EP1276085B1 - Method for determining a traffic jam index and for determining tailback lengths - Google Patents

Method for determining a traffic jam index and for determining tailback lengths Download PDF

Info

Publication number
EP1276085B1
EP1276085B1 EP01116930A EP01116930A EP1276085B1 EP 1276085 B1 EP1276085 B1 EP 1276085B1 EP 01116930 A EP01116930 A EP 01116930A EP 01116930 A EP01116930 A EP 01116930A EP 1276085 B1 EP1276085 B1 EP 1276085B1
Authority
EP
European Patent Office
Prior art keywords
determining
tailback
time
length
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01116930A
Other languages
German (de)
French (fr)
Other versions
EP1276085A1 (en
Inventor
Jürgen Mück
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANSVER GmbH
Original Assignee
TRANSVER GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP01116930A priority Critical patent/EP1276085B1/en
Application filed by TRANSVER GmbH filed Critical TRANSVER GmbH
Priority to ES01116930T priority patent/ES2199910T3/en
Priority to DE50100263T priority patent/DE50100263D1/en
Priority to AT01116930T priority patent/ATE241189T1/en
Priority to PCT/EP2002/007708 priority patent/WO2003007268A1/en
Priority to US10/483,331 priority patent/US7263435B2/en
Priority to CNA028138007A priority patent/CN1526126A/en
Publication of EP1276085A1 publication Critical patent/EP1276085A1/en
Application granted granted Critical
Publication of EP1276085B1 publication Critical patent/EP1276085B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the present invention relates to a method for determining a congestion index ⁇ and the resulting self-calibrating methods for estimating backflow lengths at operator stations for handling individually moved units, such as Light signal systems or locks, with a detector in front of it.
  • the variables determined in this way and characteristic values derived from them can be used to control the Light signal systems or locks used or to display the traffic condition be used in higher-level institutions.
  • a major disadvantage of this known method is that there are no jam lengths to be able to determine the greater than the distance between the operator station and Are detector.
  • the object of the invention is therefore to provide a method with a determination of the backflow length at operator stations for dispatch individually moving units not only between operator station and detector is enabled to with the help of this backflow length or derived values such as Waiting times to control a traffic light system or lock or traffic conditions in parent institutions.
  • the present invention provides a method for determining a congestion index ⁇ at operator stations ready for handling individually moving units, whereby Each check-in phase consists of a blocking and a pass phase and is in front the operator station is located by measuring the time (filling time) between Blocking begins or a time linked to the beginning of blocking and permanent occupancy of the detector and subsequent comparison with a reference filling time, where ⁇ if the reference filling time is exceeded, a first value and otherwise a second value is assigned.
  • Transition time before the start of the blocking phase coupled time can be selected.
  • the yellow phase could be considered as a transition period for light signals.
  • the reference filling time can be taken, for example, from simulative tests or empirical studies.
  • the reference filling time is advantageously dependent on the geometry of the inflow area, for example on the distance between Detector and operator station, the track width, etc., and / or the pass time of the Operator station selected.
  • This method is characterized in that for determining the backflow length no speed measurements are required.
  • the slope is advantageously readjusted in every nth handling phase.
  • determine the traffic volume q n This results, for example, from an estimate or from the measured number of units that pass the detector during the nth handling phase.
  • the traffic volume can be used to calculate how many units were available at least before the operator station during the n- th blocking phase; a lower bound L 0 / n for the backflow length is thus obtained.
  • the backflow length function of the previous clearance step L and n -1 ( ⁇ and n ) m n -1 ⁇ and n with ⁇ and n and a suitably chosen m n -1 gives an estimate of the actual backflow length in the current clearance phase.
  • the slope of the ( n -1) th clearance phase is advantageously obtained by recursively using the method just described with suitable initial values for ⁇ and 0 and m 0 . This method is therefore self-calibrating.
  • the traffic volume q n is preferably measured with the detector located in front of the operator station.
  • the lower limit of the accumulation length L 0 / n is given as a linear function of q n , since this simple form is a good approximation.
  • the slope of this straight line preferably depends on the time in which the detector is permanently occupied during a section of the dispatch phase. If this dependency is taken into account, the correspondence with the real data improves.
  • ⁇ n indicates a traffic jam at a distance of at least L 0 / n from the operator station, on the other hand the estimate of the traffic jam length L and n -1 ( ⁇ and n ) is less than L 0 / n .
  • ⁇ n does not indicate a congestion of length L 0 / n , but according to the estimate L and n -1 ( ⁇ and n ), the congestion is even longer than L 0 / n .
  • the congestion index determined according to the inventive method described above ⁇ can also be used to determine the saturation time requirement; in this connection is the average time required for a unit with saturated (no longer free) flow during the pass phase.
  • the saturation time requirement is a measure of the performance of the operator station.
  • it can also be used to estimate the backlog length using a queue model.
  • the congestion index ⁇ is first determined using the method according to the invention and the traffic volume q n is measured or estimated. The saturation time requirement can then be exceeded using a suitable initial condition for t B / 0 can be calculated, where t g / n denotes the pass time in the nth dispatch step.
  • the backflow length can be determined with the aid of a queue model which, as parameters to be calibrated, contains a model's own saturation time requirement ⁇ B / n with a suitably chosen initial value.
  • a procedure can consist of the following steps in every nth handling operation:
  • a lower bound for the length of traffic L 0 / n is calculated from the traffic volume.
  • a queue model is used to calculate a first estimate of the backflow length L " n . Then L" n and L 0 / n are compared, analogous to the above method for backflow length estimation.
  • This method is characterized in that for determining the backflow length no speed measurements are required.
  • disturbances in the discharge and in the queue model can advantageously be taken into account a correspondingly modified traffic volume can be used.
  • q n is only modified if it is smaller than the second largest value max 10.2 ( q ) of the last ten q values.
  • the modified traffic volume q '/ n is then taken where p comp is a constant with which the strength of the interference compensation can be adjusted.
  • the calibration of the model's own saturation time requirement is advantageously carried out using a feedback method based on a classic PID controller (proportional-integral-differential controller).
  • ⁇ n should be assigned -1 as the first value (if there is no congestion) and 1 as the second value (if there is no congestion).
  • L n ⁇ L 0 n + (1- ⁇ ) L " n , ⁇ ⁇ [0.1].
  • the detector is located 30 m or approx. 5 vehicles from the stop line. As Reference fill time for this distance is taken 22 seconds.
  • is assigned the value 0 and otherwise the value 1.
  • the degree of occupancy b of the detector is obtained by counting the full seconds between 5 s after the start of passage and 15 s after the end of passage in which the detector is permanently occupied and then divided by the total length of this time interval; thus b ⁇ [0.1].
  • Figure 1 shows the calibration of the slope m n .
  • the arbitrarily specified value of approx. 20 increases on the first day to the value that corresponds to the traffic characteristics of the lane. Subsequently, only slight adjustments are made. The control behavior is stable and robust.
  • FIG. 2 shows the comparison of the estimated, smoothed backlog length with manually ascertained, slightly smoothed backflow length values.
  • a squared correlation coefficient of R 2 0.7748 indicates a good relationship between the estimated and real backflow length.
  • Disruptions in the drain are compensated for using the occupancy rate known from the above example.
  • the macroscopic queue model is taken from RM Kimber and EM Hollis, Traffic queues and delays at road junctions , TRRL Laboratory Report 909, Berkshire, 1979 in this example.

Abstract

The method is for determining a value characterizing blocking at an operating station for dispatching individual units, where the station operates in a stop-go mode whereby unit movement is stopped or units are allowed through. The values is determined used a detector for measuring the filling time between the beginning of a block or stop phase and the continuous loading of the detector and comparison with a reference filling time. The characteristic value is set at one value when the reference filling time is exceeded and another otherwise. <??>Independent claims are also made for methods for determining the filling time requirement and the backwash length.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung einer Staukennzahl δ und sich daraus ergebende selbstkalibrierende Verfahren zur Schätzung von Rückstaulängen an Bedienstationen zur Abfertigung einzeln bewegter Einheiten, wie beispielsweise Lichtsignalanlagen oder Schleusen, mit einem davor befindlichen Detektor. Die so ermittelten Größen und daraus ableitbare Kennwerte können zur Steuerung der Lichtsignalanlagen oder Schleusen eingesetzt oder zur Anzeige des Verkehrszustandes in übergeordneten Einrichtungen verwendet werden.The present invention relates to a method for determining a congestion index δ and the resulting self-calibrating methods for estimating backflow lengths at operator stations for handling individually moved units, such as Light signal systems or locks, with a detector in front of it. The variables determined in this way and characteristic values derived from them can be used to control the Light signal systems or locks used or to display the traffic condition be used in higher-level institutions.

Stand der TechnikState of the art

Ein wichtiges Anliegen der Straßenverkehrstechnik ist die Bestimmung von Rückstaulängen an Lichtsignalanlagen, um Informationen über den Verkehrsfluß zu gewinnen. Die Kenntnis der Rückstaulängen kann außerdem zur Steuerung der Signalanlagen dienen (Bernhard Friedrich, Methoden und Potentiale adaptiver Verfahren für die Lichtsignalsteuerung, Straßenverkehrstechnik 9/1996). Nach Joos Bernhard, Thomas Riedel, Erkennung von Stau mit kurzen Schleifendetektoren, Straßenverkehrstechnik 7/1999, können Stauungen an Lichtsignalanlagen nur zwischen Haltlinie und Detektor erkannt oder errechnet werden. Gleiches gilt auch für Stauungen an beliebigen Bedienstationen zur Abfertigung einzeln bewegter Einheiten mit sich abwechselnden Sperr- und Durchlaßphasen.An important concern of road traffic technology is the determination of backflow lengths on traffic signal systems in order to obtain information about the traffic flow. Knowing the backflow lengths can also be used to control the signal systems (Bernhard Friedrich, Methods and Potentials of Adaptive Methods for Traffic Signal Control, Road Traffic Engineering 9/1996). According to Joos Bernhard, Thomas Riedel, Detection of traffic jams with short loop detectors, road traffic technology 7/1999, traffic jams in traffic light systems can only be recognized or calculated between the stop line and the detector. The same applies to congestion at any operator station for the handling of individually moving units with alternating blocking and passage phases.

Ein wesentlicher Nachteil dieses bekannten Verfahrens besteht darin, keine Staulängen bestimmen zu können, die größer als die Entfernung zwischen Bedienstation und Detektor sind. A major disadvantage of this known method is that there are no jam lengths to be able to determine the greater than the distance between the operator station and Are detector.

Die Aufgabe der Erfindung ist es deshalb, ein Verfahren zur Verfügung zu stellen, mit dem eine Bestimmung der Rückstaulänge an Bedienstationen zur Abfertigung einzeln bewegter Einheiten nicht nur zwischen Bedienstation und Detektor ermöglicht wird, um mit Hilfe dieser Rückstaulänge oder daraus abgeleiteter Kennwerte wie beispielsweise Wartezeiten eine Lichtsignalanlage oder Schleuse zu steuern oder Verkehrszustände in übergeordneten Einrichtungen anzuzeigen.The object of the invention is therefore to provide a method with a determination of the backflow length at operator stations for dispatch individually moving units not only between operator station and detector is enabled to with the help of this backflow length or derived values such as Waiting times to control a traffic light system or lock or traffic conditions in parent institutions.

Beschreibung der ErfindungDescription of the invention

Gelöst wird diese Aufgabe durch ein Verfahren zur Ermittlung einer Staukennzahl δ gemäß Anspruch 1, mit dem auf einfache Weise eine Bestimmung der Rückstaulänge erfolgen kann. Darüber hinaus lassen sich mit dieser Staukennzahl auch andere für die Anlagensteuerung relevante Parameter, wie beispielsweise der Sättigungszeitbedarf, ermitteln. Verfahren zur Bestimmung der Rückstaulänge unter Verwendung der Staukennzahl sind Gegenstand der Ansprüche 4 und 16.This problem is solved by a method for determining a congestion index δ according to claim 1, with a simple determination of the backflow length can be done. In addition, this congestion number can also be used for other the system control relevant parameters, such as the saturation time requirement, determine. Procedure for determining the backflow length using the congestion index are the subject of claims 4 and 16.

Insbesondere stellt die vorliegende Erfindung ein Verfahren zur Bestimmung einer Staukennzahl δ an Bedienstationen zur Abfertigung einzeln bewegter Einheiten bereit, wobei jede Abfertigungsphase aus einer Sperr- und einer Durchlaßphase besteht und sich vor der Bedienstation ein Detektor befindet, durch Messung der Zeit (Füllzeit) zwischen Sperrbeginn oder einem an den Sperrbeginn gebundenen Zeitpunkt und Dauerbelegung des Detektors und anschließendem Vergleich mit einer Referenzfüllzeit, wobei δ bei Überschreiten der Referenzfüllzeit ein erster Wert und sonst ein zweiter Wert zugeordnet wird.In particular, the present invention provides a method for determining a congestion index δ at operator stations ready for handling individually moving units, whereby Each check-in phase consists of a blocking and a pass phase and is in front the operator station is located by measuring the time (filling time) between Blocking begins or a time linked to the beginning of blocking and permanent occupancy of the detector and subsequent comparison with a reference filling time, where δ if the reference filling time is exceeded, a first value and otherwise a second value is assigned.

Als Beginn der Füllzeit kann neben dem Sperrbeginn beispielsweise auch ein an eine Übergangszeit vor Beginn der Sperrphase gekoppelter Zeitpunkt gewählt werden. Bei Lichtsignalen käme als Übergangszeit die Gelbphase in Frage.In addition to the start of the lock, one can also start at the start of the filling time Transition time before the start of the blocking phase coupled time can be selected. at The yellow phase could be considered as a transition period for light signals.

Wird die Referenzfüllzeit unterschritten, wird also die Strecke zwischen Bedienstation und Detektor schneller als in der Referenzzeit aufgefüllt, so kann man von einem Stau ausgehen. Andernfalls befinden sich die Einheiten im freien Fluß.If the reference filling time is undershot, the distance between the operator station becomes and detector filled up faster than in the reference time, so you can avoid a traffic jam out. Otherwise the units are in free flow.

Die Referenzfüllzeit entnimmt man hierbei beispielsweise simulatorischen Tests oder empirischen Untersuchungen. Vorteilhafterweise wird die Referenzfüllzeit in Abhängigkeit von der Geometrie des Zuflußbereichs, beispielsweise von dem Abstand zwischen Detektor und Bedienstation, der Spurbreite etc., und/oder von der Durchlaßzeit der Bedienstation gewählt.The reference filling time can be taken, for example, from simulative tests or empirical studies. The reference filling time is advantageously dependent on the geometry of the inflow area, for example on the distance between Detector and operator station, the track width, etc., and / or the pass time of the Operator station selected.

Mit der auf die oben beschriebene Weise ermittelten Staukennzahl δ lassen sich eine Mehrzahl für eine Durchsatzoptimierung oder eine Verkehrszustandsanzeige relevanter Parameter ermitteln.With the congestion index δ determined in the manner described above, a Most relevant for a throughput optimization or a traffic status display Determine parameters.

Ein erstes Verfahren zur Schätzung der Rückstaulänge L andn unter Zuhilfenahme der erfindungsgemäß ermittelten Staukennzahl in der n-ten Abfertigungsphase beruht auf der Annahme, daß L and n als lineare Funktion einer geglätteten Staukennzahl δ andn , die aus der Staukennzahl δ n unter Berücksichtigung der (n-1)-ten geglätteten Staukennzahl δ andn -1 ermittelt wird, gegeben ist: L n ( δ n ) = mδ n , wobei δ andn nicht mehr nur zwei sondern mehrere Werte annehmen kann. Mit einem vorgegebenen m ergibt sich die Rückstaulänge bei gegebenem δ andn aus Gleichung (1). Die Staukennzahl wird geglättet, um zu große Sprünge der Staukennzahl von einer Abfertigungsphase zur nächsten zu vermeiden.A first method for estimating the backflow length L and n with the aid of the congestion number determined according to the invention in the nth handling phase is based on the assumption that L and n as a linear function of a smoothed congestion number δ and n , which is derived from the congestion number δ n taking into account the ( n -1) th smoothed congestion index δ and n -1 is determined, there is: L n ( δ n ) = m δ n . where δ and n can no longer take only two but several values. With a given m , the backflow length for given δ and n results from equation (1). The congestion figure is smoothed to avoid large jumps in the congestion figure from one handling phase to the next.

Dieses Verfahren zeichnet sich dadurch aus, daß zur Ermittlung der Rückstaulänge keine Geschwindigkeitsmessungen erforderlich sind.This method is characterized in that for determining the backflow length no speed measurements are required.

Vorteilhafterweise wird die Steigung in jeder n-ten Abfertigungsphase neu angepaßt. Dazu ermittelt man die Verkehrsstärke qn . Diese ergibt sich beispielsweise aus einer Schätzung oder aus der gemessenen Zahl der Einheiten, die während der n-ten Abfertigungsphase den Detektor passieren. Aus der Verkehrsstärke läßt sich errechnen, wieviele Einheiten während der n-ten Sperrphase mindestens vor der Bedienstation vorhanden waren; man erhält somit eine untere Schranke L 0 / n für die Rückstauiänge. Andererseits ergibt die Rückstaulängenfunktion des vorigen Abfertigungsschrittes L andn -1(δ and n ) = mn -1δ and n mit δ and n und geeignet gewähltem mn -1 eine Schätzung der tatsächlichen Rückstaulänge in der aktuellen Abfertigungsphase. Durch Vergleich von L 0 / n und L andn -1(δ and n ) kann man mn und damit L andn kalibrieren.The slope is advantageously readjusted in every nth handling phase. To do this, determine the traffic volume q n . This results, for example, from an estimate or from the measured number of units that pass the detector during the nth handling phase. The traffic volume can be used to calculate how many units were available at least before the operator station during the n- th blocking phase; a lower bound L 0 / n for the backflow length is thus obtained. On the other hand, the backflow length function of the previous clearance step L and n -1 (δ and n ) = m n -1 δ and n with δ and n and a suitably chosen m n -1 gives an estimate of the actual backflow length in the current clearance phase. By comparing L 0 / n and L and n -1 (δ and n ) one can calibrate m n and thus L and n .

Die Steigung der (n - 1)-ten Abfertigungsphase erhält man vorteilhafterweise durch rekursive Anwendung des gerade beschriebenen Verfahrens mit geeigneten Anfangswerten für δ and0 und m 0. Dieses Verfahren ist somit selbstkalibrierend.The slope of the ( n -1) th clearance phase is advantageously obtained by recursively using the method just described with suitable initial values for δ and 0 and m 0 . This method is therefore self-calibrating.

Bevorzugt glättet man die Staukennzahl, indem man eine Konvexkombination der aktuellen Staukennzahl und der geglätteten Staukennzahl der vorigen Abfertigung bildet: δ n = αδ n + (1 - α)δ n -1,   α [0,1]. The congestion index is preferably smoothed by forming a convex combination of the current congestion index and the smoothed congestion index of the previous clearance: δ n = αδ n + (1 - α) δ n -1 , α [0,1].

Die Verkehrsstärke qn wird vorzugsweise mit dem vor der Bedienstation befindlichen Detektor gemessen.The traffic volume q n is preferably measured with the detector located in front of the operator station.

In einer vorteilhaften Ausführung ist die untere Schranke der Staulänge L 0 / n als lineare Funktion von qn gegeben, da bereits diese einfache Form eine gute Näherung darstellt. Vorzugsweise hängt die Steigung dieser Geraden von der Zeit ab, in der der Detektor während eines Abschnitts der Abfertigungsphase dauerbelegt ist. Berücksichtigt man diese Abhängigkeit, verbessert sich die Übereinstimmung mit den Realdaten.In an advantageous embodiment, the lower limit of the accumulation length L 0 / n is given as a linear function of q n , since this simple form is a good approximation. The slope of this straight line preferably depends on the time in which the detector is permanently occupied during a section of the dispatch phase. If this dependency is taken into account, the correspondence with the real data improves.

Es ist von Vorteil, die Steigung mn im n-ten Schritt nur dann zu verändern, wenn entweder δ n den zweiten Wert angenommen hat und L 0 / n > L andn -1(δ andn ) = mn -1 δ andn oder wenn δ n den ersten Wert angenommen hat und L 0 / n < L and n-1(δ andn ) = mn -1 δ and n. Im ersten Fall zeigt einerseits δ n einen Stau an in einer Entfernung von mindestens L 0 / n von der Bedienstation, andererseits liegt die Schätzung der Staulänge L andn -1(δ andn ) unter L 0 / n. Im zweiten Fall weist zwar δ n auf keinen Stau der Länge L 0 / n hin, nach der Schätzung L andn -1(δ and n ) dagegen ist der Stau sogar noch länger als L 0 / n. In beiden Fällen ist daher eine Kalibrierung der Steigung mn angebracht. Falls sich dagegen der Wert der Staukennzahl und die geschätzte Staulänge nicht widersprechen, wird die Steigung beibehalten: mn = mn-1 . It is advantageous to change the slope m n in the nth step only if either δ n has assumed the second value and L 0 / n > L and n -1 ( δ and n ) = m n -1 δ and n or if δ n has taken the first value and L 0 / n < L and n -1 ( δ and n ) = m n -1 δ and n . In the first case, δ n indicates a traffic jam at a distance of at least L 0 / n from the operator station, on the other hand the estimate of the traffic jam length L and n -1 ( δ and n ) is less than L 0 / n . In the second case, δ n does not indicate a congestion of length L 0 / n , but according to the estimate L and n -1 ( δ and n ), the congestion is even longer than L 0 / n . In both cases, a calibration of the slope m n is therefore appropriate. If, on the other hand, the value of the congestion index and the estimated accumulation length do not contradict each other, the slope is maintained: m n = m n-1 .

Man kann zur Anpassung der Steigung mn eine geglättete Staulänge L'n verwenden, die sich als Kombination aus L 0 / n und L andn -1(δ and n) ergibt: L'n = βL 0 n (qn )+(1-β) L n -1( δ n ),   β > 0. A smooth accumulation length L ' n can be used to adjust the slope m n , which results as a combination of L 0 / n and L and n -1 ( δ and n ): L ' n = βL 0 n ( q n ) + (1-β) L n -1 ( δ n ) β> 0th

Die nach dem oben beschriebenen erfindungsgemäßen Verfahren ermittelte Staukennzahl δ kann auch zur Bestimmung des Sättigungszeitbedarfs verwendet werden; hierbei handelt es sich um den durchschnittlichen Zeitbedarfswert einer Einheit bei gesättigtem (nicht mehr freiem) Fluß während der Durchlaßphase. Der Sättigungszeitbedarf ist einerseits ein Maß für die Leistungsfähigkeit der Bedienstation. Andererseits kann er auch zur Rückstaulängenschätzung mittels eines Warteschlangenmodells dienen.The congestion index determined according to the inventive method described above δ can also be used to determine the saturation time requirement; in this connection is the average time required for a unit with saturated (no longer free) flow during the pass phase. The saturation time requirement is a measure of the performance of the operator station. On the other hand, can it can also be used to estimate the backlog length using a queue model.

Zur Bestimmung des Sättigungszeitbedarfs t B / n im n-ten Abfertigungsschritt wird als erstes die Staukennzahl δ mit dem erfindungsgemäßen Verfahren ermittelt und die Verkehrsstärke qn gemessen oder geschätzt. Der Sättigungszeitbedarf kann dann, unter Verwendung einer geeigneten Anfangsbedingung für t B / 0, über

Figure 00050001
berechnet werden, wobei t g / n die Durchlaßzeit im n-ten Abfertigungsschritt bezeichnet.To determine the saturation time requirement t B / n in the nth handling step, the congestion index δ is first determined using the method according to the invention and the traffic volume q n is measured or estimated. The saturation time requirement can then be exceeded using a suitable initial condition for t B / 0
Figure 00050001
can be calculated, where t g / n denotes the pass time in the nth dispatch step.

Um zu große Änderungen des Sättigungszeitbedarfs von einem Abfertigungsschritt zum nächsten zu vermeiden, läßt man vorzugsweise in jedem Schritt nur eine vorgegebene, maximale Änderung Δt B / max > 0 des Sättigungszeitbedarfs zu. Falls also das aus Gleichung (4) gewonnene t B / n eine der Ungleichungen ΔtB := t B n - t B n-1 > Δt B max oder Δt B < -Δt B max erfüllt, so wird vorteilhafterweise ein modifizierter Sättigungszeitbedarf t and B / n mit t B n = t B n-1 + Δt B max oder t B n = t B n-1 - Δ B max berechnet. To avoid large changes in the saturation time requirement from a handling step to the next, you only have a predetermined maximum change Δ t B / max> can preferably in each step 0 the saturation time requirement to. If the t B / n obtained from equation (4) is one of the inequalities Δ t B : = t B n - t B n -1 > Δ t B Max or .delta.t B <-Δ t B Max a modified saturation time requirement t and B / n is advantageously met t B n = t B n -1 + Δ t B Max or t B n = t B n -1 - Δ B Max calculated.

Es ist von Vorteil, die Verkehrsstärke qn mit dem vor der Bedienstation befindlichen Detektor zu messen.It is advantageous to measure the traffic volume q n with the detector in front of the operator station.

Alternativ zu dem oben beschriebenen erfindungsgemäßen Verfahren läßt sich die Rückstaulänge mit Hilfe eines Warteschlangenmodells ermitteln, das als zu kalibrierenden Parameter einen modelleigenen Sättigungszeitbedarf τ B / n mit einem geeignet gewählten Anfangswert enthält. Ein derartiges Verfahren kann in jedem n-ten Abfertigungsvorgang aus folgenden Schritten bestehen:As an alternative to the method according to the invention described above, the backflow length can be determined with the aid of a queue model which, as parameters to be calibrated, contains a model's own saturation time requirement τ B / n with a suitably chosen initial value. Such a procedure can consist of the following steps in every nth handling operation:

Zunächst wird der tatsächliche Sättigungszeitbedarf t B / n gemäß dem oben beschriebenen erfindungsgemäßen Verfahren bestimmt. Tritt eine Änderung gegenüber dem Sättigungsbedarfswert der letzten Abfertigungsphase um ΔtB ein, wird der modelleigene Sättigungsbedarfswert τ B / n mit τ B n = τ B n-1 + c dΔt B angepaßt, wobei cd eine geeignet gewählte Dämpfungskonstante bezeichnet. Insbesondere wird der modelleigene Sättigungsbedarfswert mit τ B n = τ B n-1 + c dsng(Δt B )min{|Δt B |,Δt B max} angepaßt, falls für den tatsächlichen Sättigungsbedarfswert nur eine maximale Änderung von Δt B / max zugelassen wird, wobei sgn(ΔtB ) das Vorzeichen von ΔtB bezeichnet. Aus der Verkehrsstärke errechnet man eine untere Schranke für die Staulänge L 0 / n. Mit diesen Größen berechnet man mit Hilfe eines Warteschlangenmodells eine erste Schätzung der Rückstaulänge L" n . Anschließend werden L" n und L 0 / n, analog zu obigem Verfahren zur Rückstaulängenschätzung, verglichen. Falls L" n > L 0 / n und δ n den ersten Wert angenommen hat oder falls L " / n < L 0 / n und δ n den zweiten Wert angenommen hat, ist der modelleigene Sättigungszeitbedarf zu modifizieren. Mit dem kalibrierten Modellsättigungszeitbedarf wird dann mit dem Warteschlangenmodell eine kalibrierte Schätzung der Rückstaulänge berechnet.First, the actual saturation time requirement t B / n is determined according to the inventive method described above. If there is a change from the saturation requirement value of the last dispatch phase by Δt B , the model's own saturation requirement value τ B / n becomes τ B n = τ B n -1 + c d Δ t B adapted, where c d denotes a suitably chosen damping constant. In particular, the model's own saturation demand value is included τ B n = τ B n -1 + c d SNG (Δ t B ) Min {| Δ t B |, Δ t B Max } adjusted if only a maximum change allowed by Δ t B / max for the actual saturation demand value, where sgn (Δ t B), the sign of At B, respectively. A lower bound for the length of traffic L 0 / n is calculated from the traffic volume. With these variables, a queue model is used to calculate a first estimate of the backflow length L " n . Then L" n and L 0 / n are compared, analogous to the above method for backflow length estimation. If L " n > L 0 / n and δ n has assumed the first value or if L " / n < L 0 / n and δ n has assumed the second value, the model's own saturation time requirement must be modified. With the calibrated model saturation time requirement, a calibrated estimate of the backlog length is then calculated with the queue model.

Dieses Verfahren zeichnet sich dadurch aus, daß zur Ermittlung der Rückstaulänge keine Geschwindigkeitsmessungen erforderlich sind. This method is characterized in that for determining the backflow length no speed measurements are required.

Weiterhin können vorteilhafterweise Störungen im Abfluß berücksichtigt und im Warteschlangenmodell eine entsprechend modifizierte Verkehrsstärke verwendet werden.Furthermore, disturbances in the discharge and in the queue model can advantageously be taken into account a correspondingly modified traffic volume can be used.

In einer günstigen Ausführung der Störungskompensation wird qn nur dann modifiziert, wenn es kleiner als der zweitgrößte Wert max10,2(q) der letzten zehn q-Werte ist. In diesem Fall wählt man zur Berechnung der Störungskompensation ein Zeitintervall während der Abfertigungsphase und zählt vorbestimmte, kürzere Zeitintervalle, beispielsweise die vollen Sekunden, in denen der Detektor in dem gesamten Intervall dauerbelegt ist. Das gesamte Intervall beginnt vorzugsweise einige Sekunden nach Beginn der Durchlaßphase und endet einige Sekunden nach Ende der Durchlaßphase. Dividiert man die so erhaltene Zahl durch die Länge des gesamten Intervalls, erhält man den Belegungsgrad b ∈ [0,1] des Detektors. Unterschreitet b eine untere Schranke u, wird einer Störungskennzahl s der Wert 0 zugeordnet. Überschreitet b eine obere Schranke o, wird s der Wert 1 zugeordnet. Ist u ≤ b ≤ o, ergibt sich s als s = b-u o-u . In a favorable embodiment of the interference compensation, q n is only modified if it is smaller than the second largest value max 10.2 ( q ) of the last ten q values. In this case, one selects a time interval during the dispatch phase to calculate the interference compensation and counts predetermined, shorter time intervals, for example the full seconds, in which the detector is permanently occupied in the entire interval. The entire interval preferably begins a few seconds after the start of the pass phase and ends a few seconds after the end of the pass phase. If the number obtained in this way is divided by the length of the entire interval, the degree of occupancy b ∈ [0.1] of the detector is obtained. If b falls below a lower limit u , the value 0 is assigned to a fault code s. If b exceeds an upper bound o, s is assigned the value 1. If u ≤ b ≤ o , s results as s = bu ou ,

Als modifizierte Verkehrsstärke q ' / n nimmt man dann

Figure 00070001
wobei p komp eine Konstante ist, mit der die Stärke der Störungskompensation eingestellt werden kann.The modified traffic volume q '/ n is then taken
Figure 00070001
where p comp is a constant with which the strength of the interference compensation can be adjusted.

Die Kalibrierung des modelleigenen Sättigungszeitbedarfs erfolgt vorteilhafterweise mit einem an einen klassischen PID-Regler (Proportional-Integral-Differential-Regler) angelehnten Rückkopplungsverfahren. Dazu soll δ n als erstem Wert (falls kein Stau) -1 und als zweitem Wert (falls Stau) 1 zugeordnet werden. Die Kalibrierung verwendet zwei Variable:

Figure 00070002
(entspricht einem Sägezahn-Integrierglied) und
Figure 00070003
(entspricht einem Differenzierglied). Falls δ n L " / nδnL 0 / n ist
Figure 00070004
und der Sättigungszeitbedarf wird nicht verändert. Andernfalls definiert man die Hilfsvariable A = tB n tg n (L" n - L 0 n ). The calibration of the model's own saturation time requirement is advantageously carried out using a feedback method based on a classic PID controller (proportional-integral-differential controller). For this purpose, δ n should be assigned -1 as the first value (if there is no congestion) and 1 as the second value (if there is no congestion). The calibration uses two variables:
Figure 00070002
(corresponds to a sawtooth integrator) and
Figure 00070003
(corresponds to a differentiator). If δ n L "/ nδ n L 0 / n
Figure 00070004
and the saturation time requirement is not changed. Otherwise the auxiliary variable is defined A = t B n t G n ( L " n - L 0 n ).

Um eine Überkorrektur des Sättigungszeitbedarfs zu vermeiden, kann man A' = sgn(A) min{|A|,1} definieren, wobei sgn(A) das Vorzeichen von A bezeichnet. Man wählt nun

Figure 00080001
und
Figure 00080002
wobei td eine geeignet zu wählende Konstante ist. Daraus ergibt sich dann der kalibrierte Sättigungszeitbedarf für das Warteschlangenmodell.
Figure 00080003
wobei pp , pi und pd die Parameter des Reglers bezeichnen.To avoid over-correcting the saturation time requirement, you can A '= sgn ( A ) min {| A | 1} define, where sgn ( A ) denotes the sign of A. You choose now
Figure 00080001
and
Figure 00080002
where t d is a suitable constant to choose. This then results in the calibrated saturation time requirement for the queue model.
Figure 00080003
where p p , p i and p d denote the parameters of the controller.

Es ist von Vorteil, die berechnete Rückstaulänge zu glätten, indem man eine Konvexkombination aus L 0 / n und L " / n bildet: Ln = γL 0 n +(1-γ)L " n ,   γ ∈ [0,1]. It is advantageous to smooth the calculated backflow length by forming a convex combination of L 0 / n and L "/ n : L n = γ L 0 n + (1-γ) L " n , γ ∈ [0.1].

Damit wird eine Überkorrektur der Rückstaulänge vermieden.This prevents over-correction of the backflow length.

Im folgenden werden zwei erfindungagemäße Verfahren zur Ermittlung der Rückstaulängenschätzung unter Zuhilfenahme des erfindungsgemäßen Verfahrens zur Ermittlung der Staukennzahl unter Bezugnahme auf die Zeichnung beschrieben. In der Zeichnung zeigen:

Figur 1
die berechnete Steigung mn der Rückstaulängenfunktion in Abhängigkeit der Zeit aus Verfahren 1,
Figur 2
den geschätzten Rückstau (in Fahrzeugen) in Abhängigkeit des explizit gemessenen, geglätteten Rückstaus aus Verfahren 1,
Figur 3
die Schätzung des Zeitbedarfswerts t B / n in Abhängigkeit der Zeit aus Verfahren 2.
Two methods according to the invention for determining the backflow length estimate with the aid of the method according to the invention for determining the congestion number are described below with reference to the drawing. The drawing shows:
Figure 1
the calculated slope m n of the backflow length function as a function of time from method 1,
Figure 2
the estimated backflow (in vehicles) depending on the explicitly measured, smoothed backflow from method 1,
Figure 3
the estimate of the time requirement value t B / n as a function of time from method 2.

Verfahren 1Procedure 1

Die Anwendung des Verfahrens zur Rückstaulängenschätzung und seine Verifizierung wird an einer Zufahrt einer hochbelasteten Lichtsignalanlage (stadteinwärts Landsberger/Trappentreustraße, München) mit stark schwankenden Grünzeiten (Durchlaßzeiten) dargestellt.The application of the backflow length estimation method and its verification at a driveway of a heavily used traffic light system (into the city of Landsberger / Trappentreustraße, Munich) with strongly fluctuating green times (passage times) shown.

Der Detektor befindet sich 30 m oder ca. 5 Fahrzeuge von der Haltlinie entfernt. Als Referenzfüllzeit werden für diese Entfernung 22 Sekunden genommen.The detector is located 30 m or approx. 5 vehicles from the stop line. As Reference fill time for this distance is taken 22 seconds.

Bei Überschreiten der Referenzfüllzeit wird δ der Wert 0 und sonst der Wert 1 zugeordnet. Die Staukennzahl wird geglättet, indem δ and n = αδ n + (1 - α)δ and n -1, wobei α typischerweise zwischen 0.05 und 0.2 liegt und δ0 = δ and0 = 0.If the reference filling time is exceeded, δ is assigned the value 0 and otherwise the value 1. The congestion index is smoothed by δ and n = αδ n + (1 - α) δ and n -1 , where α is typically between 0.05 and 0.2 and δ 0 = δ and 0 = 0.

Die untere Schranke berechnet sich über L 0 n = qn 1-min(γ1,bγ2)+ α 1   γ i ≥ 0, wobei a 1 die Fahrzeuge zwischen Detektor und Haltlinie berücksichtigt und daher den Wert a 1 = 5 annimmt. In diesem Ausführungsbeispiel werden γ1 = 0.9 und γ2 = 1.2 gewählt. Der Belegungsgrad b des Detektors ergibt sich, indem man zwischen 5 s nach Durchlaßbeginn und 15 s nach Durchlaßende die vollen Sekunden zählt, in denen der Detektor dauerbelegt ist und anschließend durch die Gesamtlänge dieses Zeitintervalls teilt; somit ist immer b ∈ [0,1].The lower bound is calculated over L 0 n = q n 1-min (γ 1 , bγ 2 ) + α 1 γ i ≥ 0, where a 1 takes into account the vehicles between the detector and stop line and therefore assumes the value a 1 = 5. In this exemplary embodiment, γ 1 = 0.9 and γ 2 = 1.2 are selected. The degree of occupancy b of the detector is obtained by counting the full seconds between 5 s after the start of passage and 15 s after the end of passage in which the detector is permanently occupied and then divided by the total length of this time interval; thus b ∈ [0.1].

Die Steigung mn wird in diesem Beispiel als mn = m ' / n/m " / n geschrieben, wobei m ' / 0 = 10 und m " / 0 = 0.5 geeignete Anfangswerte bilden. Die Modifizierung der Steigung erfolgt über einen geglätteten Wert L ' / n = βL 0 / n(qn ) + (1 - β)L andn -1(δ and n ) mit β = 0.7. Es ist

Figure 00100001
und
Figure 00100002
wobei
Figure 00100003
In this example, the slope m n is written as m n = m '/ n / m "/ n , where m' / 0 = 10 and m " / 0 = 0.5 form suitable initial values. The slope is modified using a smoothed value L '/ n = βL 0 / n ( q n ) + (1 - β ) L and n -1 (δ and n ) with β = 0.7. It is
Figure 00100001
and
Figure 00100002
in which
Figure 00100003

Geeignete Werte für eine schnelle, aber stabile Schätzung sind k 0 = 10 und K = 1000.Suitable values for a quick but stable estimate are k 0 = 10 and K = 1000.

Figur 1 zeigt die Kalibrierung der Steigung mn . Der willkürlich vorgegebene Wert von ca. 20 steigt am ersten Tag auf den Wert an, der der Verkehrscharakteristik der Spur entspricht. Anschließend finden nur noch leichte Anpassungsvorgänge statt. Das Regelverhalten ist stabil und robust.Figure 1 shows the calibration of the slope m n . The arbitrarily specified value of approx. 20 increases on the first day to the value that corresponds to the traffic characteristics of the lane. Subsequently, only slight adjustments are made. The control behavior is stable and robust.

In Figur 2 sieht man den Vergleich von der geschätzten, geglätteten Rüchstaulänge mit manuell erhobenen, leicht geglätteten Rückstaulängenwerten. Der gemessene Rückstau L real / n wurde mit L real n = 0.3L reaL n + 0.7 L real n-1 geglättet. Ein quadrierter Korrelationskoeffizient von R 2 = 0.7748 weist auf einen guten Zusammenhang zwischen geschätzter und realer Rückstaulänge hin.FIG. 2 shows the comparison of the estimated, smoothed backlog length with manually ascertained, slightly smoothed backflow length values. The measured backflow L real / n was with L real n = 0.3 L real n + 0.7 L real n -1 smoothed. A squared correlation coefficient of R 2 = 0.7748 indicates a good relationship between the estimated and real backflow length.

Verfahren 2Procedure 2

Als Anwendung des Verfahrens wird die Bestimmung der Rückstaulänge an der in obigem Beispiel genannten Zufahrt einer Lichtsignalanlage mit Hilfe eines Warteschlangenmodells beschrieben.As an application of the method, the determination of the backflow length on the in the above Example of access to a traffic light system using a queue model described.

Zur Berechnung des Sättigungszeitbedarfs wird eine maximale Änderung von Δt B / max = 0.02 zugelassen. Die Änderung wird für die Verwendung im Warteschlangenmodell zusätzlich mit dem Faktor cd = 0.9 gedämpft.To calculate the saturation time requirement, a maximum change of Δ t B / max = 0.02, is allowed. The change is additionally dampened for the use in the queue model with the factor c d = 0.9.

Figur 3 zeigt die Ermittlung des Zeitbedarfswerts t B / n in Abhängigkeit der Zeit bei einem Anfangswert von t B / 0 = 2s. Erkennbar ist, daß neben dem Einschwingvorgang innerhalb der beiden Werktage mehrmals Schwankungen von t B / n auftreten. Diese Schwankungen erklären sich unter anderem mit veränderlichen Verkehrszusammensetzungen und tageszeitabhängigem Fahrverhalten der Verkehrsteilnehmer.FIG. 3 shows the determination of the time requirement value t B / n as a function of time with an initial value of t B / 0 = 2 s . It can be seen that in addition to the settling process, fluctuations of t B / n occur several times within the two working days. These fluctuations can be explained, among other things, by changing traffic compositions and the time-dependent driving behavior of road users.

Störungen im Abfluß werden über den aus obigem Beispiel bekannten Belegungsgrad kompensiert. Die Störungskennzahl s ergibt sich aus Gleichung (9), wobei für die Schranken u = 0.2 und o = 1.1 eingesetzt wird. Durch diese Wahl wird garantiert, daß s immer kleiner als 1 bleibt.Disruptions in the drain are compensated for using the occupancy rate known from the above example. The fault index s results from equation (9), with u = 0.2 and o = 1.1 being used for the barriers. This choice guarantees that s always remains less than 1.

Das makroskopische Warteschlangenmodell wird in diesem Beispiel R. M. Kimber und E. M. Hollis, Traffic queues and delays at road junctions, TRRL Laboratory Report 909, Berkshire, 1979, entnommen. Die Modellgleichung für die Rückstaulänge L lautet L = 12 ( A 2 + B - A) mit

Figure 00110001
und
Figure 00110002
wobei C = 0.6 die statistischen Schwankungen beim Abfluß charakterisiert.The macroscopic queue model is taken from RM Kimber and EM Hollis, Traffic queues and delays at road junctions , TRRL Laboratory Report 909, Berkshire, 1979 in this example. The model equation for the backflow length L is L = 1 2 ( A 2 + B - A ) With
Figure 00110001
and
Figure 00110002
where C = 0.6 characterizes the statistical fluctuations in the discharge.

Geeignete Parameter für die Kalibrierung des Sättigungszeitbedarfs analog zu einem PID-Regler sind pd = 0.003, pi = 0.01, pd = 0.01 und td = 1.2. Suitable parameters for the calibration of the saturation time requirement analogous to a PID controller are p d = 0.003, p i = 0.01, p d = 0.01 and t d = 1.2.

Die Glättung der Rückstaulängenschätzung erfolgt mit γ = 0.6.The backlog length estimation is smoothed with γ = 0.6.

Claims (20)

  1. Method of determining a tailback characteristic factor δ at operating stations for despatching individually moving units having alternating barrier and release phases and having a detector upstream of the respective operating station by measuring the filling time between the barrier start or a time instant tied to the barrier start and continuous occupancy of the detector and subsequent comparison with a reference filling time, in which method a first value is assigned to the tailback characteristic factor δ if the reference filling time is exceeded and a second value is assigned if the reference filling time is not exceeded.
  2. Method according to Claim 1, in which the reference filling time is chosen as a function of the geometry of the inflow region of the operating station.
  3. Method according to one of the preceding claims,in which the reference filling time is chosen as a function of the release time.
  4. Method of determining the tailback length L andn in the nth despatch phase by
    (a) determining the nth tailback characteristic factor δ n according to Claim 1,
    (b) calculating a smoothed tailback characteristic factor δ and n using the (n-1)th smoothed tailback characteristic factor δ andn-1 ,
    (c) determining the tailback length L andn (δ andn ) = mδ andn with suitably predetermined slope m.
  5. Method according to Claim 4, wherein the slope mn is determined in the nth despatch phase by
    (a) determining the traffic level qn ,
    (b) calculating a lower limit Ln 0 for the tailback length as a function of qn ,
    (c) determining the slope mn by comparison of Ln 0 with L andn -1(δ andn ) with a suitably predetermined slope mn -1.
  6. Method according to Claim 5, in which the slope mn -1 is determined by recursive application of the method according to Claim 5 with suitable starting conditions for m 0 and δ and 0.
  7. Method according to one of Claims 4-6 , in which the smoothed tailback characteristic factor δ andn is calculated as a convex combination of δn and δ andn -1 in accordance with δ and n = αδ n + (1-α) δ andn-1 , α ∈ [0,1].
  8. Method according to one of Claims 5-7, in which the traffic level qn is measured with a detector situated upstream of the operating station.
  9. Method according to one of Claims 5-8, in which the lower limit L 0 / n of the tailback length is predetermined as a linear function of q n .
  10. Method according to Claim 9, in which the slope Ln 0 (qn) is predetermined as a function of the time, in which the detector is continuously occupied during a portion of the despatch phase.
  11. Method according to one of Claims 5-10, in which the slope mn is altered with respect to mn-1 if the second value is assigned to δn and L n 0 > L and n-1(δ and n)=mn-1δ andn or if the first value is assigned to δn and L n 0 < L andn -1(δ andn ) = mn -1 δ andn and otherwise mn =mn -1 is set.
  12. Method according to one of Claims 5-11, in which the slope mn is adapted by means of a smoothed value Ln' = βL 0 / n (qn ) + (1 - β) L andn-1 (δ and n) where β > 0.
  13. Method of determining the saturation time requirement tn B , which corresponds to the average time requirement of a unit with saturated flow during the release phase, by
    (a) determining the tailback characteristic factor according to one of Claims 1-3,
    (b) determining the traffic level qn ,
    (c) determining the saturation time requirement t n B using the release time t n g and a suitable starting condition for t 0 B in accordance with
    Figure 00200001
    if δn = δ n-1 is equal to the second value, otherwise.
  14. Method according to Claim 13, in which the saturation time requirement t B / n is altered in each nth despatch phase by not more than a predetermined maximum value compared with the saturation time requirement of the (n-1)th despatch phase.
  15. Method according to Claim 13 or 14, in which the traffic level qn is measured with the detector upstream of the operating station.
  16. Method of determining the tailback length L"n by
    (a) determining the saturation time requirement t B n according to one of Claims 13-15,
    (b) determining the inherent model saturation time requirement τ B n in accordance with τ n B = τ B n-1 + cd (t B n - t B n-1 using the (n-1)th model saturation time requirement τ B n-1 and with a suitably chosen cd ,
    (c) calculating a lower limit of the tailback length L 0 n as a function of qn ,
    (d) calculating a tailback length estimation with a queue model using the inherent model saturation time requirement,
    (e) calibrating the inherent model saturation requirement by comparing the tailback length estimation with the lower limit L n 0,
    (f) calculating the tailback length Ln " with a queuing model using the calibrated inherent model saturation time requirement.
  17. Method according to Claim 16, in which the tailback length calculation is made with a modified traffic level that takes account of faults in the outflow.
  18. Method according to Claim 17, in which the flow compensation is calculated by counting in a time interval during the despatch phase predetermined time intervals, in particular complete seconds, in which the detector is continuously occupied.
  19. Method according to one of Claims 16 to 18, in which the inherent model saturation time requirement is calibrated with a method along the lines of a classic PID controller.
  20. Method according to one of Claims 16-19, in which the tailback length estimation is smoothed by forming a convex combination of L n 0 and L n " in accordance with Ln = γL n 0 + (1-γ)L n ", γ ∈ [0,1].
EP01116930A 2001-07-11 2001-07-11 Method for determining a traffic jam index and for determining tailback lengths Expired - Lifetime EP1276085B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES01116930T ES2199910T3 (en) 2001-07-11 2001-07-11 PROCEDURE TO DETERMINE A JAM INDEX AND TO DETERMINE TAIL LENGTHS.
DE50100263T DE50100263D1 (en) 2001-07-11 2001-07-11 Procedure for determining a congestion index and for determining backflow lengths
AT01116930T ATE241189T1 (en) 2001-07-11 2001-07-11 METHOD FOR DETERMINING A NUMBER OF STEAMS AND FOR DETERMINING BACKLONG LENGTH
EP01116930A EP1276085B1 (en) 2001-07-11 2001-07-11 Method for determining a traffic jam index and for determining tailback lengths
PCT/EP2002/007708 WO2003007268A1 (en) 2001-07-11 2002-07-10 Method for determining a queue identification number and for determining the length of the queue
US10/483,331 US7263435B2 (en) 2001-07-11 2002-07-10 Method for determining a queue identification number and for determining the length of the queue
CNA028138007A CN1526126A (en) 2001-07-11 2002-07-10 Method for determining a queue identification number and for determining the length of the queue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01116930A EP1276085B1 (en) 2001-07-11 2001-07-11 Method for determining a traffic jam index and for determining tailback lengths

Publications (2)

Publication Number Publication Date
EP1276085A1 EP1276085A1 (en) 2003-01-15
EP1276085B1 true EP1276085B1 (en) 2003-05-21

Family

ID=8178019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01116930A Expired - Lifetime EP1276085B1 (en) 2001-07-11 2001-07-11 Method for determining a traffic jam index and for determining tailback lengths

Country Status (7)

Country Link
US (1) US7263435B2 (en)
EP (1) EP1276085B1 (en)
CN (1) CN1526126A (en)
AT (1) ATE241189T1 (en)
DE (1) DE50100263D1 (en)
ES (1) ES2199910T3 (en)
WO (1) WO2003007268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824648A2 (en) 2013-07-12 2015-01-14 Siemens Aktiengesellschaft Method for detecting the traffic status at a light-controlled intersection of a road network

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480183A1 (en) * 2003-05-19 2004-11-24 TransVer GmbH Method for detecting road traffic characteristics at access points
US7875698B2 (en) * 2004-07-15 2011-01-25 Agfa Graphics Nv Polymeric initiators
DE102008022349A1 (en) * 2008-05-02 2009-11-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for determining tailback lengths at traffic lights
DE102008030889A1 (en) * 2008-06-30 2010-01-14 Siemens Aktiengesellschaft Method for estimating a queue length and video detector for performing the method
EP2280383B1 (en) 2009-07-31 2012-05-30 Siemens Aktiengesellschaft Method for determining traffic information for a section of a road network and traffic calculator to implement the method
EP2583256A1 (en) * 2010-06-21 2013-04-24 BLUELON ApS Determining a travel time of an entity
US8966343B2 (en) * 2012-08-21 2015-02-24 Western Digital Technologies, Inc. Solid-state drive retention monitor using reference blocks
CN109697122B (en) * 2017-10-20 2024-03-15 华为技术有限公司 Task processing method, device and computer storage medium
CN112863174B (en) * 2020-12-31 2022-05-17 华为技术有限公司 Method and device for acquiring traffic flow information and computer equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621842A1 (en) * 1986-06-30 1988-01-07 Siemens Ag Method for traffic-dependent determination of the green time in road traffic signal installations
JPH03276399A (en) * 1990-03-27 1991-12-06 Toshiba Corp Traffic congestion information preparing system
JP3235843B2 (en) * 1991-03-18 2001-12-04 パイオニア株式会社 Car navigation system
JP3607330B2 (en) * 1994-12-06 2005-01-05 住友電気工業株式会社 Congestion measurement method using sensor data
JP3421205B2 (en) * 1996-09-30 2003-06-30 アマノ株式会社 Vehicle counting control device
DE19647127C2 (en) * 1996-11-14 2000-04-20 Daimler Chrysler Ag Process for automatic traffic monitoring with dynamic analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824648A2 (en) 2013-07-12 2015-01-14 Siemens Aktiengesellschaft Method for detecting the traffic status at a light-controlled intersection of a road network
EP2824648A3 (en) * 2013-07-12 2015-04-15 Siemens Aktiengesellschaft Method for detecting the traffic status at a light-controlled intersection of a road network

Also Published As

Publication number Publication date
WO2003007268A1 (en) 2003-01-23
DE50100263D1 (en) 2003-06-26
US20040267439A1 (en) 2004-12-30
ATE241189T1 (en) 2003-06-15
EP1276085A1 (en) 2003-01-15
US7263435B2 (en) 2007-08-28
ES2199910T3 (en) 2004-03-01
CN1526126A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
DE112013005457T5 (en) Method for predicting future travel time on a route
EP1212738B1 (en) Method for monitoring the condition of traffic for a traffic network comprising effective narrow points
EP2280383B1 (en) Method for determining traffic information for a section of a road network and traffic calculator to implement the method
EP1276085B1 (en) Method for determining a traffic jam index and for determining tailback lengths
DE19647127C2 (en) Process for automatic traffic monitoring with dynamic analysis
EP1154389A1 (en) Method to determine the traffic situation in a road network
EP2989421B1 (en) Method for determining a lane course of a lane
EP3611709A1 (en) Traffic flow simulator
EP3438946A2 (en) Method for predicting a switching time of a set of signals of signalling facility
DE69631629T2 (en) Registration and prediction of traffic obstructions
EP0936590A2 (en) Traffic conditions determination method and arrangement on a road network
DE10108611A1 (en) Simulation and prediction method for individual motor vehicle movement within a road network, by separation of macroscopic modeling from microscopic or individual vehicle modeling
WO2013120765A1 (en) Method for model construction for a travel-time database
DE19940957C2 (en) Traffic forecasting method for a traffic network with traffic-regulated network nodes
DE10051777A1 (en) Method for producing a dynamic forecast of traffic conditions for a road system around individual vehicles allows each vehicle to make an autonomic, continuous time-cum-location record for a parameter of traffic conditions
DE3621842A1 (en) Method for traffic-dependent determination of the green time in road traffic signal installations
DE102005055244A1 (en) Traffic data-based accident detecting method, involves concluding existence of accident when accident criterion is derived and determined from characteristic properties and parameters of temporal-spatial traffic patterns
DE10025039C2 (en) Method for determining traffic control phase durations
DE2411716A1 (en) TRAFFIC CONTROL SYSTEM
DE19935769C2 (en) Traffic condition forecast through feedback cascade
AT502459A1 (en) METHOD FOR DETERMINING TRANSPORT CONDITION
EP1457944B1 (en) Process for supplying traffic information
DE102007049509A1 (en) Motor vehicle navigation system for calculating route between starting point and destination, has processor device for calculating expected arrival time or travel time, where arrival time or travel time is determined based on average speed
DE3535787C2 (en)
DE102018202909A1 (en) Method and device for controlling a traffic signal system

Legal Events

Date Code Title Description
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50100263

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030711

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030521

REG Reference to a national code

Ref country code: GB

Ref legal event code: 710B

Free format text: EXTENSION APPLICATION: APPLICATION FOR EXTENSION OF THE PERIOD(S) PRESCRIBED BY RULE(S) SCHEDULE 4 PARA 2 FILED ON 20031007.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1276085E

Country of ref document: IE

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2199910

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080717

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080724

Year of fee payment: 8

Ref country code: NL

Payment date: 20080724

Year of fee payment: 8

Ref country code: FR

Payment date: 20080722

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080730

Year of fee payment: 8

BERE Be: lapsed

Owner name: *TRANSVER G.M.B.H.

Effective date: 20090731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090711

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRANSVER GMBH

Free format text: TRANSVER GMBH#MAXIMILIANSTRASSE 45#80538 MUENCHEN (DE) -TRANSFER TO- TRANSVER GMBH#MAXIMILIANSTRASSE 45#80538 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110714

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120727

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120726

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 241189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50100263

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130711