EP1276710A1 - Neue verbindungen, ihre herstellung und verwendung - Google Patents

Neue verbindungen, ihre herstellung und verwendung

Info

Publication number
EP1276710A1
EP1276710A1 EP01921239A EP01921239A EP1276710A1 EP 1276710 A1 EP1276710 A1 EP 1276710A1 EP 01921239 A EP01921239 A EP 01921239A EP 01921239 A EP01921239 A EP 01921239A EP 1276710 A1 EP1276710 A1 EP 1276710A1
Authority
EP
European Patent Office
Prior art keywords
pharmaceutically acceptable
compound
ethoxy
ethyl
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01921239A
Other languages
English (en)
French (fr)
Inventor
Per Sauerberg
Lone Jeppesen
John Patrick Mogensen
Ingrid Pettersson
Pau Stanley Bury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Publication of EP1276710A1 publication Critical patent/EP1276710A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids

Definitions

  • the present invention relates to novel compounds, pharmaceutical compositions containing them, methods for preparing the compounds and their use as medicaments. More specifically, compounds of the invention can be utilised in the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the Peroxisome Proliferator-Activated Re- ceptors (PPAR).
  • PPAR Peroxisome Proliferator-Activated Re- ceptors
  • Coronary artery disease is the major cause of death in Type 2 diabetic and metabolic syndrome patients (i.e. patients that fall within the 'deadly quartet' category of impaired glucose tolerance, insulin resistance, hypert glyceridaemia and/or obesity).
  • hypolipidaemic fibrates and antidiabetic thiazolidinediones separately display moderately effective triglyceride-lowering activities although they are neither potent nor efficacious enough to be a single therapy of choice for the dyslipidaemia often observed in Type 2 diabetic or metabolic syndrome patients.
  • the thiazolidinediones also potently lower circulating glucose levels of Type 2 diabetic animal models and humans.
  • the fibrate class of compounds are without beneficial effects on glycaemia.
  • thiazolidinediones and fibrates exert their action by activating distinct transcription factors of the peroxisome proliferator activated receptor (PPAR) family, resulting in increased and decreased expression of specific enzymes and apolipoproteins respectively, both key-players in regulation of plasma triglyceride content.
  • Fibrates on the one hand, are PPAR ⁇ activators, acting primarily in the liver.
  • Thiazolidinediones on the other hand, are high affinity ligands for PPAR ⁇ acting primarily on adipose tissue.
  • Adipose tissue plays a central role in lipid ho eostasis and the maintenance of energy balance in vertebrates.
  • Adipocytes store energy in the form of triglycerides during periods of nutritional affluence and release it in the form of free fatty acids at times of nutritional deprivation.
  • white adipose tissue is the result of a continuous differentiation process throughout life.
  • Much evidence points to the central role of PPAR ⁇ activation in initiating and regulating this cell differentiation.
  • Several highly specialised proteins are induced during adipocyte differentiation, most of them being involved in lipid storage and metabolism.
  • the exact link from activation of PPAR ⁇ to changes in glucose metabolism, most notably a decrease in insulin resistance in muscle, has not yet been clarified.
  • a possible link is via free fatty acids such that activation of PPAR ⁇ induces
  • LPL Lipoprotein Lipase
  • FATP Fatty Acid Transport Protein
  • ACS Acyl-CoA Synthetase
  • PPAR ⁇ is involved in stimulating ⁇ -oxidation of fatty acids.
  • a PPAR ⁇ -mediated change in the expression of genes involved in fatty acid metabolism lies at the basis of the phenomenon of peroxisome proliferation, a pleiotropic cellular response, mainly limited to liver and kidney and which can lead to hepatocarcinogenesis in rodents.
  • the phenomenon of peroxisome proliferation is not seen in man.
  • PPAR ⁇ is also involved in the control of HDL cholesterol levels in rodents and humans. This effect is, at least partially, based on a PPAR ⁇ -mediated transcriptional regulation of the major HDL apolipoproteins, apo A-l and apo A-ll.
  • the hypotriglycehdemic action of fibrates and fatty acids also involves PPAR ⁇ and can be summarised as follows: (I) an increased lipolysis and clearance of remnant particles, due to changes in lipoprotein lipase and apo C-lll levels, (II) a stimulation of cellular fatty acid uptake and their subsequent conversion to acyl-CoA derivatives by the induction of fatty acid binding protein and acyl-CoA synthase, (III) an induction of fatty acid ⁇ -oxidation pathways, (IV) a reduction in fatty acid and triglyceride synthesis, and finally (V) a decrease in VLDL production.
  • both enhanced catabolism of triglyceride-rich particles as well as reduced secretion of VLDL particles constitutes mechanisms that contribute to the hypolipidemic effect of fibrates.
  • Glucose lowering as a single approach does not overcome the macrovascular complications associated with Type 2 diabetes and metabolic syndrome.
  • Novel treatments of Type 2 diabe- tes and metabolic syndrome must therefore aim at lowering both the overt hypertriglyceri- daemia associated with these syndromes as well as alleviation of hyperglycaemia.
  • R 1 , R 2 , R 3 and R 4 independently of each other are hydrogen, C 1-12 -alkyl, C 2 . 12 - alkenyl, C 2 .** 2 - alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl or C 1 . 6 -alkoxyC 1 . 6 -alkyl, optionally substituted with one or more halogen, hydroxy or amino; and
  • x-i, x 2 , x 3 and x 4 independently of each other is carbon, oxygen, sulphur or nitrogen;
  • Y is C 1-12 -alkyl, C 2 . 12 -alkenyl, C 2 . 12 -alkynyl, aryl, aralkyl, alkylaralkyl, hereroaryl, heteroaralkyl, or alkylheteroaralkyl, optionally substituted with one or more halogen, hydroxy or amino; and Ar 1 and Ar 2 independently of each other are aryl or heteroaryl optionally substituted with one or more halogen, hydroxy, amino, aminoalkyl, carboxyalkyl, C**. 6 -alkyl or C ⁇ .6-alkoxy; or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, including a racemic mixture, or any tautomeric forms.
  • Preferred compounds of the invention are:
  • any optical isomer or mixture of optical isomers including a racemic mixture, or any tautomeric forms.
  • groups include, but are not limited to methyl, ethyl, n-propyl, iso- propyl, butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl and the like and cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl and the like.
  • C 2 . n -alkenyl wherein n' can be from 3 through 12, as used herein, represents an olefinically unsaturated branched or straight group having from 2 to the specified number of carbon atoms and at least one double bond.
  • groups include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, allyl, iso-proppenyl, 1 ,3-butadienyl, 1-butenyl, hex- enyl, pentenyl and the like.
  • C 2 . n -alkynyl wherein n' can be from 3 through 12, as used herein, represent an unsaturated branched or straight group having from 2 to the specified number of carbon atoms and at least one triple bond.
  • examples of such groups include, but are not limited to, 1- propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl and the like.
  • C ⁇ -alkoxy as used herein, alone or in combination is intended to include those C ⁇ - alkyl groups of the designated length in either a linear or branched or cyclic configuration linked thorugh an ether oxygen having its free valence bond from the ether oxygen.
  • linear alkoxy groups are methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy and the like.
  • branched alkoxy are isoprpoxy, sec-butoxy, tert-butoxy, isopentoxy, isohexoxy and the like.
  • cyclic alkoxy are cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and the like.
  • C 1-6 -alkyl refers to a C 1-6 -alkyl as defined herein whereto is attached a C 1-6 -alkoxy as defined herein, e.g. methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl and the like.
  • aryl is intended to include aromatic rings, such as carboxylic aromatic rings selected from the group consisting of phenyl, naphthyl, (1-naphtyl or 2-naphtyl) and the like optionally substituted with halogen, amino, hydroxy, C 1-6 -alkyl or C 1-6 -alkoxy and the like.
  • halogen means fluorine, chlorine, bromine or iodine.
  • heteroaryl refers to a monovalent substituent comprising a 5-6 membered monocyclic aromatic system or a 9-10 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulfur, e.g.
  • arylalkyl refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with an aromatic carbohydride; such as benzyl, phenethyl, 3-phenylpropyl, 1-naphtylmethyl, 2-(1-naphtyl)ethyl and the like.
  • heteroarylalkyl refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with a heteroaryl group; such as (2- furyl)methyl, (3-furyl)methyl, (2-thienyl)methyl, (3-thienyl)methyl, (2-pyridyl)methyl, 1-methyl- 1-(2-pyrimidyl)ethyl and the like.
  • the present invention also encompasses pharmaceutically acceptable salts of the present compounds.
  • Such salts include pharmaceutically acceptable acid addition salts, pharmaceu- tically acceptable base addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts.
  • Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hy- drobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like.
  • suitable organic acids include formic, acetic, trichloroacetic, thfluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids, sulphates, nitrates, phosphates, perchlorates, borates, acetates, benzoates, hydroxynaphtho- ates, glycer
  • compositions include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference.
  • metal salts include lithium, sodium, potassium, magnesium salts and the like.
  • ammonium and alkylated ammonium salts include ammonium, methylammonium, di- methylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethyl- ammonium, butylammonium, tetramethylammonium salts and the like.
  • organic bases include lysine, arginine, guanidine, diethanolamine, choline and the like.
  • the pharmaceutically acceptable salts are prepared by reacting the compound of formula I with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium hy- dride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents Hike ether, THF, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used. Organic bases like lysine, arginine, diethanolamine, choline, guandine and their derivatives etc. may also be used.
  • acid addition salts whereever ap- plicable are prepared by treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, THF, dioxane etc. Mixture of solvents may also be used.
  • acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphth
  • stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by re- solving the mixture of stereoisomers by conventional methods.
  • Some of the preferred methods include use of microbial resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, cinchona alkaloids and their derivatives and the like.
  • the compound of formula I may be converted to a 1 :1 mixture of diastereomeric amides by treating with chiral amines, amino acids, amino alcohols derived from amino acids; conventional reaction conditions may be employed to convert acid into an amide; the diastereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula I may be prepared by hydrolysing the pure diastereomeric amide.
  • polymorphs of compound of general formula I may be prepared by crystallization of compound of formula I under different conditions. For example, using different solvents commonly used or their mixtures for recrystallization; crystallizations at different temperatures; various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe nmr spectroscopy, ir spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques. Furthermore, the present compounds of formula I can be utilised in the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the Peroxisome Prolifera- tor-Activated Receptors (PPAR).
  • PPAR Peroxisome Prolifera- tor-Activated Receptors
  • the invention also encompasses prodrugs of the present compounds, which on administration undergo chemical conversion by metabolic processes before becoming active pharmacological substances.
  • prodrugs will be functional derivatives of the present compounds, which are readily convertible in vivo into the required compound of the formula (I).
  • Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.
  • the invention also encompasses active metabolites of the present compounds.
  • the present invention relates to a method of treating and/or preventing Type I or Type II diabetes, preferably Type II diabetes.
  • the present invention relates to the use of one or more compounds of the general formula I or pharmaceutically acceptable salts thereof for the preparation of a medicament for the treatment and/or prevention of Type I or Type II diabetes, preferably Type II diabetes.
  • the present compounds are useful for the treatment and/or prevention of IGT.
  • the present compounds are useful for the treatment and/or prevention of Type 2 diabetes.
  • the present compounds are useful for the delaying or prevention of the progression from IGT to Type 2 diabetes.
  • the present compounds are useful for the delaying or prevention of the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes.
  • the present compounds reduce blood glucose and triglyceride levels and are accordingly useful for the treatment and/or prevention of ailments and disorders such as diabetes and/or obesity.
  • the present compounds are useful for the treatment and/or prophylaxis of insulin resistance (Type 2 diabetes), impaired glucose tolerance, dyslipidemia, disorders related to Syndrome X such as hypertension, obesity, insulin resistance, hyperglycaemia, atherosclerosis, hyperlipidemia, coronary artery disease, myocardial ischemia and other cardiovascular disorders.
  • Type 2 diabetes Type 2 diabetes
  • disorders related to Syndrome X such as hypertension, obesity, insulin resistance, hyperglycaemia, atherosclerosis, hyperlipidemia, coronary artery disease, myocardial ischemia and other cardiovascular disorders.
  • the present compounds are effective in decreasing apoptosis in mammalian cells such as beta cells of Islets of Langerhans.
  • the present compounds are useful for the treatment of certain renal diseases including glomerulonephritis, glomerulosclerosis, nephrotic syndrome, hypertensive nephrosclerosis.
  • the present compounds may also be useful for improving cognitive functions in dementia, treating diabetic complications, psoriasis, polycystic ovarian syndrome (PCOS) and prevention and treatment of bone loss, e.g. osteoporosis.
  • PCOS polycystic ovarian syndrome
  • the invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound of the formula I or any optical or geometric isomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof to- gether with one or more pharmaceutically acceptable carriers or diluents.
  • the invention relates to the use of compounds of the general formula I or their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts or pharmaceutically acceptable solvates thereof for the preparation of a pharmaceutical composition for the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the Peroxisome Proliferator-Activated Receptors (PPAR) such as the conditions mentioned above.
  • PPAR Peroxisome Proliferator-Activated Receptors
  • the present invention also relates to a process for the preparation of the above said novel compounds, their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts or pharmaceutically acceptable solvates.
  • a compound of formula I can be prepared as described below:
  • the PPAR gene transcription activation assays were based on transient transfection into human HEK293 cells of two plasmids encoding a chimeric test protein and a reporter protein respectively.
  • the chimeric test protein was a fusion of the DNA binding domain (DBD) from the yeast GAL4 transcription factor to the ligand binding domain (LBD) of the human PPAR proteins.
  • the GAL4 DBD will force the fusion protein to bind only to Gal4 enhancers (of which none existed in HEK293 cells).
  • the reporter plasmid contained a Gal4 enhancer driving the expression of the firefly luciferase protein.
  • HEK293 cells expressed the GAL4-DBD-PPAR-LBD fusion protein.
  • the fusion protein will in turn bind to the Gal4 enhancer controlling the luciferase expression, and do nothing in the absence of ligand.
  • luciferase protein Upon addition to the cells of a PPAR ligand, luciferase protein will be produced in amounts corresponding to the activation of the. PPAR protein.
  • the amount of luciferase protein is measured by light emission after addition of the appropriate substrate.
  • HEK293 cells were grown in DMEM + 10% FCS, 1% PS. Cells were seeded in 96-well plates the day before transfection to give a confluency of 80 % at transfection. 0,8 ⁇ g DNA per well was transfected using FuGene transfection reagent according to the manufacturers instructions (Boehringer-Mannheim). Cells were allowed to ex- press protein for 48 h followed by addition of compound. Plasmids: Human PPAR ⁇ and ⁇ was obtained by PCR amplification using cDNA templates from liver, intestine and adipose tissue respectively. Amplified cDNAs were cloned into pCR2.1 and sequenced.
  • the LBD from each isoform PPAR was generated by PCR (PPAR ⁇ : aa 167 - C-term; PPAR ⁇ : aa 165 - C-term) and fused to GAL4-DBD by subcloning fragments in frame into the vector pM1 generating the plasmids pMl ⁇ LBD and pMl ⁇ LBD. Ensuing fusions were verified by sequencing.
  • the reporter was constructed by inserting an oligonu- cleotide encoding five repeats of the Gal4 recognition sequence into the pGL2 vector (Promega).
  • Luciferase assay Medium including test compound was aspirated and 100 ⁇ l PBS incl. 1 mM Mg++ and Ca++ was added to each well. The luciferase assay was performed using the Lu- cLite kit according to the manufacturers instructions (Packard Instruments). Light emission was quantified by counting SPC mode on a Packard Instruments top-counter.
  • the present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, at least one of the compounds of the general formula I or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier or diluent.
  • the present compounds may also be administered in combination with one or more further pharmacologically active substances eg. selected from antiobesity agents, antidiabetics, an- tihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
  • further pharmacologically active substances eg. selected from antiobesity agents, antidiabetics, an- tihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
  • the present compounds may be administered in combination with one or more antiobesity agents or appetite regulating agents.
  • agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, uro- cortin agonists, ⁇ 3 agonists, MSH (melanocyte-stimulating hormone) agonists, MCH
  • melanocyte-concentrating hormone antagonists
  • CCK cholecystokinin
  • serotonin re-uptake inhibitors serotonin and noradrenaline re-uptake inhibitors, mixed serotonin and noradrenergic compounds
  • 5HT serotonin
  • bombesin agonists bombesin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators
  • leptin agonists DA agonists (bromocriptin, doprexin), lipase/amylase inhibitors, RXR (retinoid X receptor) modulators or TR ⁇ agonists.
  • the antiobesity agent is leptin.
  • the antiobesity agent is dexamphetamine or amphetamine.
  • the antiobesity agent is fenfluramine or dexfenfluramine.
  • the antiobesity agent is sibutramine.
  • the antiobesity agent is orlistat.
  • the antiobesity agent is mazindol or phentermine.
  • Suitable antidiabetics comprise insulin, GLP-1 (glucagon like peptide-1) derivatives such as those disclosed in WO 98/08871 to Novo Nordisk A/S, which is incorporated herein by reference as well as orally active hypoglycaemic agents.
  • the orally active hypoglycaemic agents preferably comprise sulphonylureas, biguanides, meglitinides, glucosidase inhibitors, glucagon antagonists such as those disclosed in WO 99/01423 to Novo Nordisk A/S and Agouron Pharmaceuticals, Inc., GLP-1 agonists, potassium channel openers such as those disclosed in WO 97/26265 and WO 99/03861 to Novo Nordisk A/S which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents as HMG CoA inhibitors (statins), compounds lowering food intake, RXR agonists and agents acting on the ATP-dependent potas ⁇ sium channel of the ⁇ -cells.
  • the present compounds are administered in combination with insulin.
  • the present compounds are administered in combination with a sul- phonylurea eg. tolbutamide, glibenclamide, glipizide or glicazide.
  • a sul- phonylurea eg. tolbutamide, glibenclamide, glipizide or glicazide.
  • the present compounds are administered in combination with a bi- guanide eg. metformin.
  • the present compounds are administered in combination with a meglitinide eg. repaglinide.
  • the present compounds are administered in combination with an ⁇ -glucosidase inhibitor eg. miglitol or acarbose.
  • an ⁇ -glucosidase inhibitor eg. miglitol or acarbose.
  • the present compounds are administered in combination with an agent acting on the ATP-dependent potassium channel of the ⁇ -cells eg. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
  • an agent acting on the ATP-dependent potassium channel of the ⁇ -cells eg. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
  • the present compounds may be administered in combination with nateglinide.
  • the present compounds are administered in combination with an antihyperlipidemic agent or antilipidemic agent eg. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
  • an antihyperlipidemic agent or antilipidemic agent eg. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
  • the present compounds are administered in combination with more than one of the above-mentioned compounds eg. in combination with a sulphonylurea and metformin, a sulphonylurea and acarbose, repaglinide and metformin, insulin and a sulphonylurea, insulin and metformin, insulin, insulin and lovastatin, etc.
  • the present compounds may be administered in combination with one or more antihypertensive agents.
  • antihypertensive agents examples include ⁇ -blockers such as alpre- nolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinaphl and ramip l, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, ni- modipine, diltiazem and verapamil, and ⁇ -blockers such as doxazosin, urapidil, prazosin and terazosin. Further reference can be made to Remington: The Science and Practice of Pharmacy, 19 th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
  • compositions containing a compound of the present invention may be prepared by conventional techniques, e.g. as described in Remington: The Science and Practise of Pharmacy, 19 th Ed., 1995.
  • the compositions may appear in conventional forms, for example capsules, tablets, aerosols, solutions, suspensions or topical applications.
  • compositions include a compound of formula I or a pharmaceutically acceptable acid addition salt thereof, associated with a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container.
  • a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container.
  • the active compound will usually be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a ampoule, capsule, sachet, paper, or other container.
  • the carrier When the carrier serves as a diluent, it may be solid, semi-solid, or liquid material which acts as a vehicle, excipient, or medium for the active compound.
  • the active compound can be adsorbed on a granular solid container for example in a sachet.
  • suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, gelatine, lactose, terra alba, sucrose, cyclodext n, amylose, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.
  • the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.
  • the formulations may also include wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavouring agents.
  • the formulations of the invention may be formulated so as to provide quick, sustained, or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.
  • compositions can be sterilized and mixed, if desired, with auxiliary agents, emulsifiers, salt for influencing osmotic pressure, buffers and/or colouring sub- stances and the like, which do not deleteriously react with the active compounds.
  • the route of administration may be any route, which effectively transports the active compound to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal or parenteral e.g. rectal, depot, subcutaneous, intravenous, intraurethral, intramuscular, in- tranasal, ophthalmic solution or an ointment, the oral route being preferred.
  • the preparation may be tabletted, placed in a hard gelatin capsule in powder or pellet form or it can be in the form of a troche or lozenge. If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatin capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.
  • the preparation may contain a compound of formula I dissolved or suspended in a liquid carrier, in particular an aqueous carrier, for aerosol application.
  • a liquid carrier in particular an aqueous carrier
  • the carrier may contain additives such as solubilizing agents, e.g. propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabenes.
  • injectable solutions or suspensions pref- erably aqueous solutions with the active compound dissolved in polyhydroxylated castor oil.
  • Tablets, dragees, or capsules having talc and/or a carbohydrate carrier or binder or the like are particularly suitable for oral application.
  • Preferable carriers for tablets, dragees, or capsules include lactose, corn starch, and/or potato starch.
  • a syrup or elixir can be used in cases where a sweetened vehicle can be employed.
  • a typical tablet which may be prepared by conventional tabletting techniques may contain:
  • the compounds of the invention may be administered to a mammal, especially a human in need of such treatment, prevention, elimination, alleviation or amelioration of diseases related to the regulation of blood sugar.
  • mammals include also animals, both domestic animals, e.g. household pets, and non- domestic animals such as wildlife.
  • the compounds of the invention are effective over a wide dosage range.
  • dosages from about 0.05 to about 100 mg, preferably from about 0.1 to about 100 mg, per day may be used.
  • a most preferable dosage is about 0.1 mg to about 70 mg per day.
  • the exact dosage will depend upon the mode of administration, on the therapy desired, form in which administered, the subject to be treated and the body weight of the subject to be treated, and the preference and experience of the physician or veterinarian in charge.
  • the compounds of the present invention are dispensed in unit dosage form comprising from about 0.1 to about 100 mg of active ingredient together with a pharmaceutically acceptable carrier per unit dosage.
  • dosage forms suitable for oral, nasal, pulmonary or transdermal administration comprise from about 0.001 mg to about 100 mg, preferably from about 0.01 mg to about 50 mg of the compounds of formula I admixed with a pharmaceutically acceptable carrier or diluent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP01921239A 2000-04-17 2001-04-06 Neue verbindungen, ihre herstellung und verwendung Withdrawn EP1276710A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK200000650 2000-04-17
DKPA200000650 2000-04-17
PCT/DK2001/000236 WO2001079150A1 (en) 2000-04-17 2001-04-06 New compounds, their preparation and use

Publications (1)

Publication Number Publication Date
EP1276710A1 true EP1276710A1 (de) 2003-01-22

Family

ID=8159442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01921239A Withdrawn EP1276710A1 (de) 2000-04-17 2001-04-06 Neue verbindungen, ihre herstellung und verwendung

Country Status (4)

Country Link
EP (1) EP1276710A1 (de)
JP (1) JP2004501076A (de)
AU (1) AU2001248279A1 (de)
WO (1) WO2001079150A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192982B2 (en) * 2001-06-07 2007-03-20 Ligand Pharmaceuticals, Inc. Modulators of peroxisome proliferator activated receptors
ITRM20020014A1 (it) * 2002-01-15 2003-07-15 Sigma Tau Ind Farmaceuti Derivati di acidi a-feniltiocarbossilici e a-fenilossicarbossilici utili per il trattamento di patologie che rispondono all'attivazione del
US7129268B2 (en) * 2002-10-28 2006-10-31 Novo Nordisk A/S Peroxisome proliferator activated receptor-active arylene acetic acid derivatives
US7816385B2 (en) 2002-12-20 2010-10-19 High Point Pharmaceuticals, Llc Dimeric dicarboxylic acid derivatives, their preparation and use
JP2006510687A (ja) * 2002-12-20 2006-03-30 ノボ ノルディスク アクティーゼルスカブ 新規化合物、その調製および使用
ITRM20030305A1 (it) * 2003-06-20 2004-12-21 Sigma Tau Ind Farmaceuti Preparazione di nuovi derivati di acidi fenil o fenossialchil mono e dicarbossilici utili nel trattamento dell'iperglicemia e dell'ipertrigliceridemia tipiche del diabete del tipo ii.
US7456218B2 (en) 2003-12-25 2008-11-25 Takeda Pharmaceutical Company Limited 3-(4-benzyloxyphenyl) propanoic acid derivatives
JP4074616B2 (ja) * 2003-12-25 2008-04-09 武田薬品工業株式会社 3−(4−ベンジルオキシフェニル)プロパン酸誘導体
EP1734963A4 (de) 2004-04-02 2008-06-18 Merck & Co Inc Verfahren zur behandlung von menschen mit metabolischen und anthropometrischen störungen
EP1979311B1 (de) 2005-12-22 2012-06-13 High Point Pharmaceuticals, LLC Phenoxyessigsäuren als ppar-delta-aktivatoren
CA3089569C (en) 2007-06-04 2023-12-05 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
US20100120694A1 (en) 2008-06-04 2010-05-13 Synergy Pharmaceuticals, Inc. Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders
EP2321341B1 (de) 2008-07-16 2017-02-22 Synergy Pharmaceuticals Inc. Zur behandlung von erkrankungen des magen-darm-trakts, entzündlichen erkrankungen, krebs und anderen erkrankungen geeignete agonisten von guanylatcyclase
EP2348857B1 (de) 2008-10-22 2016-02-24 Merck Sharp & Dohme Corp. Neue cyclische benzimidazolderivate als antidiabetika
CA2741672A1 (en) 2008-10-31 2010-05-06 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
JP2013520502A (ja) 2010-02-25 2013-06-06 メルク・シャープ・エンド・ドーム・コーポレイション 有用な抗糖尿病薬である新規な環状ベンズイミダゾール誘導体
US20130156720A1 (en) 2010-08-27 2013-06-20 Ironwood Pharmaceuticals, Inc. Compositions and methods for treating or preventing metabolic syndrome and related diseases and disorders
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
MX348131B (es) 2011-02-25 2017-05-26 Merck Sharp & Dohme Novedosos derivados de azabencimidazol ciclico utiles como agentes antidiabeticos.
US20150004144A1 (en) 2011-12-02 2015-01-01 The General Hospital Corporation Differentiation into brown adipocytes
MX2015001500A (es) 2012-08-02 2015-04-08 Merck Sharp & Dohme Compuestos antidiabeticos triciclicos.
AU2014219020A1 (en) 2013-02-22 2015-07-23 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
US9650375B2 (en) 2013-03-14 2017-05-16 Merck Sharp & Dohme Corp. Indole derivatives useful as anti-diabetic agents
EP2970384A1 (de) 2013-03-15 2016-01-20 Synergy Pharmaceuticals Inc. Agonisten der guanylatcyclase und deren verwendungen
JP2016514670A (ja) 2013-03-15 2016-05-23 シナジー ファーマシューティカルズ インコーポレイテッド 他の薬物と組み合わせたグアニル酸シクラーゼ受容体アゴニスト
RS65632B1 (sr) 2013-06-05 2024-07-31 Bausch Health Ireland Ltd Ultra-prečišćeni agonisti guanilat-ciklaze c, postupak njihove pripreme i upotrebe
WO2015051496A1 (en) 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
EP3551176A4 (de) 2016-12-06 2020-06-24 Merck Sharp & Dohme Corp. Antidiabetische heterocyclische verbindungen
US10968232B2 (en) 2016-12-20 2021-04-06 Merck Sharp & Dohme Corp. Antidiabetic spirochroman compounds
JP2023534835A (ja) 2020-07-22 2023-08-14 レネオ ファーマシューティカルズ,インク. 結晶性pparデルタアゴニスト
WO2023147309A1 (en) 2022-01-25 2023-08-03 Reneo Pharmaceuticals, Inc. Use of ppar-delta agonists in the treatment of disease

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69228122T2 (de) * 1991-07-30 1999-06-24 Yamanouchi Pharmaceutical Co., Ltd., Tokio/Tokyo Neues bisheterocyclisches derivat und salz und hypoglykämische zusammensetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0179150A1 *

Also Published As

Publication number Publication date
WO2001079150A1 (en) 2001-10-25
AU2001248279A1 (en) 2001-10-30
JP2004501076A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
EP1276710A1 (de) Neue verbindungen, ihre herstellung und verwendung
US6569901B2 (en) Alkynyl-substituted propionic acid derivatives, their preparation and use
US20030004341A1 (en) Crystalline R-guanidines, arginine or (L)-arginine (2S)-2-ethoxy-3-{4-[2-(10H-phenoxazin-10-yl)ethoxy]phenyl}propanoate
US6534517B2 (en) Compounds, their preparation and use
WO2000063196A1 (en) New compounds, their preparation and use
AU3958000A (en) New compounds, their preparation and use
WO2000063190A1 (en) New compounds, their preparation and use
EP1438283A1 (de) Dikarbonsäure-derivate, deren darstellung und therapeutische verwendung
WO2003011807A1 (en) Novel vinyl carboxylic acid derivatives and their use as antidiabetics etc.
US6274608B1 (en) Compounds, their preparation and use
EP1745014B1 (de) Neue verbindungen, deren herstellung und verwendung
EP1254102A1 (de) Durch alkynyl substituierte propionsäurederivate und ihre anwendung zur bekämpfung von diabetis und fettleibigkeit
US6869967B2 (en) Peroxisome proliferator-activated receptor (PPAR) active vinyl carboxylic acid derivatives
WO2003011814A1 (en) Novel vinyl n-(2-benzoylphenyl)-l-tyrosine derivatives and their use as antidiabetics etc
US6509374B2 (en) Compounds, their preparation and use
US7067530B2 (en) Compounds, their preparation and use
US6972294B1 (en) Compounds, their preparation and use
EP1414806A1 (de) Neue vinyl-n-(2-benzoylphenyl)-l-tyrosinderivate und deren verwendung als antidiabetika usw.
US7220877B2 (en) Compounds, their preparation and use
US6369055B1 (en) Compounds, their preparation and use
US7414128B2 (en) Crystalline R-guanidines, Arginine or (L)-Arginine (2S)-2-Ethoxy-3-{4-[2-(10H -phenoxazin-10-yl)ethoxy]phenyl}propanoate
US20030055076A1 (en) Novel compounds, their preparation and use
AU2002316815A1 (en) Novel vinyl carboxylic acid derivatives and their use as antidiabetics etc.
MXPA01010609A (en) Newcompounds, their preparation and use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031101