EP1263680A1 - Method for directly obtaining hydrogen peroxide - Google Patents

Method for directly obtaining hydrogen peroxide

Info

Publication number
EP1263680A1
EP1263680A1 EP01907809A EP01907809A EP1263680A1 EP 1263680 A1 EP1263680 A1 EP 1263680A1 EP 01907809 A EP01907809 A EP 01907809A EP 01907809 A EP01907809 A EP 01907809A EP 1263680 A1 EP1263680 A1 EP 1263680A1
Authority
EP
European Patent Office
Prior art keywords
process according
hydrogen
oxygen
reaction medium
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01907809A
Other languages
German (de)
French (fr)
Inventor
Michel Devic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atofina SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina SA filed Critical Atofina SA
Publication of EP1263680A1 publication Critical patent/EP1263680A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/228Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00292Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • B01J2208/003Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids involving reactant slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00031Semi-batch or fed-batch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00114Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant slurries

Definitions

  • the present invention relates to a method of manufacturing an aqueous solution of hydrogen peroxide. More particularly, it relates to a process for the manufacture of hydrogen peroxide directly from hydrogen and oxygen, dispersed in an aqueous reaction medium in the presence of a catalyst. The present invention also relates to a device for implementing said method.
  • a process for the production of hydrogen peroxide directly from hydrogen and oxygen, according to which hydrogen and oxygen are dispersed in an aqueous reaction medium at acid pH has been described in international applications WO 92/04277 , WO 96/05138 and patent application FR 2 774 674.
  • the working solution used both for the tubular reactor process and for that in the stirred reactor comprises water, acid and optionally decomposition inhibitors or stabilizers of hydrogen peroxide.
  • Hydrogen and oxygen are dispersed in the aqueous reaction medium, consisting of the working solution and the catalyst, in proportions above the lower flammability limit of the hydrogen-oxygen mixture. A very fine dispersion of hydrogen and oxygen is even required in the process described in documents WO 96/05138 and FR 2 774 674.
  • the document WO 96/05138 recommends injecting hydrogen and oxygen at very high speed into the tubular reactor, by imposing the injection of oxygen at a more advanced level in the direction displacement of the aqueous medium relative to that of hydrogen.
  • the Applicant has now found that the presence of a surfactant in an aqueous reaction medium, as described above, surprisingly increases the productivity.
  • the surfactant also makes it possible to work with a hydrogen / oxygen ratio in the aqueous reaction medium below the lower flammability limit of the hydrogen-oxygen mixture.
  • a first object of the present invention is a method of manufacturing an aqueous solution of hydrogen peroxide directly from hydrogen and oxygen.
  • This process by which hydrogen and oxygen are injected, in the form of small bubbles, into an aqueous reaction medium made acid by the addition of an inorganic acid and comprising a catalyst in the dispersed state is characterized in that the aqueous reaction medium also comprises one or more surfactants.
  • small bubbles is intended to denote bubbles whose average diameter is less than 3 mm, preferably, of average diameter between 0, 1 and 2 mm.
  • Any surfactant stable in an acid medium preferably at a pH of 1 to 3, and resistant to very oxidizing conditions (oxygen under high pressure and hydrogen peroxide) may be suitable.
  • All molecules consisting of a hydrophilic part (polar head) and a hydrophobic part can be used as a surfactant.
  • dimethyl lauryl amine oxide CH3 2 CnH 23 NO
  • mono and di-phosphoric including C 8 H 17 - O - PO (OH) 2 , (C 8 H 17 -O) 2 -POOH, C 9 H 19 - C 6 H 4 - O - PO (OH) 2 and C9H 1 9 - C 6 H 4 - O) 2 - POOH; alkyl benzene sulfonic acid
  • R can be for example an alkyl chain C n H 23 or C9H- 1 9; naphthalene sulfonic acid R - C ⁇ 0 H 6 - SO 3 H; alkyl sulfonic acid R - O - SO H; polyoxyethyl sulfonic R- (OC 2 H 4 ) n - OSO3H and R - C 6 H 4 - (OC 2 H 4 ) n - OSO 3 H.
  • Fluorinated surfactants are particularly suitable because of the chemical stability and the hydrophobicity of the fluorocarbon chain.
  • fluorinated surfactants make it possible to lower the surface tension of water to 15-20 mN.rrf 1 (Actualotti Chimique, July 1999 page 3).
  • the hydrophilic chain of these fluorinated surfactants can be chosen from acid or polar groups having good chemical stability, such as for example - SO 3 H, - COOH, - PO (OH) 2 .
  • G denotes a hydrophilic group, such as for example - SO 3 H, - COOH, -O-PO (OH) 2 , - PO (OH) 2 .
  • the amount of surfactant used is preferably between 50 to 90% of this minimum amount.
  • the optimal amount of surfactant involved depends on its nature and on the composition of the aqueous solution constituting the initial aqueous reaction medium.
  • a fluorinated surfactant in an amount of 1 to 50 ppm and preferably in an amount of 5 to 10 ppm in the aqueous reaction medium has given interesting results.
  • inorganic acid mention may in particular be made of sulfuric acid, orthophosphoric acid and nitric acid.
  • the acid is used in an amount sufficient to preferably maintain the pH of the aqueous reaction medium between 1 and 3.
  • the aqueous reaction medium can also contain stabilizers of hydrogen peroxide, such as, for example, phosphonates or tin, and decomposition inhibitors, such as, for example, halogen derivatives.
  • the stabilizing agents are generally present in the aqueous reaction medium at a rate of 100 to 5000 ppm.
  • the stabilizing agents used can be chosen from commercial products or aminophosphonic acids of general formula R ⁇ R 2 N - CH 2 - PO (OH) 2 .
  • R ⁇ R 2 N - CH 2 - PO (OH) 2 When the aqueous reaction medium is made acidic by orthophosphoric acid, the use of a stabilizing agent is not necessary.
  • the preferred halogen derivatives are chosen from alkali metal bromides and chlorides, hydrobromic acid, hydrochloric acid and bromine in the gaseous state or in solution in water (bromine water).
  • bromide is used and, preferably, in combination with bromine in the free state (Br 2 ).
  • the amount of bromide (in the form of NaBr or of HBr), when it is present in the aqueous reaction medium is generally between 10 and 200 ppm and preferably between 20 and 100 ppm.
  • the amount of bromine (Br 2 gas or in solution in water), when it is present in the aqueous reaction medium is generally between 1 and 50 ppm and preferably between 2 and 10 ppm.
  • the catalyst used is generally a supported catalyst based on at least one metal chosen from the group M formed of palladium, platinum, ruthenium, rhodium, iridium, osmium, holmium and gold and, in particular, a supported bimetallic catalyst.
  • the supported bimetallic catalyst generally consists of a metal from the majority group M and another metal from the minority group M.
  • the majority metal represents approximately 0.1 to 10% by weight of the catalyst and preferably between 0.5 to 1% by weight.
  • the minority metal represents approximately 0.001 to 0.1% by weight of the catalyst and preferably between 0.01 and 0.05%.
  • platinum and holmium are advantageously chosen.
  • the particularly preferred supported bimetallic catalyst consists of palladium as the majority metal and platinum as the minority metal.
  • the supported plurimetallic catalyst consisting of a metal of majority group M and of several other metals of minority group M, it is preferred to use that comprising palladium, as majority metal, platinum and at least one metal of group M other than palladium and platinum, as minority metals.
  • the content of majority metal in the supported plimetallic catalyst is practically the same as that of the predominant metal in the bimetallic catalyst and, each minority metal can be present in the catalyst in an amount representing approximately 0.001 to 0.1% by weight of the catalyst and preferably between about 0.01 and 0.05%.
  • a supported monometallic catalyst it is preferred to choose palladium or gold as metallic constituent of group M with a content generally between 0.1 and 10% by weight of the catalyst and preferably between 0.5 and 1% by weight.
  • alumina, charcoal and silicoaluminates may be suitable as a support, it is however preferred to use silica and advantageously, silica particles of average size between 1 and 50 ⁇ m. It is also preferred to use silica with a BET specific surface greater than 200 m 2 / g and most often between 300 and 600 m 2 / g.
  • the idrich microporous silica referenced 28.851 -9 has been found to be particularly advantageous.
  • the level of iron (Fe) in the support chosen is preferably less than 0.001% by weight.
  • the catalyst used in the process of the present invention can be prepared according to the method described in US 4,772,458, but it is preferred to prepare it according to the method consisting of: a) bringing a support, chosen from the group formed by silica, alumina, carbon and silicoaluminate, with a concentrated aqueous solution of salt (s) of at least one metal from group M so as to form a paste b) followed by filtration , wringing, then drying of the dough under conditions promoting slow crystallization c) then by reduction under hydrogen at about 200 to 400 ° C of the dried solid of step (b) d) then by treating the solid reduced from step (c) with an acidic aqueous solution (A), comprising bromine and bromide ions, at a temperature between 10 and 80 ° C.
  • A acidic aqueous solution
  • the pH of the solution (A) is preferably between 1 and 3.
  • the concentration of bromide ions in the solution (A) can be between 20 and 200 mg / l and preferably between 20 and 100 mg / l, and the bromine (Br 2 ) concentration can be between 2 and 20 mg / l. According to the process of the present invention, it is possible to operate both continuously and semi-continuously.
  • the process can be carried out in a stirred reactor comprising a stirring system allowing the dispersion of the gases in a liquid phase, and provided with an internal or external cooling system capable of removing the heat of the reaction.
  • the agitated reactor can be, for example, a cylindrical autoclave provided with one or more stirring mobiles of the type of those used for gas-liquid reactions (self-aspirating turbine, flanged turbine, turbines with concave blades, etc.) and d '' an internal cooling system consisting of a coil, vertical tubular bundles or a flat or tubular spiral.
  • the usual reactors for carrying out hydrogenation reactions are very suitable.
  • the process can also be implemented in a loop reactor, consisting of a reactor and a high-flow pump located outside the reactor sucking the aqueous reaction medium in the lower part of the reactor and returning it to the the top part.
  • a heat exchanger can be placed in the circulation loop as well as a gas injection system (oxygen; hydrogen) such as for example a venturi.
  • the rapid circulation of the aqueous reaction medium ensures stirring in the reactor and the dispersion of the bubbles.
  • the process according to the invention can also be implemented in a tubular reactor made up of one or more tubes of great length.
  • This temperature is generally between 5 and 90 ° C and preferably between 30 and 60 ° C.
  • the pressure inside the reactor is generally above atmospheric pressure and preferably between 10 and 100 bars.
  • hydrogen and oxygen may be present in the aqueous medium, in proportions corresponding to the flammability range of the hydrogen-oxygen mixture, it is most often preferred to inject hydrogen and oxygen in the form of small bubbles. separately, with flow rates such that the ratio of hydrogen to oxygen molar flow rates is less than 0.0416.
  • the aqueous solution of hydrogen peroxide at the end of the reaction is separated from the catalyst then, optionally free of additives such as surfactants, inhibitors and stabilizers.
  • additives such as surfactants, inhibitors and stabilizers.
  • the separation of the catalyst from the aqueous hydrogen peroxide solution and that of the additives can be carried out continuously.
  • the separation of the additives from the aqueous hydrogen peroxide solution is preferably carried out by reverse osmosis using membranes, identical to those used for the desalination of seawater.
  • the transmembrane pressure is between 20 and 130 bars and preferably 30 to 80 bars depending on the type of membrane.
  • the permeate flow rate is between 0.7 and 0.95 times the supply flow rate of the stage.
  • the membranes used are of the bilayer type (2 layers of superimposed polymers including at least one layer of polyamide), or else of the tri-layer type (3 layers of superimposed polymers of which at least one layer of polyamide).
  • a second object of the invention is a device allowing the implementation of the method as described above.
  • This device shown diagrammatically in FIG. 1 comprises a reactor 1, provided with one or more inlets (2) of gaseous hydrogen and one or more inlets (3) of gaseous oxygen, with a liquid inlet (5 ), a liquid outlet (4) and a gas outlet (6), which can possibly be connected to the inlet (3).
  • the outlet (4) is connected to a filter (7), which is itself connected to membranes (8).
  • the device comprises a stirred reactor 1, provided with several centrifugal turbines arranged along a single vertical stirring shaft.
  • the reactor contains the catalyst in suspension in the aqueous solution containing the surfactant, the inhibitor and the stabilizer, the whole being brought to reaction temperature
  • the new hydrogen in 2 and oxygen in 3 in the form of small bubbles, into the lower part of the reactor
  • the flow rates of hydrogen in 2 and of oxygen in 3 are chosen so as to obtain a gaseous composition in the aqueous reaction medium, preferably non-flammable, that is to say with a concentration of hydrogen not exceeding the lower flammability limit of the hydrogen-oxygen mixture at the pressure prevailing inside the reactor In general, this limit is 4% by volume of hydrogen at 1 bar (absolute) and 6% at 50 bars
  • New oxygen is injected in 4, in the upper part of the reactor, occupied by the continuous gas phase, to replace the oxygen consumed and also to keep the composition in this phase below the lower flammability limit of the mixture.
  • the oxygen injected at 3 comes partly or entirely from the gas flow taken at 5 and circulated by the pump 6 II can contain a small amount of unreacted hydrogen
  • the oxygen used can contain a small proportion of inert gases such as than those present in the air, for example nitrogen or argon
  • the concentration of inert gases in the continuous gas phase is less than 50% by volume. and preferably less than 30%
  • the temperature of the reaction medium is kept constant by circulation of cooling water in the coils 8
  • the aqueous solution containing the hydrogen peroxide formed leaves the reactor via outlet 9, then is cooled in exchanger 10 and then filtered into 1 1
  • the catalyst suspension which has not passed through the filtering surface 1 1 returns to the reactor at 13.
  • the filter at 1 1 is alternately unclogged by injection against the flow of demineralized water optionally containing acid and additives ( surfactant, inhibitor, stabilizer) at 14 across the filtering surface.
  • the resuspended catalyst returns to the reactor at 13.
  • the clear aqueous solution of hydrogen peroxide from 1 1 is then introduced into the battery of reverse osmosis membranes 12.
  • the permeate of the n th cell is introduced into the cell (n + 1) and the retentate (or concentrate) returns to the reactor at 13 and so on for each stage of the reverse osmosis unit.
  • the permeate in the last cell is an almost pure aqueous solution of H 2 O 2 15. Most of the additives are recycled to the reactor at 13.
  • Demineralized water is introduced at 14 to keep the level of the liquid phase constant in the reactor.
  • the additives (surfactant, inhibitor, stabilizer) are added to this water to maintain their constant contents in the aqueous reaction medium.
  • the device of Figure 3 comprises a reservoir 21 containing at startup the aqueous solution containing the additives and the suspended catalyst.
  • a pump 17 circulates at high speed this aqueous suspension of catalyst in a tubular reactor 1, consisting of one or more tubes of great length immersed in a thermostatted bath 20.
  • the oxygen is withdrawn at 5 from the continuous gas phase of the reservoir 21 by means of the compressor 6, then injected at 3 into the tubular reactor, in the form of small bubbles by means of the venturi 18 and thanks to the high speed of circulation of the aqueous suspension of catalyst.
  • the new oxygen is injected in 4 into the continuous gas phase of the tank 21.
  • the new hydrogen 2 is injected in the form of small bubbles into the tubular reactor 1 also by means of the venturi 18.
  • the aqueous suspension of catalyst and the unreacted H 2 and O 2 bubbles are returned at 16 to the tank 21.
  • the aqueous solution of hydrogen peroxide containing the suspended catalyst is taken at 9 from the tank 21 by the pump 19 and then feeds the filter 11.
  • the excess catalyst suspension is returned to 13 in the reactor.
  • the filtered H 2 O 2 solution leaves at 15 from filter 1 1.
  • the filter 1 1 is periodically unclogged by injection of the acidic aqueous solution at 14, (the outlet 15 is then closed).
  • a pressure regulator 7 removes excess O 2 and H 2 and inert gas from the reactor.
  • a reverse osmosis unit can also be connected to outlet 15 to recycle the additives.
  • the device is similar to that shown in Figure 2.
  • the reactor with a capacity of 1,500 cm 3 consists of a cylindrical tank 200 mm high and 98 mm in diameter.
  • the bottom and the cover are flat.
  • a removable 1.5 mm thick PTFE sleeve is placed in the reactor bowl.
  • Two or three flanged turbines with an outside diameter of 45 mm, a thickness of 9 mm (between the two flanges) fitted with a suction port of 12.7 mm in diameter, oriented downwards, and 8 radial blades plates 9 mm wide, 15 mm long and 1.5 mm thick, can be fixed to the stirring shaft at different heights chosen so as to divide the liquid phase into substantially equal volumes.
  • the lower turbine is placed 32 mm from the bottom, the second turbine 78 mm from the bottom and the third turbine 125 mm from the bottom.
  • Four counter blades 190 mm high, 10 mm wide and 1 mm thick are placed vertically in the tank perpendicular to the inner wall of the reactor and held 1 mm from this wall by two centering rings. Cooling or heating is provided by eight vertical tubes of 6.35 mm in diameter and 150 mm in length arranged in a crown 35 mm from the axis of the tank.
  • This stream is traversed by a stream of water at constant temperature.
  • the injection of hydrogen and oxygen into the liquid phase is done by means of two separate stainless steel pipes, 1.58 mm in diameter for H 2 and 3.17 mm for O 2, leading the gases to the center of the lower turbine.
  • the injection of gaseous reactants into the aqueous medium as well as that of oxygen into the continuous gas phase are regulated using mass flowmeters. Some tests have been carried out by replacing the oxygen with an oxygen-nitrogen mixture in different proportions.
  • the pressure inside the reactor is kept constant thanks to an overflow valve.
  • the hydrogen, oxygen and optionally nitrogen constituting the gas flow leaving the reactor are dosed online by gas phase chromatography.
  • the catalyst used contains 0.7% by weight of metallic palladium and 0.03% by weight of platinum supported on a microporous silica.
  • the catalyst is then suspended (10 g / l) in a solution, containing 60 mg of NaBr, 5 mg of Br 2 and 12 g of H 3 PO * heated at 40 ° C for 5 hours, then is filtered, washed with demineralized water and dried.
  • Initial aqueous solution (examples 1 -19)
  • An aqueous solution is prepared by adding 12 g of H 3 PO 4 '58 mg of NaBr and 5 mg of Br 2 in 988 g of demineralized water.
  • the aqueous solution used contains 3.4% H 3 PO 4 , 90 ppm of bromide (NaBr) and 5 ppm of Br 2 .
  • the selected quantity of initial aqueous solution is introduced into the autoclave and then the determined quantity of surfactant and catalyst is added.
  • the autoclave is pressurized by injecting a selected flow of oxygen into the continuous gas phase.
  • the pressure remains constant thanks to the pressure regulator.
  • the liquid medium is brought to the chosen temperature by circulation of water thermostatically controlled in the bundle of cooling tubes.
  • Stirring is set at 1,900 rpm and the selected flow rates of oxygen and hydrogen are injected into the center of the lower turbine.
  • the flow rate and the hydrogen content of the gas mixture leaving the pressure regulator are measured.
  • the aqueous solution of hydrogen peroxide recovered is subsequently weighed and then separated from the catalyst by filtration through a Millipore ® filter.
  • the resulting solution is then dosed by iodometry thus making it possible to determine the concentration of hydrogen peroxide.
  • the selectivity of the synthesis is defined as being the percentage of the number of moles of hydrogen peroxide formed on the number of moles of hydrogen consumed.
  • the conversion rate is defined as the percentage of the volume of hydrogen consumed over the volume of hydrogen introduced.
  • Tables 1, 2 and 3 show the results obtained under different reaction conditions.
  • a solution containing 200 g / l of hydrogen peroxide, 6 g / l of orthophosphoric acid and 50 mg / l NaBr is pumped into a reverse osmosis unit consisting of 3 cells connected in series with an operating pressure of 80 bar and a volume concentration factor of 10 per cell.
  • Each cell is provided with a three-layer OSMONICS-DESAL 3 reference membrane supplied by the company DESAL. The following results are obtained:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention concerns a method for making an aqueous solution of hydrogen peroxide. More particularly, it concerns a method for making hydrogen peroxide directly from hydrogen and oxygen, finely dispersed in an aqueous acid medium comprising a catalyst and at least a surfactant. The invention also concerns a device for implementing said method.

Description

PROCEDE D'OBTENTION DIRECTE DU PEROXYDE D'HYDROGENE PROCESS FOR THE DIRECT PRODUCTION OF HYDROGEN PEROXIDE
La présente invention concerne un procédé de fabrication d'une solution aqueuse de peroxyde d'hydrogène. Plus particulièrement, elle a pour objet un procédé de fabrication du peroxyde d'hydrogène directement à partir d'hydrogène et d'oxygène, dispersés dans un milieu réactionnel aqueux en présence d'un catalyseur. La présente invention a également pour objet un dispositif pour la mise en œuvre dudit procédé. Un procédé de fabrication du peroxyde d'hydrogène directement à partir d'hydrogène et d'oxygène, selon lequel l'hydrogène et l'oxygène sont dispersés dans un milieu réactionnel aqueux à pH acide a été décrit dans les demandes internationales WO 92/04277, WO 96/05138 et la demande de brevet FR 2 774 674. Le procédé décrit dans ces demandes internationales est mis en œuvre dans un réacteur tubulaire, complètement rempli d'une solution de travail dans laquelle l'hydrogène et l'oxygène sont dispersés, tandis que celui de la demande de brevet français est mis en œuvre dans un réacteur agité comprenant une phase liquide contenant la solution de travail et une phase gazeuse continue.The present invention relates to a method of manufacturing an aqueous solution of hydrogen peroxide. More particularly, it relates to a process for the manufacture of hydrogen peroxide directly from hydrogen and oxygen, dispersed in an aqueous reaction medium in the presence of a catalyst. The present invention also relates to a device for implementing said method. A process for the production of hydrogen peroxide directly from hydrogen and oxygen, according to which hydrogen and oxygen are dispersed in an aqueous reaction medium at acid pH has been described in international applications WO 92/04277 , WO 96/05138 and patent application FR 2 774 674. The process described in these international applications is implemented in a tubular reactor, completely filled with a working solution in which the hydrogen and oxygen are dispersed , while that of the French patent application is implemented in a stirred reactor comprising a liquid phase containing the working solution and a continuous gas phase.
La solution de travail utilisée aussi bien pour le procédé en réacteur tubulaire que pour celui en réacteur agité, comprend de l'eau, de l'acide et éventuellement des inhibiteurs de décomposition ou des stabilisants de peroxyde d'hydrogène. L'hydrogène et l'oxygène sont dispersés dans le milieu réactionnel aqueux, constitué de la solution de travail et du catalyseur, dans des proportions au-dessus de la limite inférieure d'inflammabilité du mélange hydrogène-oxygène. Une très fine dispersion d'hydrogène et d'oxygène est même exigée dans le procédé décrit dans les documents WO 96/05138 et FR 2 774 674.The working solution used both for the tubular reactor process and for that in the stirred reactor, comprises water, acid and optionally decomposition inhibitors or stabilizers of hydrogen peroxide. Hydrogen and oxygen are dispersed in the aqueous reaction medium, consisting of the working solution and the catalyst, in proportions above the lower flammability limit of the hydrogen-oxygen mixture. A very fine dispersion of hydrogen and oxygen is even required in the process described in documents WO 96/05138 and FR 2 774 674.
Pour éviter tout risque d'explosion, le document WO 96/05138 recommande d'injecter l'hydrogène et l'oxygène à très grande vitesse dans le réacteur tubulaire, en imposant l'injection d'oxygène à un niveau plus avancé dans le sens du déplacement du milieu aqueux par rapport à celui d'hydrogène. La demanderesse a maintenant constaté que la présence d'un agent tensioactif dans un milieu réactionnel aqueux, tel que décrit précédemment, augmente de façon surprenante la productivité. L'agent tensioactif permet en outre de travailler avec un ratio hydrogène/oxygène dans le milieu réactionnel aqueux en dessous de la limite inférieure d'inflammabilité du mélange hydrogène-oxygène.To avoid any risk of explosion, the document WO 96/05138 recommends injecting hydrogen and oxygen at very high speed into the tubular reactor, by imposing the injection of oxygen at a more advanced level in the direction displacement of the aqueous medium relative to that of hydrogen. The Applicant has now found that the presence of a surfactant in an aqueous reaction medium, as described above, surprisingly increases the productivity. The surfactant also makes it possible to work with a hydrogen / oxygen ratio in the aqueous reaction medium below the lower flammability limit of the hydrogen-oxygen mixture.
Un premier objet de la présente invention est un procédé de fabrication d'une solution aqueuse de peroxyde d'hydrogène directement à partir d'hydrogène et d'oxygène. Ce procédé selon lequel on injecte l'hydrogène et l'oxygène, sous forme de petites bulles, dans un milieu réactionnel aqueux rendu acide par l'addition d'un acide inorganique et comprenant un catalyseur à l'état dispersé est caractérisé en ce que le milieu réactionnel aqueux comprend en outre un ou plusieurs agents tensioactifs.A first object of the present invention is a method of manufacturing an aqueous solution of hydrogen peroxide directly from hydrogen and oxygen. This process by which hydrogen and oxygen are injected, in the form of small bubbles, into an aqueous reaction medium made acid by the addition of an inorganic acid and comprising a catalyst in the dispersed state is characterized in that the aqueous reaction medium also comprises one or more surfactants.
Par petites bulles, on entend désigner des bulles dont le diamètre moyen est inférieur à 3 mm, de préférence, de diamètre moyen compris entre 0, 1 et 2 mm.The term “small bubbles” is intended to denote bubbles whose average diameter is less than 3 mm, preferably, of average diameter between 0, 1 and 2 mm.
Tout agent tensioactif stable en milieu acide, de préférence à un pH de 1 à 3, et résistant aux conditions très oxydantes (oxygène sous pression élevée et peroxyde d'hydrogène) peut convenir. Toutes les molécules constituées d'une partie hydrophile (tête polaire) et d'une partie hydrophobe peuvent être utilisées comme agent tensioactif. On peut citer à titre d'exemple, le dimethyl lauryl aminé oxyde (CH3 )2CnH23NO ; le mono et le diesterphosphorique notamment C8H17 - O - PO(OH)2, (C8H17-O)2-POOH, C9H19 - C6H4 - O - PO(OH)2 et C9H19 - C6H4 - O)2 - POOH ; l'acide alkyl benzène sulfoniqueAny surfactant stable in an acid medium, preferably at a pH of 1 to 3, and resistant to very oxidizing conditions (oxygen under high pressure and hydrogen peroxide) may be suitable. All molecules consisting of a hydrophilic part (polar head) and a hydrophobic part can be used as a surfactant. By way of example, mention may be made of dimethyl lauryl amine oxide (CH3) 2 CnH 23 NO; mono and di-phosphoric including C 8 H 17 - O - PO (OH) 2 , (C 8 H 17 -O) 2 -POOH, C 9 H 19 - C 6 H 4 - O - PO (OH) 2 and C9H 1 9 - C 6 H 4 - O) 2 - POOH; alkyl benzene sulfonic acid
R-C6H - SO3H, R pouvant être par exemple une chaîne alkyle CnH23 ou C9H-19 ; l'acide naphtalène sulfonique R - Cι0H6 - SO3H ; l'acide alkyl sulfonique R - O - SO H ; le polyoxyéthyle sulfonique R-(OC2H4)n - OSO3H et R - C6H4- (OC2H4)n - OSO3H. Les agents tensioactifs fluorés conviennent tout particulièrement en raison de la stabilité chimique et de l'hydrophobie élevées de la chaîne fluorocarbonée. En effet, les agents tensioactifs fluorés permettent d'abaisser la tension superficielle de l'eau jusqu'à 15-20 mN.rrf1 (Actualité Chimique, juillet 1999 page 3). La chaîne hydrophile de ces agents tensioactifs fluorés peut être choisie parmi les groupements acide ou polaires présentant une bonne stabilité chimique, comme par exemple - SO3H, - COOH, - PO(OH)2. A titre d'exemple, on peut citer les agents tensioactifs fluorés de formule généraleRC 6 H - SO 3 H, R can be for example an alkyl chain C n H 23 or C9H- 1 9; naphthalene sulfonic acid R - Cι 0 H 6 - SO 3 H; alkyl sulfonic acid R - O - SO H; polyoxyethyl sulfonic R- (OC 2 H 4 ) n - OSO3H and R - C 6 H 4 - (OC 2 H 4 ) n - OSO 3 H. Fluorinated surfactants are particularly suitable because of the chemical stability and the hydrophobicity of the fluorocarbon chain. Indeed, fluorinated surfactants make it possible to lower the surface tension of water to 15-20 mN.rrf 1 (Actualité Chimique, July 1999 page 3). The hydrophilic chain of these fluorinated surfactants can be chosen from acid or polar groups having good chemical stability, such as for example - SO 3 H, - COOH, - PO (OH) 2 . By way of example, mention may be made of fluorinated surfactants of general formula
Cn F2n+1 — Q — G ou Cn F2n+1 - G dans laquelle : Q désigne un bras espaceur, comme par exemple C2HC n F 2n + 1 - Q - G or C n F 2n + 1 - G in which: Q denotes a spacer arm, such as for example C 2 H
G désigne un groupement hydrophile, comme par exemple - SO3H, - COOH, -O-PO(OH)2, - PO(OH)2.G denotes a hydrophilic group, such as for example - SO 3 H, - COOH, -O-PO (OH) 2 , - PO (OH) 2 .
Les agents tensioactifs suivants : • C7Fιs - COOHThe following surfactants: • C 7 Fιs - COOH
• C6F13 - (CH2 - CH2 - O)n H• C 6 F 13 - (CH 2 - CH 2 - O) n H
• C6F13 - C2H4 - SO2 - NH - C3H6 - N+ (CH3)2 CH2 - COOH et C6Fi3 - HC (CH2CI) - O - PO(OH)2 sont particulièrement préférés. La quantité d'agent tensioactif engagée n'est pas critique. Il suffit qu'elle soit inférieure à la quantité minimale nécessaire pour provoquer l'apparition des mousses à la surface du milieu réactionnel aqueux.• C 6 F 13 - C 2 H 4 - SO 2 - NH - C 3 H 6 - N + (CH 3 ) 2 CH 2 - COOH and C 6 Fi3 - HC (CH2CI) - O - PO (OH) 2 are particularly preferred. The amount of surfactant used is not critical. It is sufficient that it is less than the minimum amount necessary to cause the appearance of the foams on the surface of the aqueous reaction medium.
La quantité d'agent tensioactif mise en jeu est, de préférence, comprise entre 50 à 90 % de cette quantité minimale. La quantité optimale d'agent tensioactif mise en jeu dépend de sa nature et de la composition de la solution aqueuse constituant le milieu réactionnel aqueux initial.The amount of surfactant used is preferably between 50 to 90% of this minimum amount. The optimal amount of surfactant involved depends on its nature and on the composition of the aqueous solution constituting the initial aqueous reaction medium.
La présence d'un agent tensioactif fluoré à raison de 1 à 50 ppm et de préférence à raison de 5 à 10 ppm dans le milieu réactionnel aqueux a donné des résultats intéressants.The presence of a fluorinated surfactant in an amount of 1 to 50 ppm and preferably in an amount of 5 to 10 ppm in the aqueous reaction medium has given interesting results.
Comme acide inorganique, on peut citer notamment l'acide sulfurique, l'acide orthophosphorique et l'acide nitrique. L'acide est utilisé en quantité suffisante pour maintenir, de préférence, le pH du milieu réactionnel aqueux entre 1 et 3. Le milieu réactionnel aqueux peut contenir, en outre, des stabilisants du peroxyde d'hydrogène, comme par exemple, les phosphonates ou l'étain, et des inhibiteurs de décomposition, comme par exemple, les dérivés halogènes.As inorganic acid, mention may in particular be made of sulfuric acid, orthophosphoric acid and nitric acid. The acid is used in an amount sufficient to preferably maintain the pH of the aqueous reaction medium between 1 and 3. The aqueous reaction medium can also contain stabilizers of hydrogen peroxide, such as, for example, phosphonates or tin, and decomposition inhibitors, such as, for example, halogen derivatives.
Les agents stabilisants sont en général présents dans le milieu réactionnel aqueux à raison de 100 à 5000 ppm. Les agents stabilisants utilisés peuvent être choisis parmi les produits commerciaux ou les acides aminophosphoniques de formule générale RιR2N - CH2 - PO(OH)2. Lorsque le milieu réactionnel aqueux est rendu acide par de l'acide orthophosphorique, l'emploi d'un agent stabilisant n'est pas nécessaire.The stabilizing agents are generally present in the aqueous reaction medium at a rate of 100 to 5000 ppm. The stabilizing agents used can be chosen from commercial products or aminophosphonic acids of general formula RιR 2 N - CH 2 - PO (OH) 2 . When the aqueous reaction medium is made acidic by orthophosphoric acid, the use of a stabilizing agent is not necessary.
Les dérivés halogènes préférés sont choisis parmi les bromures et chlorures de métaux alcalins, l'acide bromhydrique, l'acide chlorhydrique et le brome à l'état gazeux ou en solution dans l'eau (eau de brome). Avantageusement on utilise le bromure et, de préférence, en combinaison avec du brome à l'état libre (Br2).The preferred halogen derivatives are chosen from alkali metal bromides and chlorides, hydrobromic acid, hydrochloric acid and bromine in the gaseous state or in solution in water (bromine water). Advantageously, bromide is used and, preferably, in combination with bromine in the free state (Br 2 ).
La quantité de bromure (sous forme de NaBr ou d'HBr), lorsqu'il est présent dans le milieu réactionnel aqueux est en général comprise entre 10 et 200 ppm et de préférence entre 20 et 100 ppm. La quantité de brome (Br2 gazeux ou en solution dans l'eau), lorsqu'il est présent dans le milieu réactionnel aqueux est en général comprise entre 1 et 50 ppm et de préférence entre 2 et 10 ppm.The amount of bromide (in the form of NaBr or of HBr), when it is present in the aqueous reaction medium is generally between 10 and 200 ppm and preferably between 20 and 100 ppm. The amount of bromine (Br 2 gas or in solution in water), when it is present in the aqueous reaction medium is generally between 1 and 50 ppm and preferably between 2 and 10 ppm.
Le catalyseur utilisé est en général un catalyseur supporté à base d'au moins un métal choisi dans le groupe M formé de palladium, platine, ruthénium, rhodium, iridium, osmium, holmium et or et, en particulier, un catalyseur bimétallique supporté. Le catalyseur bimétallique supporté est en général constitué d'un métal du groupe M majoritaire et d'un autre métal du groupe M minoritaire. Le métal majoritaire représente environ 0,1 à 10 % en poids du catalyseur et de préférence entre 0,5 à 1 % en poids. Le métal minoritaire représente environ 0,001 à 0,1 % en poids du catalyseur et de préférence entre 0,01 et 0,05 %.The catalyst used is generally a supported catalyst based on at least one metal chosen from the group M formed of palladium, platinum, ruthenium, rhodium, iridium, osmium, holmium and gold and, in particular, a supported bimetallic catalyst. The supported bimetallic catalyst generally consists of a metal from the majority group M and another metal from the minority group M. The majority metal represents approximately 0.1 to 10% by weight of the catalyst and preferably between 0.5 to 1% by weight. The minority metal represents approximately 0.001 to 0.1% by weight of the catalyst and preferably between 0.01 and 0.05%.
Comme métal majoritaire, le palladium et l'or sont avantageusement choisis.As the majority metal, palladium and gold are advantageously chosen.
Comme métal minoritaire, le platine et l'holmium sont avantageusement choisis.As a minority metal, platinum and holmium are advantageously chosen.
Le catalyseur bimétallique supporté particulièrement préféré est constitué de palladium comme métal majoritaire et du platine comme métal minoritaire.The particularly preferred supported bimetallic catalyst consists of palladium as the majority metal and platinum as the minority metal.
Comme catalyseur plurimétallique supporté constitué d'un métal du groupe M majoritaire et de plusieurs autres métaux du groupe M minoritaires, on préfère utiliser celui comprenant le palladium, comme métal majoritaire, le platine et au moins un métal du groupe M autre que le palladium et le platine, comme métaux minoritaires. La teneur en métal majoritaire dans le catalyseur plurimétallique supporté est pratiquement la même que celle du métal majoritaire dans le catalyseur bimétallique et, chaque métal minoritaire peut être présent dans le catalyseur en quantité représentant environ 0,001 à 0,1 % en poids du catalyseur et de préférence entre environ 0,01 et 0,05 %.As the supported plurimetallic catalyst consisting of a metal of majority group M and of several other metals of minority group M, it is preferred to use that comprising palladium, as majority metal, platinum and at least one metal of group M other than palladium and platinum, as minority metals. The content of majority metal in the supported plimetallic catalyst is practically the same as that of the predominant metal in the bimetallic catalyst and, each minority metal can be present in the catalyst in an amount representing approximately 0.001 to 0.1% by weight of the catalyst and preferably between about 0.01 and 0.05%.
Dans le cas d'un catalyseur monométallique supporté, on préfère choisir le palladium ou l'or comme constituant métallique du groupe M avec une teneur en général comprise entre 0,1 et 10 % en poids du catalyseur et de préférence comprise entre 0,5 et 1 % en poids. Bien que l'alumine, le charbon et les silicoaluminates puissent convenir comme support, on préfère toutefois utiliser la silice et avantageusement, des particules de silice de taille moyenne comprise entre 1 et 50 μm. On préfère également utiliser de la silice de surface spécifique BET supérieure à 200 m2/g et le plus souvent comprise entre 300 et 600 m2/g. La silice microporeuse d'AIdrich référencée 28,851 -9 s'est avérée particulièrement intéressante.In the case of a supported monometallic catalyst, it is preferred to choose palladium or gold as metallic constituent of group M with a content generally between 0.1 and 10% by weight of the catalyst and preferably between 0.5 and 1% by weight. Although alumina, charcoal and silicoaluminates may be suitable as a support, it is however preferred to use silica and advantageously, silica particles of average size between 1 and 50 μm. It is also preferred to use silica with a BET specific surface greater than 200 m 2 / g and most often between 300 and 600 m 2 / g. The idrich microporous silica referenced 28.851 -9 has been found to be particularly advantageous.
Le taux de fer (Fe) dans le support choisi est, de préférence, inférieur à 0,001 % en poids.The level of iron (Fe) in the support chosen is preferably less than 0.001% by weight.
Le catalyseur mis en œuvre dans le procédé de la présente invention peut être préparé selon la méthode décrite dans US 4 772 458, mais on préfère le préparer suivant la méthode consistant en : a) la mise en contact d'un support, choisi dans le groupe formé par la silice, l'alumine, le charbon et le silicoaluminate, avec une solution aqueuse concentrée de(s) sel(s) d'au moins un métal du groupe M de manière à former une pâte b) suivie par la filtration, l'essorage, puis le séchage de la pâte dans des conditions favorisant une cristallisation lente c) puis par la réduction sous hydrogène à environ 200 à 400°C du solide séché de l'étape (b) d) ensuite par le traitement du solide réduit de l'étape (c) avec une solution aqueuse (A) acide, comprenant du brome et des ions bromure, à une température comprise entre 10 et 80°C e) et enfin, filtration du solide traité à l'étape (d) et séchage à une température comprise entre 100 et 140°C. Le pH de la solution (A) est de préférence compris entre 1 et 3. La concentration des ions bromure dans la solution (A) peut être comprise entre 20 et 200 mg/l et de préférence comprise entre 20 et 100 mg/l, et la concentration en brome (Br2) peut être comprise entre 2 et 20 mg/l. Selon le procédé de la présente invention, on peut opérer aussi bien en continu qu'en semi-continu.The catalyst used in the process of the present invention can be prepared according to the method described in US 4,772,458, but it is preferred to prepare it according to the method consisting of: a) bringing a support, chosen from the group formed by silica, alumina, carbon and silicoaluminate, with a concentrated aqueous solution of salt (s) of at least one metal from group M so as to form a paste b) followed by filtration , wringing, then drying of the dough under conditions promoting slow crystallization c) then by reduction under hydrogen at about 200 to 400 ° C of the dried solid of step (b) d) then by treating the solid reduced from step (c) with an acidic aqueous solution (A), comprising bromine and bromide ions, at a temperature between 10 and 80 ° C. e) and finally, filtration of the solid treated in step ( d) and drying at a temperature between 100 and 140 ° C. The pH of the solution (A) is preferably between 1 and 3. The concentration of bromide ions in the solution (A) can be between 20 and 200 mg / l and preferably between 20 and 100 mg / l, and the bromine (Br 2 ) concentration can be between 2 and 20 mg / l. According to the process of the present invention, it is possible to operate both continuously and semi-continuously.
Le procédé peut être mis en œuvre dans un réacteur agité comportant un système d'agitation permettant la dispersion des gaz dans une phase liquide, et muni d'un système de refroidissement interne ou externe capable d'évacuer la chaleur de la réaction.The process can be carried out in a stirred reactor comprising a stirring system allowing the dispersion of the gases in a liquid phase, and provided with an internal or external cooling system capable of removing the heat of the reaction.
Le réacteur agité peut être, par exemple, un autoclave cylindrique muni d'un ou de plusieurs mobiles d'agitation du type de ceux utilisés pour les réactions gaz-liquide (turbine autoaspirante, turbine flasquée, turbines à pales concaves, etc) et d'un système de refroidissement interne constitué de serpentin, de faisceaux tubulaires verticaux ou bien de spirale plane ou tubulaire.The agitated reactor can be, for example, a cylindrical autoclave provided with one or more stirring mobiles of the type of those used for gas-liquid reactions (self-aspirating turbine, flanged turbine, turbines with concave blades, etc.) and d '' an internal cooling system consisting of a coil, vertical tubular bundles or a flat or tubular spiral.
Les réacteurs usuels pour la mise en œuvre des réactions d'hydrogénation conviennent bien. Le procédé peut également être mis en œuvre dans un réacteur à boucle, constitué d'un réacteur et d'une pompe à fort débit située à l'extérieur du réacteur aspirant le milieu réactionnel aqueux dans la partie inférieure du réacteur et le renvoyant dans la partie supérieure. Un échangeur de chaleur peut être placé dans la boucle de circulation ainsi qu'un système d'injection des gaz (oxygène ; hydrogène) comme par exemple un venturi.The usual reactors for carrying out hydrogenation reactions are very suitable. The process can also be implemented in a loop reactor, consisting of a reactor and a high-flow pump located outside the reactor sucking the aqueous reaction medium in the lower part of the reactor and returning it to the the top part. A heat exchanger can be placed in the circulation loop as well as a gas injection system (oxygen; hydrogen) such as for example a venturi.
La circulation rapide du milieu réactionnel aqueux assure l'agitation dans le réacteur et la dispersion des bulles.The rapid circulation of the aqueous reaction medium ensures stirring in the reactor and the dispersion of the bubbles.
Le procédé selon l'invention peut également être mis en œuvre dans un réacteur tubulaire constitué d'un ou de plusieurs tubes de grande longueur.The process according to the invention can also be implemented in a tubular reactor made up of one or more tubes of great length.
Quel que soit le réacteur, la température et la pression régnant à l'intérieur sont réglées pour optimiser la sélectivité de la réaction par rapport à l'hydrogène et la productivité en peroxyde d'hydrogène. Cette température est généralement comprise entre 5 et 90°C et de préférence comprise entre 30 et 60°C.Whatever the reactor, the temperature and the pressure inside are adjusted to optimize the selectivity of the reaction with respect to hydrogen and the productivity of hydrogen peroxide. This temperature is generally between 5 and 90 ° C and preferably between 30 and 60 ° C.
La pression régnant à l'intérieur du réacteur est en général au-dessus de la pression atmosphérique et de préférence comprise entre 10 et 100 bars.The pressure inside the reactor is generally above atmospheric pressure and preferably between 10 and 100 bars.
Bien que l'hydrogène et l'oxygène puissent être présents dans le milieu aqueux, dans des proportions correspondant au domaine d'inflammabilité du mélange hydrogène-oxygène, on préfère le plus souvent injecter sous forme de petites bulles l'hydrogène et l'oxygène séparément, avec des débits tels que le rapport des débits molaires hydrogène sur oxygène soit inférieur à 0,0416.Although hydrogen and oxygen may be present in the aqueous medium, in proportions corresponding to the flammability range of the hydrogen-oxygen mixture, it is most often preferred to inject hydrogen and oxygen in the form of small bubbles. separately, with flow rates such that the ratio of hydrogen to oxygen molar flow rates is less than 0.0416.
Lorsqu'on opère en semi-continu, la solution aqueuse de peroxyde d'hydrogène à l'issue de la réaction est séparée du catalyseur puis, éventuellement débarrassée des additifs tels que tensioactifs, inhibiteurs et stabilisants. Les additifs peuvent ainsi être récupérés et utilisés dans une nouvelle opération.When operating semi-continuously, the aqueous solution of hydrogen peroxide at the end of the reaction is separated from the catalyst then, optionally free of additives such as surfactants, inhibitors and stabilizers. The additives can thus be recovered and used in a new operation.
Lorsqu'on opère en continu, la séparation du catalyseur de la solution aqueuse de peroxyde d'hydrogène et celle des additifs peuvent être effectuées en continu.When operating continuously, the separation of the catalyst from the aqueous hydrogen peroxide solution and that of the additives can be carried out continuously.
La séparation des additifs de la solution aqueuse de peroxyde d'hydrogène est, de préférence, effectuée par osmose inverse à l'aide des membranes, identiques à celles utilisées pour le dessalement de l'eau de mer. La pression transmembranaire est comprise entre 20 et 130 bars et de préférence 30 à 80 bars selon le type de membrane.The separation of the additives from the aqueous hydrogen peroxide solution is preferably carried out by reverse osmosis using membranes, identical to those used for the desalination of seawater. The transmembrane pressure is between 20 and 130 bars and preferably 30 to 80 bars depending on the type of membrane.
De préférence on utilise 1 à 3 étages de séparation. De préférence le débit de perméat est compris entre 0,7 et 0,95 fois le débit d'alimentation de l'étage. De préférence les membranes utilisées sont du type bicouches (2 couches de polymères superposées dont au moins une couche de polyamide), ou bien du type tricouches (3 couches de polymères superposées dont au moins une couche de polyamide).Preferably 1 to 3 separation stages are used. Preferably, the permeate flow rate is between 0.7 and 0.95 times the supply flow rate of the stage. Preferably, the membranes used are of the bilayer type (2 layers of superimposed polymers including at least one layer of polyamide), or else of the tri-layer type (3 layers of superimposed polymers of which at least one layer of polyamide).
Comme membrane bicouche on a utilisé la membrane "DOW Filmtec - SW30" et comme membrane tricouche on a utilisé la membrane "OSMONICS-DESAL 3".As the two-layer membrane we used the "DOW Filmtec - SW30" membrane and as the three-layer membrane we used the "OSMONICS-DESAL 3" membrane.
Un deuxième objet de l'invention est un dispositif permettant la mise en œuvre du procédé tel que décrit précédemment. Ce dispositif schématisé à la figure 1 comprend un réacteur 1 , muni d'une ou de plusieurs arrivées (2) d'hydrogène gazeux et d'une ou de plusieurs arrivées (3) d'oxygène gazeux, d'une entrée liquide (5), d'une sortie liquide (4) et d'une sortie gaz (6), pouvant éventuellement être reliée à l'arrivée (3). Suivant une variante, la sortie (4) est reliée à un filtre (7), qui est lui-même relié à des membranes (8).A second object of the invention is a device allowing the implementation of the method as described above. This device shown diagrammatically in FIG. 1 comprises a reactor 1, provided with one or more inlets (2) of gaseous hydrogen and one or more inlets (3) of gaseous oxygen, with a liquid inlet (5 ), a liquid outlet (4) and a gas outlet (6), which can possibly be connected to the inlet (3). According to a variant, the outlet (4) is connected to a filter (7), which is itself connected to membranes (8).
Un dispositif et un schéma de fonctionnement, illustrant un mode particulier de réalisation du procédé de la présente invention, représentés à la figure 2, sont décrits ci-après. Le dispositif comprend un réacteur agité 1 , muni de plusieurs turbines centrifuges disposées le long d'un arbre d'agitation unique vertical Au démarrage, le réacteur contient le catalyseur en suspension dans la solution aqueuse contenant l'agent tensioactif, l'inhibiteur et le stabilisant, l'ensemble étant porté à la température de la réactionA device and an operating diagram, illustrating a particular embodiment of the method of the present invention, represented in FIG. 2, are described below. The device comprises a stirred reactor 1, provided with several centrifugal turbines arranged along a single vertical stirring shaft. At start-up, the reactor contains the catalyst in suspension in the aqueous solution containing the surfactant, the inhibitor and the stabilizer, the whole being brought to reaction temperature
On injecte séparément, à l'aide de deux tuyères contigues placées sous l'orifice d'aspiration de la turbine située au fond du réacteur, l'hydrogène neuf en 2 et de l'oxygène en 3, sous forme de petites bulles, dans la partie inférieure du réacteur Les débits d'hydrogène en 2 et d'oxygène en 3 sont choisis de manière à obtenir une composition gazeuse dans le milieu réactionnel aqueux, de préférence, non inflammable, c'est-à-dire avec une concentration en hydrogène ne dépassant pas la limite inférieure d'inflammabilité du mélange hydrogène-oxygène à la pression régnant à l'intérieur du réacteur En général, cette limite est de 4 % volumique en hydrogène à 1 bar (absolu) et 6 % à 50 barsIs injected separately, using two contiguous nozzles placed under the suction port of the turbine located at the bottom of the reactor, the new hydrogen in 2 and oxygen in 3, in the form of small bubbles, into the lower part of the reactor The flow rates of hydrogen in 2 and of oxygen in 3 are chosen so as to obtain a gaseous composition in the aqueous reaction medium, preferably non-flammable, that is to say with a concentration of hydrogen not exceeding the lower flammability limit of the hydrogen-oxygen mixture at the pressure prevailing inside the reactor In general, this limit is 4% by volume of hydrogen at 1 bar (absolute) and 6% at 50 bars
On injecte de l'oxygène neuf en 4, dans la partie supérieure du réacteur, occupé par la phase gazeuse continue, pour remplacer l'oxygène consommé et également pour maintenir la composition dans cette phase en dessous de la limite inférieure d'inflammabilité du mélange hydrogène- oxygèneNew oxygen is injected in 4, in the upper part of the reactor, occupied by the continuous gas phase, to replace the oxygen consumed and also to keep the composition in this phase below the lower flammability limit of the mixture. hydrogen- oxygen
L'oxygène injecté en 3 provient en partie ou en totalité du flux gazeux prélevé en 5 et mis en circulation par la pompe 6 II peut contenir une petite quantité d'hydrogène non réagi L'oxygène utilisé peut contenir une faible proportion de gaz inertes tels que ceux présents dans l'air, par exemple l'azote ou l'argonThe oxygen injected at 3 comes partly or entirely from the gas flow taken at 5 and circulated by the pump 6 II can contain a small amount of unreacted hydrogen The oxygen used can contain a small proportion of inert gases such as than those present in the air, for example nitrogen or argon
Lorsque l'oxygène est accompagné de gaz inertes, il est alors nécessaire d'effectuer des purges, en utilisant la vanne de régulation 7, de manière à ce que la concentration en gaz inertes dans la phase gazeuse continue soit inférieure à 50% en volume et, de préférence inférieure à 30%When the oxygen is accompanied by inert gases, it is then necessary to carry out purges, using the control valve 7, so that the concentration of inert gases in the continuous gas phase is less than 50% by volume. and preferably less than 30%
On maintient la température du milieu réactionnel constante par circulation d'eau de refroidissement dans les serpentins 8The temperature of the reaction medium is kept constant by circulation of cooling water in the coils 8
La solution aqueuse contenant le peroxyde d'hydrogène formé quitte le réacteur par la sortie 9, puis est refroidie dans l'échangeur 10 et ensuite filtré en 1 1 La suspension de catalyseur qui n'a pas traversé la surface filtrante 1 1 retourne dans le réacteur en 13. Le filtre en 1 1 est alternativement décolmaté par injection à contre-courant d'eau déminéralisée contenant éventuellement de l'acide et des additifs (tensioactif, inhibiteur, stabilisant) en 14 à travers la surface filtrante. Le catalyseur remis en suspension regagne le réacteur en 13.The aqueous solution containing the hydrogen peroxide formed leaves the reactor via outlet 9, then is cooled in exchanger 10 and then filtered into 1 1 The catalyst suspension which has not passed through the filtering surface 1 1 returns to the reactor at 13. The filter at 1 1 is alternately unclogged by injection against the flow of demineralized water optionally containing acid and additives ( surfactant, inhibitor, stabilizer) at 14 across the filtering surface. The resuspended catalyst returns to the reactor at 13.
La solution aqueuse limpide de peroxyde d'hydrogène en provenance de 1 1 est ensuite introduite dans la batterie de membranes d'osmose inverse 12. Le perméat de la nιeme cellule est introduit dans la cellule (n+1 ) et le rétentat (ou concentrât) regagne le réacteur en 13 et ainsi de suite pour chaque étage de l'unité d'osmose inverse.The clear aqueous solution of hydrogen peroxide from 1 1 is then introduced into the battery of reverse osmosis membranes 12. The permeate of the n th cell is introduced into the cell (n + 1) and the retentate (or concentrate) returns to the reactor at 13 and so on for each stage of the reverse osmosis unit.
Le perméat de la dernière cellule est une solution aqueuse d'H2O2 presque pure 15. La majeure partie des additifs sont recyclés dans le réacteur en 13.The permeate in the last cell is an almost pure aqueous solution of H 2 O 2 15. Most of the additives are recycled to the reactor at 13.
De l'eau déminéralisée est introduite en 14 pour maintenir constant le niveau de la phase liquide dans le réacteur. Les additifs (tensioactif, inhibiteur, stabilisant) sont ajoutés dans cette eau pour maintenir leurs teneurs constantes dans le milieu réactionnel aqueux. Un dispositif et un schéma de fonctionnement représentés à la figureDemineralized water is introduced at 14 to keep the level of the liquid phase constant in the reactor. The additives (surfactant, inhibitor, stabilizer) are added to this water to maintain their constant contents in the aqueous reaction medium. A device and an operating diagram shown in the figure
3 illustrent un autre mode particulier de réalisation du procédé de la présente invention.3 illustrate another particular embodiment of the method of the present invention.
Le dispositif de la figure 3 comprend un réservoir 21 contenant au démarrage la solution aqueuse contenant les additifs et le catalyseur mis en suspension.The device of Figure 3 comprises a reservoir 21 containing at startup the aqueous solution containing the additives and the suspended catalyst.
Une pompe 17 met en circulation à grande vitesse cette suspension aqueuse de catalyseur dans un réacteur tubulaire 1 , constitué d'un ou de plusieurs tubes de grande longueur immergés dans un bain thermostaté 20. L'oxygène est prélevé en 5 de la phase gazeuse continue du réservoir 21 au moyen du compresseur 6, puis injecté en 3 dans le réacteur tubulaire, sous forme de petites bulles au moyen du venturi 18 et grâce à la grande vitesse de circulation de la suspension aqueuse de catalyseur.A pump 17 circulates at high speed this aqueous suspension of catalyst in a tubular reactor 1, consisting of one or more tubes of great length immersed in a thermostatted bath 20. The oxygen is withdrawn at 5 from the continuous gas phase of the reservoir 21 by means of the compressor 6, then injected at 3 into the tubular reactor, in the form of small bubbles by means of the venturi 18 and thanks to the high speed of circulation of the aqueous suspension of catalyst.
L'oxygène neuf est injecté en 4 dans la phase gazeuse continue du réservoir 21 . L'hydrogène neuf 2 est injecté sous forme de petites bulles dans le réacteur tubulaire 1 au moyen également du venturi 18. A la sortie du réacteur tubulaire, la suspension aqueuse de catalyseur et les bulles de H2 et O2 n'ayant pas réagi sont renvoyées en 16 dans le réservoir 21 .The new oxygen is injected in 4 into the continuous gas phase of the tank 21. The new hydrogen 2 is injected in the form of small bubbles into the tubular reactor 1 also by means of the venturi 18. At the outlet of the tubular reactor, the aqueous suspension of catalyst and the unreacted H 2 and O 2 bubbles are returned at 16 to the tank 21.
La solution aqueuse de peroxyde d'hydrogène contenant le catalyseur en suspension est prélevée en 9 du réservoir 21 par la pompe 19 puis alimente le filtre 1 1 . L'excès de suspension de catalyseur est renvoyé en 13 dans le réacteur.The aqueous solution of hydrogen peroxide containing the suspended catalyst is taken at 9 from the tank 21 by the pump 19 and then feeds the filter 11. The excess catalyst suspension is returned to 13 in the reactor.
La solution filtrée d'H2O2 sort en 15 du filtre 1 1. Le filtre 1 1 est périodiquement décolmaté par injection de la solution aqueuse acide en 14, (la sortie 15 est alors fermée).The filtered H 2 O 2 solution leaves at 15 from filter 1 1. The filter 1 1 is periodically unclogged by injection of the acidic aqueous solution at 14, (the outlet 15 is then closed).
Un régulateur de pression 7 évacue l'excès d'O2 et H2 et de gaz inerte du réacteur. Une unité d'osmose inverse peut aussi être reliée à la sortie 15 pour recycler les additifs.A pressure regulator 7 removes excess O 2 and H 2 and inert gas from the reactor. A reverse osmosis unit can also be connected to outlet 15 to recycle the additives.
PARTIE EXPERIMENTALEEXPERIMENTAL PART
Dispositif pour la synthèse directe d'une solution aqueuse de peroxyde d'hydrogèneDevice for the direct synthesis of an aqueous solution of hydrogen peroxide
Le dispositif est similaire à celui représenté à la figure 2.The device is similar to that shown in Figure 2.
Le réacteur d'une capacité de 1 500 cm3 est constitué d'une cuve cylindrique de 200 mm de hauteur et de 98 mm de diamètre.The reactor with a capacity of 1,500 cm 3 consists of a cylindrical tank 200 mm high and 98 mm in diameter.
Le fond et le couvercle sont plats.The bottom and the cover are flat.
Un manchon amovible en PTFE de 1 ,5 mm d'épaisseur est placé dans le bol du réacteur.A removable 1.5 mm thick PTFE sleeve is placed in the reactor bowl.
L'agitation est assurée par un axe vertical en acier inox de 180 mm de long et de 8 mm de diamètre entraîné par un accouplement magnétique placé sur le couvercle du réacteur.Agitation is ensured by a vertical stainless steel axis 180 mm long and 8 mm in diameter driven by a magnetic coupling placed on the cover of the reactor.
Deux ou trois turbines flasquées de 45 mm de diamètre extérieur, de 9 mm d'épaisseur (entre les 2 flasques) munies d'un orifice d'aspiration de 12,7 mm de diamètre, orienté vers le bas, et de 8 aubes radiales plates de 9 mm de largeur, de 15 mm de longueur et d'épaisseur 1 ,5 mm, peuvent être fixées sur l'arbre d'agitation à différentes hauteurs choisies de manière à diviser la phase liquide en volume sensiblement égaux.Two or three flanged turbines with an outside diameter of 45 mm, a thickness of 9 mm (between the two flanges) fitted with a suction port of 12.7 mm in diameter, oriented downwards, and 8 radial blades plates 9 mm wide, 15 mm long and 1.5 mm thick, can be fixed to the stirring shaft at different heights chosen so as to divide the liquid phase into substantially equal volumes.
La turbine inférieure est placée à 32 mm du fond, la deuxième turbine à 78 mm du fond et la troisième à 125 mm du fond. Quatre contre-pales de 190 mm de hauteur, de 10 mm de largeur et de 1 mm d'épaisseur sont placées verticalement dans la cuve perpendiculairement à la paroi intérieure du réacteur et maintenues à 1 mm de cette paroi par deux anneaux centreurs. Le refroidissement ou le chauffage est assuré par huit tubes verticaux de 6,35 mm de diamètre et de 150 mm de longueur disposés en couronne à 35 mm de l'axe de la cuve.The lower turbine is placed 32 mm from the bottom, the second turbine 78 mm from the bottom and the third turbine 125 mm from the bottom. Four counter blades 190 mm high, 10 mm wide and 1 mm thick are placed vertically in the tank perpendicular to the inner wall of the reactor and held 1 mm from this wall by two centering rings. Cooling or heating is provided by eight vertical tubes of 6.35 mm in diameter and 150 mm in length arranged in a crown 35 mm from the axis of the tank.
Ce serpentin est parcouru par un courant d'eau à température constante.This stream is traversed by a stream of water at constant temperature.
L'injection de l'hydrogène et de l'oxygène dans la phase liquide se fait au moyen de deux tuyaux distincts en inox de 1 ,58 mm de diamètre pour H2 et de 3, 17 mm pour O2 conduisant les gaz au centre de la turbine inférieure. L'injection des réactifs gazeux dans le milieu aqueux ainsi que celle de l'oxygène dans la phase gazeuse continue sont régulées à l'aide de débitmètres massiques. Certains essais ont été effectués en remplaçant l'oxygène par un mélange oxygène-azote en différentes proportions.The injection of hydrogen and oxygen into the liquid phase is done by means of two separate stainless steel pipes, 1.58 mm in diameter for H 2 and 3.17 mm for O 2, leading the gases to the center of the lower turbine. The injection of gaseous reactants into the aqueous medium as well as that of oxygen into the continuous gas phase are regulated using mass flowmeters. Some tests have been carried out by replacing the oxygen with an oxygen-nitrogen mixture in different proportions.
La pression régnant à l'intérieur du réacteur est maintenue constante grâce à un déverseur. L'hydrogène, l'oxygène et éventuellement l'azote constituant le flux gazeux sortant du réacteur sont dosés en ligne par chromatographie en phase gaz.The pressure inside the reactor is kept constant thanks to an overflow valve. The hydrogen, oxygen and optionally nitrogen constituting the gas flow leaving the reactor are dosed online by gas phase chromatography.
Préparation du catalyseur Le catalyseur utilisé contient 0,7 % en poids de palladium métallique et 0,03 % en poids de platine supportés sur une silice microporeuse.Preparation of the catalyst The catalyst used contains 0.7% by weight of metallic palladium and 0.03% by weight of platinum supported on a microporous silica.
Il est préparé par imprégnation de la silice (Aldrich réf. 28,851 -9) de caractéristiques suivantes :It is prepared by impregnating silica (Aldrich ref. 28,851 -9) with the following characteristics:
- Taille moyenne des particules = 5 à 15 μm - Surface BET = 500 m2/g- Average particle size = 5 to 15 μm - BET surface = 500 m 2 / g
- Volume des pores = 0,75 cm3/g- Pore volume = 0.75 cm 3 / g
- Diamètre moyen des pores = 60 A, avec une solution aqueuse contenant PdCI2 et H2PtCI6, suivi d'un séchage lent et enfin d'un traitement thermique sous balayage d'hydrogène à 300°C pendant 3 heures.- Average pore diameter = 60 A, with an aqueous solution containing PdCI 2 and H 2 PtCI 6 , followed by slow drying and finally a heat treatment under hydrogen sweep at 300 ° C for 3 hours.
Le catalyseur est ensuite mis en suspension (10 g/l) dans une solution, contenant 60 mg de NaBr, 5 mg de Br2 et 12 g de H3PO * chauffée à 40°C pendant 5 heures, puis est filtré, lavé à l'eau déminéralisée et séché. Solution aqueuse initiale (exemples 1 -19)The catalyst is then suspended (10 g / l) in a solution, containing 60 mg of NaBr, 5 mg of Br 2 and 12 g of H 3 PO * heated at 40 ° C for 5 hours, then is filtered, washed with demineralized water and dried. Initial aqueous solution (examples 1 -19)
On prépare une solution aqueuse par ajout de 12 g de H3PO4' 58 mg de NaBr et 5 mg de Br2 dans 988 g d'eau déminéralisée.An aqueous solution is prepared by adding 12 g of H 3 PO 4 '58 mg of NaBr and 5 mg of Br 2 in 988 g of demineralized water.
Solution aqueuse initiale (exemples 20-24)Initial aqueous solution (examples 20-24)
La solution aqueuse utilisée contient 3,4% H3PO4, 90 ppm de bromure (NaBr) et 5 ppm de Br2.The aqueous solution used contains 3.4% H 3 PO 4 , 90 ppm of bromide (NaBr) and 5 ppm of Br 2 .
Mode opératoire général On introduit dans l'autoclave la quantité choisie de solution aqueuse initiale puis on ajoute la quantité déterminée d'agent tensioactif et de catalyseur. L'autoclave est pressurisé par injection d'un débit choisi d'oxygène dans la phase gazeuse continue. La pression reste constante grâce au régulateur de pression. Le milieu liquide est porté à la température choisie par circulation d'eau thermostaté dans le faisceau de tubes de refroidissement.General procedure The selected quantity of initial aqueous solution is introduced into the autoclave and then the determined quantity of surfactant and catalyst is added. The autoclave is pressurized by injecting a selected flow of oxygen into the continuous gas phase. The pressure remains constant thanks to the pressure regulator. The liquid medium is brought to the chosen temperature by circulation of water thermostatically controlled in the bundle of cooling tubes.
L'agitation est réglée à 1 900 t/min et les débits choisis d'oxygène et d'hydrogène sont injectés au centre de la turbine inférieure.Stirring is set at 1,900 rpm and the selected flow rates of oxygen and hydrogen are injected into the center of the lower turbine.
On mesure le débit et la teneur en hydrogène du mélange gazeux sortant du régulateur de pression.The flow rate and the hydrogen content of the gas mixture leaving the pressure regulator are measured.
Après 1 ; 1 ,5 ; 2 ou 3 heures de réaction, on coupe l'arrivée d'hydrogène et d'oxygène dans le milieu réactionnel aqueux et on maintient l'injection d'oxygène dans la phase gazeuse continue jusqu'à la disparition totale d'hydrogène dans cette dernière. On coupe alors l'arrivée d'oxygène, puis on décomprime le réacteur et enfin on récupère la solution aqueuse de peroxyde d'hydrogène.After 1; 1.5; 2 or 3 hours of reaction, the arrival of hydrogen and oxygen in the aqueous reaction medium is cut off and the injection of oxygen into the gaseous phase is continued until the complete disappearance of hydrogen therein . The oxygen supply is then cut off, then the reactor is decompressed and finally the aqueous hydrogen peroxide solution is recovered.
La solution aqueuse de peroxyde d'hydrogène récupérée est ensuite pesée, puis séparée du catalyseur par filtration sur un filtre Millipore®.The aqueous solution of hydrogen peroxide recovered is subsequently weighed and then separated from the catalyst by filtration through a Millipore ® filter.
La solution résultante est alors dosée par iodométrie permettant ainsi de déterminer la concentration en peroxyde d'hydrogène. La sélectivité de la synthèse est définie comme étant le pourcentage du nombre de moles de peroxyde d'hydrogène formé sur le nombre de moles d'hydrogène consommé.The resulting solution is then dosed by iodometry thus making it possible to determine the concentration of hydrogen peroxide. The selectivity of the synthesis is defined as being the percentage of the number of moles of hydrogen peroxide formed on the number of moles of hydrogen consumed.
Le taux de conversion est défini comme étant le pourcentage du volume d'hydrogène consommé sur le volume d'hydrogène introduit. Les tableaux 1 , 2 et 3 indiquent les résultats obtenus dans différentes conditions de réaction. Exemple 25The conversion rate is defined as the percentage of the volume of hydrogen consumed over the volume of hydrogen introduced. Tables 1, 2 and 3 show the results obtained under different reaction conditions. Example 25
Séparation des additifs par osmose inverseSeparation of additives by reverse osmosis
Une solution contenant 200 g/l de peroxyde d'hydrogène, 6 g/l d'acide orthophosphorique et 50 mg/l NaBr est pompée dans une unité d'osmose inverse constituée de 3 cellules montées en série avec une pression de fonctionnement de 80 bar et un facteur de concentration volumique de 10 par cellule. Chaque cellule est munie d'une membrane tricouche de référence OSMONICS-DESAL 3 fournie par la société DESAL. On obtient les résultats suivants :A solution containing 200 g / l of hydrogen peroxide, 6 g / l of orthophosphoric acid and 50 mg / l NaBr is pumped into a reverse osmosis unit consisting of 3 cells connected in series with an operating pressure of 80 bar and a volume concentration factor of 10 per cell. Each cell is provided with a three-layer OSMONICS-DESAL 3 reference membrane supplied by the company DESAL. The following results are obtained:
Q étant le débit d'alimentation de la première cellule. On constate que 89 % des bromures et 99 % des phosphates sont recyclés. Q being the feed rate of the first cell. It can be seen that 89% of the bromides and 99% of the phosphates are recycled.
όWOO/IOMJ/lDd n 61S89/10O/W HOO/lOMd/_LDd SI 61S89/10OΛV ro ro t ro ro ro o Exemple όWOO / IOMJ / lDd n 61S89 / 10O / W HOO / lOMd / _LDd SI 61S89 / 10OΛV ro ro t ro ro ro o Example
O O O n O τι Tl ι *τ -π o o o o O Φ ZOOO n O τι Tl ι * τ -π oooo O Φ Z
X X X X X — • cX X X X X - • c
-^ O -i α> ω > ω ω 00 o- ^ O -i α> ω> ω ω 00 o
O O C ) O OO O C) O O
X X X X XX X X X X
en en en en en 3 Quantité de tensioactifen en en en 3 Amount of surfactant
en en en o o o o o Quantité de o o o o o solution acide initialeen en en o o o o o Amount of o o o o o initial acid solution
Quantité de ro ro ro ro ro catalyseur ro ro ro ro ro Nombre de tnrhinpς oo ro - - "en Durée de réactionQuantity of ro ro ro ro ro catalyst ro ro ro ro ro Number of tnrhinpς oo ro - - " in Reaction time
Débit H2 injectéH 2 flow injected
ZZ
00 00 o o o o dans la turbine inférieure >00 00 o o o o in the lower turbine>
CD v ro *. *. *. Débit 02 injectéCD v ro *. *. *. Flow 0 2 injected
Z mZ m
00 00 00 00 ro ro ro ro ro dans la turbine > o o o o o inférieure ω00 00 00 00 ro ro ro ro ro in the turbine> o o o o o o lower ω
_ Débit N2 injecté_ N 2 flow injected
Z o o o o o o dans la turbine o inférieureZ o o o o o o in the lower turbine o
Débit 02 injectéFlow 0 2 injected
ZZ
§ o ° o o o _î dans la phase gazeuse en en en σ> σ Pression dans le o ro réacteur ro en en en en Température dans oo o o o o O le réacteur§ o ° o o o _ in the gas phase en en en σ> σ Pressure in the reactor ro ro en en in Temperature in oo o o o o O the reactor
--s Concentration en oo -j o _». o H 02 de la solution--s Concentration in oo -jo _ ". o H 0 2 of the solution
-J: ro o a aqueuse après réaction-J: ro o a aqueous after reaction
Sélectivité de la réaction par en ro en rapport à l'hydrogèneSelectivity of the reaction by in ro with respect to hydrogen
->. ro oo ro ro -t--- o eo o Taux de oo -j ro en conversion de l'hydrogène->. ro oo ro ro -t --- o eo o Rate of oo -j ro in hydrogen conversion
δWOO/IOHJ/lDd 91 61S89/10 OW δWOO / IOHJ / lDd 91 61S89 / 10 OW

Claims

REVENDICATIONS
1 - Procédé de fabrication d'une solution aqueuse de peroxyde d'hydrogène directement à partir d'hydrogène et d'oxygène, selon lequel on injecte l'hydrogène et l'oxygène, sous forme de petites bulles, dans un milieu réactionnel aqueux rendu acide par l'addition d'un acide inorganique et comprenant un catalyseur à l'état dispersé caractérisé en ce que le milieu réactionnel aqueux comprend en outre un ou plusieurs agents tensioactifs. 2 - Procédé selon la revendication 1 caractérisé en ce que l'agent tensioactif est stable en milieu acide et résiste aux conditions très oxydantes.1 - Process for the manufacture of an aqueous solution of hydrogen peroxide directly from hydrogen and oxygen, according to which hydrogen and oxygen are injected, in the form of small bubbles, into an aqueous reaction medium rendered acid by the addition of an inorganic acid and comprising a catalyst in the dispersed state characterized in that the aqueous reaction medium further comprises one or more surfactants. 2 - Process according to claim 1 characterized in that the surfactant is stable in an acid medium and withstands very oxidizing conditions.
3 - Procédé selon la revendication 1 ou 2 caractérisé en ce que l'agent tensioactif est un agent tensioactif fluoré.3 - Method according to claim 1 or 2 characterized in that the surfactant is a fluorinated surfactant.
4 - Procédé selon la revendication 3 caractérisé en ce que l'agent tensioactif fluoré est de formule générale CnF2n+1-Q-G ou CnF2n+ι-G dans laquelle Q désigne un bras espaceur et G désigne un groupement hydrophile.4 - Process according to claim 3 characterized in that the fluorosurfactant is of general formula C n F 2n + 1 -QG or C n F 2n + ι-G in which Q denotes a spacer arm and G denotes a hydrophilic group.
5 - Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la quantité d'agent tensioactif mise en œuvre est inférieure à la quantité minimale nécessaire pour provoquer l'apparition des mousses à la surface du milieu réactionnel aqueux.5 - Process according to any one of claims 1 to 4 characterized in that the amount of surfactant used is less than the minimum amount necessary to cause the appearance of foams on the surface of the aqueous reaction medium.
6 - Procédé selon la revendication 3 ou 4 caractérisé en ce que l'agent tensioactif est présent à raison de 1 à 50 ppm et de préférence à raison de 5 à 10 ppm dans le milieu réactionnel aqueux. 7 - Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que le milieu réactionnel peut contenir des stabilisants du peroxyde d'hydrogène.6 - Process according to claim 3 or 4 characterized in that the surfactant is present in an amount of 1 to 50 ppm and preferably in an amount of 5 to 10 ppm in the aqueous reaction medium. 7 - Process according to any one of claims 1 to 6 characterized in that the reaction medium can contain stabilizers of hydrogen peroxide.
8 - Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que le milieu réactionnel peut contenir des inhibiteurs de décomposition.8 - Process according to any one of claims 1 to 7 characterized in that the reaction medium can contain decomposition inhibitors.
9 - Procédé selon la revendication 8 caractérisé en ce que l'inhibiteur est le bromure d'un métal alcalin ou l'acide bromhydrique éventuellement en combinaison avec du brome à l'état libre.9 - Process according to claim 8 characterized in that the inhibitor is the bromide of an alkali metal or hydrobromic acid optionally in combination with bromine in the free state.
10 - Procédé selon la revendication 9 caractérisé en ce que la quantité de bromure est comprise entre 10 et 200 ppm ; de préférence entre 20 et 100 ppm. 1 1 - Procédé selon la revendication 9 ou 10 caractérisé en ce que la quantité de brome dans le milieu réactionnel aqueux est comprise entre 1 et 50 ppm, de préférence entre 2 et 10 ppm.10 - Process according to claim 9 characterized in that the amount of bromide is between 10 and 200 ppm; preferably between 20 and 100 ppm. 1 1 - Process according to claim 9 or 10 characterized in that the amount of bromine in the aqueous reaction medium is between 1 and 50 ppm, preferably between 2 and 10 ppm.
12 - Procédé selon l'une quelconque des revendications 1 à 1 1 caractérisé en ce que le catalyseur est un catalyseur supporté à base d'au moins un métal choisi dans le groupe M formé de palladium, platine, ruthénium, rhodium, d'iridium, d'osmium, d'holmium et d'or.12 - Process according to any one of claims 1 to 1 1 characterized in that the catalyst is a supported catalyst based on at least one metal chosen from the group M formed of palladium, platinum, ruthenium, rhodium, iridium , osmium, holmium and gold.
13 - Procédé selon la revendication 12 caractérisé en ce que le catalyseur supporté est un catalyseur bimétallique constitué de palladium comme métal majoritaire et du platine comme métal minoritaire.13 - Process according to claim 12 characterized in that the supported catalyst is a bimetallic catalyst consisting of palladium as the majority metal and platinum as the minority metal.
14 - Procédé selon la revendication 13 caractérisé en ce que le catalyseur bimétallique est supporté sur de la silice.14 - Process according to claim 13 characterized in that the bimetallic catalyst is supported on silica.
15 - Procédé selon l'une quelconque des revendications 12 à 14 caractérisé en ce que le catalyseur est préparé suivant la méthode consistant en : a) la mise en contact d'un support, choisi dans le groupe formé par la silice, l'alumine, le charbon et le silicoaluminate, avec une solution aqueuse concentrée de(s) sel(s) d'au moins un métal du groupe M de manière à former une pâte b) suivie par la filtration, l'essorage, puis le séchage de la pâte dans des conditions favorisant une cristallisation lente c) puis par la réduction sous hydrogène à environ 200 à 400°C du solide séché de l'étape (b) d) ensuite par le traitement du solide réduit de l'étape (c) avec une solution aqueuse (A) acide, comprenant du brome et des ions bromure, à une température comprise entre 10 et 80°C e) et enfin, filtration du solide traité à l'étape (d) et séchage à une température comprise entre 100 et 140°C.15 - Process according to any one of claims 12 to 14 characterized in that the catalyst is prepared according to the method consisting of: a) bringing a support, chosen from the group formed by silica, alumina , carbon and silicoaluminate, with a concentrated aqueous solution of salt (s) of at least one metal from group M so as to form a paste b) followed by filtration, spinning, then drying of the paste under conditions favoring slow crystallization c) then by the reduction under hydrogen at about 200 to 400 ° C of the dried solid of step (b) d) then by the treatment of the reduced solid of step (c) with an acidic aqueous solution (A), comprising bromine and bromide ions, at a temperature between 10 and 80 ° C e) and finally, filtration of the solid treated in step (d) and drying at a temperature between 100 and 140 ° C.
16 - Procédé selon la revendication 15 caractérisé en ce que le pH de la solution (A) est compris entre 1 et 3.16 - Process according to claim 15 characterized in that the pH of the solution (A) is between 1 and 3.
17 - Procédé selon la revendication 15 ou 16 caractérisé en ce que la concentration des ions bromure dans la solution (A) est comprise ente 20 et 200 mg/l, de préférence comprise entre 20 et 100 mg/l.17 - Process according to claim 15 or 16 characterized in that the concentration of bromide ions in the solution (A) is between 20 and 200 mg / l, preferably between 20 and 100 mg / l.
18 - Procédé selon la revendication 17 caractérisé en ce que la concentration en brome est comprise entre 2 et 20 mg/l. 19 - Procédé selon l'une quelconque des revendications 1 à 18 caractérisé en ce qu'il est mis en œuvre dans un réacteur agité ou réacteur tubulaire.18 - Process according to claim 17 characterized in that the bromine concentration is between 2 and 20 mg / l. 19 - Process according to any one of claims 1 to 18 characterized in that it is implemented in a stirred reactor or tubular reactor.
20 - Procédé selon l'une quelconque des revendications 1 à 19 caractérisé en ce que la température du milieu réactionnel est comprise entre20 - Process according to any one of claims 1 to 19 characterized in that the temperature of the reaction medium is between
5 et 90°C, de préférence entre 30 et 60°C.5 and 90 ° C, preferably between 30 and 60 ° C.
21 - Procédé selon l'une quelconque des revendications 1 à 20 caractérisé en ce que le milieu réactionnel est sous pression de 10 à 100 bars. 22 - Procédé selon l'une quelconque des revendications 1 à 21 caractérisé en ce que l'hydrogène et l'oxygène sont injectés séparément dans le milieu réactionnel aqueux avec des débits tels que le rapport des débits molaires hydrogène sur oxygène soit inférieur à 0,0416.21 - Process according to any one of claims 1 to 20 characterized in that the reaction medium is under pressure from 10 to 100 bars. 22 - Method according to any one of claims 1 to 21 characterized in that the hydrogen and the oxygen are injected separately into the aqueous reaction medium with flow rates such that the ratio of the molar flow rates hydrogen to oxygen is less than 0, 0416.
23 - Procédé selon l'une quelconque des revendications 1 à 22 caractérisé en ce que la solution aqueuse de peroxyde d'hydrogène formée est séparée du catalyseur, puis débarrassée des additifs par osmose inverse à l'aide des membranes.23 - Process according to any one of claims 1 to 22 characterized in that the aqueous solution of hydrogen peroxide formed is separated from the catalyst, then freed from the additives by reverse osmosis using the membranes.
24 - Procédé selon la revendication 23 caractérisé en ce que les membranes sont du type bicouches ou tricouches de polymère dont au moins une couche à base de polyamide.24 - Process according to claim 23 characterized in that the membranes are of the bilayer or trilayer type of polymer including at least one layer based on polyamide.
25 - Dispositif pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 24 comprenant un réacteur agité 1 , muni de plusieurs turbines centrifuges disposées le long d'un arbre d'agitation unique vertical, d'une ou de plusieurs arrivées d'hydrogène gazeux 2 et d'oxygène gazeux 3 situées au fond du réacteur, d'une entrée de gaz 4 et d'une sortie de gaz 5 dans la partie supérieure du réacteur, d'une sortie liquide 9 reliée à un échangeur 10, lui-même relié à un filtre 11 , la sortie duquel étant reliée à une batterie de membrane d'osmose inverse 12.25 - Device for implementing the method according to any one of claims 1 to 24 comprising a stirred reactor 1, provided with several centrifugal turbines arranged along a single vertical stirring shaft, of one or more arrivals of gaseous hydrogen 2 and of gaseous oxygen 3 located at the bottom of the reactor, of a gas inlet 4 and of a gas outlet 5 in the upper part of the reactor, of a liquid outlet 9 connected to an exchanger 10, itself connected to a filter 11, the outlet of which being connected to a battery of reverse osmosis membrane 12.
26 - Dispositif pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 24 comprenant un réacteur tubulaire 1 équipé des moyens 6 et 18 pour injecter l'oxygène 3 et l'hydrogène 2 sous forme de petites bulles, d'une sortie 16 reliée à un réservoir 21 muni d'une sortie de gaz 5 relié à l'entrée 3 via la pompe 6, d'une entrée d'oxygène 4, de deux sorties liquide 9 et 15, la sortie 9 étant reliée à un filtre 14, lui-même pouvant éventuellement être relié à une batterie d'osmose inverse. 26 - Device for implementing the method according to any one of claims 1 to 24 comprising a tubular reactor 1 equipped with means 6 and 18 for injecting oxygen 3 and hydrogen 2 in the form of small bubbles, an outlet 16 connected to a reservoir 21 provided with a gas outlet 5 connected to the inlet 3 via the pump 6, an oxygen inlet 4, two liquid outlets 9 and 15, the outlet 9 being connected to a filter 14, which can optionally be connected to a reverse osmosis battery.
EP01907809A 2000-03-17 2001-02-15 Method for directly obtaining hydrogen peroxide Withdrawn EP1263680A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0003438A FR2806399B1 (en) 2000-03-17 2000-03-17 PROCESS FOR THE DIRECT PRODUCTION OF HYDROGEN PEROXIDE
FR0003438 2000-03-17
PCT/FR2001/000449 WO2001068519A1 (en) 2000-03-17 2001-02-15 Method for directly obtaining hydrogen peroxide

Publications (1)

Publication Number Publication Date
EP1263680A1 true EP1263680A1 (en) 2002-12-11

Family

ID=8848206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907809A Withdrawn EP1263680A1 (en) 2000-03-17 2001-02-15 Method for directly obtaining hydrogen peroxide

Country Status (9)

Country Link
US (1) US7060244B2 (en)
EP (1) EP1263680A1 (en)
JP (1) JP4175534B2 (en)
KR (1) KR100584636B1 (en)
CN (1) CN1225403C (en)
AU (2) AU3568501A (en)
CA (1) CA2402803C (en)
FR (1) FR2806399B1 (en)
WO (1) WO2001068519A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052323A1 (en) 2000-10-21 2002-05-02 Degussa Continuous process for hydrogenation
FR2832937B1 (en) 2001-12-04 2004-01-16 Technip France METHOD AND DEVICE FOR CHEMICAL REACTION BETWEEN A GAS AND AT LEAST ONE COMPOUND IN SOLUTION, IMPLEMENTED IN THE PRESENCE OF A SOLID CATALYST
US7067103B2 (en) * 2003-03-28 2006-06-27 Headwaters Nanokinetix, Inc. Direct hydrogen peroxide production using staged hydrogen addition
US7011807B2 (en) * 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
US7144565B2 (en) * 2003-07-29 2006-12-05 Headwaters Nanokinetix, Inc. Process for direct catalytic hydrogen peroxide production
US7122166B2 (en) * 2004-05-11 2006-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Concentration of hydrogen peroxide
US7632775B2 (en) * 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
JP4655755B2 (en) * 2005-05-18 2011-03-23 住友化学株式会社 Method for producing hydrogen peroxide
US7396795B2 (en) * 2005-08-31 2008-07-08 Headwaters Technology Innovation, Llc Low temperature preparation of supported nanoparticle catalysts having increased dispersion
US7718710B2 (en) * 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
US8834357B2 (en) * 2008-11-12 2014-09-16 Boston Scientific Scimed, Inc. Steering mechanism
US20100152022A1 (en) * 2008-12-17 2010-06-17 Qi Sun Catalyst regeneration method
KR101474571B1 (en) 2009-05-13 2014-12-19 에스케이이노베이션 주식회사 Catalyst Comprising Polymer Electrolyte Multilayer and Method for Preparation of the Same
US8986534B2 (en) 2011-11-14 2015-03-24 Saudi Arabian Oil Company Method for removing oxygen from a reaction medium
DE102016204718A1 (en) 2016-03-22 2017-09-28 Siemens Aktiengesellschaft reactor
DE102016204717A1 (en) 2016-03-22 2017-09-28 Siemens Aktiengesellschaft Reactor for carrying out equilibrium-limited reactions
CN107715917B (en) * 2016-08-10 2020-04-21 中国科学院大连化学物理研究所 Phosphorus-containing acidic cross-linked polymer supported palladium nano catalyst, preparation and application thereof
CN112642383A (en) * 2020-12-22 2021-04-13 山东滨农科技有限公司 Synthetic acyl chlorination device of mesotrione that protecting effect is good

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180514A (en) * 1985-06-17 1993-01-19 The Clorox Company Stabilizing system for liquid hydrogen peroxide compositions
US4900468A (en) * 1985-06-17 1990-02-13 The Clorox Company Stabilized liquid hydrogen peroxide bleach compositions
US4772458A (en) * 1986-11-19 1988-09-20 E. I. Du Pont De Nemours And Company Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter
EP0351772A3 (en) * 1988-07-19 1990-07-04 HENKEL CORPORATION (a Delaware corp.) Stabilized hydrogen peroxide
US5194242A (en) * 1990-09-11 1993-03-16 E. I. Du Pont De Nemours And Company Process for the production of hydrogen peroxide from hydrogen and oxygen
JPH0532404A (en) * 1991-02-08 1993-02-09 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
US5641467A (en) 1994-08-16 1997-06-24 Princeton Advanced Technology, Inc. Method for producing hydrogen peroxide from hydrogen and oxygen
US6042804A (en) * 1994-08-16 2000-03-28 Advanced Peroxide Technology, Inc. Method for producing hydrogen peroxide from hydrogen and oxygen
AU710994B2 (en) * 1994-08-16 1999-10-07 Princeton Advanced Technology, Inc. Method and apparatus for producing hydrogen peroxide from hydrogen and oxygen
EP0930269B1 (en) * 1998-01-16 2002-11-27 Ausimont S.p.A. Process for the industrial production of high purity hydrogen peroxide
FR2774674B1 (en) * 1998-02-10 2000-03-24 Atochem Elf Sa PROCESS FOR THE PREPARATION OF AN AQUEOUS SOLUTION OF HYDROGEN PEROXIDE DIRECTLY FROM HYDROGEN AND OXYGEN AND DEVICE FOR IMPLEMENTING SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0168519A1 *

Also Published As

Publication number Publication date
AU3568501A (en) 2001-09-24
CN1411422A (en) 2003-04-16
WO2001068519A1 (en) 2001-09-20
JP4175534B2 (en) 2008-11-05
CN1225403C (en) 2005-11-02
AU2001235685B2 (en) 2004-09-30
FR2806399B1 (en) 2002-09-13
FR2806399A1 (en) 2001-09-21
KR20020092387A (en) 2002-12-11
KR100584636B1 (en) 2006-05-30
CA2402803C (en) 2007-10-16
CA2402803A1 (en) 2001-09-20
US20030086853A1 (en) 2003-05-08
JP2003527283A (en) 2003-09-16
US7060244B2 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
EP1263680A1 (en) Method for directly obtaining hydrogen peroxide
EP1053209B1 (en) Method for preparing an aqueous hydrogen peroxide solution directly from hydrogen and oxygen and implementing device
CA2377127C (en) Multistage reactor, uses and method for making hydrogen peroxide
WO2009043906A1 (en) Method for producing amines by nitrile compound hydrogenation
EP1204477B1 (en) Procces for the production of supported metal catalyst containing a treatment step with aqueous solution containing brome and bromide ions.
WO1998005636A1 (en) Method for purifying lactams
EP3959172A1 (en) Process for preparing bis(fluorosulfonyl) imide
EP0040560B1 (en) Alkane-sulfonyl chlorides preparation
EP2882530B1 (en) Solid catalyst for catalytic ozonation of organic compounds in an aqueous medium
EP0914195B1 (en) Method for separating a catalyst by membrane electrodialysis
WO2023118749A1 (en) Reactivation of a hydrogenation catalyst
WO2020216735A1 (en) Process for preparing bis(fluorosulfonyl) imide
BE1012267A3 (en) Manufacturing method of hydrogen peroxide.
FR2757500A1 (en) PROCESS FOR PRODUCING CHLORINE BIOXIDE
WO2023247908A1 (en) Method for preparing hydrazine hydrate using an absorption column
WO2023247909A1 (en) Method for preparing azine using cascade reactors
BE882302A (en) NOVEL SILVER CATALYST, PROCESS FOR PRODUCING THE SAME AND APPLICATION TO THE OXIDATION OF ETHYLENE TO ETHYLENE OXIDE
FR2796314A1 (en) Multistage reactor used for hydrogen peroxide preparation comprises cylindrical vertical stirred reactor with centrifugal turbines along single vertical agitating shaft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

17Q First examination report despatched

Effective date: 20100527

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150901