EP1264784B1 - Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend - Google Patents
Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend Download PDFInfo
- Publication number
- EP1264784B1 EP1264784B1 EP20010112862 EP01112862A EP1264784B1 EP 1264784 B1 EP1264784 B1 EP 1264784B1 EP 20010112862 EP20010112862 EP 20010112862 EP 01112862 A EP01112862 A EP 01112862A EP 1264784 B1 EP1264784 B1 EP 1264784B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall segment
- vessel
- longitudinal axis
- wall
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000009467 reduction Effects 0.000 title claims description 16
- 239000013590 bulk material Substances 0.000 title claims description 8
- 230000005484 gravity Effects 0.000 title claims description 8
- 239000002245 particle Substances 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000011236 particulate material Substances 0.000 claims description 7
- 235000013980 iron oxide Nutrition 0.000 claims description 6
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 13
- 238000010276 construction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/26—Hoppers, i.e. containers having funnel-shaped discharge sections
- B65D88/28—Construction or shape of discharge section
Definitions
- the invention relates to an improved configuration of bins, hoppers, silos, reactors, and more generally to any vessel for handling, processing, transporting or temporarily storing particulate bulk materials.
- a particularly useful application of the invention is related to a Direct Reduction Reactor of particulate iron ores.
- US patent 4,886,097 to Garza-Ondarza discloses a single segment container to handle particulate solids comprising a downwardly converging wall which wall is provided with an internal inverted step extending along a portion of the converging wall.
- the internal inverted step extends helically along at least a portion of the converging wall to provide a continuous increase in the cross-sectional area of the container to promote the flow of solids.
- This patent provides an enlargement of the cross-sectional area of the container and in this way the solids compaction is minimized allowing configurations of the container with narrower outlet diameters.
- the measures proposed by this patent are difficult to incorporate in a cost-effective manner because the construction of the helical step along the conical portion of the container raises the costs incurred by the actual cutting and conformation of the metal sheet employed for constructing such container. This becomes more relevant when the spiral inverted step is to be incorporated in a large reactor which has to withstand high internal pressures.
- US patent 6,055,781 describes a hopper that has been developed to reduce the tendency of particulate material to form bridges by providing a shape so that its walls slope downward more steeply with increasing height above the outlet.
- the disclosed hopper comprises several adjacent conical sections that are arranged along a common longitudinal axis. In the downward direction, the conicity of the adjacent sections decreases.
- US patent 3,797, 707 describes a bin for storage and flow of bulk solids having stepped hopper surfaces adapted to increase and render constant the rate of flow at the hopper outlet.
- the stepped surfaces have friction and slope angles adapted to satisfy the criteria for mass flow, and provide spaces for injecting fluid at one or more perimetric interfaces with the moving solids.
- This patent suggests an enlargement of the cross sectional area of the bin. To this end, it is propagated to arrange several conical segments adjacent one another and along a common longitudinal axis. The segments are dimensioned and arranged in the longitudinal direction so that they are joined by horizontal wall segments. The walls of this known container may still provide a support for the formation of domes by the particles.
- the injection of a fluid may not be possible to practice in many applications and entails additional operational costs.
- US 3,921,351 discloses a segmented storage bin of circular or square cross-section for storing and dispensing particulate material comprising several bin segments; the cross-section of the bin is enlarged by the combination of intermediate wall segments providing an enlargement of the cross sectional area of the bin.
- the concept described in this patent however does not eliminate the formation of domes by the solid particles.
- US 6,089,417 describes a chip bin comprising a discharge zone having a curvilinear roller shape in any freely chosen horizontal cross-section wherein the cross-section of the discharge zone decreases downwardly.
- some segments of the bin In the cross-sectional view along the longitudinal axis of the known chip bin, some segments of the bin have a vertical wall on one side and an angled wall on the opposite side.
- the bin of this patent also has the disadvantage of a complicated and costly construction because of the shape of the segments as shown in the patent.
- the stoppages caused by said materials hanging or dome bridging inside the converging zone of such container is to be minimized without resorting to moving parts.
- the present invention is based on the concept to provide an expansion of the cross sectional area of the inventive vessel which is asymmetrical at least in one direction with respect to a horizontal plane.
- This feature of the invention produces a uniform gravity driven flow of particles and eliminates the possibility of formation of bridges or domes which interrupt the flow of particles.
- the longitudinal axes of the wall segments of the inventive vessel coincide, it is also contemplated to arrange these axes parallel to and spaced from one another. Coinciding axes will improve the flow of particles through the inventive vessel, and spaced parallel axes allow for greater flexibility concerning the inventive vessel's requirement for space.
- the direct reduction reactor in accordance with the present invention is particularly suitable for processing particles of iron oxides containing materials at high temperatures, so as to produce metallic iron in the solid state.
- the iron oxide particles can flow by gravity in a uniform plug flow pattern, and the range of lump ores and/or pellets expands, because the inventive direct reduction reactor minimizes the possibility of dome bridging in the discharge zone of the reactor.
- the present invention provides a better solution to the tendency of solid particles to bridge within the container, by providing an enlargement of its cross-sectional area but with a better design and a more cost-effective facility for its construction.
- vessel 10 in Fig. 1 is depicted as having various conical segments 12, 14, 16, 18 and 20, it would be sufficient to embody the present invention, if the vessel 10 only comprised an upper wall segment 12, a lower wall segment 14, and an intermediate wall segment 34.
- various of these upper wall segments, lower wall segments and intermediate wall segments are depicted, the intermediate wall segments linking the respective upper and lower wall segments.
- conical wall segment 18 in Fig. 1 functions as an upper wall segment for the combination of wall segments 18, 40 and 20, and at the same time as a lower wall segment for the combination consisting of wall segments 16, 38 and 18.
- conical segments 12, 14, 16, 18 and 20 are depicted, all of which are generally centered with respect to the longitudinal, and in use of the vessel typically substantially vertical, axis 22 of vessel 10.
- the longitudinal axes of the various conical segments 12, 14, 16, 18 and 20 coincide, which is particularly evident from Fig. 2. It is, however, also within the scope of the invention to arrange the vertical axes of the conical segments 12, 14, 16, 18 and 20 so that they do not coincide, as long as they are arranged parallel to one another.
- Conical segments 12 to 18 are generally shaped with an angle A with respect to their respective vertical axes.
- This angle A of the conical segments is selected in accordance with the flow characteristics of the particular solid bulk material to be handled by vessel 10, and in accordance with the optimization of the height of the vessel which results from steeper but more flow favorable values of angle A and from the necessity of having plug flow through the vessel or at an upper generally cylindrical section 26 of vessel 10.
- Angle A will be selected by the skilled person in accordance with the application of vessel 10.
- angle A is most preferably in the range from 11° to 18°.
- segments 12 to 18 shaped with the same angle A for some materials it may be desirable to decrease the angle A of each segment, with the smallest angle at the bottom of vessel 10. This decreasing conical angle A promotes the flow of particles to be more vertical where the cross-sectional area is smaller.
- Segment 12 has a lower elliptical edge 24 resulting from truncating the cone 12 at an angle B.
- Angle B is in the range from 20° to 60° with respect to the horizontal, and more preferably between 35° to 45° with respect to the horizontal. In the preferred, substantially vertical orientation of vessel 10, these angles B translate into an angle in the range from 30° to 70°, and preferably 35° to 55° with respect to the longitudinal axis of wall segment 12. It is most preferred that angle B is 40°, so as to ensure optimum flow and to eliminate the possibility of formation of domes which could interrupt the flow of particles, in the preferred application of vessel 10. It is of course to be understood that the lower edge does not necessarily have to be elliptical, since the concept of the invention may be implied to vessels or containers having cross-sectional areas other than circular, for example rectangular.
- Segments 14, 16 and 18 have similarly elliptical lower edges 26, 28, and 30, respectively.
- Each of the segments 12, 14, 16, 18 and 20 of vessel 10 cooperates with its adjacent segment or segments in order to provide an expansion of the cross sectional area of the flow channel of the preferably solid particles passing successively through segments 12 to 20. It is a distinctive feature of vessel 10 that this expansion of the cross sectional area is asymmetrical at least in one direction with respect to a horizontal plane. This minimizes the possibility of formation of bridges or domes by the gravity driven particles, because the supporting wall or supporting walls are asymmetric as regards the direction of gravity.
- the preferably elliptical recess spaces enclosed by the intermediate wall segments are oriented in the same direction, i.e. their longitudinal axis is oriented parallel to the longitudinal axes of conical segments 12, 14, 16, 18 and 20.
- the level of the highest point of each one of said intermediate wall segments is located at the same height or above the level of the lowest points of its associated upper wall segment, i.e. of the recess space above it, thus providing a continuous asymmetry in the walls of vessel 10;
- the invention also comprises embodiments where the space recesses are separated vertically by a distance longer or shorter than that depicted in the Figures, so that they effectively overlap or leave some zones without said cross-sectional area enlargements.
- the orientation of at least some or all of said recesses can also be different.
- the lower edge portion 50 of the upper wall segment 12 is connected to the upper edge of intermediate wall element 34.
- connection between the upper edge of the intermediate wall segment 34 and the upper wall segment 12 is preferably not with the lower edge 24 of upper wall segment 12, but with the lower edge portion 50, the mentioned overlap results, as depicted in Fig. 1.
- the term lower edge portion includes the lower edge.
- Intermediate wall segment 34 is with its lower edge attached to the upper edge of lower wall segment 14.
- the intermediate wall segment 34 is of generally circular cross-section and encloses a space 42 formed between the intermediate wall segment 34. This space 42 enlarges the effective cross sectional area of the vessel 10 and allows the particles to be handled to expand therein and to release some of the pressure acting on said downwardly flowing particles.
- the lower edge portion 50 of upper wall segment 12 may extend in this overlap over a certain distance L into vessel 10. The preferred value of this distance L will be selected in accordance with the size and shape of the particles to be handled, and also according to the heat transfer requirements which may be imposed by the temperatures inside vessel 10.
- the length L may be in the range from 5 cm to 20 cm.
- this overlap L may be dimensioned so that the heat transferred from the particles may be dissipated by conduction to the rest of the vessel wall thus advantageously dispensing with the need for additional cooling systems to cool said overlap.
- intermediate wall segment 34 Similar to intermediate wall segment 34, other intermediate wall segments 36, 38 and 40 are provided to define further expansions of the cross sectional area. These expansions are designated as 44, 46 and 48 (Fig. 1).
- the upper and lower wall segments 12 to 20 may be constructed from conical shapes conformed-and cut at the selected angle B, as shown in Figs. 4 to 6. As can be appreciated from these figures, and also from Fig. 3, there is a clear advantage in configuring upper and lower wall segments 12 to 20 as well as intermediate wall segments 34, 36, 38 and 40 in this manner. In particular, these segments may be manufactured with some tolerance to their dimensions, simply telescopically inserted into one another and subsequently be connected, for example by welding. This manufacturing is considerably more cost efficient than the prior art construction which proposed a continuous spirally shaped wall element.
- the uppermost upper wall segment is depicted. It is of truncated cone shape with the base of the cone being depicted near the upper end of the Figure, and the plane of truncation depicted near the lower end of Fig. 4.
- the base of the cone shape of the uppermost upper wall segment 12 is perpendicular to the longitudinal axis 12', and the plane of truncation is inclined relative to the longitudinal axis 12'.
- the angle of inclination B is non-perpendicular to axis 12'.
- wall segment 14 is depicted in more detail in Fig. 5.
- wall segment 14 is also of truncated cone shape, the base of the cone being depicted near the upper end of the Figure and in this case also inclined relative to the longitudinal axis 14' of segment 14.
- the angle of inclination relative to longitudinal axis 14' of segment 14 matches the angle of inclination of the plane of truncation of upper wall segment 12.
- the angle of inclination B of the plane of truncation of wall segment 14 is inclined at the same angle B relative to its longitudinal axis 14'.
- a further "lower" wall segment is depicted, in this case the lowermost wall segment of vessel 10 of Fig. 3.
- This lowermost wall segment 20 is also of truncated cone shape, the base being depicted near the upper end of the Figure, and the plane of truncation near the lower end of Fig. 6.
- the angle of inclination of the base of the cone shape of wall segment 20 is inclined at the same angle of inclination B relative to the longitudinal axis 20' of wall segment 20. In this manner, the vessel 10 depicted in Fig. 3 can more easily be manufactured and assembled.
- the lowermost wall segment can terminate in an outlet discharge 32 (Fig. 1).
- reference numeral 52 generally designates a direct reduction reactor having an upper reduction zone 54 and a lower discharge zone 56.
- Particulate iron oxides material in the form of lumps, pellets or mixtures thereof is fed to reactor 52 through feed pipes 58 and the material flows by gravity downwardly through reactor 52 at a regulated rate by conventional means (not shown for simplicity) and is discharged through outlet 60.
- the iron oxides are reduced to metallic iron by reaction with a reducing gas comprising hydrogen and carbon monoxide fed through feed inlet 62 and connected to distributing plenum 64 from which it is injected through nozzles 66 into the bed of particles, the gas flowing upwardly and counter-currently to the solid particles.
- the reacted gas is withdrawn through gas outlet 68 from which it is regenerated and recycled to reaction zone 54.
- vessel 70 At the bottom portion of the conical discharge zone 56 vessel 70 is located which incorporates the features of the present invention as indicated by the same numerals designating the same elements shown in Fig. 1.
- a typical direct reduction reactor has a diameter in its cylindrical part in the range of 4.5 to 6.5 meters, and its height is about 30 to 35 meters.
- the lowest portion where the invention is being incorporated (numeral 70) is about 7 meters tall, its wall converging from about 3 meters diameter to an outlet of about 1.0 meter diameter.
- the particles of reduced iron ore are comprised by lumps of irregular shape and pellets of generally spherical shape and mixtures of these materials.
- the particle size may vary from 3 mm to 30 mm and have a bulk density between 1.0 and 2.7 tons/cubic meter, usually from 1.4 to 2.0 tons/cubic meter.
- the friction angle between particles is typically in the range from 30 to 70 degrees and the friction angle between particles and the wall from about 20 to 35 degrees.
- the values of friction angles vary in a wide range depending on many characteristics of the particles.
- the lowest segment of the reactor is usually made of carbon steel, but for some applications it may be made of high temperature resistant alloyed steel, (for example: inconel or stainless steel 304).
- Fig. 8 shows a holding bin 72 incorporating the features of the invention and additionally comprising means 74, 76 and 78 for injecting a fluid, for example air or any suitable gas according to the material being handled, into the recess spaces 42, 46 and 48 enclosed by intermediate wall segments 34, 36, 38 and 40.
- This fluid injection may be a gas or liquid for aerating small sized particulate materials thus facilitating their flow through the bin, or may be a liquid or gas utilized for treatment or reaction with the particulate materials.
- the vessel may have a shape other than conical, like square or rectangular, and that the internal walls of the vessel may be lined with refractory or other material suitable for contacting the materials stored or processed in the vessel.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Claims (20)
- Behälter (10, 70), durch welchen ein partikelförmiges Schüttgut von der Schwerkraft angetrieben gleichmäßig hindurchströmen kann, welcher Behälter zumindest folgendes beinhaltet:ein oberes Wandsegment (12) mit einer Längsachse (Fig. 4: 12') und einer entlang ihrer Längsachse konvergierenden Wand, das mit seiner oberen Kante einen Schüttguteinlass definiert, sowieein unteres Wandsegment (14) mit einer Längsachse (Fig. 5: 14') und einer entlang ihrer Längsachse konvergierenden Wand, das mit seiner unteren Kante einen Schüttgutauslass definiert, undein Wandsegment (34) zwischen dem oberen und dem unteren Wandsegment, das mit seiner oberen Kante mit einem unteren Kantenbereich (50) des oberen Wandsegments (12) und ferner mit seiner unteren Kante mit einer oberen Kante des unteren Wandsegments (14) verbunden ist,wobei sich die untere Kante des oberen Wandsegments (12) und/oder die obere Kante des unteren Wandsegments (14) außerhalb einer rechtwinklig zur Längsachse des jeweiligen Wandsegments verlaufenden Ebene erstrecken, ,und wobei die obere Kante des Wandzwischensegments (34) eine Querschnittsfläche definiert, die größer ist als eine von der unteren Kante (24) des oberen Wandsegments (12) definierte Querschnittsfläche, und/oder die untere Kante des Wandzwischensegments (34) eine Querschnittsfläche definiert, die kleiner ist als eine von der oberen Kante des Wandsegments (14) definierte Querschnittsfläche.
- Behälter nach Anspruch 1, bei dem das Wandzwischensegment (34) eine Längsachse und eine Wand parallel zu seiner Längsachse aufweist.
- Behälter nach Anspruch 1 oder 2, bei dem das Wandzwischensegment (34) eine Längsachse aufweist und so verbunden ist, dass die Längsachsen des oberen Wandsegments, des unteren Wandsegments und des Wandzwischensegments parallel zueinander sind.
- Behälter nach Anspruch 2 oder 3, bei dem das Wandzwischensegment (34) mit den oberen (12) und unteren (14) Wandsegmenten so verbunden ist, dass die Längsachsen des oberen Wandsegments, des unteren Wandsegments und des Wandzwischensegments zusammenfallen und eine Längsachse (22) des Behälters bilden.
- Behälter nach einem der vorangehenden Ansprüche, bei dem die konvergierende Wand des oberen Wandsegments (12) einen konvergierenden Winkel (A) im Bereich von 8° bis 45°, vorzugsweise 10° bis 20° und noch stärker bevorzugt 11° bis 18° bezüglich seiner Längsachse (14') bildet.
- Behälter nach einem der vorangehenden Ansprüche, bei dem die konvergierende Wand des oberen Wandsegments (12) eine Kegelstumpfgestalt definiert, wobei die obere Kante des oberen Wandsegments die Grundfläche des Kegels definiert und die untere Kante (24) des oberen Wandsegments (12) die Schnittebene definiert, und die Grundfläche und/oder die Schnittebene relativ zu einer Ebene rechtwinklig zur Längsachse (12') des oberen Wandsegments geneigt (B) sind/ist.
- Behälter nach Anspruch 6, bei dem der Neigungswinkel der Schnittebene einen Winkel (B) im Bereich von 30° bis 70°, vorzugsweise 35° bis 55° und noch stärker bevorzugt 40° bezüglich einer Ebene rechtwinklig zur Längsachse des oberen Wandsegments bildet.
- Behälter nach einem der vorangehenden Ansprüche, bei dem die konvergierende Wand des unteren Wandsegments (14) einen konvergierenden Winkel (A) im Bereich von 8° bis 45°, vorzugsweise 10° bis 20° und stärker bevorzugt 11° bis 18° bezüglich seiner Längsachse (14') bildet.
- Behälter nach einem der vorangehenden Ansprüche, bei dem die konvergierende Wand des unteren Wandsegments (14) eine Kegelstumpfgestalt definiert, wobei die obere Kante des unteren Wandsegments die Grundfläche des Kegels definiert und die untere Kante des unteren Wandsegments die Schnittebene definiert, wobei die Grundfläche und/oder die Schnittebene relativ zu einer Ebene rechtwinklig zur Längsachse (14') des unteren Wandsegments geneigt (B) sind/ist.
- Behälter nach Anspruch 9, bei dem der Neigungswinkel der Schnittebene einen Winkel (B) im Bereich von 30° bis 70°, vorzugsweise 35° bis 55° und noch stärker bevorzugt von 40° bezüglich einer Ebene rechtwinklig zur Längsachse (14') des unteren Wandsegments (14) bildet.
- Behälter nach einem der vorangehenden Ansprüche, bei dem die konvergierenden Wände des oberen (12) und des unteren Wandsegments (14) konvergierende Winkel (A) bezüglich ihrer jeweiligen Längsachse (12', 14') bilden, wobei diese Winkel von oberen Wandsegment hin zum unteren Wandsegment des Behälters abnehmen.
- Behälter nach einem der vorangehenden Ansprüche, bei dem das Wandzwischensegment (34) eine Längsachse aufweist und die Wand des Wandzwischensegments (34) einen Zylinder definiert, wobei die obere Kante des Wandzwischensegments eine relativ zur Längsachse des Wandzwischensegments geneigte obere Endebene definiert, und/oder die untere Kante des Wandzwischensegments eine relativ zur Längsachse des Wandzwischensegments geneigte untere Endebene definiert.
- Behälter nach Anspruch 12, bei dem der Zylinder einen elliptischen Querschnitt aufweist.
- Behälter nach einem der vorangehenden Ansprüche, mit mehreren oberen Wandsegmenten (12, 14, 16, 18), wobei das oberste (12) der oberen Wandsegmente mit seiner oberen Kante den Schüttguteinlass des Behälters (10, 70) definiert, und weiter mit mehreren unteren Wandsegmenten (14, 16, 18, 20), wobei das unterste (20) der unteren Wandsegmente mit seiner unteren Kante den Schüttgutauslass des Behälters (10, 70) definiert.
- Behälter nach Anspruch 14, weiter mit mehreren Wandzwischensegmenten (34, 36, 38, 40).
- Behälter nach einem der vorangehenden Ansprüche, bei dem die oberen und unteren Wandsegmente im Wesentlichen einen kreisförmigen oder rechteckigen Querschnitt aufweisen.
- Behälter nach einem der vorangehenden Ansprüche für die Verwendung als Haltesilo (72) für partikelförmiges Material, und mit Mitteln (74, 76, 78) zum Einspritzen eines Fluids in den Behälter, wobei diese Mittel so angeordnet sind, dass sie das Fluid in zumindest eines der Wandzwischensegmente (34, 36, 38) einspritzen.
- Direktreduktionsreaktor (52) zum Bearbeiten von eisenoxidhaltigen Partikeln, um Partikel herzustellen, die metallisches Eisen beinhalten, und zwar im festen Zustand, mit einem Behälter (70) nach einem der vorangehenden Ansprüche.
- Direktreduktionsreaktor nach Anspruch 18, bei dem der Behälter (70) sich neben dem Auslass (60) des Direktreduktionsreaktors (52) befindet.
- Direktreduktionsreaktor nach Anspruch 18 oder 19, bei dem der Behälter (70) vier Wandzwischensegmente (34, 36, 38, 40) aufweist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001602677 DE60102677T2 (de) | 2001-05-31 | 2001-05-31 | Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend |
EP20010112862 EP1264784B1 (de) | 2001-05-31 | 2001-05-31 | Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend |
MXPA02005441 MXPA02005441A (es) | 2001-05-31 | 2002-05-31 | Vaso para habilitar un flujo impulsor de gravedad uniforme de material a granel en particulas a traves del mismo, y reactor de reduccion directa que incorpora el mismo. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20010112862 EP1264784B1 (de) | 2001-05-31 | 2001-05-31 | Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1264784A1 EP1264784A1 (de) | 2002-12-11 |
EP1264784B1 true EP1264784B1 (de) | 2004-04-07 |
Family
ID=8177560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010112862 Expired - Lifetime EP1264784B1 (de) | 2001-05-31 | 2001-05-31 | Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1264784B1 (de) |
DE (1) | DE60102677T2 (de) |
MX (1) | MXPA02005441A (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087004B2 (en) | 2016-05-04 | 2018-10-02 | David R. Gill | Material handling hopper |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019122192A1 (en) * | 2017-12-22 | 2019-06-27 | Hamlet Protein A/S | Vertical plug-flow process for bio-conversion of biomass involving enzymes |
CA3083420A1 (en) | 2017-12-22 | 2019-06-27 | Hamlet Protein A/S | Vertical plug-flow process for bio-conversion employing microorganisms |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1479660A (en) * | 1923-07-10 | 1924-01-01 | Frederick F Fuller | Collapsible funnel |
US3797707A (en) | 1971-04-20 | 1974-03-19 | Jenike And Johanson Inc | Bins for storage and flow of bulk solids |
US3921351A (en) | 1973-12-20 | 1975-11-25 | H F Henderson Ind | Segmented storage bin |
US4886097A (en) | 1987-09-14 | 1989-12-12 | Hylsu S.A. de C.V. | Apparatus for handling and storage of particulate solids |
SE9602709L (sv) * | 1996-07-09 | 1997-09-08 | Kvaerner Pulping Tech | Flisficka |
US6055781A (en) | 1996-11-04 | 2000-05-02 | Jr Johanson, Inc. | Archbreaking hopper for bulk solids |
SE9803443D0 (sv) | 1998-10-09 | 1998-10-09 | Kvaerner Pulping Tech | Chip bin |
-
2001
- 2001-05-31 DE DE2001602677 patent/DE60102677T2/de not_active Expired - Fee Related
- 2001-05-31 EP EP20010112862 patent/EP1264784B1/de not_active Expired - Lifetime
-
2002
- 2002-05-31 MX MXPA02005441 patent/MXPA02005441A/es active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087004B2 (en) | 2016-05-04 | 2018-10-02 | David R. Gill | Material handling hopper |
Also Published As
Publication number | Publication date |
---|---|
DE60102677D1 (de) | 2004-05-13 |
EP1264784A1 (de) | 2002-12-11 |
DE60102677T2 (de) | 2005-03-24 |
MXPA02005441A (es) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6871457B2 (en) | Vessel for enabling a uniform gravity driven flow of particulate bulk material therethrough, and direct reduction reactor incorporating same | |
EP0765286B1 (de) | Konditionierungsbehälter für schüttgüter | |
EP0684871B1 (de) | Wirbelschichtreaktor | |
EP0477219B1 (de) | Baukastensystem für ausflussgünstige silos | |
EP0466354B1 (de) | Verfahren und Apparat für die Beschickung eines Reaktors mit einem Pulver | |
RU2068535C1 (ru) | Транспортирующее устройство для дозированной транспортировки сыпучего материала | |
EP1264784B1 (de) | Gefäss zum Ermöglichen von gleichmassigem Schwerkraftabfluss von Schüttgut und Direktreduktionsreaktor derselben enthaltend | |
US4032123A (en) | Shaft furnace for direct reduction of ores | |
US4557637A (en) | Solids transfer system | |
AU2002314334B2 (en) | Method of loading a particulate solid into a vessel | |
EP0241732B1 (de) | Verfahren und Vorrichtung zur Herstellung von heissem Eisenschwamm | |
US4886097A (en) | Apparatus for handling and storage of particulate solids | |
AU2002314334A1 (en) | Method of loading a particulate solid into a vessel | |
EP3615862B1 (de) | Wirbelgasdüsenkopf und wirbelschichtreaktor mit mehreren wirbelgasdüsenköpfen | |
JPH08299780A (ja) | 固体触媒粒子の改良された排出手段を備える反応容器 | |
US6029838A (en) | Chip bin | |
EP2904122B2 (de) | Verfahren zur erhöhung der lastgleichförmigkeit in einem kombinierten reformierungs-/reduzierungschachtofen | |
CA1169233A (en) | Apparatus and method for transferring solids | |
CA1213722A (en) | High temperature gas distribution injector | |
JPH06568B2 (ja) | 粒状個体の処理および貯蔵装置 | |
JPS59180278A (ja) | 流動層予備還元炉 | |
KR20010032033A (ko) | 럼프 배출장치 | |
JPH061390A (ja) | 粉粒体物質用貯槽 | |
JPS6254536B2 (de) | ||
JPS62215424A (ja) | 粉粒体供給方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020306 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
AKX | Designation fees paid |
Designated state(s): DE IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LOPEZ-GOMEZ, RONALD VICTOR MANUEL Inventor name: GUERRA-REYES, MARIA TERESA Inventor name: CELADA-GONZALEZ, JUAN Inventor name: BECERRA-NOVOA, JORGE OCTAVIO Inventor name: QUINTERO-FLORES, RAUL GERARDO |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE IT |
|
REF | Corresponds to: |
Ref document number: 60102677 Country of ref document: DE Date of ref document: 20040513 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20050110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050525 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061201 |