coil to discriminate counterfeit coins. Since the magnetic field must penetrate the entire coin, it is not possible to detect inhomogeneities in the material depth of the coin. For example, for a given coin, the magnetic moment may be determined but not whether the magnetic layer is on the surface or in the middle of the coin. A similar problem arises with plated coins. It can not be determined whether it is homogeneous material or plated coins.
  • the received signal is composed of a multiplicity of individual frequencies. Each switching step corresponds to certain frequency components.
  • the attenuated curve of the output signal of the receiver coil produced by the transmit signal usually has a steep rise and approaches a saturation value (approximately e-function). The higher frequencies are therefore assigned to the steeper part of the flank.
  • a maximum number of disturbing parameters is turned off, which otherwise would have to be met with increased effort.
  • the known method requires only a transmitting and receiving coil and an independently programmable signal generator, which is already part of a microprocessor, which is usually used for electronic coin validator.
  • the periodically repeating section has a microsecond period of time while coin passage is in the millisecond range. During the measurement period, the coin can be considered as standing. If a coin measurement is done inductively only from one side, the amplitude of the frequency-dependent attenuation curves depends on the distance that the coins have from the receiver coil.
  • the invention has for its object to provide a method for testing coins, with a sufficiently high resolution measurement across the thickness of the coin is made possible without that distance variations of the coin adversely affect.
  • the envelopes are not evaluated at the individual switching steps or measuring times; rather, the amplitude value of the output signal of the receiving coil is measured during a predetermined measuring interval when a coin passes through at least three different measuring times.
  • Amplitude here does not necessarily mean the maximum of a periodic attenuation curve, but the quantitative measured value at the respective measurement time.
  • the measurement interval within which at least three amplitude values are measured at different times is extremely short, for example 50 microseconds. In this timeframe, a passing coin can be considered as quasi stationary.
  • a curve or a mathematical function is formed by approximation using a curve fit method for homogeneous material.
  • This can, for. B. be an e-function.
  • This or the e-function is characteristic of the tested coin, ie for their material.
  • a characteristic time constant results for the e-function. This time constant is independent of the distance of the coin to the probe.
  • different curve shapes are obtained, depending on the frequency components used for measuring.
  • the leading times eg T1 ... T3 included Information about the material on the coin surface.
  • the back times eg T6 ... T8 over the coin material from the surface to the depth of the coin.
  • the method according to the invention can thus make a distance-independent measurement of coins. It is therefore particularly suitable for probe arrangements in which transmitting and receiving coil are arranged on one side of the coin path. In an opposite arrangement of the transmitting and receiving coil, the distance of the coin from the coils does not matter.
  • the method according to the invention is not limited thereto, but can also be applied to conventional sensor arrangements.
  • the temporal position of the measuring interval can depend on various criteria. Preferably, it is in the maximum of the amplitude values at which the coins completely in front of the measuring probe is arranged (complete cover).
  • the amplitude values in the individual recurring sections of the received signal increase with increasing attenuation of the field by the coin.
  • the attenuation reaches a maximum with maximum "shading" of the receiver coil. This can be determined relatively easily in terms of measurement technology by determining the amplitude values of at least three measuring times during the coin passage during the recurring sections of the received signal at the predetermined measuring times. If the amplitude values increase continuously, the maximum is still removed. If the amplitude values no longer change, the attenuation of the field is at its maximum.
  • the thickness of the coin is not included in the measurement result. Only when frequencies are chosen in which the magnetic field penetrates a coin, also results in a dependence of the measurement result of the thickness of a coin.
  • the invention provides for the arrangement of the receiver coil on the same side as the transmitter coil, wherein the cross section of the preferably smaller receiver coil is flooded by a homogeneous magnetic field component of the transmitter coil traversed by the coin.
  • receive and transmit coil are arranged on the same side.
  • a relatively good insensitivity to rough running of the coins is achieved in that the receiving coil is flooded substantially by a homogeneous field of the transmitting coil. It is therefore necessary to choose a coil arrangement with which this requirement is met.
  • the magnetic field in the center of the coil emerges or is approximately perpendicular to the core and the magnetic field lines curve only at a relatively great distance from the surface of the core.
  • the measuring plane is located from the coil arrangement. Since both poles of the receiver coil are flooded by the same transmission field, the coupling between transmitting and receiving coil is relatively weak, whereby the influence of the coin is increased to the measurement signal.
  • the output signal of the receiving coil is proportional to the field strength differences between the outer and inner pole of the receiving coil. These differences are in turn proportional to the total field strength and thus obtain the required field information.
  • the case achieved insensitivity to rough running of the coins (distance fluctuations of the coin) corresponds approximately to that of a large probe. With a small diameter of the coil, a high spatial resolution is obtained because of the small diameter of the receiver coil. This can be significantly smaller than that of the coins to be tested. This is important, for example, when testing so-called bi-color coins. With a larger diameter, a diameter check of the coins can be made possible.
  • An inventive arrangement for testing coins provides for the arrangement of a transmitting coil on a ferrite core whose length is greater than the length of the coil.
  • the receiving coil has a smaller diameter and is coaxially arranged on one side of the ferrite core such that it is flooded by a homogeneous field of the transmitting coil.
  • the receiving coil is seated in an end-side annular recess of the core, in particular of the ferrite core.
  • a further receiving coil is arranged on the opposite side of the coin track, which is flooded by the magnetic field of the transmitting coil, which penetrates the coin.
  • the method for testing coins can be carried out, for example, with a coil arrangement in which the transmitting coil and the receiving coil are arranged on a common ferrite core, wherein the receiving coil is penetrated by the homogeneous field of the transmitting coil (single-sided arrangement).
  • the transmitting coil will, as in DE 197 26 449 described, with periodically recurring pulses, for example in rectangular or triangular form, applied.
  • the duration of a pulse is, for example, 50 microseconds and is repeated periodically at equal intervals (milliseconds range).
  • the output signal of the receiving coil is approximately in Fig. 1 shown.
  • the individual times T1 to T8 of the output signal 10 can be assigned to certain frequency spectra.
  • T1 gives a high T8 one with a low frequency.
  • the signal 10 with the steps T1 to T8 represents a measurement interval which is repeated periodically.
  • the measuring interval has, as already mentioned, for example, a length of 50 microseconds.
  • Fig. 3 shows the determined damping curves for the throw-in of the same coin. If only the maxima were taken as a basis, a precise statement from the coin measurement can not be obtained, because a real coin can because of different distance have large differences in the amplitudes of the damping curves.
  • the measured values are interpolated for at least three measuring times for a measuring cycle, and the associated function or curve is determined by a curve fit method.
  • Fig. 4 are at the measuring times T1 to T3 respectively the measured amplitudes for z. B. applied a brass coin.
  • a curve fit m1 results in a curve m1 for a first draft and a curve m2 for the second draft.
  • Such ideal curves are in Fig. 2 applied to six coin materials (see Fig. 2 proper legend). It can be seen that the different curves associated with the individual coin materials are essentially distinguished by different time constants.
  • the curve 1 of Fig. 2 indicates the measuring state in which there is no coin within the magnetic field of the sensor arrangement.
  • FIG. 6 Three examples of the cross section of coins are indicated. Under 1. a plated or galvanized coin is shown, that is provided on both sides with a layer. In the middle example, a homogeneous coin is indicated, the z. B. brass, iron or a Kupfernickellegtechnik. In the lower example, a so-called laminated coin is shown with a nickel core and outer layers of copper / nickel alloy. With the help of the invention such coins are to be discriminated.
  • a ferrite core 10a is shown in section, on the outside of a transmitting coil 12 is applied.
  • the length of the ferrite core 10a is significantly larger than that of the transmitting coil 12, that is, almost four times the coil length.
  • the transmitting coil 12 is spaced from the ends of the ferrite core 10a.
  • a receiving coil 16 is arranged in an annular recess 14 at one end of the ferrite core 10a. It is coaxial with the transmitting coil 12, but has a much smaller inner and outer diameter than the transmitting coil 12.
  • a plane is indicated, in which normally moves a coin in a Münzprüfer along. The annular recess is thus facing the plane 18.
  • the running direction of the coins is approximately in the direction of arrow 20.
  • the magnetic field lines generated by the transmitting coil 12 are shown in dashed lines. In the region of the receiving coil 16, the magnetic field is largely homogeneous. Consequently, the magnetic field flowing through the receiving coil 16 and acting on the coin in the measuring plane 18 is largely homogeneous. A divergence of the Magnetic lines, as indicated at 22, takes place at a greater distance from the coil arrangement.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Prüfen von Münzen mit einer induktiv arbeitenden Sensoranordnung nach dem Patentanspruch 1.The invention relates to a method for testing coins with an inductively operating sensor arrangement according to claim 1.

Induktiv arbeitende Meßanordnungen für Münzprüfer nutzen üblicherweise eine Sendespule und auf der gegenüberliegenden Seite der Münzlaufbahn eine Empfängerspule. Beim Durchlauf der Münze durch das Magnetfeld wird die Empfangsspule bedämpft, und es ist möglich, durch das Messen von z.B. Amplitude, Phase, Frequenz oder Real- oder Imaginärteil von Strom oder Spannung des Ausgangssignals der Empfangsspule Falschmünzen zu diskriminieren. Da das Magnetfeld die gesamte Münze durchdringen muß, ist es nicht möglich, Inhomogenitäten in der Materialtiefe der Münze festzustellen. So kann beispielsweise bei einer bestimmten Münze das magnetische Moment bestimmt werden, nicht jedoch, ob sich die magnetische Schicht an der Oberfläche oder in der Mitte in der Münze befindet. Ein gleiches Problem ergibt sich bei plattierten Münzen. Es kann nicht festgestellt werden, ob es sich um homogenes Material oder um plattierte Münzen handelt.Inductive measuring arrangements for coin validators usually use a transmitting coil and on the opposite side of the coin path a receiver coil. As the coin passes through the magnetic field, the receiving coil is attenuated and it is possible, by measuring e.g. Amplitude, phase, frequency or real or imaginary part of current or voltage of the output signal of the receiving coil to discriminate counterfeit coins. Since the magnetic field must penetrate the entire coin, it is not possible to detect inhomogeneities in the material depth of the coin. For example, for a given coin, the magnetic moment may be determined but not whether the magnetic layer is on the surface or in the middle of the coin. A similar problem arises with plated coins. It can not be determined whether it is homogeneous material or plated coins.

Es könnte daran gedacht werden, das beschriebene Problem dadurch zu lösen, daß Sende- und Empfangsspule, die z.B. von einem Oszillator betrieben werden, auf einer Seite der Münzen angeordnet werden. Eine präzise Messung ist jedoch nicht ohne weiteres möglich, da es bei unruhigem Münzlauf zu Abstandsschwankungen zwischen Münze und Sende- und Empfangsanordnung kommt. Besonders bei kleinen Meßsonden, die erforderlich sind, um eine hohe örtliche Auflösung der Messung zu erzielen, wirken sich derartige Abstandsschwankungen verstärkt aus.It could be thought to solve the described problem by providing transmitting and receiving coils, e.g. operated by an oscillator, are arranged on one side of the coins. However, a precise measurement is not readily possible, since it comes in unsteady coin flow to distance fluctuations between the coin and the transmitting and receiving arrangement. Especially with small probes, which are required to achieve a high spatial resolution of the measurement, such distance fluctuations have an increased effect.

Aus DE 197 26 449 C2 ist ein Verfahren (Multifrequenztechnik) zur Prüfung von Münzen mit einer induktiv arbeitenden Sensoranordnung bekannt geworden, bei dem die Sendespule mit einem periodischen Sendesignal gespeist wird, das Harmonische enthält. Einem periodisch wiederkehrenden Abschnitt des Sendesignals bzw. Empfangssignals wird eine Anzahl von Schaltschritten zugeordnet. Aus den Werten des Empfangssignals der Empfangsspule werden bei den jeweiligen sich mit der Frequenz des Sendesignals wiederholenden Schaltschritten Hüllkurven gebildet. Eine Auswertevorrichtung bildet aus der Anzahl zeitgleich erzeugter Hüllkurven mindestens ein Kriterium zwecks Erzeugung des Annahme- oder Rückgabesignals. Im Extremfall kann nur ein Schaltschritt zur Unterteilung des Sendesignals verwendet werden. Auf diese Weise wird eine einzige Kurve mit einem Maximum erhalten, daß das Dämpfungsverhalten für eine bestimmtes Frequenzspektrum bzw. eine bestimmte Frequenz wiedergibt. Bekanntlich setzt sich das Empfangssignal aus einer Vielzahl von einzelnen Frequenzen zusammen. Jedem Schaltschritt entsprechen bestimmte Frequenzanteile. Die durch das Sendesignal erzeugte, gedämpfte Kurve des Ausgangssignals der Empfangsspule weist in der Regel einen steilen Anstieg auf und nähert sich einem Sättigungswert (annähernd e-Funktion). Die höheren Frequenzen sind daher dem steileren Teil der Flanke zuzuordnen. Bei dem bekannten Verfahren wird eine Höchstzahl von störenden Parametern ausgeschaltet, denen sonst mit erhöhtem Aufwand begegnet werden müßte. Das bekannte Verfahren benötigt nur eine Sende- und Empfangsspule und einen unabhängig programmierbaren Signalgenerator, der ohnehin Bestandteil eines Mikroprozessors ist, der üblicherweise für elektronische Münzprüfer verwendet wird. Der periodisch wiederkehrende Abschnitt hat eine im Mikrosekundenbereich liegende Zeitdauer, während der Münzdurchlauf im Millisekundenbereich liegt. Während der Meßdauer kann die Münze als stehend betrachtet werden. Erfolgt eine Münzmessung auf induktivem Wege nur von einer Seite, hängt die Amplitude der - frequenzabhängigen - Dämpfungskurven von dem Abstand ab, den die Münzen von der Empfangsspule haben.Out DE 197 26 449 C2 a method (multi-frequency technique) for testing coins has become known with an inductively operating sensor arrangement in which the transmitting coil is fed with a periodic transmission signal, the harmonic contains. A periodically recurring section of the transmission signal or reception signal is assigned a number of switching steps. From the values of the received signal of the receiving coil, envelopes are formed at the respective switching steps repeating the frequency of the transmission signal. An evaluation device forms from the number of simultaneously generated envelopes at least one criterion for the purpose of generating the acceptance or return signal. In extreme cases, only one switching step for dividing the transmission signal can be used. In this way, a single curve is obtained with a maximum that reflects the damping behavior for a particular frequency spectrum or frequency. As is known, the received signal is composed of a multiplicity of individual frequencies. Each switching step corresponds to certain frequency components. The attenuated curve of the output signal of the receiver coil produced by the transmit signal usually has a steep rise and approaches a saturation value (approximately e-function). The higher frequencies are therefore assigned to the steeper part of the flank. In the known method, a maximum number of disturbing parameters is turned off, which otherwise would have to be met with increased effort. The known method requires only a transmitting and receiving coil and an independently programmable signal generator, which is already part of a microprocessor, which is usually used for electronic coin validator. The periodically repeating section has a microsecond period of time while coin passage is in the millisecond range. During the measurement period, the coin can be considered as standing. If a coin measurement is done inductively only from one side, the amplitude of the frequency-dependent attenuation curves depends on the distance that the coins have from the receiver coil.

Aus EP 0 918 306 A2 ist ein Verfahren zum Prüfen von Münzen mit einer induktiven Sensoranordnung bekannt, die eine Sende- und eine Empfangsspule aufweist, deren Feld von einer Münze durchquert wird. Die induktiven Sensoren besitzen dabei ein geringes effektives Magnetfeld. Das Verfahren soll insbesondere für Münzen verwendbar sein, die einen Außenring aus einem anderen Material als eine zentrale Scheibe aufweisen. Insbesondere soll das Verfahren zum Unterscheiden solcher Münzen von Münzen aus einem einheitlichen Material dienen.Out EP 0 918 306 A2 For example, there is known a method of testing coins with an inductive sensor arrangement comprising a transmitting and receiving coil whose field is traversed by a coin. The inductive sensors have a low effective magnetic field. The method should be particularly useful for coins having an outer ring of a different material than a central disc. In particular, the method is intended to distinguish such coins from coins of a uniform material.

Weitere Verfahren zum Prüfen von Münzen sind bekannt aus US 5 085 309 A und US 4 441 602 A .Other methods of checking coins are known US 5 085 309 A and US 4,441,602 A ,

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Prüfen von Münzen anzugeben, mit dem bei ausreichend hoher Auflösung eine Messung über die Dicke der Münze hinweg ermöglicht wird, ohne daß sich Abstandsschwankungen der Münze nachteilig auswirken.The invention has for its object to provide a method for testing coins, with a sufficiently high resolution measurement across the thickness of the coin is made possible without that distance variations of the coin adversely affect.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Bei dem erfindungsgemäßen Verfahren wird von einer Meßtechnik ausgegangen, wie sie in DE 197 26 449 C2 beschrieben ist. Bei dem erfindungsgemäßen Verfahren werden jedoch nicht die Hüllkurven zu den einzelnen Schaltschritten bzw. Meßzeitpunkten ausgewertet, vielmehr wird während eines vorgegebenen Meßintervalls beim Durchlauf einer Münze an mindestens drei unterschiedlichen Meßzeitpunkten jeweils der Amplitudenwert des Ausgangssignals der Empfangsspule gemessen. "Amplitude" meint hier nicht unbedingt das Maximum einer periodischen Dämpfungskurve, sondern den quantitativen Meßwert zum jeweiligen Meßzeitpunkt. Das Meßintervall, innerhalb dem mindestens drei Amplitudenwerte zu unterschiedlichen Zeitpunkten gemessen werden, ist außerordentlich kurz, zum Beispiel 50 Mikrosekunden. In diesem Zeitrahmen kann eine hindurchlaufende Münze als quasi stationär betrachtet werden.In the method according to the invention is based on a measuring technique, as in DE 197 26 449 C2 is described. In the method according to the invention, however, the envelopes are not evaluated at the individual switching steps or measuring times; rather, the amplitude value of the output signal of the receiving coil is measured during a predetermined measuring interval when a coin passes through at least three different measuring times. "Amplitude" here does not necessarily mean the maximum of a periodic attenuation curve, but the quantitative measured value at the respective measurement time. The measurement interval within which at least three amplitude values are measured at different times is extremely short, for example 50 microseconds. In this timeframe, a passing coin can be considered as quasi stationary.

Aus den Amplitudenwerten wird nach einem Kurvenfitverfahren bei homogenem Material eine Kurve bzw. eine mathematische Funktion durch Annäherung gebildet. Diese kann z. B. eine e-Funktion sein. Diese bzw. die e-Funktion ist charakteristisch für die geprüfte Münze, d.h. für deren Material. Bei homogenem Material ergibt sich z.B. eine charakteristische Zeitkonstante für die e-Funktion. Diese Zeitkonstante ist unabhängig von dem Abstand der Münze zur Meßsonde. Bei Schichtmaterial erhält man je nach den zum Messen verwendeten Frequenzanteilen unterschiedliche Kurvenformen. Die vorderen Zeitpunkte z.B. T1...T3 (höhere Frequenzanteile) enthalten Informationen über das Material an der Münzoberfläche. Die hinteren Zeitpunkte z.B. T6...T8 über das Münzmaterial von der Oberfläche bis in die Tiefe der Münze. Je nach den für den Kurvenfit verwendeten Zeitpunkten ergeben sich also bei Schichtmetallmünzen unterschiedliche Ergebnisse, die den Schichten des Materials zugeordnet werden können. Auch hierbei ergibt sich eine lageunabhängige Messung. Die Qualität eines Kurvenfit's (Störanfälligkeit z.B. durch Rauschen) hängt von der Anzahl der verwendeten Meßpunkte ab. Man kann bei der erfindungsmäßigen Meßanordnung zwischen guter örtlicher Auflösung in der Materialtiefe (Münzdicke) und optimaler Meßqualität mit integrierter Erfassung des Münzmaterials über die Materialtiefe wählen. Die Kurve(n) oder Funktion(en), die aus den Meßwerten eines Meßintervalls gewonnen wird, werden mit einer vorgegebenen Soll-Kurve oder Soll-Funktion verglichen. Stimmt sie in einem oder mehreren Parametern mit der Soll-Kurve oder Soll-Funktion überein, kann ein Annahmesignal erzeugt werden. Mit diesem Verfahren ist es daher möglich, nicht nur eine zuverlässige Diskriminierung von Falschmünzen vorzunehmen, sondern auch das Münzmaterial zu identifizieren. Es versteht sich, daß für jede Münzsorte eine oder mehrere Soll-Kurven oder -Funktionen abgespeichert ist/sind.From the amplitude values, a curve or a mathematical function is formed by approximation using a curve fit method for homogeneous material. This can, for. B. be an e-function. This or the e-function is characteristic of the tested coin, ie for their material. With homogeneous material, for example, a characteristic time constant results for the e-function. This time constant is independent of the distance of the coin to the probe. In the case of layered material, different curve shapes are obtained, depending on the frequency components used for measuring. The leading times eg T1 ... T3 (higher frequency components) included Information about the material on the coin surface. The back times eg T6 ... T8 over the coin material from the surface to the depth of the coin. Depending on the points in time used for the curve fit, different results for layered metal coins can then be assigned to the layers of the material. Again, this results in a position-independent measurement. The quality of a Kurvenfit's (susceptibility eg by noise) depends on the number of measuring points used. In the case of the measuring arrangement according to the invention, it is possible to choose between good local resolution in the material depth (coin thickness) and optimum measuring quality with integrated detection of the coin material via the material depth. The curve (s) or function (s) obtained from the measurement values of a measurement interval are compared with a predetermined desired curve or function. If it agrees with the desired curve or desired function in one or more parameters, an acceptance signal can be generated. With this method, it is therefore possible to not only reliably discriminate against counterfeit coins, but also to identify the coin material. It is understood that one or more desired curves or functions is stored for each type of coin / are.

Mit Hilfe des erfindungsgemäßen Verfahrens läßt sich mithin eine abstandsunabhängige Messung von Münzen vornehmen. Sie ist daher insbesondere für Sondenanordnungen geeignet, bei denen Sende- und Empfangsspule auf einer Seite der Münzlaufbahn angeordnet sind. Bei einer gegenüberliegenden Anordnung von Sende- und Empfangsspule spielt der Abstand der Münze von den Spulen keine Rolle. Das erfindungsgemäße Verfahren ist jedoch nicht hierauf beschränkt, sondern kann auch auf herkömmliche Sensoranordnungen angewendet werden.With the help of the method according to the invention can thus make a distance-independent measurement of coins. It is therefore particularly suitable for probe arrangements in which transmitting and receiving coil are arranged on one side of the coin path. In an opposite arrangement of the transmitting and receiving coil, the distance of the coin from the coils does not matter. However, the method according to the invention is not limited thereto, but can also be applied to conventional sensor arrangements.

Die zeitliche Lage des Meßintervalls kann sich nach verschiedenen Kriterien richten. Vorzugsweise liegt es im Maximum der Amplitudenwerte, bei denen die Münzen komplett vor der Meßsonde angeordnet ist (komplette Abdeckung). Während des Durchlaufs einer Münze wachsen die Amplitudenwerte in den einzelnen wiederkehrenden Abschnitten des Empfangssignals mit zunehmender Dämpfung des Feldes durch die Münze. Die Dämpfung erreicht ein Maximum bei maximaler "Abschattung" der Empfangsspule. Dies läßt sich meßtechnisch relativ leicht ermitteln, indem während des Münzdurchlaufs während der wiederkehrenden Abschnitte des Empfangssignals zu den vorgegebenen Meßzeitpunkten die Amplitudenwerte von mindestens drei Meßzeitpunkten ermittelt werden. Steigen die Amplitudenwerte fortlaufend an, liegt das Maximum noch entfernt. Ändern sich die Amplitudenwerte nicht mehr, ist die Dämpfung des Feldes im Maximum.The temporal position of the measuring interval can depend on various criteria. Preferably, it is in the maximum of the amplitude values at which the coins completely in front of the measuring probe is arranged (complete cover). During the passage of a coin, the amplitude values in the individual recurring sections of the received signal increase with increasing attenuation of the field by the coin. The attenuation reaches a maximum with maximum "shading" of the receiver coil. This can be determined relatively easily in terms of measurement technology by determining the amplitude values of at least three measuring times during the coin passage during the recurring sections of the received signal at the predetermined measuring times. If the amplitude values increase continuously, the maximum is still removed. If the amplitude values no longer change, the attenuation of the field is at its maximum.

Bei dem erfindungsgemäßen Verfahren geht die Dicke der Münze nicht in das Meßergebnis ein. Nur wenn Frequenzen gewählt werden, bei denen das Magnetfeld eine Münze durchdringt, ergibt sich auch eine Abhängigkeit des Meßergebnisses von der Dicke einer Münze.In the method according to the invention, the thickness of the coin is not included in the measurement result. Only when frequencies are chosen in which the magnetic field penetrates a coin, also results in a dependence of the measurement result of the thickness of a coin.

Die Erfindung sieht die Anordnung der Empfängerspule auf der gleichen Seite wie die Sendespule vor, wobei der Querschnitt der vorzugsweise kleineren Empfangsspule von einem homogenen von der Münze durchquerten Magnetfeldanteil der Sendespule durchflutet wird. Bei dem erfindungsgemäßen Verfahren werden daher Empfangs- und Sendespule auf der gleichen Seite angeordnet. Eine relativ gute Unempfindlichkeit gegen Laufunruhe der Münzen wird dadurch erreicht, daß die Empfangsspule im wesentlichen von einem homogenen Feld der Sendespule durchflutet wird. Es ist mithin eine Spulenanordnung zu wählen, mit der diese Forderung erfüllt wird. Bei dieser Spulenanordnung tritt das Magnetfeld in der Spulenmitte annähernd senkrecht zum Kern aus bzw. ein und die Magnetfeldlinien krümmen sich erst in relativ großer Entfernung von der Oberfläche des Kerns. Für den homogenen Teil des Magnetfelds ist es daher nicht so entscheidend, in welcher Entfernung sich die Meßebene von der Spulenanordnung befindet. Da beide Pole der Empfängerspule von dem gleichen Sendefeld durchflutet werden, ist die Kopplung zwischen Sende- und Empfangsspule relativ schwach, wodurch der Einfluß der Münze auf das Meßsignal vergrößert wird. Das Ausgangssignal der Empfangsspule ist proportional zu den Feldstärkeunterschieden zwischen Außen- und Innenpol der Empfangsspule. Diese Unterschiede sind ihrerseits proportional zur Gesamtfeldstärke und erhalten somit die erforderlichen Feldinformationen. Die hierbei erzielte Unempfindlichkeit gegenüber Laufunruhe der Münzen (Abstandsschwankungen der Münze) entspricht etwa der einer großen Meßsonde. Bei kleinem Durchmesser der Spule wird eine hohe Ortsauflösung wegen des kleinen Durchmessers der Empfangsspule erhalten. Dieser kann deutlich kleiner als der der zu prüfenden Münzen sein. Dies z.B. wichtig bei der Prüfung sog. Bicolor-Münzen. Bei größerem Durchmesser läßt sich auch eine Durchmesserprüfung der Münzen ermöglichen.The invention provides for the arrangement of the receiver coil on the same side as the transmitter coil, wherein the cross section of the preferably smaller receiver coil is flooded by a homogeneous magnetic field component of the transmitter coil traversed by the coin. In the method according to the invention therefore receive and transmit coil are arranged on the same side. A relatively good insensitivity to rough running of the coins is achieved in that the receiving coil is flooded substantially by a homogeneous field of the transmitting coil. It is therefore necessary to choose a coil arrangement with which this requirement is met. In this coil arrangement, the magnetic field in the center of the coil emerges or is approximately perpendicular to the core and the magnetic field lines curve only at a relatively great distance from the surface of the core. For the homogeneous part of the magnetic field, therefore, it is not so important at what distance the measuring plane is located from the coil arrangement. Since both poles of the receiver coil are flooded by the same transmission field, the coupling between transmitting and receiving coil is relatively weak, whereby the influence of the coin is increased to the measurement signal. The output signal of the receiving coil is proportional to the field strength differences between the outer and inner pole of the receiving coil. These differences are in turn proportional to the total field strength and thus obtain the required field information. The case achieved insensitivity to rough running of the coins (distance fluctuations of the coin) corresponds approximately to that of a large probe. With a small diameter of the coil, a high spatial resolution is obtained because of the small diameter of the receiver coil. This can be significantly smaller than that of the coins to be tested. This is important, for example, when testing so-called bi-color coins. With a larger diameter, a diameter check of the coins can be made possible.

Eine erfindungsgemäße Anordnung zur Prüfung von Münzen sieht die Anordnung einer Sendespule auf einem Ferritkern vor, dessen Länge größer ist als die Länge der Spule. Die Empfangsspule weist einen kleineren Durchmesser auf und ist an einer Seite des Ferritkerns koaxial angeordnet derart, daß sie von einem homogenen Feld der Sendespule durchflutet wird. Vorzugsweise sitzt die Empfangsspule in einer endseitigen Ringausnehmung des Kerns, insbesondere des Ferritkerns. Durch eine derartige Anordnung wird eine minimale Kopplung zwischen Sende- und Empfangsspule erhalten, so daß das Material des Meßobjekts das Ausgangssignal der Empfangsspule gut beeinflussen kann. Die Empfangsspule kann einen relativ kleinen Querschnitt im Verhältnis zum Münzdurchmesser aufweisen, so daß eine hohe Ortsauflösung erhalten wird. Der Durchmesser der Empfangsspule ist z.B. nur ein kleiner Bruchteil des Durchmessers der Münze.An inventive arrangement for testing coins provides for the arrangement of a transmitting coil on a ferrite core whose length is greater than the length of the coil. The receiving coil has a smaller diameter and is coaxially arranged on one side of the ferrite core such that it is flooded by a homogeneous field of the transmitting coil. Preferably, the receiving coil is seated in an end-side annular recess of the core, in particular of the ferrite core. By such an arrangement, a minimum coupling between the transmitting and receiving coil is obtained, so that the material of the test object can influence the output signal of the receiving coil well. The receiving coil may have a relatively small cross section in relation to the coin diameter, so that a high spatial resolution is obtained. The diameter of the receiving coil is eg only a small fraction of the diameter of the coin.

Nach einer Ausgestaltung der Erfindung ist eine weitere Empfangsspule auf der gegenüberliegenden Seite der Münzlaufbahn angeordnet, welche vom Magnetfeld der Sendespule, das die Münze durchdringt, durchflutet wird. Bei dieser Anordnung ergeben sich sowohl die Vorteile einer einseitigen induktiven Messung als auch einer doppelseitigen Messung (bei niedrigen Frequenzen). Insgesamt wird dabei eine Spule eingespart, während gleichzeitig zusätzliche Meßergebnisse gewonnen werden.According to one embodiment of the invention, a further receiving coil is arranged on the opposite side of the coin track, which is flooded by the magnetic field of the transmitting coil, which penetrates the coin. In this arrangement, both the advantages of a one-sided inductive measurement and a double-sided measurement result (at low frequencies). Overall, while a coil is saved while additional measurement results are obtained.

Die Erfindung wird nachfolgend anhand von in Zeichnungen dargestellten Einzelheiten näher erläutert.The invention will be explained in more detail with reference to details shown in the drawings.

Die Erfindung soll nachfolgend anhand eines in Zeichnungen dargestellten Ausführungsbeispiels näher erläutert werden.

Fig. 1
zeigt ein Diagramm eines Meßsignals, das von einem Rechtecksignal erzeugt wird.
Fig. 2
zeigt ein Amplitudendiagramm für verschiedene Münzmaterialien über der Zeit während eines Meßintervalls.
Fig. 3
zeigt in einem Diagramm unterschiedliche Dämpfungskurven der gleichen Münze bei zwei Einwürfen.
Fig. 4
zeigt ein Diagramm der resultierenden nach Normierung identischen Kurven für die Amplituden während eines Meßintervalls.
Fig. 5
zeigt eine schematisch dargestellte Spulenanordnung nach der Erfindung.
Fig. 6
zeigt Beispiele von Querschnitten von zu prüfenden Münzmaterialien.
The invention will be explained in more detail with reference to an embodiment shown in the drawings.
Fig. 1
shows a diagram of a measurement signal, which is generated by a square wave signal.
Fig. 2
Figure 4 shows an amplitude plot for various coin materials over time during a measurement interval.
Fig. 3
shows in a diagram different damping curves of the same coin at two interjections.
Fig. 4
shows a diagram of the resulting after normalization identical curves for the amplitudes during a measurement interval.
Fig. 5
shows a schematically illustrated coil assembly according to the invention.
Fig. 6
shows examples of cross-sections of coins to be tested.

Bei der nachfolgenden Beschreibung wird ausdrücklich Bezug genommen auf das Verfahren nach DE 197 26 449 C2 (nur die Frequenzmessung).In the following description, reference is expressly made to the method according to DE 197 26 449 C2 (only the frequency measurement).

Das Verfahren zur Prüfung von Münzen kann z.B. mit einer Spulenanordnung durchgeführt werden, bei der Sendespule und Empfangsspule auf einem gemeinsamen Ferritkern angeordnet sind, wobei die Empfangsspule von dem homogenen Feld der Sendespule durchdrungen wird (einseitige Anordnung). Dies wird später erläutert. Die Sendespule wird, wie in DE 197 26 449 beschrieben, mit periodisch wiederkehrenden Pulsen, z.B. in Rechteck- oder Dreieckform, beaufschlagt. Die Dauer eines Pulses beträgt z.B. 50 Mikrosekunden und wird in gleichen Zeitabständen (Millisekunden-Bereich) periodisch wiederholt. Das Ausgangssignal der Empfangsspule ist etwa in Fig. 1 dargestellt. Wie in DE 197 26 449 C2 ausgerührt, können die einzelnen Zeitpunkte T1 bis T8 des Ausgangssignals 10 bestimmten Frequenzspektren zugeordnet werden. T1 ergibt eine Harmonische mit hoher T8 eine mit niedriger Frequenz. Das Signal 10 mit den Schritten T1 bis T8 stellt ein Meßintervall dar, das periodisch wiederholt wird. Das Meßintervall hat, wie schon erwähnt, beispielsweise eine Länge von 50 Mikrosekunden.The method for testing coins can be carried out, for example, with a coil arrangement in which the transmitting coil and the receiving coil are arranged on a common ferrite core, wherein the receiving coil is penetrated by the homogeneous field of the transmitting coil (single-sided arrangement). This will be explained later. The transmitting coil will, as in DE 197 26 449 described, with periodically recurring pulses, for example in rectangular or triangular form, applied. The duration of a pulse is, for example, 50 microseconds and is repeated periodically at equal intervals (milliseconds range). The output signal of the receiving coil is approximately in Fig. 1 shown. As in DE 197 26 449 C2 stirred, the individual times T1 to T8 of the output signal 10 can be assigned to certain frequency spectra. T1 gives a high T8 one with a low frequency. The signal 10 with the steps T1 to T8 represents a measurement interval which is repeated periodically. The measuring interval has, as already mentioned, for example, a length of 50 microseconds.

Werden für die einzelnen Meßzeitpunkte T1 bis T3 während des Münzdurchlaufs die Amplitudenwerte aufgetragen, ergeben sich drei Dämpfungskurven, wie sie in Fig. 3 angedeutet sind. Weicht die Münzposition von der Idealposition (z. B. rechtes Diagramm von Fig. 3) ab, ergeben sich unterschiedliche Kurvenverläufe, wie ebenfalls in Fig. 3 zu erkennen (linkes Diagramm), insbesondere abweichende Maxima. Fig. 3 zeigt mithin die ermittelten Dämpfungskurven für die Einwürfe derselben Münze. Würden allein die Maxima zugrunde gelegt, kann eine präzise Aussage aus der Münzmessung nicht gewonnen werden, denn eine echte Münze kann wegen unterschiedlichen Abstands große Unterschiede in den Amplituden der Dämpfungskurven aufweisen.If the amplitude values are plotted for the individual measuring times T1 to T3 during the passage of the coin, three attenuation curves result, as shown in FIG Fig. 3 are indicated. Does the coin position deviate from the ideal position (eg right diagram of Fig. 3 ), results in different curves, as also in Fig. 3 to recognize (left diagram), in particular deviating maxima. Fig. 3 thus shows the determined damping curves for the throw-in of the same coin. If only the maxima were taken as a basis, a precise statement from the coin measurement can not be obtained, because a real coin can because of different distance have large differences in the amplitudes of the damping curves.

Bei dem beschriebenen Verfahren werden für einen Meßzyklus die Meßwerte zu mindestens drei Meßzeitpunkten interpoliert und durch ein Kurvenfitverfahren die dazugehörende Funktion oder Kurve ermittelt. Dies ist in Fig. 4 angedeutet. In Fig. 4 sind zu den Meßzeitpunkten T1 bis T3 jeweils die gemessenen Amplituden für z. B. eine Messingmünze aufgetragen. Es ergeben sich durch ein Kurvenfitverfahren eine Kurve m1 für einen ersten Entwurf und eine Kurve m2 für den zweiten Entwurf. Nach einer Normierung der auf diese Weise gewonnenen Kurve oder Funktion kann sie mit der Idealkurve, die vorher ermittelt und gespeichert wird, verglichen werden. Derartige Idealkurven sind in Fig. 2 für sechs Münzmaterialien aufgetragen (siehe zu Fig. 2 gehörige Legende). Man erkennt, daß die unterschiedlichen Kurven, die den einzelnen Münzmaterialien zugeordnet sind, sich im wesentlichen durch unterschiedliche Zeitkonstanten auszeichnen. Diese sind aber im wesentlichen unabhängig davon, in welchem Abstand sich eine Münze von der Empfangsspule befindet. Mit anderen Worten, echte Münzen können unabhängig von dem Ausmaß der von ihnen verursachten Dämpfung erkannt werden. Daher können charakteristische Parameter der gemessenen bzw. ermittelten Funktionen oder Kurven mit den charakteristischen Sollparametern verglichen werden. Auf diese Weise ist es möglich, Falschmünzen zu diskriminieren bzw. festzustellen, aus welchem Material die eingeworfene Münze besteht, um den Münzwert angeben zu können.In the method described, the measured values are interpolated for at least three measuring times for a measuring cycle, and the associated function or curve is determined by a curve fit method. This is in Fig. 4 indicated. In Fig. 4 are at the measuring times T1 to T3 respectively the measured amplitudes for z. B. applied a brass coin. A curve fit m1 results in a curve m1 for a first draft and a curve m2 for the second draft. After normalizing the curve or function obtained in this way, it can be compared with the ideal curve, which is previously determined and stored. Such ideal curves are in Fig. 2 applied to six coin materials (see Fig. 2 proper legend). It can be seen that the different curves associated with the individual coin materials are essentially distinguished by different time constants. However, these are essentially independent of the distance between a coin and the receiving coil. In other words, real coins can be recognized regardless of the degree of attenuation they cause. Therefore, characteristic parameters of the measured or determined functions or curves can be compared with the characteristic desired parameters. In this way it is possible to discriminate against counterfeit coins or to determine from which material the inserted coin consists in order to be able to indicate the coin value.

Die Kurve 1 von Fig. 2 zeigt den Meßzustand an, bei dem sich keine Münze innerhalb des magnetischen Feldes der Sensoranordnung befindet.The curve 1 of Fig. 2 indicates the measuring state in which there is no coin within the magnetic field of the sensor arrangement.

Wird, wie beschrieben, eine Meßwertmenge zu einer Kurvenform gefittet, findet automatisch eine Reduzierung des Signalrauschens statt. Tests haben gezeigt, daß aus einer Schar durch unruhigen Münzlauf gestörter Meßkurven durch den beschriebenen Kurvenfit ein aussagekräftiger Meßwert erzeugt werden kann. Zur Erstellung einer Kurve oder einer Funktion aus wenigen Meßwerten mittels Kurvenfit sind verschiedene an sich bekannte mathematische Verfahren anwendbar.If, as described, a Meßwertmenge fitted to a waveform, a reduction of the signal noise takes place automatically. Tests have shown that from a crowd by troubled Münzlauf disturbed curves by the Kurvenfit described a meaningful reading can be generated. To create a curve or a function of a few measured values by means of Kurvenfit various known mathematical methods are applicable.

In Figur 6 sind drei Beispiele für den Querschnitt von Münzen angedeutet. Unter 1. ist eine plattierte oder galvanisierte Münze gezeigt, d. h. auf beiden Seiten mit einer Schicht versehen ist. Im mittleren Beispiel ist eine homogene Münze angedeutet, die z. B. aus Messing, Eisen oder einer Kupfernickellegierung besteht. Im unteren Beispiel ist eine sogenannte Schichtmünze dargestellt mit einem Nickelkern und äußeren Schichten aus Kupfer/Nickellegierung. Mit Hilfe der Erfindung sollen derartige Münzen diskriminiert werden.In FIG. 6 Three examples of the cross section of coins are indicated. Under 1. a plated or galvanized coin is shown, that is provided on both sides with a layer. In the middle example, a homogeneous coin is indicated, the z. B. brass, iron or a Kupfernickellegierung. In the lower example, a so-called laminated coin is shown with a nickel core and outer layers of copper / nickel alloy. With the help of the invention such coins are to be discriminated.

In Figur 5 ist ein Ferritkern 10a im Schnitt dargestellt, auf den außen eine Sendespule 12 aufgebracht ist. Die Länge des Ferritkerns 10a ist signifikant größer als die der Sendespule 12, d. h. ist nahezu das Vierfache der Spulenlänge. Die Sendespule 12 ist im Abstand zu den Enden des Ferritkerns 10a angeordnet. In einer Ringausnehmung 14 an einem Ende des Ferritkerns 10a ist eine Empfangsspule 16 angeordnet. Sie ist koaxial zur Sendespule 12, hat jedoch einen deutlich geringeren Innen- und Außendurchmesser als die Sendespule 12. Mit 18 ist eine Ebene angegeben, in der sich normalerweise eine Münze in einem Münzprüfer entlang bewegt. Die Ringausnehmung ist somit der Ebene 18 zugekehrt. Die Laufrichtung der Münzen ist etwa in Richtung des Pfeils 20.In FIG. 5 a ferrite core 10a is shown in section, on the outside of a transmitting coil 12 is applied. The length of the ferrite core 10a is significantly larger than that of the transmitting coil 12, that is, almost four times the coil length. The transmitting coil 12 is spaced from the ends of the ferrite core 10a. In an annular recess 14 at one end of the ferrite core 10a, a receiving coil 16 is arranged. It is coaxial with the transmitting coil 12, but has a much smaller inner and outer diameter than the transmitting coil 12. At 18, a plane is indicated, in which normally moves a coin in a Münzprüfer along. The annular recess is thus facing the plane 18. The running direction of the coins is approximately in the direction of arrow 20.

Die von der Sendespule 12 erzeugten Magnetfeldlinien sind gestrichelt eingezeichnet. Im Bereich der Empfangsspule 16 ist das Magnetfeld weitgehend homogen. Mithin ist das die Empfangsspule 16 durchflutende und die Münze in der Meßebene 18 beaufschlagende Magnetfeld weitgehend homogen. Ein Auseinanderlaufen der Magnetlinien, wie bei 22 angedeutet, findet in größerem Abstand zur Spulenanordnung statt.The magnetic field lines generated by the transmitting coil 12 are shown in dashed lines. In the region of the receiving coil 16, the magnetic field is largely homogeneous. Consequently, the magnetic field flowing through the receiving coil 16 and acting on the coin in the measuring plane 18 is largely homogeneous. A divergence of the Magnetic lines, as indicated at 22, takes place at a greater distance from the coil arrangement.

Claims (4)

  1. A method for validation of coins having an inductive sensor arrangement which has a transmitter and a receiver coil (12, 16), the field of which is crossed by a coin, comprising the following steps:
    the transmitter coil (12) is fed with a periodic transmission signal (10) containing multiple harmonics, characterized in that
    during a predetermined portion (measurement interval) of the periodically recurring portions of the transmitter or receiver signal (10) the amplitudes of the receiver signal are measured at three different, predetermined measurement times (T1, T2, T3) at least, wherein the different measurement times (T1, T2, T3) correspond to different frequency components,
    a curve (m1, m2) or respectively a mathematical function of the curve is formed or respectively determined from the amplitude values by means of a curve fitting method, and that the curve (m1, m2) or respectively the function is compared with a stored nominal curve or respectively nominal function with respect to at least one characteristic value, in order to produce an accept or feedback signal for the validated coin in each case.
  2. The method according to Claim 1, characterized in that a measurement interval is selected, in which the amplitude values are maximum.
  3. The method according to Claim 1 or 2, characterized in that in order to measure coins on or near the surface, measurements are conducted at early points of a measurement interval and a curve (m1, m2) or respectively a mathematical function of the curve is formed from the amplitude values by means of a curve fitting method.
  4. The method according to Claim 1 or 2, characterized in that in order to measure individual layers of the coins, measurements are taken at later points of a measurement interval and a curve (m1, m2) or respectively a mathematical function of the curve is formed from the amplitude values by means of a curve fitting method.
EP05006475.7A 2004-04-24 2005-03-24 Method for validation of coins Active EP1589493B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004020159A DE102004020159A1 (en) 2004-04-24 2004-04-24 Method for checking coins
DE102004020159 2004-04-24

Publications (2)

Publication Number Publication Date
EP1589493A1 EP1589493A1 (en) 2005-10-26
EP1589493B1 true EP1589493B1 (en) 2017-04-19

Family

ID=34934486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05006475.7A Active EP1589493B1 (en) 2004-04-24 2005-03-24 Method for validation of coins

Country Status (3)

Country Link
EP (1) EP1589493B1 (en)
DE (1) DE102004020159A1 (en)
ES (1) ES2630180T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046390B3 (en) * 2007-09-20 2008-11-27 National Rejectors, Inc. Gmbh Method for checking coins
US8561777B2 (en) * 2007-10-23 2013-10-22 Mei, Inc. Coin sensor
DE202011052023U1 (en) 2011-11-18 2012-01-03 Wincor Nixdorf International Gmbh Device for handling coins
WO2013138152A1 (en) 2012-03-14 2013-09-19 Mei, Inc. Coin sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726449A1 (en) * 1997-06-21 1999-01-07 Nat Rejectors Gmbh Method and circuit arrangement for checking coins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441602A (en) * 1981-12-02 1984-04-10 Joseph Ostroski Electronic coin verification mechanism
US5085309A (en) * 1989-06-07 1992-02-04 Adamson Phil A Electronic coin detector
GB2331614A (en) * 1997-11-19 1999-05-26 Tetrel Ltd Inductive coin validation system
DE10140225C2 (en) * 2001-08-16 2003-08-07 Nat Rejectors Gmbh Method and device for measuring the diameter of coins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726449A1 (en) * 1997-06-21 1999-01-07 Nat Rejectors Gmbh Method and circuit arrangement for checking coins

Also Published As

Publication number Publication date
DE102004020159A1 (en) 2005-11-17
EP1589493A1 (en) 2005-10-26
ES2630180T3 (en) 2017-08-18

Similar Documents

Publication Publication Date Title
DE3235114C2 (en)
DE2350990C2 (en)
WO1987000662A1 (en) Device for verifying coins
DE1474735A1 (en) Method and device for selecting coins
DE2654472A1 (en) COIN INSPECTION DEVICE
DE2225228C2 (en)
EP2312338A1 (en) Method and device for detecting electrically conductive objects
DE2705244A1 (en) COIN CHECK DEVICE
DE60222013T2 (en) COIN DISTINCTION APPARATUS IN WHICH FREQUENCIES OF SPINS ARE MEASURED
EP1589493B1 (en) Method for validation of coins
EP2040227B1 (en) Method for inspecting coins
DE69819532T2 (en) METHOD AND DEVICE FOR CHECKING COINS
DE4339419C2 (en) Devices and methods for the detection of metal objects
DE3231116A1 (en) METHOD AND DEVICE FOR CHECKING COINS WITH LOW FREQUENCY PHASE SHIFT
DE19726449C2 (en) Method and circuit arrangement for checking coins
DE10140225C2 (en) Method and device for measuring the diameter of coins
EP0892285B1 (en) Method and arrangement for electromagnetic object detection
EP1577844B1 (en) Device for testing coins
DE102007001821B4 (en) Inductive proximity switch
DE3013611A1 (en) METHOD AND DEVICE FOR IDENTIFYING COINS OR THE LIKE
DE4339543C2 (en) Procedure for checking coins
DE19548233C2 (en) Electronic coin validator
DE69930750T2 (en) OSCILLATORS
DE19836490C2 (en) Circuit arrangement for checking coins in a coin operated device
EP1233380B1 (en) Method of detecting the actuation of a coin return mechanism in a coin testing arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060107

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20060724

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CRANE PAYMENT SOLUTIONS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CRANE PAYMENT INNOVATIONS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015561

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2630180

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015561

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015561

Country of ref document: DE

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015561

Country of ref document: DE

Representative=s name: PETERREINS SCHLEY PATENT- UND RECHTSANWAELTE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230213

Year of fee payment: 19

Ref country code: GB

Payment date: 20230202

Year of fee payment: 19

Ref country code: DE

Payment date: 20230125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015561

Country of ref document: DE

Representative=s name: VENNER SHIPLEY GERMANY LLP, DE