EP1271091B1 - Pyrotechnic activation safety-system - Google Patents

Pyrotechnic activation safety-system Download PDF

Info

Publication number
EP1271091B1
EP1271091B1 EP02291376A EP02291376A EP1271091B1 EP 1271091 B1 EP1271091 B1 EP 1271091B1 EP 02291376 A EP02291376 A EP 02291376A EP 02291376 A EP02291376 A EP 02291376A EP 1271091 B1 EP1271091 B1 EP 1271091B1
Authority
EP
European Patent Office
Prior art keywords
pyrotechnic composition
pyrotechnic
reserve
switches
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02291376A
Other languages
German (de)
French (fr)
Other versions
EP1271091A1 (en
Inventor
Bruno Thales Intellectual Property Gamby
Patrick Thales Intellectual Property Doignon
Eric Thales Intellectual Property Poulard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junghans T2M SAS
Original Assignee
Junghans T2M SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junghans T2M SAS filed Critical Junghans T2M SAS
Publication of EP1271091A1 publication Critical patent/EP1271091A1/en
Application granted granted Critical
Publication of EP1271091B1 publication Critical patent/EP1271091B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/40Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically

Definitions

  • the present invention relates to a secure pyrotechnic activation system according to the preamble of claim 1.
  • a secure pyrotechnic activation system is known from the document WO 0131283 A . It applies in particular to the pyrotechnic initiation of propulsion systems and the priming of rockets, in the field for example ammunition carried under aircraft (missiles or bombs).
  • pyrotechnic activation is a pyrotechnic initiation (ie a firing), or the initiation of an explosion.
  • the propulsion systems of airborne ammunition are initiated by one or more electrical orders issued by the aircraft, on command of the pilot.
  • the initiation of the propulsion systems, ie the firing of the ignition chain is instantaneous.
  • An object of the invention is to solve the aforementioned problems, and in particular to have a secure pyrotechnic activation system that does not require the use of a mechanical force for its activation, and can be autonomous after its release.
  • the invention relates to a pyrotechnic activation system of a system intended to be released from a carrier according to claim 1.
  • the main advantages of the invention are that it enables the remote system of the carrier to be activated, that it is simple to integrate and to achieve, that it is reliable, safe and economical.
  • the invention applies in particular to the initiation of thrusters and the priming of explosive systems to be dropped from a carrier.
  • These systems can be ammunition such as bombs or missiles.
  • ammunition such as bombs or missiles.
  • the invention applies to any type of system to be dropped, the system is not necessarily a bomb, the carrier is not necessarily an aircraft.
  • the bombs can be grouped into three families: the smooth bombs, the bombs with guide kit (also called “kite bombs”), and the bombs with range augmentation kit.
  • the FUS rocket comprises a pyrotechnic priming composition (not shown).
  • This pyrotechnic priming composition is more simply called a primer.
  • this primer detonates, resulting in detonation of the explosive charge.
  • This M2 bomb mainly includes a CBD bomb body, a FUS rocket, and a KGA guide kit, KGR.
  • This guide kit consists of two parts, one at the front KGA and the other at the rear KGR of the bomb. GV control surfaces are placed on this kit. The guide kit replaces the empennage of the smooth bombs. It makes it possible to steer the M2 bomb more efficiently by means of the GV control surfaces and to increase its range.
  • This M3 bomb mainly includes a CDB bomb body, a FUS rocket, a KGA guide kit, KGR, and a PRO, IP propulsion system.
  • the propulsion system and guide kit constitute the range increase kit.
  • the propulsion system PRO, IP can be placed on the rear of the M3 bomb in the KGR rear guide kit. It includes a PRO booster and an IP pyrotechnic initiation system.
  • PRO booster comprises pyrotechnic compositions (not shown).
  • the pyrotechnic initiation system IP comprises a pyrotechnic initiation composition.
  • This pyrotechnic initiation composition is more simply called an igniter.
  • the igniter makes it possible to bring into combustion mode a first pyrotechnic propellant composition.
  • This first pyrotechnic propellant composition can in turn bring into combustion regime other pyrotechnic chain compositions.
  • These first pyrotechnic compositions constitute what is called the ignition system of the propellant.
  • the ignition system brings into combustion a last pyrotechnic composition of the propellant.
  • the combustion of this last pyrotechnic composition, called propellant pyrotechnic composition propels the bomb.
  • the propulsion system makes it possible to further increase the range of the bombs, while keeping a good precision thanks to the guide kit.
  • a measuring device SA is placed in the upper part of the bomb body. This measuring device makes it possible to measure the environment outside the bomb. Before being dropped, the bomb M1, M2 or M3 can be stowed to the aircraft by square brackets F1, F2.
  • the FUS rocket being placed in the heart of the CBD bomb body, a gutter G1 can connect the measuring device SA and the rocket FUS.
  • An electric cable (not shown) placed in this gutter makes it possible to connect the measuring device SA and the rocket FUS.
  • a link connects the IP pyrotechnic initiation system with the FUS rocket.
  • This connection can be made by an electric cable placed in a second gutter G2.
  • information and / or commands can be issued from the FUS rocket to the IP pyrotechnic initiation system. It is thus possible to save the electronic security management components performing common functions between the FUS rocket and the IP pyrotechnic initiation system.
  • Measurements made by the measuring device SA can also be used by using a serial type connection, which makes assembly and disassembly of the bomb easier.
  • the traction sensor SL may be constituted by a magnet mechanically connected to the wire SL, said magnet being placed in the middle of a coil. Pulling the wire causes the magnet to move in the coil, creating a current.
  • the tower sensor comprises for example a valve.
  • This valve is placed on the top of the bomb, and is in contact with the plane when the bomb is under the plane.
  • the plane exerts on the valve a force which tends to close it.
  • the sensor may further comprise a spring placed under the valve, which tends to open the valve in the absence of resistance.
  • the flap is open when the bomb is no longer under the plane, and closed when the bomb is under the plane.
  • An electrical circuit of the tower sensor can generate a signal depending on the position of the valve, and thus to detect the presence of the aircraft.
  • the wind speed sensor may be a wind turbine, which generates an alternating signal whose frequency is proportional to the speed of rotation of the wind turbine.
  • the IP pyrotechnic initiation system comprises an igniter FL.
  • This FL igniter is initially uninitiated. When it is initiated, it enters combustion mode.
  • the FL igniter is aligned with the propeller ignition system. In other words, no check valve or mechanical system makes an obstacle between the ignition chain and the igniter, so that when the igniter is initiated, it puts into combustion mode the ignition system of the ignition system. propellant.
  • the FL igniter is insensitive. Only electrical energy above a certain threshold can initiate the FL igniter. Noise currents or electromagnetic disturbances can not initiate the FL igniter. For example, a 1A / 1W igniter is used. A current of 1A with a power of 1W for 5 minutes is not sufficient to initiate this igniter. A high energy electrical pulse is used to initiate this igniter.
  • the IP pyrotechnic initiation system comprises a reserve of electrical energy A1.
  • This reserve of electrical energy A1 is initially not activated. In this state, this reserve delivers by energy. The energy contained in this reserve is preserved.
  • This reserve Al is intended to be activated to deliver energy.
  • this energy reserve is a thermal battery.
  • An electrical circuit including safety switches connects the thermal stack Al and the igniter FL.
  • three safety switches I1, 12, 13 are connected in series on this circuit. They can be controlled respectively by safety management means V1, V2, V3. These switches open the electrical circuit.
  • the switches I1, 12, 13 allow or prevent the thermal battery Al from delivering a supply to the igniter FL.
  • the electrical circuit is closed and the thermal battery Al is activated, it delivers enough energy to initiate the igniter FL.
  • the switches I1, 12, 13 are of different technologies to avoid common failure modes.
  • the switch I1 may be an electronic transistor
  • the switch 12 may be an electromechanical relay
  • the switch 13 may be an electronic transistor of technology different from I1.
  • the switches I1, I2, and 13 are placed on either side of the positive poles PP and negative PN of the igniter FL.
  • the switches I1 and 12 are on the positive pole side PP, and the switch 13 on the negative pole side PN. This makes the circuit more reliable.
  • a selector 14 with manual control MA is placed in the electrical circuit connecting the igniter FL and the thermal battery AI.
  • This selector makes it possible to inhibit the power supply of the FL igniter manually. It has a first "security” position and a second "non-security” position. In its first safety position, it opens the electrical circuit between the negative pole PN of the igniter FL and the mass, and at the same time closes a connection between the positive pole PP of the igniter FL and the mass. In this way, in this first position, the selector opens the supply circuit of the igniter FL on the one hand, and bypasses the igniter FL on the other hand. In other words, the first position (“safety”) inhibits the FL igniter. In its second position (“out of safety”), this selector no longer inhibits the FL igniter. Thus, the weapon can be placed manually in a safe position for handling, for example.
  • the safety management means V1, V2, V3 can be electrically powered (power supply circuit not shown) by an external power supply AE.
  • This external power supply AE can come from the plane for example.
  • a connector C1 of the pyrotechnic initiation system can connect the external power supply AE to the thermal battery Al for example.
  • the thermal battery Al is activated, thus creating a potential difference at its terminals. It then delivers a power supply substituting for that delivered by the aircraft.
  • This sequence does not take place in a nominal way in the event of an accident.
  • a first example is an accidental pull of the SL wire (collision with a bird). In this example, the issuance of a fire intention will not be followed by the dropping of the bomb.
  • a second example is the accidental release of the bomb (bomb is badly secured to the wearer). In this example, the release will not be preceded by a broadcast of a shooting intent.
  • the security management means V1, V2, V3 detect a non-nominal sequence. They inhibit the initiation of the FL igniter.
  • the safety management means V1, V2, V3 hold at least one of the switches I1, I2, I3 open so as to prevent the thermal battery Al from delivering a supply to the igniter FL.
  • the safety management means V1, V2, V3 detect a nominal operational sequence, they control the closing of the switches I1, 12, I3. In other words, they allow the heat stack Al to supply a supply to the igniter FL. The igniter FL is then initiated which makes the propeller ignition chain enter the combustion mode.
  • the first drop environment E1 can be, for example, the traction of the wire SL, the absence of contact between the airplane and the bomb, the wind speed outside the bomb, a coded message coming from the airplane ... take for example the traction of the wire SL.
  • the measuring device SA can be electrically connected by a connection C2 to the first verification means V1. This connection C2 makes it possible to dispose of the electrical signals generated by the traction sensor of the wire SL.
  • the first drop environment E1 is thus converted into electrical signals.
  • the first verification means V1 can control the closure of the switch I1 if this first drop environment E1 is detected, that is to say if the traction of the wire SL is detected by the traction sensor.
  • a control signal can be sent to the thermal stack Al to activate it.
  • the second drop environment E2 may be for example the wind speed outside the bomb. This second drop environment E2 is different from the first drop environment E1, so as to avoid initiating the pyrotechnic initiation system following an accident (collision with a bird).
  • the measuring device SA can be electrically connected by a connection C3 to the second verification means V2. This connection C3 makes it possible to dispose of the electrical signals generated by the wind turbine. The second drop environment E2 is thus converted into electrical signals.
  • the second verification means V2 can control the closing of the switch 12 if this second drop environment is detected.
  • the verification means V1, V2 use two independent channels (components dedicated to each function) to act on the safety switches I1, I2.
  • the verification means V1, V2 comprise timing means, arranged to transmit the first and second control signals after determined delays.
  • the first control signal is transmitted to the switch I1 after a delay T1
  • the second control signal is transmitted to the switch 12 after a delay T2.
  • T1 and T2 delays protect the pilots in the event of abnormal operation of the propulsion system for example (ignition explosion).
  • the delay means are of different technologies.
  • the first delay means can be quartz
  • the second delay means can be a clock RC (resistance clock and capacitance).
  • the security management means further comprise a sequencing analysis means V3 for transmitting a third control signal if the first and second control signals are received in a determined order in a window. determined time, the third control signal acting on one or more of the safety switches 13 so as to initiate the igniter FL.
  • the sequencing analysis means V3 receives the control signals from the first and second verification means V1, V2. If these control signals are received in the order and in a given time window, the analysis means of the sequencing V3 can control the closing of the switch I3. The three switches I1, 12, and 13 are in the closed position. If the selector 14 is in its second position ("out of safety"), the thermal battery Al initiates the igniter FL. It enters the combustion regime, which brings the ignition system and the propellant pyrotechnic composition into the combustion regime.
  • the switch 13 remains open. This corresponds to a non-nominal sequence.
  • the initiation system further comprises sterilization means FU for irreversibly preventing the reserve of electrical energy A1 from delivering a supply to the igniter FL after a non-nominal sequence.
  • sterilization means FU may be of the fuse type.
  • this fuse is placed on a control circuit of one of the switches I1, I2 or 13, so as to leave this switch open.
  • the fuse can be placed on the control circuit of the switch I1. This is preferable to place a fuse directly on the circuit connecting the thermal stack Al to the igniter FL because the energy needed to melt it would be very important (the igniter FL being insensitive, a strong current must flow on this circuit ).
  • This sterilization allows, in case of non-nominal operational sequence, the return on the basis of the bomb in a state where the igniter FL can not be initiated electrically.
  • the thruster PRO comprises a cylindrical cavity in which are located the ignition chain CHA and the propellant pyrotechnic composition CPP.
  • the pyrotechnic propellant composition CPP may be a concentric propellant ring with the axis AX of the cavity for example.
  • the outer wall of the cavity is traversed in its lower part INF (that is to say on the rear side of the bomb M3) by a nozzle TUY.
  • the nozzle makes it possible to guide the gases resulting from the combustion of the pyrotechnic propellant composition CPP from the inside of the cavity to the outside EX.
  • the TUY nozzle has an axis of rotation symmetry coincident with the axis AX of the cavity.
  • the IP pyrotechnic initiation system can be fixed to the lower part INF of the cavity, so as to be accessible from the outside without the need to disassemble other elements of the bomb.
  • the igniter FL (FIG. 6) is housed in a structure composed of a KT material having a very high coefficient of thermal attenuation.
  • This structure can have a cylindrical shape for example.
  • the assembly constituted by this structure and by the igniter FL is called a pyrotechnic rod CAP.
  • This pyrotechnic rod CAP is housed in the PRO propeller cavity.
  • the propeller cavity PRO itself has an ISO thermal protection.
  • this CAP can protect the FL igniter by limiting heat transfer by conduction through the pyrotechnic initiation system. This delays the self-ignition of the igniter FL in case of fire.
  • the BOI box of the IP pyrotechnic initiation system is a conductive material.
  • this housing constitutes a Faraday cage protecting the electronic components of the IP pyrotechnic initiation system.
  • These electronic components such as security management means V1, V2, V3, can be assembled on an electronic card CE.
  • the BOI box may comprise fixing holes T1, T2, T3, T4, T5, T6 intended to be placed opposite threaded holes of the PRO propeller cavity.
  • the threaded holes (not shown) of the cavity may be made in bosses of the lower wall INF of the cavity.
  • An NC connector can group connections C1, C2, C3.
  • this connector is accessible from the outside once the pyrotechnic initiation system IP fixed on the cavity of the propeller PRO.
  • the initiation system can easily be removed from the bomb (the initiation system is fixed on the thruster by means of screws).
  • the thermal stack Al and the pyrotechnic rod CAP are fixed by means of nuts ECR1, ECR2 BOI box.
  • the thermal battery Al and the pyrotechnic rod CAP can easily be removed from the BOI box. All that is required is to remove the SD seals connecting the thermal battery Al and the pyrotechnic CAP (FL igniter) to the electronic card CE on the one hand, and to unscrew the nuts ECR1, ECR2 on the other hand.
  • Functional tests can be performed by connecting a control device to the NC connector.
  • the heat stack Al and the sterilization means FU are inhibited.
  • the invention is not limited to this exemplary implementation, described by way of illustration.
  • the reserve of electric energy Al is not necessarily a thermal battery. It is possible to use instead capacities loaded by the power of the aircraft.
  • the invention also applies to rockets.
  • the FL igniter is then replaced by a primer.
  • the igniter of a propellant and the primer of a rocket are pyrotechnic compositions. They are activated, ie initiated for the igniter, and initiated for the rocket, by an electrical pulse.
  • the invention applies of course to any type of system to be dropped.
  • missiles dropped from a submarine or an aircraft carrier can be cited.

Abstract

The pyrotechnic initiation circuit (IP) contains a reservoir of electrical energy (AI) connected to the positive poles (PP) of an igniter (FL) via two switches (I1,I3) in series. The negative poles are connected to a third switch (I2). The first verification circuit (V1) is connected to the first switch via a cutout circuit (FU). The second verification circuit (V2) is connected to the third switch and the analyzing and sequencing circuits are connected to the second switch and the cutout circuit. There are connections to circuits on board the aircraft carrying the missile (C1-C3).

Description

La présente invention concerne un système d'activation pyrotechnique sécurisé selon le préambule de la revendication 1. Un tel système est connu du document WO 0131283 A . Elle s'applique notamment à l'initiation pyrotechnique des systèmes propulsifs et à l'amorçage des fusées, dans le domaine par exemple des munitions portées sous avion (missiles ou bombes).The present invention relates to a secure pyrotechnic activation system according to the preamble of claim 1. Such a system is known from the document WO 0131283 A . It applies in particular to the pyrotechnic initiation of propulsion systems and the priming of rockets, in the field for example ammunition carried under aircraft (missiles or bombs).

Selon le contexte, on désigne par « activation pyrotechnique » soit une initiation pyrotechnique (c'est à dire une mise à feu), soit l'amorçage d'une explosion. Aujourd'hui, les systèmes propulsifs des munitions aéroportées sont initiés par un ou plusieurs ordres électriques émis par l'avion, sur commande du pilote. L'initiation des systèmes propulsifs, c'est à dire la mise à feu de la chaîne d'allumage, est instantanée. Il existe parfois un état de sécurité des munitions, état dans lequel les systèmes propulsifs ne peuvent pas s'initier. Cet état de sécurité permet d'éviter des accidents lors du stockage des munitions, lors de leur manutention, lors de leur désassemblage...Depending on the context, the term "pyrotechnic activation" is a pyrotechnic initiation (ie a firing), or the initiation of an explosion. Today, the propulsion systems of airborne ammunition are initiated by one or more electrical orders issued by the aircraft, on command of the pilot. The initiation of the propulsion systems, ie the firing of the ignition chain, is instantaneous. There is sometimes a state of security of the ammunition, state in which the propulsion systems can not be initiated. This state of safety makes it possible to avoid accidents during the storage of the munitions, during their handling, during their disassembly ...

Une solution connue consiste à désaligner le système d'initiation pyrotechnique et la chaîne d'allumage. Lorsque le système d'initiation est désaligné, il ne peut initier même accidentellement, la chaîne d'allumage. On utilise une force mécanique pour rendre l'arme active. Cette force mécanique permet d'aligner le système d'initiation pyrotechnique avec la chaîne d'allumage. On utilise par exemple la force de traction exercée par un fil appelé « sécurité de largage » (SL), tiré par le pilote. En cas de traction accidentelle du fil SL (collision avec un oiseau par exemple), un tel système devient dangereux car il ne peut plus retourner à un état de sécurité. Ce problème est lié à l'utilisation d'une force mécanique pour lever la sécurité. L'utilisation d'une force mécanique présente d'autres inconvénients :

  • la réalisation de tels dispositifs est complexe par rapport à des dispositifs électroniques ;
  • il n'est pas possible de tester facilement le bon fonctionnement du système d'initiation sans le rendre réellement actif.
A known solution is to misalign the pyrotechnic initiation system and the ignition system. When the initiation system is misaligned, it can not initiate even accidentally, the ignition system. A mechanical force is used to make the weapon active. This mechanical force makes it possible to align the pyrotechnic initiation system with the ignition chain. For example, the pulling force exerted by a wire called "safety release" (SL), pulled by the pilot, is used. In case of accidental pulling of the wire SL (collision with a bird for example), such a system becomes dangerous because it can not return to a state of security. This problem is related to the use of a mechanical force to lift the security. The use of a mechanical force has other disadvantages:
  • the realization of such devices is complex compared to electronic devices;
  • it is not possible to easily test the proper functioning of the initiation system without actually making it active.

De plus, afin de garantir la sécurité des avions et des pilotes, l'initiation devrait avoir lieu à distance de l'avion. Il se pose alors le problème de l'autonomie en énergie, après la séparation de l'arme (missile ou bombe) de l'avion.In addition, to ensure the safety of aircraft and pilots, initiation should take place away from the aircraft. Then there is the problem of energy autonomy, after the separation of the weapon (missile or bomb) from the plane.

Un but de l'invention est de résoudre les problèmes précités, et notamment de disposer d'un système d'activation pyrotechnique sécurisé ne nécessitant pas l'emploi d'une force mécanique pour son activation, et pouvant être autonome après son largage.An object of the invention is to solve the aforementioned problems, and in particular to have a secure pyrotechnic activation system that does not require the use of a mechanical force for its activation, and can be autonomous after its release.

A cet effet l'invention concerne un système d'activation pyrotechnique d'un système destiné à être largué d'un porteur selon la revendication 1.For this purpose the invention relates to a pyrotechnic activation system of a system intended to be released from a carrier according to claim 1.

L'invention a pour principaux avantages qu'elle permet d'activer le système à distance du porteur, qu'elle est simple à intégrer et à réaliser, qu'elle est fiable, sûre, et économique.The main advantages of the invention are that it enables the remote system of the carrier to be activated, that it is simple to integrate and to achieve, that it is reliable, safe and economical.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode réalisation, pris à titre d'exemple non limitatif et illustré par les dessins annexés, sur lesquels :

  • les figures 1, 2 et 3 sont des exemples de munitions dans lesquelles l'invention peut être utilisée ;
  • la figure 4 est schéma fonctionnel sur lequel est illustré un exemple de système d'initiation pyrotechnique selon l'invention ;
  • la figure 5 une vue d'un exemple d'assemblage du système d'initiation pyrotechnique représenté sur la figure 4 sur un système propulsif tel que celui de la bombe représentée sur la figure 3,
  • la figure 6 est une vue de détail de la figure 5,
  • les figures 7, 8, 9 sont différentes vues du système d'initiation représenté sur la figure 4.
The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawings, in which:
  • Figures 1, 2 and 3 are examples of ammunition in which the invention may be used;
  • FIG. 4 is a block diagram on which is illustrated an example of a pyrotechnic initiation system according to the invention;
  • FIG. 5 is a view of an assembly example of the pyrotechnic initiation system shown in FIG. 4 on a propulsion system such as that of the bomb shown in FIG. 3,
  • FIG. 6 is a detail view of FIG. 5,
  • Figures 7, 8, 9 are different views of the initiation system shown in Figure 4.

L'invention s'applique notamment à l'initiation des propulseurs et à l'amorçage d'explosif de systèmes destinés à être largués d'un porteur. Ces systèmes peuvent être des munitions telles que les bombes ou des missiles. Dans l'exposé qui suit, on prendra l'exemple d'une bombe portée par un avion. Bien entendu, l'invention s'applique à tout type de système destiné à être largué, le système n'étant pas nécessairement une bombe, le porteur n'étant pas nécessairement un avion.The invention applies in particular to the initiation of thrusters and the priming of explosive systems to be dropped from a carrier. These systems can be ammunition such as bombs or missiles. In the following presentation, we will take the example of a bomb carried by an airplane. Of course, the invention applies to any type of system to be dropped, the system is not necessarily a bomb, the carrier is not necessarily an aircraft.

Les bombes peuvent être regroupées en trois familles: les bombes lisses, les bombes avec kit de guidage (appelées encore « bombes kitées »), et les bombes avec kit d'augmentation de portée.The bombs can be grouped into three families: the smooth bombs, the bombs with guide kit (also called "kite bombs"), and the bombs with range augmentation kit.

En référence à la figure 1, on décrit un exemple de bombe lisse M1. Cette bombe M1 comprend principalement :

  • un corps de bombe CDB, contenant une composition pyrotechnique appelée chargement explosif (non représenté), ce corps de bombe CDB étant placé en partie avant de la bombe M1,
  • une fusée FUS, contenue dans le coeur du corps de bombe CDB, destinée à amorcer le chargement explosif,
  • un empennage lisse EMP, placé derrière le corps de bombe, c'est à dire en partie arrière de la bombe, assurant par aérodynamisme un guidage rudimentaire de la bombe M1.
With reference to FIG. 1, an example of a smooth bomb M1 is described. This M1 bomb mainly includes:
  • a CDB bomb body, containing a pyrotechnic composition called an explosive charge (not shown), this CBD bomb body being placed in front of the M1 bomb,
  • a FUS rocket, contained in the core of the CBD bomb body, intended to initiate the explosive charge,
  • a smooth tail emp, placed behind the bomb body, ie in the rear part of the bomb, ensuring aerodynamically a rudimentary guidance of the bomb M1.

La fusée FUS comprend une composition pyrotechnique d'amorçage (non représentée). Cette composition pyrotechnique d'amorçage s'appelle plus simplement une amorce. Pour amorcer le chargement explosif, cette amorce détonne, ce qui entraîne la détonation du chargement explosif.The FUS rocket comprises a pyrotechnic priming composition (not shown). This pyrotechnic priming composition is more simply called a primer. To prime the explosive charge, this primer detonates, resulting in detonation of the explosive charge.

En référence à la figure 2, on décrit un exemple de bombe kitée M2. Cette bombe M2 comprend principalement un corps de bombe CDB, une fusée FUS, et un kit de guidage KGA, KGR. Ce kit de guidage comprend deux parties, l'une placée à l'avant KGA et l'autre à l'arrière KGR de la bombe. Des gouvernes GV sont placées sur ce kit. Le kit de guidage remplace l'empennage des bombes lisses. Il permet de diriger la bombe M2 plus efficacement au moyen des gouvernes GV et d'en augmenter la portée.With reference to FIG. 2, an example of a kitten bomb M2 is described. This M2 bomb mainly includes a CBD bomb body, a FUS rocket, and a KGA guide kit, KGR. This guide kit consists of two parts, one at the front KGA and the other at the rear KGR of the bomb. GV control surfaces are placed on this kit. The guide kit replaces the empennage of the smooth bombs. It makes it possible to steer the M2 bomb more efficiently by means of the GV control surfaces and to increase its range.

En référence à la figure 3, on décrit un exemple de bombe M3 avec kit d'augmentation de portée. Cette bombe M3 comprend principalement un corps de bombe CDB, une fusée FUS, un kit de guidage KGA, KGR, et un système propulsif PRO, IP. Le système propulsif et kit de guidage constituent le kit d'augmentation de portée. Le système propulsif PRO, IP peut être placé à l'arrière de la bombe M3 dans le kit de guidage arrière KGR. Il comprend un propulseur PRO et un système d'initiation pyrotechnique IP. Le propulseur PRO comprend des compositions pyrotechniques (non représentées).With reference to FIG. 3, an example of an M3 bomb with a range augmentation kit is described. This M3 bomb mainly includes a CDB bomb body, a FUS rocket, a KGA guide kit, KGR, and a PRO, IP propulsion system. The propulsion system and guide kit constitute the range increase kit. The propulsion system PRO, IP can be placed on the rear of the M3 bomb in the KGR rear guide kit. It includes a PRO booster and an IP pyrotechnic initiation system. PRO booster comprises pyrotechnic compositions (not shown).

Le système d'initiation pyrotechnique IP comprend une composition pyrotechnique d'initiation. Cette composition pyrotechnique d'initiation s'appelle plus simplement un inflammateur. L'inflammateur permet de faire entrer en régime de combustion une première composition pyrotechnique propulseur.The pyrotechnic initiation system IP comprises a pyrotechnic initiation composition. This pyrotechnic initiation composition is more simply called an igniter. The igniter makes it possible to bring into combustion mode a first pyrotechnic propellant composition.

Cette première composition pyrotechnique du propulseur peut à son tour faire entrer en régime de combustion d'autres compositions pyrotechniques en chaîne. Ces premières compositions pyrotechniques constituent ce qu'on appelle la chaîne d'allumage du propulseur. La chaîne d'allumage fait entrer en régime de combustion une dernière composition pyrotechnique du propulseur. La combustion de cette dernière composition pyrotechnique, appelée composition pyrotechnique propulsive, propulse la bombe.This first pyrotechnic propellant composition can in turn bring into combustion regime other pyrotechnic chain compositions. These first pyrotechnic compositions constitute what is called the ignition system of the propellant. The ignition system brings into combustion a last pyrotechnic composition of the propellant. The combustion of this last pyrotechnic composition, called propellant pyrotechnic composition, propels the bomb.

Par rapport aux deux familles de bombes sans système propulsif, le système propulsif permet d'augmenter encore la portée des bombes, tout en gardant une bonne précision grâce au kit de guidage.Compared to the two families of bombs without propulsion system, the propulsion system makes it possible to further increase the range of the bombs, while keeping a good precision thanks to the guide kit.

Conformément aux figures 1, 2 et 3, selon un mode de réalisation préférentiel de l'invention, un dispositif de mesure SA est placé en partie supérieure du corps de bombe. Ce dispositif de mesure permet d'effectuer des mesures de l'environnement à l'extérieur de la bombe. Avant d'être larguée, la bombe M1, M2 ou M3 peut être arrimée à l'avion par des crochets F1, F2. La fusée FUS étant placée au coeur du corps de bombe CDB, une gouttière G1 peut relier le dispositif de mesure SA et la fusée FUS. Un câble électrique (non représenté) placé dans cette gouttière permet de relier le dispositif de mesure SA et la fusée FUS.According to Figures 1, 2 and 3, according to a preferred embodiment of the invention, a measuring device SA is placed in the upper part of the bomb body. This measuring device makes it possible to measure the environment outside the bomb. Before being dropped, the bomb M1, M2 or M3 can be stowed to the aircraft by square brackets F1, F2. The FUS rocket being placed in the heart of the CBD bomb body, a gutter G1 can connect the measuring device SA and the rocket FUS. An electric cable (not shown) placed in this gutter makes it possible to connect the measuring device SA and the rocket FUS.

Conformément à la figure 3, selon un mode de réalisation avantageux, une liaison relie le système d'initiation pyrotechnique IP avec la fusée FUS. Cette liaison peut être réalisée par un câble électrique placé dans une seconde gouttière G2. Grâce à cette liaison, des informations et/ou des commandes peuvent être émises de la fusée FUS vers le système d'initiation pyrotechnique IP. On peut ainsi économiser les composants électroniques de gestion de sécurité réalisant des fonctions communes entre la fusée FUS et le système d'initiation pyrotechnique IP. On peut aussi utiliser les mesures réalisées par le dispositif de mesure SA en utilisant une liaison de type série, ce qui rend l'assemblage et le désassemblage de la bombe plus facile.According to FIG. 3, according to an advantageous embodiment, a link connects the IP pyrotechnic initiation system with the FUS rocket. This connection can be made by an electric cable placed in a second gutter G2. Through this link, information and / or commands can be issued from the FUS rocket to the IP pyrotechnic initiation system. It is thus possible to save the electronic security management components performing common functions between the FUS rocket and the IP pyrotechnic initiation system. Measurements made by the measuring device SA can also be used by using a serial type connection, which makes assembly and disassembly of the bomb easier.

Le dispositif de mesure SA peut comprendre :

  • un capteur de traction du fil SL, destiné à mesurer la traction du fil SL,
  • un capteur de pylône, destiné à détecter la présence ou non de l'avion,
  • un capteur de la vitesse du vent, destiné à mesurer la vitesse du vent.
The measuring device SA can comprise:
  • a traction sensor of the wire SL, intended to measure the traction of the wire SL,
  • a pylon sensor, intended to detect the presence or absence of the aircraft,
  • a wind speed sensor, designed to measure the wind speed.

Le capteur de traction SL peut être constitué par un aimant relié mécaniquement au fil SL, ledit aimant étant placé au coeur d'une bobine. La traction du fil entraîne le mouvement de l'aimant dans la bobine, ce qui crée un courant.The traction sensor SL may be constituted by a magnet mechanically connected to the wire SL, said magnet being placed in the middle of a coil. Pulling the wire causes the magnet to move in the coil, creating a current.

Le capteur de pylône comprend par exemple un clapet. Ce clapet est placé sur le dessus de la bombe, et est en contact avec l'avion lorsque la bombe est sous l'avion. L'avion exerce sur le clapet une force qui tend à le fermer. Le capteur peut comprendre en outre un ressort placé sous le clapet, qui tend à ouvrir le clapet en l'absence de résistance. Ainsi, le clapet est ouvert lorsque la bombe n'est plus sous l'avion, et fermé lorsque la bombe est sous l'avion. Un circuit électrique du capteur de pylône permet de générer un signal en fonction de la position du clapet, et donc de détecter la présence de l'avion.The tower sensor comprises for example a valve. This valve is placed on the top of the bomb, and is in contact with the plane when the bomb is under the plane. The plane exerts on the valve a force which tends to close it. The sensor may further comprise a spring placed under the valve, which tends to open the valve in the absence of resistance. Thus, the flap is open when the bomb is no longer under the plane, and closed when the bomb is under the plane. An electrical circuit of the tower sensor can generate a signal depending on the position of the valve, and thus to detect the presence of the aircraft.

Le capteur de vitesse du vent peut être une éolienne, qui génère un signal alternatif dont la fréquence est proportionnelle à la vitesse de rotation de l'éolienne.The wind speed sensor may be a wind turbine, which generates an alternating signal whose frequency is proportional to the speed of rotation of the wind turbine.

Conformément à la figure 4, sur laquelle est illustré un mode de réalisation préférentiel, le système d'initiation pyrotechnique IP comprend un inflammateur FL. Cet inflammateur FL est initialement non initié. Lorsqu'il est initié, il entre en régime de combustion. L'inflammateur FL est aligné avec la chaîne d'allumage du propulseur. En d'autres termes, aucun clapet ou système mécanique ne fait d'obstacle entre la chaîne d'allumage et l'inflammateur, de sorte que lorsque l'inflammateur est initié, il fait entrer en régime de combustion la chaîne d'allumage du propulseur. Pour des raisons de sécurité, l'inflammateur FL est peu sensible. Seule une énergie électrique supérieure à un certain seuil peut initier l'inflammateur FL. Les courants parasites ou les perturbations électromagnétiques ne peuvent pas initier l'inflammateur FL. On utilise par exemple un inflammateur 1A/1W. Un courant de 1A avec une puissance de 1W pendant 5 minutes ne suffit pas à initier cet inflammateur. On utilise une impulsion électrique de forte énergie pour initier cet inflammateur.According to FIG. 4, in which is illustrated a preferred embodiment, the IP pyrotechnic initiation system comprises an igniter FL. This FL igniter is initially uninitiated. When it is initiated, it enters combustion mode. The FL igniter is aligned with the propeller ignition system. In other words, no check valve or mechanical system makes an obstacle between the ignition chain and the igniter, so that when the igniter is initiated, it puts into combustion mode the ignition system of the ignition system. propellant. For safety reasons, the FL igniter is insensitive. Only electrical energy above a certain threshold can initiate the FL igniter. Noise currents or electromagnetic disturbances can not initiate the FL igniter. For example, a 1A / 1W igniter is used. A current of 1A with a power of 1W for 5 minutes is not sufficient to initiate this igniter. A high energy electrical pulse is used to initiate this igniter.

Le système d'initiation pyrotechnique IP comprend une réserve d'énergie électrique Al. Cette réserve d'énergie électrique Al est initialement non activée. Dans cet état, cette réserve ne délivre par d'énergie. L'énergie contenue dans cette réserve se conserve. Cette réserve Al est destinée à être activée pour délivrer de l'énergie. Avantageusement, cette réserve d'énergie est une pile thermique.The IP pyrotechnic initiation system comprises a reserve of electrical energy A1. This reserve of electrical energy A1 is initially not activated. In this state, this reserve delivers by energy. The energy contained in this reserve is preserved. This reserve Al is intended to be activated to deliver energy. Advantageously, this energy reserve is a thermal battery.

Un circuit électrique comprenant des interrupteurs de sécurité relie la pile thermique Al et l'inflammateur FL. Par exemple trois interrupteurs de sécurité I1, 12, 13 sont montés en série sur ce circuit. Ils peuvent être commandés respectivement par des moyens de gestion de sécurité V1, V2, V3. Ces interrupteurs permettent d'ouvrir le circuit électrique. En d'autres termes, les interrupteurs I1, 12, 13 autorisent ou empêchent la pile thermique Al de délivrer une alimentation à l'inflammateur FL. Lorsque le circuit électrique est fermé et que la pile thermique Al est activée, celle-ci délivre suffisamment d'énergie pour initier l'inflammateur FL.An electrical circuit including safety switches connects the thermal stack Al and the igniter FL. For example three safety switches I1, 12, 13 are connected in series on this circuit. They can be controlled respectively by safety management means V1, V2, V3. These switches open the electrical circuit. In other words, the switches I1, 12, 13 allow or prevent the thermal battery Al from delivering a supply to the igniter FL. When the electrical circuit is closed and the thermal battery Al is activated, it delivers enough energy to initiate the igniter FL.

Avantageusement, les interrupteurs I1, 12, 13 sont de technologies différentes pour éviter des modes de défaillance communs. L'interrupteur I1 peut être un transistor électronique, l'interrupteur 12 peut être un relais électromécanique, l'interrupteur 13 peut être un transistor électronique de technologie différente de I1.Advantageously, the switches I1, 12, 13 are of different technologies to avoid common failure modes. The switch I1 may be an electronic transistor, the switch 12 may be an electromechanical relay, the switch 13 may be an electronic transistor of technology different from I1.

Avantageusement, les interrupteurs I1, I2, et 13 sont placés de part et d'autre des pôles positif PP et négatif PN de l'inflammateur FL. Par exemple les interrupteurs I1 et 12 sont du côté du pôle positif PP, et l'interrupteur 13 du côté du pôle négatif PN. Ceci rend le circuit plus fiable.Advantageously, the switches I1, I2, and 13 are placed on either side of the positive poles PP and negative PN of the igniter FL. For example, the switches I1 and 12 are on the positive pole side PP, and the switch 13 on the negative pole side PN. This makes the circuit more reliable.

Avantageusement, un sélecteur 14 à commande manuelle MA est placé dans le circuit électrique reliant l'inflammateur FL et la pile thermique AI. Ce sélecteur permet d'inhiber l'alimentation électrique de l'inflammateur FL manuellement. Il possède une première position « sécurité » et une seconde position « hors sécurité ». Dans sa première position sécurité, il ouvre le circuit électrique entre le pôle négatif PN de l'inflammateur FL et la masse, et en même temps ferme une liaison entre le pôle positif PP de l'inflammateur FL et la masse. De cette manière, dans cette première position, le sélecteur ouvre le circuit d'alimentation de l'inflammateur FL d'une part, et court-circuite l'inflammateur FL d'autre part. En d'autres termes, la première position (« sécurité ») inhibe l'inflammateur FL. Dans sa seconde position (« hors sécurité »), ce sélecteur n'inhibe plus l'inflammateur FL. Ainsi, l'arme peut être mise manuellement en position de sécurité pour sa manutention par exemple.Advantageously, a selector 14 with manual control MA is placed in the electrical circuit connecting the igniter FL and the thermal battery AI. This selector makes it possible to inhibit the power supply of the FL igniter manually. It has a first "security" position and a second "non-security" position. In its first safety position, it opens the electrical circuit between the negative pole PN of the igniter FL and the mass, and at the same time closes a connection between the positive pole PP of the igniter FL and the mass. In this way, in this first position, the selector opens the supply circuit of the igniter FL on the one hand, and bypasses the igniter FL on the other hand. In other words, the first position ("safety") inhibits the FL igniter. In its second position ("out of safety"), this selector no longer inhibits the FL igniter. Thus, the weapon can be placed manually in a safe position for handling, for example.

Avant le largage, les moyens de gestion de sécurité V1, V2, V3 peuvent être alimentés électriquement (circuit d'alimentation non représenté) par une alimentation externe AE. Cette alimentation externe AE peut provenir de l'avion par exemple. Un connecteur C1 du système d'initiation pyrotechnique peut relier l'alimentation électrique externe AE à la pile thermique Al par exemple. Après le largage, la pile thermique Al est activée, créant ainsi une différence de potentiel à ses bornes. Elle délivre alors une alimentation électrique se substituant à celle délivrée par l'avion.Before the release, the safety management means V1, V2, V3 can be electrically powered (power supply circuit not shown) by an external power supply AE. This external power supply AE can come from the plane for example. A connector C1 of the pyrotechnic initiation system can connect the external power supply AE to the thermal battery Al for example. After the release, the thermal battery Al is activated, thus creating a potential difference at its terminals. It then delivers a power supply substituting for that delivered by the aircraft.

Les moyens de gestion de sécurité V1, V2, V3 permettent de vérifier une séquence opérationnelle de largage déterminée. La vérification d'une séquence opérationnelle permet de confirmer une intention de tir. Une séquence opérationnelle nominale peut comprendre par exemple les étapes suivantes :

  • émission d'une intention de tir, telle que la traction d'un fil SL ou l'émission d'un message codé,
  • largage de la bombe de l'avion,
  • éloignement de la bombe par rapport à l'avion.
The safety management means V1, V2, V3 make it possible to check a given operational release sequence. The verification of an operational sequence confirms a shooting intention. A nominal operational sequence may comprise, for example, the following steps:
  • issuing a shooting intention, such as pulling a wire SL or sending a coded message,
  • dropping the bomb from the plane,
  • distance from the bomb relative to the aircraft.

Cette séquence ne se déroule pas de manière nominale en cas d'accident. On peut citer deux exemples. Un premier exemple est une traction accidentelle du fil SL (collision avec un oiseau). Dans cet exemple, l'émission d'une intention de tir ne sera pas suivie du largage de la bombe. Un second exemple est le largage accidentel de la bombe (bombe est mal arrimée au porteur). Dans cet exemple, le largage ne sera pas précédé d'une émission d'une intention de tir. Dans ces deux exemples, les moyens de gestion de sécurité V1, V2, V3 détectent une séquence non nominale. Ils inhibent l'initiation de l'inflammateur FL. En d'autres termes les moyens de gestion de sécurité V1, V2, V3 maintiennent au moins l'un des interrupteurs I1, I2, I3 ouvert de manière à empêcher la pile thermique Al de délivrer une alimentation à l'inflammateur FL.This sequence does not take place in a nominal way in the event of an accident. There are two examples. A first example is an accidental pull of the SL wire (collision with a bird). In this example, the issuance of a fire intention will not be followed by the dropping of the bomb. A second example is the accidental release of the bomb (bomb is badly secured to the wearer). In this example, the release will not be preceded by a broadcast of a shooting intent. In these two examples, the security management means V1, V2, V3 detect a non-nominal sequence. They inhibit the initiation of the FL igniter. In other words, the safety management means V1, V2, V3 hold at least one of the switches I1, I2, I3 open so as to prevent the thermal battery Al from delivering a supply to the igniter FL.

Lorsque les moyens de gestion de sécurité V1, V2, V3 détectent une séquence opérationnelle nominale, ils commandent la fermeture des interrupteurs I1, 12, I3. En d'autres termes, ils autorisent la pile thermique Al à délivrer une alimentation à l'inflammateur FL. L'inflammateur FL est alors initié ce qui fait entrer la chaîne d'allumage du propulseur en régime de combustion.When the safety management means V1, V2, V3 detect a nominal operational sequence, they control the closing of the switches I1, 12, I3. In other words, they allow the heat stack Al to supply a supply to the igniter FL. The igniter FL is then initiated which makes the propeller ignition chain enter the combustion mode.

Selon un mode de réalisation avantageux, les moyens de gestion de sécurité comprennent :

  1. (a) un premier moyen de vérification d'environnement V1, pour émettre le premier signal de commande après la détection d'un premier environnement de largage E1, ledit signal de commande pouvant activer la réserve d'énergie Al ;
  2. (b) un second moyen de vérification d'environnement V2, pour émettre un second signal de commande après la détection d'un second environnement de largage E2, le second environnement étant différent du premier E1, les premier et second signaux de commande agissant sur un ou plusieurs des interrupteurs de sécurité I1, 12 de manière à initier l'inflammateur FL.
According to an advantageous embodiment, the security management means comprise:
  1. (a) first environment verification means V1, for outputting the first control signal after the detection of a first drop environment E1, said control signal being able to activate the energy reserve A1;
  2. (b) second environment verification means V2, for transmitting a second control signal after detecting a second drop environment E2, the second environment being different from the first E1, the first and second control signals operating on one or more of the safety switches I1, 12 so as to initiate the FL igniter.

Le premier environnement de largage E1 peut être par exemple la traction du fil SL, l'absence de contact entre l'avion et la bombe, la vitesse du vent extérieur à la bombe, un message codé provenant de l'avion... On prendra par exemple la traction du fil SL. Le dispositif de mesure SA peut être relié électriquement par une connexion C2 aux premiers moyens de vérification V1. Cette connexion C2 permet de disposer des signaux électriques générés par le capteur de traction du fil SL. Le premier environnement de largage E1 est ainsi converti en signaux électriques. Le premier moyen de vérification V1 peut commander la fermeture de l'interrupteur I1 si ce premier environnement de largage E1 est détecté, c'est à dire si la traction du fil SL est détectée par le capteur de traction.The first drop environment E1 can be, for example, the traction of the wire SL, the absence of contact between the airplane and the bomb, the wind speed outside the bomb, a coded message coming from the airplane ... take for example the traction of the wire SL. The measuring device SA can be electrically connected by a connection C2 to the first verification means V1. This connection C2 makes it possible to dispose of the electrical signals generated by the traction sensor of the wire SL. The first drop environment E1 is thus converted into electrical signals. The first verification means V1 can control the closure of the switch I1 if this first drop environment E1 is detected, that is to say if the traction of the wire SL is detected by the traction sensor.

Dès que ce premier environnement de largage E1 est détecté par le premier moyen de vérification V1, un signal de commande peut être émis vers la pile thermique Al pour l'activer.As soon as this first drop environment E1 is detected by the first verification means V1, a control signal can be sent to the thermal stack Al to activate it.

Le second environnement de largage E2 peut être par exemple la vitesse du vent extérieur à la bombe. Ce second environnement de largage E2 est différent du premier environnement de largage E1, de manière à éviter d'initier le système d'initiation pyrotechnique suite à un accident (collision avec un oiseau). Le dispositif de mesure SA peut être relié électriquement par une connexion C3 aux seconds moyens de vérification V2. Cette connexion C3 permet de disposer des signaux électriques générés par l'éolienne. Le second environnement de largage E2 est ainsi converti en signaux électriques. Le second moyen de vérification V2 peut commander la fermeture de l'interrupteur 12 si ce second environnement de largage est détecté.The second drop environment E2 may be for example the wind speed outside the bomb. This second drop environment E2 is different from the first drop environment E1, so as to avoid initiating the pyrotechnic initiation system following an accident (collision with a bird). The measuring device SA can be electrically connected by a connection C3 to the second verification means V2. This connection C3 makes it possible to dispose of the electrical signals generated by the wind turbine. The second drop environment E2 is thus converted into electrical signals. The second verification means V2 can control the closing of the switch 12 if this second drop environment is detected.

Avantageusement, les moyens de vérification V1, V2 utilisent deux voies indépendantes (composants dédiés à chaque fonction) pour agir sur les interrupteurs de sécurité I1, I2.Advantageously, the verification means V1, V2 use two independent channels (components dedicated to each function) to act on the safety switches I1, I2.

Avantageusement, les moyens de vérification V1, V2 comprennent des moyens de temporisation, agencés de manière à transmettre les premiers et seconds signaux de commande après des retards déterminés. Ainsi, le premier signal de commande est transmis à l'interrupteur I1 après un retard T1, et le second signal de commande est transmis à l'interrupteur 12 après un retard T2. Ces retards T1 et T2 permettent de protéger les pilotes en cas de fonctionnement anormal du système propulsif par exemple (explosion à l'allumage).Advantageously, the verification means V1, V2 comprise timing means, arranged to transmit the first and second control signals after determined delays. Thus, the first control signal is transmitted to the switch I1 after a delay T1, and the second control signal is transmitted to the switch 12 after a delay T2. These T1 and T2 delays protect the pilots in the event of abnormal operation of the propulsion system for example (ignition explosion).

Avantageusement, les moyens de temporisation sont de technologies différentes. Le premier moyen de temporisation peut être à quartz, le second moyen de temporisation peut être une horloge RC (horloge à résistance et capacité).Advantageously, the delay means are of different technologies. The first delay means can be quartz, the second delay means can be a clock RC (resistance clock and capacitance).

Selon un mode de réalisation avantageux, les moyens de gestion de sécurité comprennent en outre un moyen d'analyse du séquencement V3, pour émettre un troisième signal de commande si les premier et second signaux de commande sont reçus dans un ordre déterminé dans une fenêtre temporelle déterminée, le troisième signal de commande agissant sur un ou plusieurs des interrupteurs de sécurité 13 de manière à initier l'inflammateur FL.According to an advantageous embodiment, the security management means further comprise a sequencing analysis means V3 for transmitting a third control signal if the first and second control signals are received in a determined order in a window. determined time, the third control signal acting on one or more of the safety switches 13 so as to initiate the igniter FL.

Le moyen d'analyse du séquencement V3 reçoit les signaux de commande des premier et second moyens de vérification V1, V2. Si ces signaux de commande sont reçus dans l'ordre et dans une fenêtre temporelle déterminée, les moyens d'analyse du séquencement V3 peuvent commander la fermeture de l'interrupteur I3. Les trois interrupteurs I1, 12, et 13 sont en position fermée. Si le sélecteur 14 est dans sa seconde position (« hors sécurité »), la pile thermique Al initie l'inflammateur FL. Celui-ci entre en régime de combustion, ce qui fait entrer la chaîne d'allumage puis la composition pyrotechnique propulsive en régime de combustion.The sequencing analysis means V3 receives the control signals from the first and second verification means V1, V2. If these control signals are received in the order and in a given time window, the analysis means of the sequencing V3 can control the closing of the switch I3. The three switches I1, 12, and 13 are in the closed position. If the selector 14 is in its second position ("out of safety"), the thermal battery Al initiates the igniter FL. It enters the combustion regime, which brings the ignition system and the propellant pyrotechnic composition into the combustion regime.

Si les deux environnements E1, E2 ne sont pas détectés dans l'ordre et dans une fenêtre déterminée, l'interrupteur 13 reste ouvert. Ceci correspond en effet à une séquence non nominale.If the two environments E1, E2 are not detected in the order and in a given window, the switch 13 remains open. This corresponds to a non-nominal sequence.

Selon un mode de réalisation avantageux, le système d'initiation comprend en outre des moyens de stérilisation FU pour empêcher de manière irréversible la réserve d'énergie électrique Al de délivrer une alimentation à l'inflammateur FL après une séquence non nominale. Ces moyens de stérilisation FU peuvent être du type fusible. Selon un mode de réalisation préférentiel, ce fusible est placé sur un circuit de commande de l'un des interrupteurs I1, I2 ou 13, de manière à laisser cet interrupteur ouvert. Par exemple le fusible peut être placé sur le circuit de commande de l'interrupteur I1. Ceci est préférable à placer un fusible directement sur le circuit reliant la pile thermique Al à l'inflammateur FL car l'énergie nécessaire à le faire fondre serait très importante (l'inflammateur FL étant peu sensible, un fort courant doit circuler sur ce circuit).According to an advantageous embodiment, the initiation system further comprises sterilization means FU for irreversibly preventing the reserve of electrical energy A1 from delivering a supply to the igniter FL after a non-nominal sequence. These FU sterilization means may be of the fuse type. According to a preferred embodiment, this fuse is placed on a control circuit of one of the switches I1, I2 or 13, so as to leave this switch open. For example the fuse can be placed on the control circuit of the switch I1. This is preferable to place a fuse directly on the circuit connecting the thermal stack Al to the igniter FL because the energy needed to melt it would be very important (the igniter FL being insensitive, a strong current must flow on this circuit ).

La stérilisation (dans cet exemple, il s'agit de faire fondre le fusible FU), peut intervenir par exemple :

  • après un retard fixe suivant l'arrivée du premier signal de commande, ce retard fixe étant supérieur au délai normal de transmission du second signal de commande et d'initiation pyrotechnique, ou
  • si le moyen d'analyse du séquencement V3 détecte une séquence non nominale.
The sterilization (in this example, it is to melt the fuse FU), can intervene for example:
  • after a fixed delay following the arrival of the first control signal, this fixed delay being greater than the normal transmission delay of the second control and pyrotechnic initiation signal, or
  • if the sequencing analysis means V3 detects a non-nominal sequence.

Cette stérilisation permet, en cas de séquence opérationnelle non nominale, le retour sur base de la bombe dans un état où l'inflammateur FL ne peut plus être initié électriquement.This sterilization allows, in case of non-nominal operational sequence, the return on the basis of the bomb in a state where the igniter FL can not be initiated electrically.

En référence à la figure 5, et à la vue de détail figure 6, on décrit un exemple d'assemblage du système d'initiation pyrotechnique IP sur un système propulsif tel que celui de la munition M3 (figure 3). Le propulseur PRO comprend une cavité cylindrique dans laquelle sont situés la chaîne d'allumage CHA et la composition pyrotechnique propulsive CPP. La composition pyrotechnique propulsive CPP peut être un anneau de propergol concentrique avec l'axe AXE de la cavité par exemple. La paroi extérieure de la cavité est traversée dans sa partie inférieure INF (c'est à dire du côté arrière de la bombe M3) par une tuyère TUY. La tuyère permet de guider les gaz résultant de la combustion de la composition pyrotechnique propulsive CPP de l'intérieur de la cavité vers l'extérieur EX. La tuyère TUY présente un axe de symétrie par rotation confondu avec l'axe AXE de la cavité. Le système d'initiation pyrotechnique IP peut être fixé à la partie inférieure INF de la cavité, de manière à être accessible depuis l'extérieur sans nécessiter de démontage d'autres éléments de la bombe.Referring to Figure 5, and the detail view Figure 6, there is described an assembly example of the IP pyrotechnic initiation system on a propulsion system such as that of the M3 ammunition (Figure 3). The thruster PRO comprises a cylindrical cavity in which are located the ignition chain CHA and the propellant pyrotechnic composition CPP. The pyrotechnic propellant composition CPP may be a concentric propellant ring with the axis AX of the cavity for example. The outer wall of the cavity is traversed in its lower part INF (that is to say on the rear side of the bomb M3) by a nozzle TUY. The nozzle makes it possible to guide the gases resulting from the combustion of the pyrotechnic propellant composition CPP from the inside of the cavity to the outside EX. The TUY nozzle has an axis of rotation symmetry coincident with the axis AX of the cavity. The IP pyrotechnic initiation system can be fixed to the lower part INF of the cavity, so as to be accessible from the outside without the need to disassemble other elements of the bomb.

Selon un mode de réalisation avantageux, l'inflammateur FL (figure 6) est logé dans une structure composée d'un matériau KT ayant un très fort coefficient d'atténuation thermique. Cette structure peut avoir une forme cylindrique par exemple. On appelle l'ensemble constitué par cette structure et par l'inflammateur FL une canne pyrotechnique CAP. Cette canne pyrotechnique CAP est logée dans la cavité du propulseur PRO. La cavité du propulseur PRO dispose elle-même d'une protection thermique ISO. Ainsi, en cas d'incendie, cette canne CAP permet de protéger l'inflammateur FL en limitant les transferts de chaleur par conduction à travers le système d'initiation pyrotechnique. On retarde ainsi l'auto-inflammation de l'inflammateur FL en cas d'incendie.According to an advantageous embodiment, the igniter FL (FIG. 6) is housed in a structure composed of a KT material having a very high coefficient of thermal attenuation. This structure can have a cylindrical shape for example. The assembly constituted by this structure and by the igniter FL is called a pyrotechnic rod CAP. This pyrotechnic rod CAP is housed in the PRO propeller cavity. The propeller cavity PRO itself has an ISO thermal protection. Thus, in the event of a fire, this CAP can protect the FL igniter by limiting heat transfer by conduction through the pyrotechnic initiation system. This delays the self-ignition of the igniter FL in case of fire.

En référence aux figures 7, 8, 9, le boîtier BOI du système d'initiation pyrotechnique IP est un matériau conducteur. Ainsi, ce boîtier constitue une cage de Faraday protégeant les composants électroniques du système d'initiation pyrotechnique IP. Ces composants électroniques, tel que les moyens de gestion de sécurité V1,V2, V3, peuvent être rassemblés sur une carte électronique CE.With reference to FIGS. 7, 8, 9, the BOI box of the IP pyrotechnic initiation system is a conductive material. Thus, this housing constitutes a Faraday cage protecting the electronic components of the IP pyrotechnic initiation system. These electronic components, such as security management means V1, V2, V3, can be assembled on an electronic card CE.

Le boîtier BOI peut comprendre des trous de fixation T1, T2, T3, T4, T5, T6 destinés à être placés en regard de trous filetés de la cavité du propulseur PRO. Les trous filetés (non représentés) de la cavité peuvent être réalisés dans des bossages de la paroi inférieure INF de la cavité.The BOI box may comprise fixing holes T1, T2, T3, T4, T5, T6 intended to be placed opposite threaded holes of the PRO propeller cavity. The threaded holes (not shown) of the cavity may be made in bosses of the lower wall INF of the cavity.

Un connecteur CN peut regrouper les connections C1, C2, C3. Avantageusement, ce connecteur est accessible depuis l'extérieur une fois le système d'initiation pyrotechnique IP fixé sur la cavité du propulseur PRO.An NC connector can group connections C1, C2, C3. Advantageously, this connector is accessible from the outside once the pyrotechnic initiation system IP fixed on the cavity of the propeller PRO.

On se réfère à la figure 9. En fin de vie, le système d'initiation peut aisément être retiré de la bombe (le système d'initiation est fixé sur le propulseur au moyen de vis). Préférentiellement, la pile thermique Al et la canne pyrotechnique CAP sont fixées au moyen d'écrous ECR1, ECR2 au boîtier BOI. De cette manière, après le retrait d'un couvercle COU du système d'initiation pyrotechnique IP, la pile thermique Al et la canne pyrotechnique CAP peuvent facilement être démontées du boîtier BOI. Il suffit pour cela de retirer les soudures SD reliant la pile thermique Al et la canne pyrotechnique CAP (inflammateur FL) à la carte électronique CE d'une part, et de dévisser les écrous ECR1, ECR2 d'autre part.Referring to Figure 9. At the end of life, the initiation system can easily be removed from the bomb (the initiation system is fixed on the thruster by means of screws). Preferably, the thermal stack Al and the pyrotechnic rod CAP are fixed by means of nuts ECR1, ECR2 BOI box. In this way, after removing a COU cover IP pyrotechnic initiation system, the thermal battery Al and the pyrotechnic rod CAP can easily be removed from the BOI box. All that is required is to remove the SD seals connecting the thermal battery Al and the pyrotechnic CAP (FL igniter) to the electronic card CE on the one hand, and to unscrew the nuts ECR1, ECR2 on the other hand.

Le système d'initiation pyrotechnique IP selon l'invention peut aisément être testé fonctionnellement à l'état inerte, c'est à dire une fois la canne pyrotechnique démontée. Ceci permet de :

  • réaliser des contrôles fonctionnels unitaires d'acceptation en environnements (climatiques, vibratoires) avec intégration de la canne pyrotechnique,
  • réaliser des contrôles fonctionnels durant la vie de la bombe.
The pyrotechnic initiation system IP according to the invention can easily be tested functionally in the inert state, that is to say once the pyrotechnic rod dismounted. This allows:
  • carry out unitary acceptance functional checks in environments (climatic, vibratory) with integration of the pyrotechnic rod,
  • carry out functional checks during the life of the bomb.

Les tests fonctionnels peuvent être réalisés en raccordant un dispositif de contrôle au connecteur CN. Préférentiellement, en mode de test, la pile thermique Al et les moyens de stérilisation FU sont inhibés.Functional tests can be performed by connecting a control device to the NC connector. Preferably, in test mode, the heat stack Al and the sterilization means FU are inhibited.

Bien entendu l'invention ne se limite pas à cet exemple de mise en oeuvre, décrit à tire d'illustration. Notamment, la réserve d'énergie électrique Al n'est pas nécessairement une pile thermique. On peut utiliser à la place des capacités chargées par l'alimentation de l'avion.Of course, the invention is not limited to this exemplary implementation, described by way of illustration. In particular, the reserve of electric energy Al is not necessarily a thermal battery. It is possible to use instead capacities loaded by the power of the aircraft.

L'invention s'applique aussi aux fusées. L'inflammateur FL est alors remplacé par une amorce. D'une façon générale, l'inflammateur d'un propulseur et l'amorce d'une fusée sont des compositions pyrotechniques. Elles sont activées, c'est à dire initiée pour l'inflammateur, et amorcée pour la fusée, par une impulsion électrique.The invention also applies to rockets. The FL igniter is then replaced by a primer. In general, the igniter of a propellant and the primer of a rocket are pyrotechnic compositions. They are activated, ie initiated for the igniter, and initiated for the rocket, by an electrical pulse.

L'invention s'applique bien entendu à tout type de système destiné à être largué. On peut citer par exemple les missiles largués d'un sous marin ou d'un porte avion.The invention applies of course to any type of system to be dropped. For example, missiles dropped from a submarine or an aircraft carrier can be cited.

Claims (8)

  1. System for the pyrotechnic activation of a system intended to be released from a carrier, comprising at least:
    (a) a pyrotechnic composition (FL);
    (b) a reserve of electrical power (AI) able to deliver a sufficient electrical power supply to activate the pyrotechnic composition (FL) when the said reserve (AI) is activated, the said reserve being activated after release;
    (c) several safety switches (I1, I2, I3) arranged in such a way as to activate or not activate the pyrotechnic composition (FL) by allowing or preventing the delivery of power by the reserve of electrical power (AI) to the said pyrotechnic composition (FL);
    (d) safety management means (V1, V2, V3), powered by the reserve of electrical power (AI) after release, to verify a determined operational release sequence and to control the safety switch or switches (I1, I2, I3) in such a way as to activate the pyrotechnic composition if the operational release sequence is nominal,
    characterized in that the safety management means (V1, V2, V3) comprise:
    - means (V1, V2) for checking that determined environment conditions are satisfied and for generating control signals for controlling some of the safety switches (I1, I2) so as to activate the pyrotechnic composition when the said environment conditions are satisfied, and
    - a means (V3) of analysing the pyrotechnic composition activation sequence, the said means being able to receive the control signals generated by the other safety management means (V1, V2) and, if the corresponding control signals are received in a determined order and within a determined time slot, to generate a control signal acting on one of the safety switches (13) so as to validate activation of the pyrotechnic composition (FL).
  2. System according to Claim 1, characterized in that the safety management means comprise at least:
    (a) a first environment verifying means (V1) for emitting the first control signal after a first release environment (E1) has been detected, the said control signal being able to activate the reserve of power (A1);
    (b) a second environment verifying means (V2) for emitting a second control signal once a second release environment (E2) has been detected, the second environment being different from the first (E1), the first and second control signals acting on one or more of the safety switches (I1, I2) in such a way as to activate the pyrotechnic composition (FL).
  3. System according to Claim 2, characterized in that the safety management means further comprise time-delay means designed to transmit the first and second control signals after determined delays.
  4. System according to one of the preceding claims, characterized in that it comprises sterilizing means (FU) for irreversibly preventing the reserve of electrical power (AI) from delivering power to the pyrotechnic composition (FL) after a non-nominal sequence.
  5. System according to any one of the preceding claims, characterized in that the pyrotechnic composition (FL) is placed in a tube (CAP) of low thermal conductivity.
  6. System according to any one of the preceding claims, characterized in that the various switches (I1, 12, I3) used employ different technologies in order to avoid common failure modes.
  7. System according to any one of the preceding claims, characterized in that the switches are placed on each side of the positive (PP) and negative (PN) terminals of the pyrotechnic composition (FL).
  8. System according to any one of the preceding claims, characterized in that it comprises a manually operated (MA) selector (14) allowing the electrical power supply to the pyrotechnic composition (FL) to be inhibited manually.
EP02291376A 2001-06-29 2002-06-04 Pyrotechnic activation safety-system Expired - Lifetime EP1271091B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0108668 2001-06-29
FR0108668A FR2826716B1 (en) 2001-06-29 2001-06-29 SECURE PYROTECHNIC ACTIVATION SYSTEM

Publications (2)

Publication Number Publication Date
EP1271091A1 EP1271091A1 (en) 2003-01-02
EP1271091B1 true EP1271091B1 (en) 2007-08-29

Family

ID=8864963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02291376A Expired - Lifetime EP1271091B1 (en) 2001-06-29 2002-06-04 Pyrotechnic activation safety-system

Country Status (5)

Country Link
EP (1) EP1271091B1 (en)
AT (1) ATE371849T1 (en)
DE (1) DE60222054T2 (en)
ES (1) ES2291425T3 (en)
FR (1) FR2826716B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2836991B1 (en) * 2002-03-08 2006-05-19 Alkan Sa ELECTRO-PYROTECHNIC SAFETY DEVICE FOR MUNITION AND ITS CONTROL METHOD
US8925462B2 (en) 2012-06-27 2015-01-06 Raytheon Company Intermediate voltage arming

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036144A (en) * 1959-01-29 1977-07-19 The United States Of America As Represented By The Secretary Of The Army Arming system
US4160417A (en) * 1969-04-29 1979-07-10 The United States Of America As Represented By The Secretary Of The Navy Arming-safing system for airborne weapons
US3739726A (en) * 1970-08-17 1973-06-19 Intron Int Inc Electronic fuze
US4013012A (en) * 1974-11-18 1977-03-22 Altus Corporation Electronic safe arming and fuzing system
ES2176060B1 (en) * 1999-10-27 2004-02-01 Instalaza Sa IMPROVEMENTS IN MECHAN-ELECTRONIC SPOOLS FOR HAND GRENADES.

Also Published As

Publication number Publication date
ES2291425T3 (en) 2008-03-01
ATE371849T1 (en) 2007-09-15
FR2826716A1 (en) 2003-01-03
FR2826716B1 (en) 2003-10-03
DE60222054D1 (en) 2007-10-11
EP1271091A1 (en) 2003-01-02
DE60222054T2 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2020099474A1 (en) Safety device for an electric circuit of a vehicle
EP1271091B1 (en) Pyrotechnic activation safety-system
WO2017187079A1 (en) Mechanical drive device comprising an ignition system
FR2796454A1 (en) Weapon system mounted on stealth aircraft is concealed to minimize radar signature has concelaed tube fixed to the exterior and minmizes the reflection of electromagnetic waves
EP1010964B1 (en) Device for igniting a detonator
EP0913662B1 (en) Hollow charge projectile and appropriate weapon system
FR2682484A1 (en) Electric circuit for checking a resistive component
FR2865537A1 (en) FUSE FOR AMMUNITION
WO2005111533A1 (en) Self-destruct device for a submunition fuse
EP0123593B1 (en) Projectile with electrical ignition and weapon for launching it
EP0230196B1 (en) Projectile with a pyrotechnic charge
WO2020165699A1 (en) Rocket for a projectile intended to be fired by a cannon
EP0353162B1 (en) System for dropping heavy payloads from aircraft
FR3105779A1 (en) A device and method for automatically monitoring the service condition of a parachute system of a flying drone.
WO2024017528A1 (en) Autonomous pyrotechnic igniter simulator
FR2649194A1 (en) EJECTION DEVICE FOR AMPHIBIOUS AMMUNITION AND INDEPENDENT PROPELLER THEREOF
FR2545600A1 (en) Improvements to projectiles carrying a payload which can be activated in flight by pyrotechnic initiation
EP0779495A1 (en) Device for launching a non lethal projectile
EP3910280A1 (en) Device for detecting absence of mechanical barrier for a missile and missile comprising such a device
EP0420760A1 (en) Method and system for autonomous guidance of a propelled airborne ballistic projectile towards a target
FR2528969A1 (en) Detonating system for bomb carried by aircraft - includes capacitor and electronic detonator with PCB to operate when mechanical device fails
FR2634727A1 (en) System for releasing heavy loads from aircraft
EP0349375A1 (en) Electric fuze for a missile
EP2153162A2 (en) Pyrotechnical chain for igniting a main propulsion charge for a missile
FR2747770A1 (en) Cargo type air-ground missile carrying sub-missiles for release in flight

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030624

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20060620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES MUNITRONICS & MICROTECHNICS SAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60222054

Country of ref document: DE

Date of ref document: 20071011

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2291425

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080129

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080530

BERE Be: lapsed

Owner name: THALES MUNITRONICS & MICROTECHNICS SAS

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210518

Year of fee payment: 20

Ref country code: IT

Payment date: 20210526

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210610

Year of fee payment: 20

Ref country code: GB

Payment date: 20210520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210708

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60222054

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220603

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220605