EP1258872B1 - High-density disk having a protruding portion on a clamping zone - Google Patents

High-density disk having a protruding portion on a clamping zone Download PDF

Info

Publication number
EP1258872B1
EP1258872B1 EP02005461A EP02005461A EP1258872B1 EP 1258872 B1 EP1258872 B1 EP 1258872B1 EP 02005461 A EP02005461 A EP 02005461A EP 02005461 A EP02005461 A EP 02005461A EP 1258872 B1 EP1258872 B1 EP 1258872B1
Authority
EP
European Patent Office
Prior art keywords
disk
clamping
density
objective lens
clamping zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02005461A
Other languages
German (de)
French (fr)
Other versions
EP1258872A2 (en
EP1258872A3 (en
Inventor
Jin Yong Kim
Kyung Chan Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to EP05013739A priority Critical patent/EP1605451B1/en
Publication of EP1258872A2 publication Critical patent/EP1258872A2/en
Publication of EP1258872A3 publication Critical patent/EP1258872A3/en
Application granted granted Critical
Publication of EP1258872B1 publication Critical patent/EP1258872B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/0014Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture record carriers not specifically of filamentary or web form
    • G11B23/0021Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture record carriers not specifically of filamentary or web form discs
    • G11B23/0028Details
    • G11B23/0035Details means incorporated in the disc, e.g. hub, to enable its guiding, loading or driving
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24097Structures for detection, control, recording operation or replay operation; Special shapes or structures for centering or eccentricity prevention; Arrangements for testing, inspecting or evaluating; Containers, cartridges or cassettes

Definitions

  • the present invention relates to a high-density disk structure preventing collision of ain optical pickup's objective lens with a high-density disk which is placed upside down in a disk device being able to reproduce and record signals from/to a high-density disk such as a high-density digital versatile disk (called "HD-DVD” hereinafter).
  • a high-density disk such as a high-density digital versatile disk (called "HD-DVD” hereinafter).
  • JP 10269620 (abstract) relates to an optical disk having a substrate which passes light beams for reading and writing. With respect to a center plane of the disk, a recording layer is located in a portion of the disk which is distant from a light beam entrance side. A central portion of the substrate has a protrusion on the light beam entrance side.
  • a compact disk is 1.2mm in thickness and 120mm in diameter as shown in Fig. 1 .
  • a CD has a center hole of 15mm diameter and a clamping zone of 44mm, which encircles the center hole where the clamping zone is clamped by a clamper on a spindle or a turntable installed in a disk device.
  • a CD When a CD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 1.2mm from an objective lens of an optical pickup equipped in the disk device.
  • the objective lens for a CD has a numerical aperture (NA) of 0.45, which is relatively small.
  • a digital versatile disk is 1.2mm in thickness and 120mm in diameter like a CD as shown in Fig 2 .
  • a DVD also has a center hole of 15mm diameter and a clamping zone of 44mm encircling the center hole.
  • a DVD When a DVD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 0.6mm from an objective lens of an optical pickup equipped in the disk device.
  • the objective lens for a DVD has a NA of 0.6, which is relatively large.
  • a HD-DVD which is currently being commercialized, is 1.2mm in thickness and 120mm in diameter, like a CD as shown in Fig. 3 .
  • a HD-DVD also has a center hole of 15mm diameter and a clamping zone of 44mm encircling the center hole. If a HD-DVD is normally placed into a disk device, there will be a 0.1 mm gap between its recording layer, which also has pit patterns, and an objective lens of an optical pickup for a HD-DVD, which has the largest NA of 0.85.
  • the optical pickup for a HD-DVD uses a laser beam of shorter wavelength than for a CD or a DVD to record or reproduce signals in high density.
  • HD-DVD uses an objective lens that is situated closer to the recording layer, that uses a laser beam of shorter wavelength, and that has a greater NA. According to these conditions, it is possible to concentrate a stronger intensity of light on a smaller beam spot formed on the high-density pit patterns of the recording layer of the HD-DVD. Consequently, the transmitting distance of a laser beam of shorter wavelength is shortened, and the variation of the laser beam and its spherical aberration are minimized.
  • a HD-DVD 10 is normally placed onto a turntable 11 installed in a disk device as shown in Fig. 4 , a conventional servo-controlling operation for a spindle motor 12 by a motor driving unit 13 and a servo controller 15 is conducted to rotate the placed HD-DVD 10 at a constant and high speed. While the HD-DVD 10 is rotating, a focusing-servo operation is conducted to focus a laser beam for an optical pickup 14 exactly onto the recording layer 9. This operation is performed by moving the objective lens OL of the optical pickup 14 in an up and down direction within an operating distance OD. If a laser beam is exactly in focus, then reproduction (or recording) of high-density pit patterns can be accomplished.
  • the HD-DVD 10 when the HD-DVD 10 is misplaced onto the turntable 11 by, for example, being placed upside down as shown in Fig. 5 , the HD-DVD 10 will still be rotated at a constant and high speed by the combined servo-controlling operation by the spindle motor 12, the motor driving unit 13, and the servo controller 15. However, if the HD-DVD 10 has been placed upside down, the gap between the recording layer 9 and the objective lens OL of the optical pickup 14 is 1.1mm greater in comparison with a normally-placed HD-DVD.
  • the servo controller 15 supervising the focusing-servo operation continues to move the objective lens OL upward to the maximum movable distance 'OD_Max' until the laser beam is correctly focused.
  • the objective lens OL will collide with the misplaced HD-DVD 10. Consequently, the HD-DVD 10, the objective lens OL, and/or the servo-mechanism would be irreparably damaged.
  • Fig. 6 is a sectional view of the first preferred embodiment of a high-density disk structured according to the present invention.
  • the embodiment of a high-density disk for example, a HD-DVD according to the present invention has same dimension as a conventional HD-DVD depicted in Fig. 3 , namely, 1.2mm in thickness and 120mm in diameter, a center hole of 15mm diameter and a clamping zone (or clamping area) of 44mm diameter encircling the center hole.
  • a conventional HD-DVD depicted in Fig. 3 namely, 1.2mm in thickness and 120mm in diameter, a center hole of 15mm diameter and a clamping zone (or clamping area) of 44mm diameter encircling the center hole.
  • the present HD-DVD 20 of Fig. 6 is normally placed into a disk device, its recording layer, which contains pit patterns, would be approximately 0.1mm from the objective lens of an optical pickup as mentioned before.
  • the present HD-DVD 20 in Fig. 6 has a clamping zone structured such that the thickness (P1 and P2) of each side, P1 and P2, are different, namely and preferably P1 is greater than P2.
  • P1 and P2 are created by bisecting the clamping zone with an imaginary longitudinal center plane "c."
  • the opposite side of the recording side which is the recording layer, protrudes above the disk's upper surface, indicated by D1 in Fig. 6 .
  • the clamping zone may have partial regions that are protruding or raised with respect to the recording or reading area of the disk.
  • the height D1 preferably ranges from about 0.1mm to 0.6mm and guarantees a marginal gap between the present disk and the objective lens for preventing a collision between the objective lens of an optical pickup even though the objective lens moves upward to the maximum movable distance on the condition that the present high-density disk has been placed upside down.
  • other suitable height D1 may also be used without deviating from the present invention.
  • the disk 20 structured as above is placed normally on a spindle or turntable 11 equipped in a disk device as shown in Fig. 7 , the non-protruding side of the clamping zone of the present disk 20 is in contact with the turntable 11. Consequently, the disk 20 is normally clamped the same as a conventional disk.
  • a conventional servo-controlling operation characterized by the operation of the spindle motor 12, the motor driving unit 13 and the servo controller 15, is conducted to rotate the right-clamped disk 20 at a constant and high speed.
  • a focusing-servo operation is conducted to focus a laser beam exactly onto a recording layer by moving the objective lens OL of the optical pickup 14 up and down within the operating distance OD. Once the laser beam is exactly focused, reproduction (or recording) of the high-density pit patterns begins.
  • the present disk 20 is placed upside down on the turntable 11 as shown in Fig. 8 , the protruding side of the clamping zone of the present disk 20 is in contact with the turntable 11. Consequently, the surface of the disk 20 is raised by the height D1 over normal placement, which ranges from about 0.1mm to 0.6mm. In other words, the separation distance between the objective lens and the disk 20 has increased due to the added thickness of the clamping zone.
  • the objective lens OL of the optical pickup 14 moves up to the maximum distance to acquire the exact focus while the misplaced disk 20 is rotating at a high speed, the objective lens OL will not collide with the surface of the misplaced disk 20, due to the marginal gap D1 created by the protruding side of the clamping zone. Furthermore, because the recording layer, and the high-density pit patterns contained within, is also further apart from the objective lens OL than in normal placement, the focusing operation will fail. As a result, the misplacement of the disk would be judged as "no disk.” Because a judgment of "no disk" ceases the focusing operation, a collision between the objective lens OL and the disk 20 is avoided.
  • Fig. 9 is a sectional view of the second preferred embodiment of a high-density disk structured according to the present invention.
  • the second embodiment of a high-density disk 21 according to the present invention has a clamping zone structured such that the thickness of each side, P1 and P2, which are created by bisecting the clamping zone with an imaginary longitudinal center plane "c," are different. Namely, P1 is greater than P2, where both P1 and P2 are both greater than one-half of the whole thickness of the disk 21 as shown in Fig. 9 .
  • the side opposite to the recording side protrudes from disk surface a greater distance than of the recording side. As shown in Fig. 9 , the height D1, which ranges approximately from 0.1mm to 0.6mm, is greater than D2, which is located on the recording side.
  • the protruding height D2 of the recording side is preferably determined to be within a range that ensures a successful focus of the pit patterns within the recording layer by the objective lens OL as it moves up and down within the operating distance OD on the condition that the disk 21 has been normally placed.
  • the recording layer of the disk 21 is further apart from the objective lens OL by the small protruding height D2 than that of a conventional disk.
  • the distance D2 is within a range ensuring successful focus as described above, it is possible to focus a light beam on the recording layer so that reproduction (or recording) of the high-density pit patterns can be conducted.
  • the objective lens OL of the optical pickup 14 can move up to the maximum distance to acquire an exact focus while the misplaced disk 21 is rotating at a high speed without colliding with the surface of the misplaced disk 21.
  • the recording layer is further apart from the objective lens OL by the height D1
  • the focusing operation will fail, resulting in that the disk misplacement would be judged as "no disk.” Because judgment of 'no disk' ceases all focusing operations, a collision between the objective lens OL and the disk 21 is avoided.
  • Fig. 12 is a sectional view of the third preferred embodiment of a high-density disk structured according to the present invention.
  • the third embodiment of a high-density disk 22 according to the present invention has a clamping zone structured such that the thickness of each side, P1 and P2, which are created by bisecting the high-density disk 22 with an imaginary longitudinal center plane "c."
  • P1 is greater than P2 and P1 is thicker than one-half of the whole thickness of the disk 22 but P2 is thinner than one-half of the whole thickness of the disk 22.
  • the side opposite to the recording side protrudes from disk surface by the height D1, which ranges from approximately 0.1mm to 0.6mm, whereas the clamping zone on the recording side is indented by a height less than D1.
  • the indented side of the clamping zone which is in contact with a holder of the turntable 11, allows the recording layer of the disk 22 to be appropriately apart from the optical pickup 14.
  • the distance between the recording layer and the objective lens OL for this embodiment is longer within the acceptable range for a conventional disk.
  • the surface of the disk 22 is raised by a height D1, which ranges from 0.1mm to 0.6mm. Therefore, although the objective lens OL of the optical pickup 14 can move up to the maximum distance to acquire an exact focus on the recording layer, the objective lens OL will not collide with the surface of the misplaced disk 22. As described above, the misplacement would result in a reading of "no disk,” which would cease the focusing operation and avoiding a collision between the objective lens OL and the disk 22.
  • the protrusion and/or indentation of the claming zone may be shaped variously other than the aforementioned embodiments, for example, a clamping zone may be protruded or indented partially.
  • the invention may be applicable to a rewritable high-density disk as well as a read-only high-density disk without departing from the sprit or essential characteristics thereof.
  • the present invention may also be applied to any other rewritable or read-only type disk medium.
  • the present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)
  • Optical Head (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

The present invention relates to a high-density disk (20) that is structured to prevent a collision of an optical pickup's objective lens with the high-density disk if the disk is placed upside down in a disk device that is able to record and reproduce signals to/from the high-density disk. A high-density disk recording medium according to the present invention is structured such that, wherein a recording layer having high-density pit patterns is offset from a center plane of disk thickness, both sides of a clamping zone bisected by the center plane have differing thicknesses (P1,P2). One or both sides may protrude from surface of the disk recording medium, or one side of the clamping zone may protrude from the surface while the other side is indented below the surface.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a high-density disk structure preventing collision of ain optical pickup's objective lens with a high-density disk which is placed upside down in a disk device being able to reproduce and record signals from/to a high-density disk such as a high-density digital versatile disk (called "HD-DVD" hereinafter).
  • Description of the Related Art
  • JP 10269620 (abstract) relates to an optical disk having a substrate which passes light beams for reading and writing. With respect to a center plane of the disk, a recording layer is located in a portion of the disk which is distant from a light beam entrance side.
    A central portion of the substrate has a protrusion on the light beam entrance side.
  • A compact disk, usually called "CD," is 1.2mm in thickness and 120mm in diameter as shown in Fig. 1. A CD has a center hole of 15mm diameter and a clamping zone of 44mm, which encircles the center hole where the clamping zone is clamped by a clamper on a spindle or a turntable installed in a disk device.
  • When a CD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 1.2mm from an objective lens of an optical pickup equipped in the disk device. The objective lens for a CD has a numerical aperture (NA) of 0.45, which is relatively small.
  • A digital versatile disk, usually called "DVD," is 1.2mm in thickness and 120mm in diameter like a CD as shown in Fig 2. A DVD also has a center hole of 15mm diameter and a clamping zone of 44mm encircling the center hole.
  • When a DVD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 0.6mm from an objective lens of an optical pickup equipped in the disk device. The objective lens for a DVD has a NA of 0.6, which is relatively large.
  • A HD-DVD, which is currently being commercialized, is 1.2mm in thickness and 120mm in diameter, like a CD as shown in Fig. 3. A HD-DVD also has a center hole of 15mm diameter and a clamping zone of 44mm encircling the center hole. If a HD-DVD is normally placed into a disk device, there will be a 0.1 mm gap between its recording layer, which also has pit patterns, and an objective lens of an optical pickup for a HD-DVD, which has the largest NA of 0.85. The optical pickup for a HD-DVD uses a laser beam of shorter wavelength than for a CD or a DVD to record or reproduce signals in high density.
  • Therefore, in comparison with a CD or a DVD, HD-DVD uses an objective lens that is situated closer to the recording layer, that uses a laser beam of shorter wavelength, and that has a greater NA. According to these conditions, it is possible to concentrate a stronger intensity of light on a smaller beam spot formed on the high-density pit patterns of the recording layer of the HD-DVD. Consequently, the transmitting distance of a laser beam of shorter wavelength is shortened, and the variation of the laser beam and its spherical aberration are minimized.
  • If a HD-DVD 10 is normally placed onto a turntable 11 installed in a disk device as shown in Fig. 4, a conventional servo-controlling operation for a spindle motor 12 by a motor driving unit 13 and a servo controller 15 is conducted to rotate the placed HD-DVD 10 at a constant and high speed. While the HD-DVD 10 is rotating, a focusing-servo operation is conducted to focus a laser beam for an optical pickup 14 exactly onto the recording layer 9. This operation is performed by moving the objective lens OL of the optical pickup 14 in an up and down direction within an operating distance OD. If a laser beam is exactly in focus, then reproduction (or recording) of high-density pit patterns can be accomplished.
  • However, when the HD-DVD 10 is misplaced onto the turntable 11 by, for example, being placed upside down as shown in Fig. 5, the HD-DVD 10 will still be rotated at a constant and high speed by the combined servo-controlling operation by the spindle motor 12, the motor driving unit 13, and the servo controller 15. However, if the HD-DVD 10 has been placed upside down, the gap between the recording layer 9 and the objective lens OL of the optical pickup 14 is 1.1mm greater in comparison with a normally-placed HD-DVD.
  • In this misplacement, a laser beam cannot be focused within the conventional operating distance of the objective lens OL of the pickup 14. Therefore, the servo controller 15 supervising the focusing-servo operation continues to move the objective lens OL upward to the maximum movable distance 'OD_Max' until the laser beam is correctly focused. However, in this case, the objective lens OL will collide with the misplaced HD-DVD 10. Consequently, the HD-DVD 10, the objective lens OL, and/or the servo-mechanism would be irreparably damaged.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a high-density disk structured to prevent the collision of an objective lens of an optical pickup and the high-density disk even though the objective lens moves upward to maximum movable distance, and to enable the detection of the misplacement of a high-density disk as no disk state through a conventional focusing operation on the condition that the high-density disk has been placed upside down.
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. The invention is defined by the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide a further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention, illustrate the preferred embodiments of the invention, and together with the description, serve to explain the principles of the present invention.
    • Fig. 1 shows the structure of a conventional compact disk (CD);
    • Fig. 2 shows the structure of a conventional digital versatile disk (DVD);
    • Fig. 3 shows the structure of a conventional high-density DVD (HD-DVD);
    • Figs. 4 and 5 show normal placement and misplacement of a conventional high-density DVD, respectively;
    • Fig. 6 is a sectional view of the first embodiment of, for example, a high-density disk structured according to the present invention;
    • Figs. 7 and 8 show normal placement and misplacement, respectively, of the first embodiment of a high-density disk structured according to the present invention;
    • Fig. 9 is a sectional view of the second embodiment of a high-density disk structured according to the present invention;
    • Figs. 10 and 11 show normal placement and misplacement, respectively, of the second embodiment of a high-density disk structured according to the present invention;
    • Fig. 12 is a sectional view of the third embodiment of a high-density disk structured according to the present invention; and
    • Figs. 13 and 14 show normal placement and misplacement, respectively, of the third embodiment of a high-density disk structured according to the present invention.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In order that the invention may be fully understood, a preferred embodiment thereof will now be described with reference to the accompanying drawings.
  • Fig. 6 is a sectional view of the first preferred embodiment of a high-density disk structured according to the present invention. The embodiment of a high-density disk, for example, a HD-DVD according to the present invention has same dimension as a conventional HD-DVD depicted in Fig. 3, namely, 1.2mm in thickness and 120mm in diameter, a center hole of 15mm diameter and a clamping zone (or clamping area) of 44mm diameter encircling the center hole. In addition, when the present HD-DVD 20 of Fig. 6 is normally placed into a disk device, its recording layer, which contains pit patterns, would be approximately 0.1mm from the objective lens of an optical pickup as mentioned before.
  • However, the present HD-DVD 20 in Fig. 6 has a clamping zone structured such that the thickness (P1 and P2) of each side, P1 and P2, are different, namely and preferably P1 is greater than P2. P1 and P2 are created by bisecting the clamping zone with an imaginary longitudinal center plane "c." In order for both sides to have different thicknesses, the opposite side of the recording side, which is the recording layer, protrudes above the disk's upper surface, indicated by D1 in Fig. 6. Because it is not necessary for the entire clamping zone to have a different thickness, the clamping zone may have partial regions that are protruding or raised with respect to the recording or reading area of the disk.
  • The height D1 preferably ranges from about 0.1mm to 0.6mm and guarantees a marginal gap between the present disk and the objective lens for preventing a collision between the objective lens of an optical pickup even though the objective lens moves upward to the maximum movable distance on the condition that the present high-density disk has been placed upside down. Alternatively, other suitable height D1 may also be used without deviating from the present invention.
  • If the disk 20 structured as above is placed normally on a spindle or turntable 11 equipped in a disk device as shown in Fig. 7, the non-protruding side of the clamping zone of the present disk 20 is in contact with the turntable 11. Consequently, the disk 20 is normally clamped the same as a conventional disk.
  • After successful clamping of the high-density disk 20, a conventional servo-controlling operation, characterized by the operation of the spindle motor 12, the motor driving unit 13 and the servo controller 15, is conducted to rotate the right-clamped disk 20 at a constant and high speed. Subsequently, a focusing-servo operation is conducted to focus a laser beam exactly onto a recording layer by moving the objective lens OL of the optical pickup 14 up and down within the operating distance OD. Once the laser beam is exactly focused, reproduction (or recording) of the high-density pit patterns begins.
  • However, if the present disk 20 is placed upside down on the turntable 11 as shown in Fig. 8, the protruding side of the clamping zone of the present disk 20 is in contact with the turntable 11. Consequently, the surface of the disk 20 is raised by the height D1 over normal placement, which ranges from about 0.1mm to 0.6mm. In other words, the separation distance between the objective lens and the disk 20 has increased due to the added thickness of the clamping zone.
  • Therefore, although the objective lens OL of the optical pickup 14 moves up to the maximum distance to acquire the exact focus while the misplaced disk 20 is rotating at a high speed, the objective lens OL will not collide with the surface of the misplaced disk 20, due to the marginal gap D1 created by the protruding side of the clamping zone. Furthermore, because the recording layer, and the high-density pit patterns contained within, is also further apart from the objective lens OL than in normal placement, the focusing operation will fail. As a result, the misplacement of the disk would be judged as "no disk." Because a judgment of "no disk" ceases the focusing operation, a collision between the objective lens OL and the disk 20 is avoided.
  • Fig. 9 is a sectional view of the second preferred embodiment of a high-density disk structured according to the present invention. The second embodiment of a high-density disk 21 according to the present invention has a clamping zone structured such that the thickness of each side, P1 and P2, which are created by bisecting the clamping zone with an imaginary longitudinal center plane "c," are different. Namely, P1 is greater than P2, where both P1 and P2 are both greater than one-half of the whole thickness of the disk 21 as shown in Fig. 9. The side opposite to the recording side protrudes from disk surface a greater distance than of the recording side. As shown in Fig. 9, the height D1, which ranges approximately from 0.1mm to 0.6mm, is greater than D2, which is located on the recording side.
  • The protruding height D2 of the recording side is preferably determined to be within a range that ensures a successful focus of the pit patterns within the recording layer by the objective lens OL as it moves up and down within the operating distance OD on the condition that the disk 21 has been normally placed.
  • Therefore, if the high-density disk 21 structured as above is placed normally on the turntable 11, the recording layer of the disk 21 is further apart from the objective lens OL by the small protruding height D2 than that of a conventional disk. However, because the distance D2 is within a range ensuring successful focus as described above, it is possible to focus a light beam on the recording layer so that reproduction (or recording) of the high-density pit patterns can be conducted.
  • If the high-density disk 21 is placed upside down on the turntable 11 as shown in Fig. 11, the surface containing the protruding side of the clamping zone that measures in height D1 is situated higher by the same height D1, similar to the situation depicted in Fig. 8. Consequently, the objective lens OL of the optical pickup 14 can move up to the maximum distance to acquire an exact focus while the misplaced disk 21 is rotating at a high speed without colliding with the surface of the misplaced disk 21. Also, because the recording layer is further apart from the objective lens OL by the height D1, the focusing operation will fail, resulting in that the disk misplacement would be judged as "no disk." Because judgment of 'no disk' ceases all focusing operations, a collision between the objective lens OL and the disk 21 is avoided.
  • Fig. 12 is a sectional view of the third preferred embodiment of a high-density disk structured according to the present invention. The third embodiment of a high-density disk 22 according to the present invention has a clamping zone structured such that the thickness of each side, P1 and P2, which are created by bisecting the high-density disk 22 with an imaginary longitudinal center plane "c." In this case, P1 is greater than P2 and P1 is thicker than one-half of the whole thickness of the disk 22 but P2 is thinner than one-half of the whole thickness of the disk 22. The side opposite to the recording side protrudes from disk surface by the height D1, which ranges from approximately 0.1mm to 0.6mm, whereas the clamping zone on the recording side is indented by a height less than D1.
  • Therefore, if the high-density disk 22 structured as above is placed normally on the turntable 11, the indented side of the clamping zone, which is in contact with a holder of the turntable 11, allows the recording layer of the disk 22 to be appropriately apart from the optical pickup 14. However, the distance between the recording layer and the objective lens OL for this embodiment is longer within the acceptable range for a conventional disk.
  • In this situation, an exact focus on the recording layer is acquired through moving the objective lens OL up and down within the operating distance OD, which can then result in the reproduction (or recording) of high-density pit patterns.
  • If the present disk 22 is placed upside down on the turntable 11 as shown in Fig. 14, the surface of the disk 22 is raised by a height D1, which ranges from 0.1mm to 0.6mm. Therefore, although the objective lens OL of the optical pickup 14 can move up to the maximum distance to acquire an exact focus on the recording layer, the objective lens OL will not collide with the surface of the misplaced disk 22. As described above, the misplacement would result in a reading of "no disk," which would cease the focusing operation and avoiding a collision between the objective lens OL and the disk 22.
  • In addition, the protrusion and/or indentation of the claming zone may be shaped variously other than the aforementioned embodiments, for example, a clamping zone may be protruded or indented partially.
  • The invention may be applicable to a rewritable high-density disk as well as a read-only high-density disk without departing from the sprit or essential characteristics thereof. Alternatively, the present invention may also be applied to any other rewritable or read-only type disk medium. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description.

Claims (9)

  1. An optical disk (20, 21, 22) for storing data having
    first and second surfaces, the second surface being an entrance surface with respect to a recording or reproducing light beam and being parallel to the first surface;
    a clamping area including first and second clamping surfaces;
    a first side having the first surface and the first clamping surface;
    a second side having the second surface and the second clamping surface;
    a center plane (c) being located in the middle between the first surface and the second surface;
    a center hole having a predetermined diameter; and
    a recording layer being located between the center plane (c) and the second surface, characterized in that
    the clamping area has a protruding portion on the first clamping surface,
    wherein the clamping area at the protruding portion has first and second thickness (P1, P2) measured from the center plane of the disk (20, 21, 22), the first thickness (P1) measured in a direction extending from the center plane (c) of the disk (20, 21, 22) toward the first clamping surface of the clamping area and the second thickness (P2) measured in a direction toward the second clamping surface, wherein the first thickness (P1) is greater than the second thickness (P2) and wherein the recording layer is located at about 0.1mm from the second surface.
  2. The optical disk (20, 21, 22) of claim 1, wherein a difference between the first and the second thicknesses (P1, P2) is approximately 0.1mm to 0.6mm.
  3. The optical disk (20) of one of the preceding claims, wherein:
    the second clamping surface is located concentrically within the second side and is level with the second surface of the second side; and
    the first clamping surface is located concentrically within the first side and protrudes from the first surface of the first sides.
  4. The optical disk (21) of one of claims 1 to 2, wherein:
    the first clamping surface is located concentrically within the first side and protrudes from the first surface of the first side; and
    the second clamping surface is located concentrically within the second side and protrudes from the second surface of the second side.
  5. The optical disk (21) of claim 4, wherein the first side clamping zone protrudes from the first surface of the first side a distance (D1) greater than the distance (D2) the second side clamping zone protrudes from the second surface of the second side.
  6. The optical disc (22) of one of claims 1 to 2, comprising:
    the second clamping surface is located concentrically within the second sided and is indented from the second surface of the second side; and
    the first clamping surface is located concentrically within the first side and protrudes from the first surface of the first side.
  7. The optical disk (21, 22) of one of claims 4 to 6, wherein the first side clamping zone protrudes from the first surface of the first side a distance (D1) of about 0.1mm to 0.6mm.
  8. The optical disk (22) of one of claims 6 or 7, wherein the second side clamping zone is indented from the second surface of the second side a distance (D1) of about 0.1mm to 0.6mm.
  9. Recording medium comprising an optical disk (20, 21, 22) according to one of the preceding claims.
EP02005461A 2001-05-14 2002-03-09 High-density disk having a protruding portion on a clamping zone Expired - Lifetime EP1258872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05013739A EP1605451B1 (en) 2001-05-14 2002-03-09 High-density disk recording medium having a protruding side on a clamping zone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0026250A KR100378086B1 (en) 2001-05-14 2001-05-14 High density optical disc having a difference hight of upper and lower surface in clamping area
KR2001026250 2001-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP05013739A Division EP1605451B1 (en) 2001-05-14 2002-03-09 High-density disk recording medium having a protruding side on a clamping zone

Publications (3)

Publication Number Publication Date
EP1258872A2 EP1258872A2 (en) 2002-11-20
EP1258872A3 EP1258872A3 (en) 2004-03-24
EP1258872B1 true EP1258872B1 (en) 2009-10-14

Family

ID=19709456

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05013739A Expired - Lifetime EP1605451B1 (en) 2001-05-14 2002-03-09 High-density disk recording medium having a protruding side on a clamping zone
EP02005461A Expired - Lifetime EP1258872B1 (en) 2001-05-14 2002-03-09 High-density disk having a protruding portion on a clamping zone

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05013739A Expired - Lifetime EP1605451B1 (en) 2001-05-14 2002-03-09 High-density disk recording medium having a protruding side on a clamping zone

Country Status (10)

Country Link
US (2) US7012880B2 (en)
EP (2) EP1605451B1 (en)
JP (1) JP4094877B2 (en)
KR (1) KR100378086B1 (en)
CN (3) CN100372007C (en)
AT (2) ATE445898T1 (en)
DE (2) DE60231924D1 (en)
ES (2) ES2332036T3 (en)
HK (1) HK1100193A1 (en)
PT (1) PT1258872E (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378086B1 (en) * 2001-05-14 2003-03-29 엘지전자 주식회사 High density optical disc having a difference hight of upper and lower surface in clamping area
US6667953B2 (en) * 2001-12-21 2003-12-23 Seth Matson Optical disk protector and method of use
US7617507B2 (en) * 2003-06-03 2009-11-10 Lg Electronics Inc. High-density recording medium and recording and/or reproducing device therefor
KR100944992B1 (en) * 2003-06-03 2010-03-05 엘지전자 주식회사 High density optical disc having a difference thickness between information area and clamping area, and optical disc device therof
KR100987437B1 (en) 2003-08-14 2010-10-13 엘지전자 주식회사 Recording medium,recording method and recording apparatus
CN100449623C (en) * 2003-10-31 2009-01-07 巨擘科技股份有限公司 Optical disk base board, opticaldisk and its manufacturing method
CN100444263C (en) * 2004-04-06 2008-12-17 建兴电子科技股份有限公司 Optical driver with detecting inversing function and method thereof
KR101074737B1 (en) 2005-04-22 2011-10-19 주식회사 히타치엘지 데이터 스토리지 코리아 Light Scribe Disc and method for focusing thereof
FR2887678B1 (en) * 2005-06-28 2007-09-28 Digital Valley UNIVERSAL DIGITAL DISK
JP2007026507A (en) * 2005-07-14 2007-02-01 Matsushita Electric Ind Co Ltd Optical pickup device
EP1923873A1 (en) * 2006-11-15 2008-05-21 ODS Technology GmbH EcoDisc
DE06023769T1 (en) * 2006-11-15 2008-10-23 Ods Technology Gmbh EcoDisc
EP2117003A3 (en) * 2006-11-20 2010-01-13 EcoDisc Technology AG Smart video card
WO2008108676A1 (en) * 2007-03-06 2008-09-12 Andrei Vladimirovich Tropillo Disc information carrier
CN101807414A (en) * 2010-04-21 2010-08-18 江苏新广联科技股份有限公司 Optical disk and method for bonding and thickening clamping area of thin optical disk
EP3699218A1 (en) * 2019-02-22 2020-08-26 Covestro Deutschland AG Novel two-component coating systems containing polyaspartic acid ester
CN113412295B (en) * 2019-02-22 2023-08-25 科思创知识产权两合公司 Novel two-component varnish system comprising polyaspartic esters

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116942A (en) * 1982-12-23 1984-07-06 Olympus Optical Co Ltd Auto-focusing device
JPH0636253B2 (en) 1983-08-18 1994-05-11 シャープ株式会社 Optical memory disc
US5448547A (en) * 1987-12-01 1995-09-05 Mitsui Petrochemical Industries, Ltd. Information recording discs
JPH0731422Y2 (en) * 1987-12-01 1995-07-19 三井石油化学工業株式会社 optical disk
US5235581A (en) * 1990-08-09 1993-08-10 Matsushita Electric Industrial Co., Ltd. Optical recording/reproducing apparatus for optical disks with various disk substrate thicknesses
JPH05225609A (en) 1992-02-06 1993-09-03 Tdk Corp Optical disk base plate and optical disk
JP3377048B2 (en) * 1992-04-24 2003-02-17 パイオニア株式会社 Playback apparatus and playback method for write-once optical disc
JPH0814929B2 (en) * 1992-12-28 1996-02-14 ティアック株式会社 Optical disk drive
JP2973155B2 (en) * 1993-10-29 1999-11-08 株式会社名機製作所 Disk substrate and molding die used for molding the disk substrate
KR100200838B1 (en) * 1995-01-24 1999-06-15 윤종용 Multilayered disk
DE19631319A1 (en) 1995-08-15 1997-02-20 Minnesota Mining & Mfg Optical disc for digital data recording
JPH09204686A (en) 1996-01-29 1997-08-05 Sony Disc Technol:Kk Optical disk and production thereof
JPH10188508A (en) 1996-12-25 1998-07-21 Sony Corp Optical disc
JPH10283683A (en) 1997-02-05 1998-10-23 Sony Corp Optical recording medium and its manufacture
JPH10269621A (en) * 1997-03-25 1998-10-09 Sony Corp Optical disk substrate and optical disk using the substrate
JPH10269620A (en) 1997-03-26 1998-10-09 Sanyo Electric Co Ltd Optical disk
JP3177485B2 (en) * 1997-08-05 2001-06-18 三洋電機株式会社 optical disk
CN1224216A (en) * 1997-11-24 1999-07-28 三星电子株式会社 Method and apparatus for discriminating rewritable discs
JP3988236B2 (en) * 1998-02-13 2007-10-10 ヤマハ株式会社 optical disk
US6214430B1 (en) * 1998-04-10 2001-04-10 Lg Electronics Inc. Disc recording medium and method of fabricating the same
AU1078800A (en) 1998-11-06 2000-05-29 Hitachi Maxell, Ltd. Optical disk, disk substrate, and drive
JP2000251324A (en) 1999-02-26 2000-09-14 Sony Corp Optical recording medium
JP4158262B2 (en) * 1999-02-26 2008-10-01 ソニー株式会社 Information recording / reproducing apparatus and method, and recording medium
JP2000322765A (en) * 1999-05-12 2000-11-24 Sharp Corp Optical recording medium
JP2001006210A (en) * 1999-06-22 2001-01-12 Sony Corp Optical recording medium and disk cartridge
JP2001006264A (en) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd Optical disk recording and reproducing device
JP4215923B2 (en) 2000-02-02 2009-01-28 株式会社ソニー・ディスクアンドデジタルソリューションズ Optical disc and mold for injection compression molding thereof
US6584067B2 (en) 2000-03-03 2003-06-24 Tosoh Corporation Optical recording medium having a recording/reproducing area with a shaped region
EP1152407A3 (en) 2000-04-25 2006-10-25 Matsushita Electric Industrial Co., Ltd. Optical disk, method for producing the same, and apparatus for producing the same
JP2002170279A (en) 2000-11-30 2002-06-14 Sony Corp Optical recording medium, its manufacturing method and injection molding machine
KR100419211B1 (en) 2000-12-20 2004-02-19 삼성전자주식회사 Disk type recording medium
KR100378086B1 (en) 2001-05-14 2003-03-29 엘지전자 주식회사 High density optical disc having a difference hight of upper and lower surface in clamping area
US6865745B2 (en) 2001-08-10 2005-03-08 Wea Manufacturing, Inc. Methods and apparatus for reducing the shrinkage of an optical disc's clamp area and the resulting optical disc
KR100499479B1 (en) 2002-09-10 2005-07-05 엘지전자 주식회사 Digital Versatile Disc of high density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NARAHARA ET AL: "Optical Disc System for Digital Video Recording", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 39, no. 2B, February 2000 (2000-02-01), pages 912 - 919, XP001005912 *

Also Published As

Publication number Publication date
EP1605451A1 (en) 2005-12-14
ES2332036T3 (en) 2010-01-25
CN1266691C (en) 2006-07-26
US20040257941A1 (en) 2004-12-23
EP1605451B1 (en) 2009-04-08
DE60231924D1 (en) 2009-05-20
CN1870154A (en) 2006-11-29
ATE428172T1 (en) 2009-04-15
CN1870154B (en) 2012-05-23
CN1385848A (en) 2002-12-18
HK1100193A1 (en) 2007-09-07
CN100372007C (en) 2008-02-27
DE60233995D1 (en) 2009-11-26
EP1258872A2 (en) 2002-11-20
KR100378086B1 (en) 2003-03-29
JP2002342978A (en) 2002-11-29
US7012880B2 (en) 2006-03-14
US7515524B2 (en) 2009-04-07
PT1258872E (en) 2009-10-22
EP1258872A3 (en) 2004-03-24
US20020167892A1 (en) 2002-11-14
ATE445898T1 (en) 2009-10-15
JP4094877B2 (en) 2008-06-04
ES2321950T3 (en) 2009-06-15
CN1612244A (en) 2005-05-04
KR20020087222A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
EP1258872B1 (en) High-density disk having a protruding portion on a clamping zone
US8199616B2 (en) Assembly method of optical pickup and optical pickup apparatus
EP0810598A2 (en) Optical disk apparatus
JP4141622B2 (en) Pickup device
US7761887B2 (en) Recording medium having a reflector to prevent traveling of beam to recording layer
JP3291444B2 (en) Optical pickup device
JP2896110B2 (en) Optical recording medium identification device
KR100713833B1 (en) Apparatus for detecting an error insert optical disc
JP3575181B2 (en) Recording and / or reproducing apparatus for optical recording medium and optical pickup used therein
EP1488419B1 (en) Servo-controlling method of an optical disk apparatus
JPH1097755A (en) Optical disk recording and reproducing device
KR20040024014A (en) High-density optical disc and method for driving them
KR20030000899A (en) High density optical disc and method for driving them
KR100712775B1 (en) High density optical disc and method for manufacturing them
KR20020087668A (en) High density optical disc and, apparatus for driving them
JP2708024B2 (en) Optical disc identification method
KR20040104284A (en) High density optical disc having a difference thickness between information area and clamping area, and optical disc device therof
KR20100003348A (en) High density optical disc having a difference thickness between information area and clamping area, and optical disc device therof
KR20030000902A (en) High density optical disc and apparatus for driving them
JPH0567362A (en) Magneto-optical recorder
JPH09204729A (en) Optical disk device
JPH11175986A (en) Optical disk recording/reproducing device
KR20030069544A (en) High density optical disk driver, optical recorder thereof
KR20030001946A (en) Apparatus and method for determining an error insert for optical disc
KR20050088631A (en) Method for discriminating thickness of high density-optical disk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040709

17Q First examination report despatched

Effective date: 20041027

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20091016

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60233995

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332036

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100115

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150211

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160222

Year of fee payment: 15

Ref country code: TR

Payment date: 20160304

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160216

Year of fee payment: 15

Ref country code: GB

Payment date: 20160216

Year of fee payment: 15

Ref country code: FR

Payment date: 20160217

Year of fee payment: 15

Ref country code: FI

Payment date: 20160212

Year of fee payment: 15

Ref country code: PT

Payment date: 20160229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160318

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60233995

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309