EP1253930A2 - Method and compositions for treating hepatocellular cancer - Google Patents

Method and compositions for treating hepatocellular cancer

Info

Publication number
EP1253930A2
EP1253930A2 EP01910587A EP01910587A EP1253930A2 EP 1253930 A2 EP1253930 A2 EP 1253930A2 EP 01910587 A EP01910587 A EP 01910587A EP 01910587 A EP01910587 A EP 01910587A EP 1253930 A2 EP1253930 A2 EP 1253930A2
Authority
EP
European Patent Office
Prior art keywords
seq
residues
human
peptide
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01910587A
Other languages
German (de)
French (fr)
Other versions
EP1253930A4 (en
Inventor
James S. Economou
Lisa H. Butterfield
Antoni Ribas Bruguera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of EP1253930A2 publication Critical patent/EP1253930A2/en
Publication of EP1253930A4 publication Critical patent/EP1253930A4/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4715Pregnancy proteins, e.g. placenta proteins, alpha-feto-protein, pregnancy specific beta glycoprotein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46448Cancer antigens from embryonic or fetal origin
    • A61K39/464481Alpha-feto protein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/53Liver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • Hepatocellular carcinoma is the most common type of primary liver cancer, having a global incidence of approximately 1.2 million cases per year. In some areas of the world, such as Southeast Asia and Subsahara Africa, hepatocellular carcinoma is one of the most common types of malignancies. The high frequency of the disease appears to be related to the high incidence of viral hepatitis in these regions.
  • Curative therapy of hepatocellular carcinoma is currently limited to individuals with nonmetastatic disease and involves surgical resection of the tumor with or without liver transplantation. Even surgical resection and transplantation, however, do not cure most tumors because of recurrence after resection. Chemotherapeutic approaches to treatment have been largely ineffective.
  • the treatment should ideally be suitable for use in lesser developed countries that have the highest incidence of the disease. Further, the treatment should be appropriate for use in individuals with unresectable tumors and with metastatic disease.
  • the present invention is a method for preventing or for treating cancer in a mammal, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface.
  • the method comprises the step of creating an immune response in the mammal to at least part of the amino acid sequence of an alpha fetoprotein molecule where the immune response comprises activating alpha fetoprotein peptide specific T lymphocytes against the cancer cells.
  • the alpha fetoprotein peptide specific T lymphocytes are cytotoxic T lymphocytes.
  • the alpha fetoprotein molecule is SEQ ID NO:2.
  • the alpha fetoprotein molecule is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
  • the cancer is hepatocellular carcinoma.
  • the mammal is a human.
  • the step of creating an immune response comprises administering to the mammal one or more than one composition including a peptide comprising at least part of the alpha fetoprotein amino acid sequence.
  • the peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, and residues 542-550 of SEQ ID NO: 2.
  • the peptide is selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235-243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547-556 of SEQ ID NO:2 and residues 555-563 of SEQ ID NO:2.
  • the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO:2.
  • the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2 and residues 325-334 of SEQ ID NO:2.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 542-550 of SEQ ID NO:2.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235- 243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547- 556 of SEQ ID NO:2 and residues 555-563 of SEQ ID NO:2.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO:2.
  • the one or more than one peptide are selected from the dendritic cells pulsed with one or more than one peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, and residues 542-550 of SEQ ID NO:2.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
  • the present invention is an isolated peptide useful for preventing or for treating cancer selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, and residues 325-334 of SEQ ID NO:2.
  • the present invention is a composition for preventing or for treating cancer comprising one or more than one peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, and residues 325- 334 of SEQ ID NO:2 an amount sufficient to create an immune response to alpha fetoprotein in a mammal.
  • the composition can additionally comprising an adjuvant.
  • the present invention is a method for preventing or for treating cancer in a human comprising the step of administering to the human one of these peptides or one of these compositions.
  • the present invention also includes means for preventing or for treating cancer comprising one or more than one peptide selected from the group consisting of residues 137- 145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
  • the present invention is an isolated peptide useful for preventing or for treating cancer having a sequence according to residues 542-550 of SEQ ID NO:2.
  • the present invention is a composition for preventing or for treating cancer comprising a peptide having a sequence according to residues 542-550 of SEQ ID NO:2.
  • the composition can additionally comprising an adjuvant.
  • the present invention is a method for preventing or for treating cancer in a human comprising the step of administering to the human this peptides or one of these compositions.
  • the present invention also includes means for preventing or for treating cancer comprising a peptide having a sequence according to residues 542-550 of SEQ ID NO:2.
  • the present invention is a group of peptides that, alone or in combination, can be used to treat hepatocellular carcinoma.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma by administering one or more than one peptides of the present invention, alone or in combination, or a composition comprising one or more than one peptide of the present invention.
  • the present invention is a method for preventing or for treating hepatocellular carcinoma by administering dendritic cells pulsed with one or more than one peptide of the present invention, or transduced with a recombinant adenoviral (AdV) vector encoding alpha fetoprotein.
  • AdV recombinant adenoviral
  • hepatocellular carcinomas reactivate alpha fetoprotein expression.
  • Both the murine and human T cell repertoires can recognize AFP-derived peptide epitopes in the context of MHC class I. Therefore, despite being exposed to high plasma levels of this oncofetal protein during embryonic development, not all of AFP- specif c T cells are deleted during the ontogeny of the immune system.
  • the present invention involves the determination of the identity of peptides derived from human alpha fetoprotein, SEQ ID NO:2, which when presented in the context of HLA- A*0201, are recognized by the human T cell repertoire.
  • SEQ ID NO:2 human alpha fetoprotein
  • Table 1 four AFP-derived peptides were identified, designated the "dominant" peptides. They are PLFQVPEPV, hAFP 137 . I45 , residues 137-145 of SEQ ID NO:2; FMNKFIYEI, hAFP 158 . 166 , residues 158-166 of SEQ ID NO:2; GLSPNLNRFL, hAFP 325 .
  • Each of the dominant peptides stabilized HLA-A*0201 on T2 cells in a concentration- dependent class I binding assay. The peptides were stable for 2 to 6 hours in an off-kinetics assay. Additionally, each dominant peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors.
  • these hAFP peptide-specific T cells were also capable of recognizing HLA-A*0201 +/AFP positive tumor cells in both cytotoxicity assays and IFNg ELISPOT assays. This information is summarized TABLE 1 SUMMARY OF THE DOMINANT PEPTIDES
  • activation of these T cells can be achieved by presenting these dominant peptides in an immunostimulatory context, including presentation by professional antigen presenting dendritic cells.
  • Dendritic cells transduced with a recombinant adenoviral (AdV) vector encoding alpha fetoprotein cDNA, SEQ ID NO: 1, will process and present the four dominant peptide epitopes in the context of MHC, and will also induce AFP-specific T cell activation.
  • AdV adenoviral
  • AFP peptide-stimulated human and HLA-A*0201/K b mouse T cell responses recognized hAFP- engineered targets and, to a lesser extent, naturally AFP-expressing human hepatocellular carcinoma cells.
  • mass spectrometry was used to identify at least three AFP epitopes from complex mixtures of peptides eluted from HLA-A*0201 + HCC cells.
  • compositions and methods of the present invention are disclosed primarily in the context of using one or more than one of the dominant peptides, hAFP 137 . 145 , residues 137-145 of SEQ ID NO:2; hAFP, 5g . 1(S6 , residues 158-166 of SEQ ID NO:2; AFP 325 _ 334 , residues 325-334 of SEQ ID NO:2; and residues 542-550 of SEQ ID NO:2, it is within the scope of the present invention to use one or more than one of the ten subdominant peptides in place or in conjunction with one or more than one of the four dominant peptides.
  • peptide sequences from hAFP, SEQ ID NO:2, (Genbank accession numbers: J00077, J00076 and V01514) were identified that would potentially bind to HLA-A*0201. These peptides have between nine or ten amino acids in length, the amino acids isoleucine, leucine and methionine in position 2, or can have the amino acids isoleucine, leucine and valine in peptide positions 9 or 10, depending on the peptide length, or both. Seventy-four such peptides were identified using the University of Wisconsin Genetics Computer Group Program "find patterns" to screen the hAFP sequence, SEQ ID NO:2. Each of the 74 peptides were synthesized using standard techniques.
  • T2 T2 (TAP deficient) cells that had been incubated at room temperature the previous night to increase cell surface MHC class I molecule expression were then incubated overnight with each peptide over a range of peptide concentrations, from 0.1 mM-100 mM. Stability of HLA-A*0201 was assayed by flow cytometry after staining the cells with anti-HLA-A2 antibody (BB7.2) and goat antimouse- FITC. The HLA-A*0201 strongly binding Flu matrix peptide (aa 58-66) (Flu) was used as a positive control.
  • HLA-A*0201 LCL were stripped with a mild pH3.2 citrate-phosphate acid buffer.
  • Each peptide was immediately pulsed onto cells at 200 mM for 1 hour in the presence of b2 microglobulin at 3 ug/ml at room temperature. Excess peptide was washed off and the cells were incubated at 37°C for 0, 2, 4 and 6 hours. Cells were washed at the end of each time point and stained for cell surface HLA-A2 expression, then analyzed by flow cytometry.
  • the peptide-MHC class I complex was considered stable if the mean fluorescence intensity increased at least 1.5-fold from cells that were stripped but not pulsed with peptide. All four dominant peptides were stable for 2 to 6 hours in the off-kinetics assay.
  • the four dominant peptides were then subjected to additional immunological and physicochemical studies. These studies included in vitro studies where (1) peptides were used to make AFP peptide-specific human T cell cultures which were both peptide specific and recognized native AFP-expressing cells; (2) AdVhAFP-transduced dendritic cells were used to make AFP specific human T cells which recognized AFP positive cells, as well as AFP negative cells pulsed with the dominant peptides; and in vivo studies where (1) transgenic mice which were immunized with peptides had splenocytes that recognized peptides and AFP positive cells; and (2) AdVhAFP/DC immunized mice recognized AFP positive cells and as well as AFP negative cells pulsed with the dominant peptides.
  • the dominant peptides are immunogenic, that AFP itself is immunogenic, that the dominant peptides are naturally processed and presented on the surface of AFP positive cells and that both AFP/DC or the dominant peptides can be used to generate AFP-specific T cells which make cytokines and kill AFP positive cells. Further, mass spectroscopy was used to physically identify the AFP peptides from the surface of AFP positive hepatocellular carcinoma cells.
  • the AFP peptide-specific bulk T cells also recognized both AFP negative stably transfected and AdVhAFP-transduced HLA-A*0201 melanoma cells (M202) compared to unmodified or empty AdVRR5 transduced parental cells as shown by an increased frequency of IFNg-producing AFP-specific T cells.
  • M202 AdVhAFP-transduced HLA-A*0201 melanoma cells
  • AdVRR5 transduced parental cells as shown by an increased frequency of IFNg-producing AFP-specific T cells.
  • HLA-A*0201 + naturally AFP-expressing hepatocellular carcinoma cell line HepG2 (compared to the HLA-A2-/AFP positive HCC line Hep3B), both cytotoxicity and ELISPOT assays were performed.
  • CTL were generated from AdV transduced dendritic cells.
  • dendritic cells prepared from PBMC incubated with GM-CSF and IL-4 were transduced with AdVhAFP or AdVMARTl at a multiplicity of infection (moi) of 1,000 for 2 hours.
  • Transduced dendritic cells were washed, irradiated and plated at 1-2 xlO 5 cells/ml to serve as stimulators for CTL generation.
  • Autologous non-adherent cells were depleted of CD4, CD 14, CD 19 and CD56+ cells by magnetic bead depletion to prepare CD8+ enriched responder cells (population generally 80% CD8+, not shown).
  • the CD8+ cells were plated with the transduced dendritic cells at 2 x 10 6 cells/ml, in 5 % autologous medium plus IL-7 at 10-25 ng/ml. Cultures were supplemented with IL-2 at 10 U/ml every 3-4 days.
  • CTL were restimulated weekly with fresh, autologous AdV-transduced dendritic cells at a ratio of 1 dendritic cell to 10-20 CD8+ CTL. Most cultures were phenotyped for CD4+ and CD8+ cells on a weekly basis. Each dominant peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Because Ad Vh AFP/DC in vitro stimulated human T cells specifically recognized hAFP-transfected targets in both CTL and ELISPOT assays, the four dominant peptides were next studied to determine whether they were specifically recognized by the AdVhAFP/DC stimulated T cells.
  • CD8-enriched T cells stimulated weekly with AdVhAFP/DC were tested for both cytotoxicity and the frequency of hAFP peptide- specific IFNg cytokine producing cells.
  • AdVhAFP/DC T cell cultures were cytotoxic for JY cells pulsed with each of the four AFP peptides, indicating that CTL to these peptides could be expanded from peripheral blood of normal donors.
  • the AdVhAFP/DC stimulated T cell cultures also had a low frequency of cytokine- producing cells which recognized the A*0201+/AFP positive hepatocellular carcinoma line HepG2 but not the A*0201-/AFP positive HCC line Hep3B.
  • T lymphocytes synthesizing the Thl cytokines IFNg and TNFa were detected, while the Th2 cytokine IL-4 was not detected.
  • IL-10 was also detected when the hepatocellular carcinoma lines were plated without T cells, indicating that production of this cytokine was tumor cell-derived.
  • HLA-A*0201/K b transgenic mice were used to screen the 74 peptides to determine whether any of these peptides were immunogenic, and naturally processed and presented in the context of HLA-A*0201 as follows.
  • HLA-A*0201/K b transgenic female mice were originally purchased from Harlan-Sprague Dawley (Indianapolis, IN US), and are currently bred by the animal facility of the Dept. of Radiation Oncology at University of California, Los Angeles.
  • mice received 100 ⁇ g AFP or control peptide emulsified 1: 1 in complete Freund's adjuvant subcutaneously. After immunization with each peptide emulsified in complete Freund's adjuvant, draining lymph node cells produced IFNg upon recognition of cells stably transfected with hAFP. Furthermore, alpha fetoprotein peptide- specific T cells could be identified in the spleens of mice immunized with dendritic cells transduced with an AFP-expressing adenovirus (AdVhAFP). Thus, the four dominant peptides are naturally processed and presented in the context of class I and are immunogenic.
  • AdVhAFP AFP-expressing adenovirus
  • HLA-A*0201/K b mice were immunized with each dominant peptide pulsed onto syngeneic dendritic cells.
  • IFNg specific ELISPOT assays were performed with splenocytes restimulated in vitro with either the immunizing dominant peptide (or MART-1 peptide) or with Jurkat/AFP or Jurkat/MART transfected cell lines. Immunization with each hAFP peptide and subsequent restimulation with either peptide or Jurkat/AFP induced large numbers of AFP-specific IFNg-producing cells. Lymphocytes from PBS injected mice showed neither cytotoxicity nor IFNg production regardless of restimulation. Mice immunized with MART-1 27 . 35 peptide produced MART-1 specific responses but no AFP peptide responses.
  • dendritic cells were prepared from bone marrow progenitors by differentiation in GM-CSF and IL-4 and were transduced with a recombinant AdV vector (AdVhAFP) that included hAFP cDNA.
  • AdVhAFP AdV vector
  • SEQ ID NO:l a recombinant AdV vector
  • In vitro cultured dendritic cells were transduced in RPMI/2% FCS at an moi of 100. Transduction was carried out for two hours at 37°C. The dendritic cells were then washed and resuspended at 5 x 10 5 dendritic cells per 0.2 ml PBS per animal for injection. In all cases viability exceeded 95%.
  • mice Two weeks after immunization, splenocytes from mice were restimulated with Jurkat cells stably transfected with hAFP (Jurkat/AFP) or with MART-1 (Jurkat/MART). The frequency of AFP-specific vs. MART-1 specific IFNg-release was determined by ELISPOT averaging three independent experiments where p ⁇ 0.02. Cytotoxicity was assayed against Jurkat/AFP and Jurkat/MART in a 5 hour 51 Cr-release assay. Next, HPLC and mass spectrometric identification was performed on the dominant peptides eluted from an HLA-A*0201 human hepatocellular carcinoma line. A summary of the results of these analyses are present in Table 2, below.
  • HepG2 and Hep3B cells were washed three times with PBS before being incubated with 5 ml of citrate-phosphate buffer at pH 3.2 for 1 minute. The suspension was centrifuged (800x g for 5 minutes) and a total of 500 ml of cell-free supernatant was collected for each cell line. The materials were lyophilized to dryness and stored at -20° C. Lyophilized materials were redissolved in 30 ml of water/acetonitrile/triflouroacetic acid (W/A/TFA, 95/5/0.1 all by vol.).
  • W/A/TFA water/acetonitrile/triflouroacetic acid
  • This solution was pumped onto an analytical reverse phase HPLC column (Keystone Scientific C lg Betasil, 250 mm x 2 mm, 5 mm particle size, 100 A pore size) equilibrated in W/A/TFA, at a flow rate of 0.2 ml/min.
  • Column eluate absorbance was monitored at 215 and 280 nm and 1 minute fractions were collected.
  • the retention times of the synthetic peptides with amino acid sequences corresponding to the immunostimulatory peptides were obtained using the same separation gradient on a separate column.
  • MALDI-TOF mass spectrometry was performed to analyze HPLC fractionated peptides acid-eluted from the AFP producing hepatocellular carcinoma cell lines HepG2 (HLA-A2 + ) and Hep3B (HLA-A2 ).
  • a Voyager-REACTION PRODUCTS PerSeptive Biosystems, Framingham, MA
  • Matrix Assisted Laser Deso ⁇ tion lonization/Time-Of-Flight (MALDI-TOF) instrument was used to acquire the mass spectra. The instrument uses a stainless-steel target, on which the samples are deposited and dried. All spectra were externally calibrated with insulin, resulting in mass accuracy typically within ⁇ 0.1 % .
  • Lyophilized HPLC fractions were resuspended in 10 ⁇ l of 70% acetonitrile with 0.1 % TFA. One ⁇ l of this material was spotted along with 1 ⁇ l of the matrix a-cyano-4-hydroxycinnamic acid (Sigma, 10 mg/ml in 70% ACN/0.1 %TFA). Spectra were obtained by scanning from m/z 500-7000. The MALDI analysis of the HPLC fractions established that almost all fractions contained up to 20 different peptides in the mass range from 700 to 1500 Da, although frequently with a few dominating signals.
  • the calculated (M+H) + of hAFP 542 . 55o was 975.5 and the retention time of the synthetic peptide with amino acids corresponding to hAFP ⁇ o, residues 542-550 of SEQ ID NO: 2, was 21.2 minutes. Furthermore, no signal at m/z of 975.5+1 was observed in samples with matrix alone and in HPLC fractions 18 to 22 from the Hep3B elution. Similarly, peaks with m/z corresponding to the calculated (M+H) + of hAFP, 58 . 166 , residues 158-166 of SEQ ID NO:2 and hAFP 325 .
  • a method for preventing or for treating patients with hepatocellular carcinoma comprises selecting a suitable patient, such as an HLA-A*0201 + patient having AFP positive hepatocellular carcinoma.
  • the patient is administered one or more than one peptides of the present invention.
  • the peptides are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma.
  • the peptides are a combination of hAFP 137 . ⁇ 45 , residues
  • the one or more than one peptides are administered between 2 times and 5 times. In a particularly preferred embodiment, the peptides are administered 3 times. In another preferred embodiment, the one or more than one peptides are administered 3 times, at 2 week intervals.
  • the peptides are administered intradermally, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure.
  • each of the one or more than one peptides are administered emulsified in 0.5 ml of Montanide ISA-51, such that when four peptides are combined, they are administered emulsified in a total of 2 ml of Montanide ISA-51.
  • the emulsified peptide or peptides are divided into four equal does and each dose is administered in a separate site.
  • the one or more than one peptides are administered in a dose of between about 50 ⁇ g and 2000 ⁇ g each.
  • the one or more than one peptides are administered in a dose of between about 100 ⁇ g and 1000 ⁇ g each.
  • the one or more than one peptides are administered in a dose of between about 500 ⁇ g.
  • the method and compositions of the present invention were used to treat several patients with AFP positive/ A2.1 + hepatocellular carcinoma.
  • Each of the patients were immunized with the four peptides hAFP, 37 ., 45 , residues 137-145 of SEQ ID NO:2; hAFP 158 . 166 , residues 158-166 of SEQ ID NO:2; hAFP 325 _ 334 , residues 325-334 of SEQ ID NO:2; and hAFP ⁇ .sso, residues 542-550 of SEQ ID NO:2, according to the this-method.
  • the peptides were emulsified in 0.5 ml of Montanide ISA-51 and combined for a total of 2 ml.
  • the emulsified peptides were divided into four equal doses and each dose was administered in a separate site.
  • Peripheral T cell responses are measured by ELISPOT and tetramer assays. These trials show that the four AFP-derived peptides are immunogenic in vivo, even in patients whose levels of AFP in serum were extremely high before immunization.
  • the first patient, designated AFP-A1 had a recurrent, unresectable AFP positive/ A2.1 + hepatocellular carcinoma. He was administered three immunizations of 100 ⁇ g each of the four peptides in Montanide ISA at two week intervals.
  • AFP 542 -specific T cells could not be assessed by tetramer as an AFP ⁇ peptide tetramer could not be folded by the facility where these reagents are prepared.
  • In vivo responses indicated clear recognition of hAFP 137 . 145 , residues 137-145 of SEQ ID NO:2; hAFP, 58 . 166 , residues 158-166 of SEQ ID NO:2; and hAFP 542 . 55 o, residues 542-550 of SEQ ID NO:2; and a trend towards recognition of hAFP 325 . 334 , residues 325-334 of SEQ ID NO:2 after the second and third immunization.
  • AFP-A2 The second patient, designated AFP-A2 was a 70 yr old Caucasian male with a history of ethanol-induced liver cirrhosis, who was negative for both Hepatitis B and C. He presented with bloating and was found to have an 8 cm mass in the left lobe of his liver. His AFP level at presentation was 10,400 ng/ml. A liver biopsy revealed a well- differentiated hepatocellular carcinoma in a cirrhotic liver. He was begun on an experimental trial of the antifungal agent FV-462 but had disease progression and ototoxicity. Seven months after presentation, he was then begun on a combination of the four peptides hAFP 137 .
  • a method for preventing or for treating patients with hepatocellular carcinoma comprises selecting a suitable patient, such as an HLA-A*0201 + patient having AFP positive hepatocellular carcinoma.
  • the patient is administered dendritic cells pulsed with one or more than one peptide of the present invention.
  • the dendritic cells are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma.
  • the dendritic cells are pulsed with a combination of hAFP 137 . 145 , residues 137-145 of SEQ ID NO:2; hAFP 158 . 166 , residues 158-166 of SEQ ID NO:2;
  • the dendritic cells are administered between 2 times and 5 times. In a particularly preferred embodiment, the dendritic cells are administered 3 times. In another preferred embodiment, the dendritic cells are administered 3 times, at 2 week intervals.
  • the dendritic cells are administered intradermally, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure.
  • the dendritic cells are administered in a dose of between about 1x10 s and lxlO 8 .
  • the dendritic cells are administered in a dose of between about lxlO 6 and lxlO 7 .
  • the dendritic cells are administered in a dose of about 5xl0 6 .
  • the dendritic cells are prepared from adherent, autologous peripheral blood mononuclear cells exposed for 1 week in tissue culture to granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), according to techniques known to those with skill in the art.
  • GM-CSF granulocyte-macrophage colony stimulating factor
  • IL-4 interleukin-4
  • Mononuclear cells are isolated from cells obtained from a single leukapheresis by Ficoll-Hypaque centrifugation and stored frozen in liquid nitrogen until used to generate dendritic cells.
  • the thawed mononuclear cells are washed once in saline and plated at 2-4 x 10 7 cells/25cm 2 Costar flasks at a concentration of 2.5 - 5 x 10 6 viable cells/ml (RPMI 1640 + 5% heat-inactivated autologous serum + Gentamycin). After allowing adherence for 2 hours at 37°C, nonadherent cells are removed by washing with saline. Adherent cells are cultured in complete medium for 7 days in the presence of rhGM-CSF (800 U/ml) and rhIL-4 (500 U/ml). Clinical grade GM-CSF was provided by Immunex and IL-4 by Schering-Plough.
  • subjects Before administering the full dose, subjects will receive a skin test with 1/100 of their dose in 0.1 ml of saline. After a 30 minute observation period, they will receive the full dose of AFP peptide-pulsed dendritic cells injected intradermally in 0.1 ml saline in the flank region below the axilla, or below or above the groin. Patients are monitored for 2 hours post-immunization. Preferrably, patients receive pretreatment with 50 mg diphenhydramine and 650 mg of Tylenol, both orally. EXAMPLE ffl
  • a method for preventing or for treating patients with hepatocellular carcinoma comprises selecting a suitable patient, such as an HLA-A*0201 + patient having AFP positive hepatocellular carcinoma.
  • a suitable patient such as an HLA-A*0201 + patient having AFP positive hepatocellular carcinoma.
  • the patient is administered human AFP adenovirus-transduced dendritic cells.
  • the dendritic cells are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma.
  • the dendritic cells are administered between 2 times and 5 times. In a particularly preferred embodiment, the dendritic cells are administered 3 times. In another preferred embodiment, the dendritic cells are administered 3 times, at 2 week intervals.
  • the dendritic cells are administered intradermally in the flank region below the axillae or the groin, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure.
  • the dendritic cells are administered in a dose of between about lxlO 5 and lxlO 8 .
  • the dendritic cells are administered in a dose of between about lxlO 6 and lxlO 7 .
  • the dendritic cells are administered in a dose of about 5xl0 6 .
  • Mononuclear cells are isolated from a leukapheresis product by Ficoll-Hypaque centrifugation and stored in 10% DMSO/20% autologous serum.
  • cells are thawed, washed once in PBS and plated at 2-4x10 7 cells/25cm 2 Costar flask at a concentration of 2.5-5xl0 6 viable cells/ml (RPMI 1640 + 5% heat-inactivated autologous serum). After allowing adherence for 2 hours at 37°C, nonadherent cells are gently removed by washing with PBS.
  • Adherent cells are cultured in complete medium for 7 days in the presence of rhGM-CSF (800 U/ml) and rhIL-4 (500 U/ml).
  • Clinical grade GM-CSF and IL-4 are provided by Schering-Plough.
  • AdVhAFP is an El -deleted replication-deficient type 5 adenoviral vector in which the human AFP cDNA is driven by the CMV enhancer/promoter. Viral titers for each final viral production lot are provided based on both genomic DNA quantitation and infectious titer. A ratio in the product of viral particles to biologically active virus of less than 100: 1 are deemed acceptable.
  • Patients are administered AdVhAFP transduced DC injected ID in 0.1 ml normal saline in the flank region below the axillae or the groin. Patients are monitored for 2 hours post-immunization. Preferrably, patients receive pretreatment with 50 mg diphenhydramine and 650 mg of Tylenol, both orally.

Abstract

A method for preventing or for treating cancer in a mammal, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of creating an immune response in the mammal to at least part of the amino acid sequence of an alpha fetoprotein molecule, where the immune response comprises activating alpha fetoprotein peptide specific T lymphocytes against the cancer cells. A composition for preventing or for treating cancer comprising a peptide having at least part of the sequence of alpha fetoprotein.

Description

METHOD AND COMPOSITIONS FOR TREATING HEPATOCELLULAR CANCER
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with United States Government support under subcontract number NIH/NCI ROI CA 77623. The United States Government has certain rights in this invention.
CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of United States Patent Application 60/181,966, entitled Method And Compositions For Preventing And Treating Hepatocellular Cancer, filed February 10, 2000; and this application is a continuation-in-part of United States Patent Application 09/660,252, entitled Hepatocellular Cancer Treatment Using Substituted
Alphafetoprotein, filed September 12, 2000; and is a continuation-in-part of United States Patent Application 09/662,505, entitled Hepatocellular Cancer Treatment Using Alphafetoprotein cDNA, filed September 14, 2000; the contents of which are incorporated by reference herein in their entirety. BACKGROUND
Primary liver cancer is a major cause of cancer deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, having a global incidence of approximately 1.2 million cases per year. In some areas of the world, such as Southeast Asia and Subsahara Africa, hepatocellular carcinoma is one of the most common types of malignancies. The high frequency of the disease appears to be related to the high incidence of viral hepatitis in these regions.
Curative therapy of hepatocellular carcinoma is currently limited to individuals with nonmetastatic disease and involves surgical resection of the tumor with or without liver transplantation. Even surgical resection and transplantation, however, do not cure most tumors because of recurrence after resection. Chemotherapeutic approaches to treatment have been largely ineffective.
Therefore, there remains a need for an effective treatment for hepatocellular carcinoma. The treatment should ideally be suitable for use in lesser developed countries that have the highest incidence of the disease. Further, the treatment should be appropriate for use in individuals with unresectable tumors and with metastatic disease. SUMMARY
In one embodiment, the present invention is a method for preventing or for treating cancer in a mammal, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface. The method comprises the step of creating an immune response in the mammal to at least part of the amino acid sequence of an alpha fetoprotein molecule where the immune response comprises activating alpha fetoprotein peptide specific T lymphocytes against the cancer cells. In one embodiment, the alpha fetoprotein peptide specific T lymphocytes are cytotoxic T lymphocytes. In a preferred embodiment, the alpha fetoprotein molecule is SEQ ID NO:2. In a particularly preferred embodiment, the alpha fetoprotein molecule is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2. In one embodiment, the cancer is hepatocellular carcinoma. In another embodiment, the mammal is a human.
In a preferred embodiment, the step of creating an immune response comprises administering to the mammal one or more than one composition including a peptide comprising at least part of the alpha fetoprotein amino acid sequence. In a particularly preferred embodiment, the peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, and residues 542-550 of SEQ ID NO: 2. In another preferred embodiment, the peptide is selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235-243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547-556 of SEQ ID NO:2 and residues 555-563 of SEQ ID NO:2. In another preferred embodiment, the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO:2. In yet another preferred embodiment, the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2 and residues 325-334 of SEQ ID NO:2.
In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 542-550 of SEQ ID NO:2.
In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including a peptide selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235- 243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547- 556 of SEQ ID NO:2 and residues 555-563 of SEQ ID NO:2.
In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO:2. The one or more than one peptide are selected from the dendritic cells pulsed with one or more than one peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, and residues 542-550 of SEQ ID NO:2. In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
In another embodiment, the present invention is an isolated peptide useful for preventing or for treating cancer selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, and residues 325-334 of SEQ ID NO:2. In a preferred embodiment, the present invention is a composition for preventing or for treating cancer comprising one or more than one peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, and residues 325- 334 of SEQ ID NO:2 an amount sufficient to create an immune response to alpha fetoprotein in a mammal. The composition can additionally comprising an adjuvant. In another embodiment, the present invention is a method for preventing or for treating cancer in a human comprising the step of administering to the human one of these peptides or one of these compositions. The present invention also includes means for preventing or for treating cancer comprising one or more than one peptide selected from the group consisting of residues 137- 145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
In another embodiment, the present invention is an isolated peptide useful for preventing or for treating cancer having a sequence according to residues 542-550 of SEQ ID NO:2. In a preferred embodiment, the present invention is a composition for preventing or for treating cancer comprising a peptide having a sequence according to residues 542-550 of SEQ ID NO:2. The composition can additionally comprising an adjuvant. In another embodiment, the present invention is a method for preventing or for treating cancer in a human comprising the step of administering to the human this peptides or one of these compositions.
The present invention also includes means for preventing or for treating cancer comprising a peptide having a sequence according to residues 542-550 of SEQ ID NO:2.
DESCRIPTION In one embodiment, the present invention is a group of peptides that, alone or in combination, can be used to treat hepatocellular carcinoma. In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma by administering one or more than one peptides of the present invention, alone or in combination, or a composition comprising one or more than one peptide of the present invention. In another embodiment, the present invention is a method for preventing or for treating hepatocellular carcinoma by administering dendritic cells pulsed with one or more than one peptide of the present invention, or transduced with a recombinant adenoviral (AdV) vector encoding alpha fetoprotein.
Approximately 80% of hepatocellular carcinomas reactivate alpha fetoprotein expression. Both the murine and human T cell repertoires can recognize AFP-derived peptide epitopes in the context of MHC class I. Therefore, despite being exposed to high plasma levels of this oncofetal protein during embryonic development, not all of AFP- specif c T cells are deleted during the ontogeny of the immune system.
The present invention involves the determination of the identity of peptides derived from human alpha fetoprotein, SEQ ID NO:2, which when presented in the context of HLA- A*0201, are recognized by the human T cell repertoire. As summarized in Table 1, below, four AFP-derived peptides were identified, designated the "dominant" peptides. They are PLFQVPEPV, hAFP137.I45, residues 137-145 of SEQ ID NO:2; FMNKFIYEI, hAFP158.166, residues 158-166 of SEQ ID NO:2; GLSPNLNRFL, hAFP325.334, residues 325-334 of SEQ ID NO:2; and GVALQTMKQ, hAFPM2.550, residues 542-550 of SEQ ID NO:2. Each possess one or two anchor residues. Each of the dominant peptides stabilized HLA-A*0201 on T2 cells in a concentration- dependent class I binding assay. The peptides were stable for 2 to 6 hours in an off-kinetics assay. Additionally, each dominant peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Importantly, these hAFP peptide-specific T cells were also capable of recognizing HLA-A*0201 +/AFP positive tumor cells in both cytotoxicity assays and IFNg ELISPOT assays. This information is summarized TABLE 1 SUMMARY OF THE DOMINANT PEPTIDES
Peptide Location Sequence Anchors T2 binding Relative Off concentration kinetics hAFP 137-145 137-145 PLFQVPEPV 2 2.5 mM 4 hours hAFP 158-166 158-166 FMNKFIYEI 2 0.5 mM 4 hours hAFP 325-334 325-334 GLSPNLNRFL 2 10 mM 2 hours hAFP 542-550 542-550 GVALQTMKQ 1 > 100mM 6 hours
As demonstrated in the present invention, activation of these T cells can be achieved by presenting these dominant peptides in an immunostimulatory context, including presentation by professional antigen presenting dendritic cells. Dendritic cells transduced with a recombinant adenoviral (AdV) vector encoding alpha fetoprotein cDNA, SEQ ID NO: 1, will process and present the four dominant peptide epitopes in the context of MHC, and will also induce AFP-specific T cell activation. Similarly immunized HLA-A*0201/Kb mice also recognized AFP peptide-pulsed cells in cytokine release assays. Further, AFP peptide-stimulated human and HLA-A*0201/Kb mouse T cell responses recognized hAFP- engineered targets and, to a lesser extent, naturally AFP-expressing human hepatocellular carcinoma cells. Finally, mass spectrometry was used to identify at least three AFP epitopes from complex mixtures of peptides eluted from HLA-A*0201 + HCC cells. Thus, multiple lines of evidence are provided that each of these four dominant peptides is immunogenic and naturally processed and presented in the context of HLA-A*0201.
Ten other peptides, designated "subdominant" peptides, were identified that had either weak or less reproducible responses but were positive in more than one type of assay. These ten peptides are MKWVESIFL, residues 1-9 of SEQ ID NO:2; ILLWAARYD, residues 178- 186 of SEQ ID NO:2; LLNQHACAV, residues 218-226 of SEQ ID NO:2; FQAITVTKL, residues 235-243 of SEQ ID NO:2; TTLERGQCπ, residues 306-315 of SEQ ID NO:2; CIRHEMTPV, residues 485-493 of SEQ ID NO:2; PVNPGVGQC, residues 492-500 of SEQ ID NO:2; NRRPCFSSLV, residues 507-516 of SEQ ID NO:2; TMKQEFLINL, residues 547-556 of SEQ ID NO:2; and NLVKQKPQI, residues 555-563 of SEQ ID NO:2. Though the compositions and methods of the present invention are disclosed primarily in the context of using one or more than one of the dominant peptides, hAFP137.145, residues 137-145 of SEQ ID NO:2; hAFP,5g.1(S6, residues 158-166 of SEQ ID NO:2; AFP325_334, residues 325-334 of SEQ ID NO:2; and residues 542-550 of SEQ ID NO:2, it is within the scope of the present invention to use one or more than one of the ten subdominant peptides in place or in conjunction with one or more than one of the four dominant peptides. The identification of the dominant peptides and subdominant peptides will now be discussed in greater detail. First, peptide sequences from hAFP, SEQ ID NO:2, (Genbank accession numbers: J00077, J00076 and V01514) were identified that would potentially bind to HLA-A*0201. These peptides have between nine or ten amino acids in length, the amino acids isoleucine, leucine and methionine in position 2, or can have the amino acids isoleucine, leucine and valine in peptide positions 9 or 10, depending on the peptide length, or both. Seventy-four such peptides were identified using the University of Wisconsin Genetics Computer Group Program "find patterns" to screen the hAFP sequence, SEQ ID NO:2. Each of the 74 peptides were synthesized using standard techniques.
Each of the 74 peptide candidates were tested for concentration dependent binding to T2 cells in an HLA-A*0201 stabilization assay. T2 (TAP deficient) cells that had been incubated at room temperature the previous night to increase cell surface MHC class I molecule expression were then incubated overnight with each peptide over a range of peptide concentrations, from 0.1 mM-100 mM. Stability of HLA-A*0201 was assayed by flow cytometry after staining the cells with anti-HLA-A2 antibody (BB7.2) and goat antimouse- FITC. The HLA-A*0201 strongly binding Flu matrix peptide (aa 58-66) (Flu) was used as a positive control.
Next, MHC-peptide complex stability was determined using an off-kinetics assay. HLA-A*0201 LCL were stripped with a mild pH3.2 citrate-phosphate acid buffer. Each peptide was immediately pulsed onto cells at 200 mM for 1 hour in the presence of b2 microglobulin at 3 ug/ml at room temperature. Excess peptide was washed off and the cells were incubated at 37°C for 0, 2, 4 and 6 hours. Cells were washed at the end of each time point and stained for cell surface HLA-A2 expression, then analyzed by flow cytometry. The peptide-MHC class I complex was considered stable if the mean fluorescence intensity increased at least 1.5-fold from cells that were stripped but not pulsed with peptide. All four dominant peptides were stable for 2 to 6 hours in the off-kinetics assay.
The four dominant peptides were then subjected to additional immunological and physicochemical studies. These studies included in vitro studies where (1) peptides were used to make AFP peptide-specific human T cell cultures which were both peptide specific and recognized native AFP-expressing cells; (2) AdVhAFP-transduced dendritic cells were used to make AFP specific human T cells which recognized AFP positive cells, as well as AFP negative cells pulsed with the dominant peptides; and in vivo studies where (1) transgenic mice which were immunized with peptides had splenocytes that recognized peptides and AFP positive cells; and (2) AdVhAFP/DC immunized mice recognized AFP positive cells and as well as AFP negative cells pulsed with the dominant peptides. These studies showed that the dominant peptides are immunogenic, that AFP itself is immunogenic, that the dominant peptides are naturally processed and presented on the surface of AFP positive cells and that both AFP/DC or the dominant peptides can be used to generate AFP-specific T cells which make cytokines and kill AFP positive cells. Further, mass spectroscopy was used to physically identify the AFP peptides from the surface of AFP positive hepatocellular carcinoma cells.
First, repetitive peptide stimulation of naϊve HLA-A*0201 human T cell cultures was performed to demonstrate peptide immunogenicity in the context of the human T cell repertoire and the ability of peptide-specific T cells to recognize AFP-transfected targets. Bulk T cell cultures were generated from PBMC pulsed with each dominant AFP-derived peptide (supplemented with KLH, IL-7 and IL-2) and were tested between weeks 3 and 7 of expansion for the ability to recognize both peptide-pulsed and AFP-expressing targets. These cultures expanded peptide-specific T cells, as evidenced by the ability to secrete IFNg upon recognition of specific peptide-pulsed JY cells and not control MART- 127.35 pulsed JY in the ELISPOT assay. The AFP peptide-specific bulk T cells also recognized both AFP negative stably transfected and AdVhAFP-transduced HLA-A*0201 melanoma cells (M202) compared to unmodified or empty AdVRR5 transduced parental cells as shown by an increased frequency of IFNg-producing AFP-specific T cells. In order to assess the ability to recognize the HLA-A*0201 + , naturally AFP-expressing hepatocellular carcinoma cell line HepG2 (compared to the HLA-A2-/AFP positive HCC line Hep3B), both cytotoxicity and ELISPOT assays were performed.
Additionally, CTL were generated from AdV transduced dendritic cells. Briefly, dendritic cells prepared from PBMC incubated with GM-CSF and IL-4 were transduced with AdVhAFP or AdVMARTl at a multiplicity of infection (moi) of 1,000 for 2 hours. Transduced dendritic cells were washed, irradiated and plated at 1-2 xlO5 cells/ml to serve as stimulators for CTL generation. Autologous non-adherent cells were depleted of CD4, CD 14, CD 19 and CD56+ cells by magnetic bead depletion to prepare CD8+ enriched responder cells (population generally 80% CD8+, not shown). The CD8+ cells were plated with the transduced dendritic cells at 2 x 106 cells/ml, in 5 % autologous medium plus IL-7 at 10-25 ng/ml. Cultures were supplemented with IL-2 at 10 U/ml every 3-4 days. The CD8+
CTL were restimulated weekly with fresh, autologous AdV-transduced dendritic cells at a ratio of 1 dendritic cell to 10-20 CD8+ CTL. Most cultures were phenotyped for CD4+ and CD8+ cells on a weekly basis. Each dominant peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Because Ad Vh AFP/DC in vitro stimulated human T cells specifically recognized hAFP-transfected targets in both CTL and ELISPOT assays, the four dominant peptides were next studied to determine whether they were specifically recognized by the AdVhAFP/DC stimulated T cells. After 7 to 21 days of culture, CD8-enriched T cells stimulated weekly with AdVhAFP/DC were tested for both cytotoxicity and the frequency of hAFP peptide- specific IFNg cytokine producing cells. AdVhAFP/DC T cell cultures were cytotoxic for JY cells pulsed with each of the four AFP peptides, indicating that CTL to these peptides could be expanded from peripheral blood of normal donors. After restimulation with autologous peptide pulsed LCL or JY cells, these bulk cultures also contained a much higher frequency of IFNg-secreting cells specific for AFP peptides compared to indicating that, in addition to hAFPs^.^o, the three other dominant peptides are also naturally processed and presented by AdVhAFP-transduced dendritic cells.
The AdVhAFP/DC stimulated T cell cultures also had a low frequency of cytokine- producing cells which recognized the A*0201+/AFP positive hepatocellular carcinoma line HepG2 but not the A*0201-/AFP positive HCC line Hep3B. T lymphocytes synthesizing the Thl cytokines IFNg and TNFa were detected, while the Th2 cytokine IL-4 was not detected. IL-10 was also detected when the hepatocellular carcinoma lines were plated without T cells, indicating that production of this cytokine was tumor cell-derived.
The HLA-A*0201/Kb transgenic mice were used to screen the 74 peptides to determine whether any of these peptides were immunogenic, and naturally processed and presented in the context of HLA-A*0201 as follows. HLA-A*0201/Kb transgenic female mice were originally purchased from Harlan-Sprague Dawley (Indianapolis, IN US), and are currently bred by the animal facility of the Dept. of Radiation Oncology at University of California, Los Angeles.
For peptide immunizations, mice received 100 μg AFP or control peptide emulsified 1: 1 in complete Freund's adjuvant subcutaneously. After immunization with each peptide emulsified in complete Freund's adjuvant, draining lymph node cells produced IFNg upon recognition of cells stably transfected with hAFP. Furthermore, alpha fetoprotein peptide- specific T cells could be identified in the spleens of mice immunized with dendritic cells transduced with an AFP-expressing adenovirus (AdVhAFP). Thus, the four dominant peptides are naturally processed and presented in the context of class I and are immunogenic. Next, the in vivo immunogenicity of these four dominant peptides were confirmed. HLA-A*0201/Kb mice were immunized with each dominant peptide pulsed onto syngeneic dendritic cells. IFNg specific ELISPOT assays were performed with splenocytes restimulated in vitro with either the immunizing dominant peptide (or MART-1 peptide) or with Jurkat/AFP or Jurkat/MART transfected cell lines. Immunization with each hAFP peptide and subsequent restimulation with either peptide or Jurkat/AFP induced large numbers of AFP-specific IFNg-producing cells. Lymphocytes from PBS injected mice showed neither cytotoxicity nor IFNg production regardless of restimulation. Mice immunized with MART-127.35 peptide produced MART-1 specific responses but no AFP peptide responses.
Then, dendritic cells were prepared from bone marrow progenitors by differentiation in GM-CSF and IL-4 and were transduced with a recombinant AdV vector (AdVhAFP) that included hAFP cDNA. SEQ ID NO:l. In vitro cultured dendritic cells were transduced in RPMI/2% FCS at an moi of 100. Transduction was carried out for two hours at 37°C. The dendritic cells were then washed and resuspended at 5 x 105 dendritic cells per 0.2 ml PBS per animal for injection. In all cases viability exceeded 95%. Two weeks after immunization, splenocytes from mice were restimulated with Jurkat cells stably transfected with hAFP (Jurkat/AFP) or with MART-1 (Jurkat/MART). The frequency of AFP-specific vs. MART-1 specific IFNg-release was determined by ELISPOT averaging three independent experiments where p< 0.02. Cytotoxicity was assayed against Jurkat/AFP and Jurkat/MART in a 5 hour 51Cr-release assay. Next, HPLC and mass spectrometric identification was performed on the dominant peptides eluted from an HLA-A*0201 human hepatocellular carcinoma line. A summary of the results of these analyses are present in Table 2, below. To elute peptides, HepG2 and Hep3B cells were washed three times with PBS before being incubated with 5 ml of citrate-phosphate buffer at pH 3.2 for 1 minute. The suspension was centrifuged (800x g for 5 minutes) and a total of 500 ml of cell-free supernatant was collected for each cell line. The materials were lyophilized to dryness and stored at -20° C. Lyophilized materials were redissolved in 30 ml of water/acetonitrile/triflouroacetic acid (W/A/TFA, 95/5/0.1 all by vol.). This solution was pumped onto an analytical reverse phase HPLC column (Keystone Scientific Clg Betasil, 250 mm x 2 mm, 5 mm particle size, 100 A pore size) equilibrated in W/A/TFA, at a flow rate of 0.2 ml/min. The column was eluted using an increasing linear gradient of 0.1 % TFA in acetonitrile (time/%acetonitrile = 0/5, 5/5, 55/100, 60/100). Column eluate absorbance was monitored at 215 and 280 nm and 1 minute fractions were collected. The retention times of the synthetic peptides with amino acid sequences corresponding to the immunostimulatory peptides were obtained using the same separation gradient on a separate column.
MALDI-TOF mass spectrometry was performed to analyze HPLC fractionated peptides acid-eluted from the AFP producing hepatocellular carcinoma cell lines HepG2 (HLA-A2+) and Hep3B (HLA-A2 ). A Voyager-REACTION PRODUCTS (PerSeptive Biosystems, Framingham, MA) Matrix Assisted Laser Desoφtion lonization/Time-Of-Flight (MALDI-TOF) instrument was used to acquire the mass spectra. The instrument uses a stainless-steel target, on which the samples are deposited and dried. All spectra were externally calibrated with insulin, resulting in mass accuracy typically within ±0.1 % .
Lyophilized HPLC fractions were resuspended in 10 μl of 70% acetonitrile with 0.1 % TFA. One μl of this material was spotted along with 1 μl of the matrix a-cyano-4-hydroxycinnamic acid (Sigma, 10 mg/ml in 70% ACN/0.1 %TFA). Spectra were obtained by scanning from m/z 500-7000. The MALDI analysis of the HPLC fractions established that almost all fractions contained up to 20 different peptides in the mass range from 700 to 1500 Da, although frequently with a few dominating signals. Out of this complex mixture, peaks were identified with m/z values corresponding to the calculated monoisotropic protonated molecules ((M+H)+) of hAFPι58.166, residues 158-166 of SEQ ID NO:2; hAFP325.334, residues 325-334 of SEQ ID NO:2; and hAPP*^, residues 542-550 of SEQ ID NO:2 AFPMMS0, hAFP,5g.166 and hAFP325.334 in the peptide pool eluted from HepG2 cells. A peptide of m/z 975.6 was identified in one HPLC fraction from the HepG2 peptide pool. The calculated (M+H)+ of hAFP542.55o was 975.5 and the retention time of the synthetic peptide with amino acids corresponding to hAFP^^o, residues 542-550 of SEQ ID NO: 2, was 21.2 minutes. Furthermore, no signal at m/z of 975.5+1 was observed in samples with matrix alone and in HPLC fractions 18 to 22 from the Hep3B elution. Similarly, peaks with m/z corresponding to the calculated (M+H)+ of hAFP,58.166, residues 158-166 of SEQ ID NO:2 and hAFP325.334, residues 325-334 of SEQ ID NO:2, were also found in the appropriate fraction derived from HepG2 predicted from the behavior of the standard peptides. These peaks were absent in fractions in the peptide pool eluted from Hep3B. A peak at 1152.2 m/z was observed in one fraction, suggesting the presence of the sodium adduct of hAFP325.334, residues 325-334 of SEQ ID NO:2.
Therefore, potential mass candidates were identified for three of the four peptides in the HPLC fractionated peptide pool eluted from the HLA-A*0201 positive HepG2 cells but not from the HLA-A*0201 negative Hep3B cells. In the three peptides that were identified, the peaks were observed in repeated scanning of the spotted samples. A board peak at m/z 1020.9 was observed in one fraction from the HepG2 peptide pool that was beyond the margin of error tolerated by this physicochemical analysis. Therefore, it was not possible to document the presence of hAFP^.^, residues 137-145 of SEQ ID NO:2, on the surface of HepG2 cells.
To confirm the presence of dominant peptides in these fractions immunologically, one ml of each HPLC fraction from either HepG2 or Hep3B cells was used to restimulate AdVhAFP/DC immunized murine splenocytes in an ELISPOT assay. 200-250 spots/ 106 cells were observed from fractions containing dominant peptides, wherel00-130 spots/106 cells were observed from the other fractions, and a maximum of 50 spots/ 106 cells were observed from Hep3B fractions. This further supports the mass spectrometry identification of the dominant peptides. TABLE 2
Peptide1 HPLC Retention Cal. Observed Observed (M+H)+ Immunologically Reactive
Time of Peptide (M+H)+-s (M+H)+ in (M+H)* in Identified in Fractions
(min.)1 HepG24 Hep3B5 HPLC Fraction (IFNg ELISPOT)7 #_. HepG2 Hep3B hAFP«_-_M 21.2 975.5 975.6 None 21 20, 21 0 hAFP,„.166 28.9 1204.6 1204.9 None 28 27, 28, 29 0 hAFP,„. 3 28.1 1025.6 None None - 27, 28, 29 0 hAFP„v,„ 27.7 1130.6 1130.1 None 28 27, 28, 29 0
Footnotes. 1. Peptide identification. 2. Typical HPLC retention time of control synthetic peptide. 3. Expected mass/charge measurement. 4. Observed mass/charge measurement in acid-eluted peptides from HepG2. 5. Observed mass/charge measurement in acid-eluted peptides from Hep3B. 6. Fraction (min.) of observed hAFP peptide mass/charge measurement in acid-eluted peptides from HepG2. 7. Fractions containing peptides capable of restimulating AdVhAFP/DC primed splenocytes by IFNg ELISPOT. EXAMPLE I
METHOD FOR PREVENTING OR FOR TREATING HEPATOCELLULAR CARCINOMA BY ADMINISTERING PEPTIDES According to one embodiment of the present invention, there is provided a method for preventing or for treating patients with hepatocellular carcinoma. The method comprises selecting a suitable patient, such as an HLA-A*0201+ patient having AFP positive hepatocellular carcinoma. Next, the patient is administered one or more than one peptides of the present invention. The peptides are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma. In a preferred embodiment, the peptides are a combination of hAFP13745, residues
137-145 of SEQ ID NO:2; hAFPι58.166, residues 158-166 of SEQ ID NO:2; hAFPa^^, residues 325-334 of SEQ ID NO:2; and hAFP542.550, residues 542-550 of SEQ ID NO:2. In another preferred embodiment, the one or more than one peptides are administered between 2 times and 5 times. In a particularly preferred embodiment, the peptides are administered 3 times. In another preferred embodiment, the one or more than one peptides are administered 3 times, at 2 week intervals.
In a preferred embodiment, the peptides are administered intradermally, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure.
In a preferred embodiment, each of the one or more than one peptides are administered emulsified in 0.5 ml of Montanide ISA-51, such that when four peptides are combined, they are administered emulsified in a total of 2 ml of Montanide ISA-51. The emulsified peptide or peptides are divided into four equal does and each dose is administered in a separate site. In a preferred embodiment, the one or more than one peptides are administered in a dose of between about 50 μg and 2000 μg each. In a preferred embodiment, the one or more than one peptides are administered in a dose of between about 100 μg and 1000 μg each. In a particularly preferred embodiment, the one or more than one peptides are administered in a dose of between about 500 μg.
The method and compositions of the present invention were used to treat several patients with AFP positive/ A2.1 + hepatocellular carcinoma. Each of the patients were immunized with the four peptides hAFP,37.,45, residues 137-145 of SEQ ID NO:2; hAFP158. 166, residues 158-166 of SEQ ID NO:2; hAFP325_334, residues 325-334 of SEQ ID NO:2; and hAFP^.sso, residues 542-550 of SEQ ID NO:2, according to the this-method. The peptides were emulsified in 0.5 ml of Montanide ISA-51 and combined for a total of 2 ml. The emulsified peptides were divided into four equal doses and each dose was administered in a separate site. Peripheral T cell responses are measured by ELISPOT and tetramer assays. These trials show that the four AFP-derived peptides are immunogenic in vivo, even in patients whose levels of AFP in serum were extremely high before immunization. The first patient, designated AFP-A1 had a recurrent, unresectable AFP positive/ A2.1 + hepatocellular carcinoma. He was administered three immunizations of 100 μg each of the four peptides in Montanide ISA at two week intervals. Parallel in vitro PBMC cultures were also established from the first patient's blood before immunization and repetitively pulsed with each peptide. There is clear in vitro recognition of all peptides in day 28 cultures examined by ELISPOT and in 2 of 3 hAFP137.145, residues 137-145 of SEQ ID NO:2; and hAFP325.334, residues 325-334 of SEQ ID NO:2 but not in hAFPι58.166, residues 158-166 of SEQ ID NO:2 by tetramer. The presence of AFP542-specific T cells could not be assessed by tetramer as an AFP^ peptide tetramer could not be folded by the facility where these reagents are prepared. In vivo responses indicated clear recognition of hAFP137.145, residues 137-145 of SEQ ID NO:2; hAFP,58.166, residues 158-166 of SEQ ID NO:2; and hAFP542.55o, residues 542-550 of SEQ ID NO:2; and a trend towards recognition of hAFP325.334, residues 325-334 of SEQ ID NO:2 after the second and third immunization.
The second patient, designated AFP-A2 was a 70 yr old Caucasian male with a history of ethanol-induced liver cirrhosis, who was negative for both Hepatitis B and C. He presented with bloating and was found to have an 8 cm mass in the left lobe of his liver. His AFP level at presentation was 10,400 ng/ml. A liver biopsy revealed a well- differentiated hepatocellular carcinoma in a cirrhotic liver. He was begun on an experimental trial of the antifungal agent FV-462 but had disease progression and ototoxicity. Seven months after presentation, he was then begun on a combination of the four peptides hAFP137.14S, residues 137-145 of SEQ ID NO:2; hAFP158.166, residues 158-166 of SEQ ID NO:2; hAFP325.334, residues 325-334 of SEQ ID NO:2; and hAFP542-55o. residues 542-550 of SEQ ID NO: 2 using the protocol according to the present invention. He received two immunizations two weeks apart. Tetramer and ELISPOT data following two immunizations showed that T cell responses were detected to all 4 AFP peptide epitopes. Therefore, these results indicated that the present method generates a detectible immune response by AFP-specific T cells in patients with advanced hepatocellular carcinoma.
EXAMPLE π METHOD FOR PREVENTING OR FOR HEPATOCELLULAR CARCINOMA BY ADMINISTERING DENDRITIC CELLS PULSED WITH PEPTIDES OF THE PRESENT INVENTION
According to one embodiment of the present invention, there is provided a method for preventing or for treating patients with hepatocellular carcinoma. The method comprises selecting a suitable patient, such as an HLA-A*0201+ patient having AFP positive hepatocellular carcinoma. Next, the patient is administered dendritic cells pulsed with one or more than one peptide of the present invention. The dendritic cells are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma.
In a preferred embodiment, the dendritic cells are pulsed with a combination of hAFP137.145, residues 137-145 of SEQ ID NO:2; hAFP158.166, residues 158-166 of SEQ ID
NO:2; hAFP325_334, residues 325-334 of SEQ ID NO:2; and hAFP542.550, residues 542-550 of SEQ JD NO:2. In another preferred embodiment, the dendritic cells are administered between 2 times and 5 times. In a particularly preferred embodiment, the dendritic cells are administered 3 times. In another preferred embodiment, the dendritic cells are administered 3 times, at 2 week intervals.
In a preferred embodiment, the dendritic cells are administered intradermally, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure. In one embodiment, the dendritic cells are administered in a dose of between about 1x10s and lxlO8. In another preferred embodiment, the dendritic cells are administered in a dose of between about lxlO6 and lxlO7. In a particularly preferred embodiment, the dendritic cells are administered in a dose of about 5xl06.
The dendritic cells are prepared from adherent, autologous peripheral blood mononuclear cells exposed for 1 week in tissue culture to granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), according to techniques known to those with skill in the art. Mononuclear cells are isolated from cells obtained from a single leukapheresis by Ficoll-Hypaque centrifugation and stored frozen in liquid nitrogen until used to generate dendritic cells. The thawed mononuclear cells are washed once in saline and plated at 2-4 x 107 cells/25cm2 Costar flasks at a concentration of 2.5 - 5 x 106 viable cells/ml (RPMI 1640 + 5% heat-inactivated autologous serum + Gentamycin). After allowing adherence for 2 hours at 37°C, nonadherent cells are removed by washing with saline. Adherent cells are cultured in complete medium for 7 days in the presence of rhGM-CSF (800 U/ml) and rhIL-4 (500 U/ml). Clinical grade GM-CSF was provided by Immunex and IL-4 by Schering-Plough.
Patients undergo a single leukapheresis to obtain at least 2 x 109 PBL, which is cryopreserved in 70% RPMI 1640, 20% autologous serum and 10% DMSO. Aliquots are thawed at study days -7, 7 and 21. Blood for autologous serum (60 ml) is drawn at the time of leukapheresis and on the day of the first immunization, which is sufficient for the all cell cultures. The AFP-derived immunodominant peptides of the present invention are prepared and purified according to techinques known to those with skill in the art.
Patients are immunized as follows. On the day of immunization, dendritic cells are harvested, washed once in sterile saline solution and resuspended at a concentration an appropriate concentration, such as 106, in 1 mL serum-free RPMI 1640 and 50 mg/ml each of the four immunodomanint peptides separately. After a minimum of one hour of incubation, AFP peptides/DC are pelleted and washed thrice in sterile saline solution. Cells are counted in trypan blue and are resuspended in 0.1 ml sterile saline for intradermal injection.
Before administering the full dose, subjects will receive a skin test with 1/100 of their dose in 0.1 ml of saline. After a 30 minute observation period, they will receive the full dose of AFP peptide-pulsed dendritic cells injected intradermally in 0.1 ml saline in the flank region below the axilla, or below or above the groin. Patients are monitored for 2 hours post-immunization. Preferrably, patients receive pretreatment with 50 mg diphenhydramine and 650 mg of Tylenol, both orally. EXAMPLE ffl
METHOD FOR PREVENTING OR FOR HEPATOCELLULAR CARCINOMA BY ADMINISTERING HUMAN AFP ADENO VIRUS-TRANSDUCED DENDRITIC
CELLS According to one embodiment of the present invention, there is provided a method for preventing or for treating patients with hepatocellular carcinoma. The method comprises selecting a suitable patient, such as an HLA-A*0201+ patient having AFP positive hepatocellular carcinoma. Next, the patient is administered human AFP adenovirus-transduced dendritic cells. The dendritic cells are administered in a sufficient dose and, preferably, the administration is repeated a plurality of times, to create an immune response to AFP, and thereby creates an immune response to the hepatocellular carcinoma.
In another preferred embodiment, the dendritic cells are administered between 2 times and 5 times. In a particularly preferred embodiment, the dendritic cells are administered 3 times. In another preferred embodiment, the dendritic cells are administered 3 times, at 2 week intervals.
In a preferred embodiment, the dendritic cells are administered intradermally in the flank region below the axillae or the groin, though other routes of administration are suitable as will be understood by those with skill in the art with reference to this disclosure. In one embodiment, the dendritic cells are administered in a dose of between about lxlO5 and lxlO8. In another preferred embodiment, the dendritic cells are administered in a dose of between about lxlO6 and lxlO7. In a particularly preferred embodiment, the dendritic cells are administered in a dose of about 5xl06. Mononuclear cells are isolated from a leukapheresis product by Ficoll-Hypaque centrifugation and stored in 10% DMSO/20% autologous serum. One week before the DC vaccination, cells are thawed, washed once in PBS and plated at 2-4x107 cells/25cm2 Costar flask at a concentration of 2.5-5xl06 viable cells/ml (RPMI 1640 + 5% heat-inactivated autologous serum). After allowing adherence for 2 hours at 37°C, nonadherent cells are gently removed by washing with PBS. Adherent cells are cultured in complete medium for 7 days in the presence of rhGM-CSF (800 U/ml) and rhIL-4 (500 U/ml). Clinical grade GM-CSF and IL-4 are provided by Schering-Plough.
AdVhAFP is an El -deleted replication-deficient type 5 adenoviral vector in which the human AFP cDNA is driven by the CMV enhancer/promoter. Viral titers for each final viral production lot are provided based on both genomic DNA quantitation and infectious titer. A ratio in the product of viral particles to biologically active virus of less than 100: 1 are deemed acceptable.
Patients are immunized as follows. On the day of immunization, dendritic cells are harvested, washed once in sterile saline solution and resuspended at a concentration of 106- 107 in 1 mL of 2% autologous serum-RPMI 1640 and 109-1010 pfu/ml of AdVhAFP (multiplicity of infection = 1000: 1). After a two-hour incubation at 37°C, AdVhAFP/DC are resuspended in RPMI- 1640 + 5% autologous serum to inactivate non-absorbed adenoviral vector, and then pelleted and washed thrice in sterile saline solution. Cells are counted in trypan blue and the appropriate numbers (between lxlO5 and lxlO8 depending on patient group) are resuspended in sterile saline for intradermal injection.
Patients are administered AdVhAFP transduced DC injected ID in 0.1 ml normal saline in the flank region below the axillae or the groin. Patients are monitored for 2 hours post-immunization. Preferrably, patients receive pretreatment with 50 mg diphenhydramine and 650 mg of Tylenol, both orally.
Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure.

Claims

WHAT IS CLAIMED IS:
1. A method for preventing or for treating cancer in a mammal, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of creating an immune response in the mammal to at least part of the amino acid sequence of an alpha fetoprotein molecule, where the immune response comprises activating alpha fetoprotein peptide specific T lymphocytes against the cancer cells.
2. The method of claim 1, where the alpha fetoprotein peptide specific T lymphocytes are cytotoxic T lymphocytes.
3. The method of claim 1, where the alpha fetoprotein molecule is SEQ ID NO:2.
4. The method of claim 1, where the part of the alpha fetoprotein molecule is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, residues 542-550 of SEQ ID NO:2 and a combination of the preceeding.
5. The method of claim 1, where the cancer is hepatocellular carcinoma.
6. The method of claim 1, where the mammal is a human.
7. The method of claim 1, where the step of creating an immune response comprises administering to the mammal one or more than one composition including a peptide comprising at least part of the alpha fetoprotein amino acid sequence.
8. The method of claim 7, where the peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, residues 542-550 of SEQ ID NO:2 and a combination of the preceeding.
9. The method of claim 7, where the peptide is selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235-243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547-556 of SEQ ID NO:2, residues 555-563 of SEQ ID NO:2 and a combination of the preceeding.
10. The method of claim 1, where the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO: 2.
11. The method of claim 1 , where the step of creating an immune response comprises administering to the mammal one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
12. A method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2, and a combination of at least two of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
13. A method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one peptide selected from the group consisting of residues 158-166 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
14. A method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO:2 by administering to the human one or more than one peptide selected from the group consisting of residues 1-9 of SEQ ID NO:2, residues 178-186 of SEQ ID NO:2, residues 218-226 of SEQ ID NO:2, residues 235-243 of SEQ ID NO:2, residues 306-315 of SEQ ID NO:2, residues 485-493 of SEQ ID NO:2, residues 492-500 of SEQ ID NO:2, residues 507-516 of SEQ ID NO:2, residues 547-556 of SEQ ID NO:2, and residues 555-563 of SEQ ID NO:2.
15. A method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including dendritic cells pulsed with one or more than one peptide that forms at least part of the amino acid sequence of SEQ ID NO:2.
16. The method of claim 15, where the one or more than one peptide are selected from the dendritic cells pulsed with one or more than one peptide is selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
17. A method for preventing or for treating hepatocellular carcinoma in a human, where the cancer cells express at least a part of an alpha fetoprotein molecule at the cell surface, the method comprising the step of activating alpha fetoprotein cytotoxic T lymphocytes against the cancer cells to at least part of the amino acid sequence of SEQ ID NO: 2 by administering to the human one or more than one composition including dendritic cells transduced with a recombinant adenoviral vector encoding alpha fetoprotein.
18. An isolated peptide useful for preventing or for treating cancer selected from the group consisting of residues 137-145 of SEQ ID NO:2, and residues 325-334 of SEQ ID NO:2.
19. A composition for preventing or for treating cancer comprising one or more than one peptide of claim 18 in an amount sufficient to create an immune response to alpha fetoprotein in a mammal.
20. The composition of claim 19, additionally comprising an adjuvant.
21. A method for preventing or for treating cancer in a human comprising the step of administering to the human the peptide of claim 18.
22. A method for preventing or for treating cancer in a human comprising the step of administering to the human the composition of claim 19.
23. A method for preventing or for treating cancer in a human comprising the step of administering to the human the composition of claim 20.
24. Means for preventing or for treating cancer comprising one or more than one peptide selected from the group consisting of residues 137-145 of SEQ ID NO:2, residues 158-166 of SEQ ID NO:2, residues 325-334 of SEQ ID NO:2 and residues 542-550 of SEQ ID NO:2.
25. An isolated peptide useful for preventing or for treating cancer having a sequence according to residues 158-166 of SEQ ID NO:2 or according to residues 542-550 of SEQ ID NO:2.
26. A composition for preventing or for treating cancer comprising one or more than one peptide of claim 25 in an amount sufficient to create an immune response to alpha fetoprotein in a mammal.
27. The composition of claim 26, additionally comprising an adjuvant.
28. A method for preventing or for treating cancer in a human comprising the step of administering to the human the peptide of claim 25.
29. A method for preventing or for treating cancer in a human comprising the step of administering to the human the composition of claim 26.
30. A method for preventing or for treating cancer in a human comprising the step of administering to the human the composition of claim 27.
31. Means for preventing or for treating cancer comprising a composition of claim 19.
32. The means of claim 31, additionally comprising an adjuvant.
33. A method for preventing or for treating cancer in a human comprising the step of administering to the human the means of claim 31.
34. A method for preventing or for treating cancer in a human comprising the step of administering to the human the means of claim 32.
35. Means for preventing or for treating cancer comprising the composition claim 26.
36. The means of claim 35, additionally comprising an adjuvant.
37. A method for preventing or for treating cancer in a human comprising the step of administering to the human the means of claim 35.
38. A method for preventing or for treating cancer in a human comprising the step of administering to the human the means of claim 36.
EP01910587A 2000-02-10 2001-02-12 Method and compositions for treating hepatocellular cancer Ceased EP1253930A4 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US18196600P 2000-02-10 2000-02-10
US181966 2000-02-10
US66025200A 2000-09-12 2000-09-12
US660252 2000-09-12
US66250500A 2000-09-14 2000-09-14
US662505 2000-09-14
PCT/US2001/004539 WO2001058922A2 (en) 2000-02-10 2001-02-12 Method and compositions for treating hepatocellular cancer

Publications (2)

Publication Number Publication Date
EP1253930A2 true EP1253930A2 (en) 2002-11-06
EP1253930A4 EP1253930A4 (en) 2003-05-21

Family

ID=27391498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01910587A Ceased EP1253930A4 (en) 2000-02-10 2001-02-12 Method and compositions for treating hepatocellular cancer

Country Status (7)

Country Link
EP (1) EP1253930A4 (en)
JP (1) JP3876162B2 (en)
KR (1) KR100482920B1 (en)
CN (1) CN1255427C (en)
AU (1) AU2001238179A1 (en)
HK (1) HK1046853A1 (en)
WO (1) WO2001058922A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985914B1 (en) * 2006-12-13 2010-10-08 주식회사 바이오리더스 Cell Surface Expression Vector for liver Cancer Specific Antigen Alpha-fetoprotein and Microorganism Transformed by Thereof
WO2008113970A2 (en) * 2007-03-16 2008-09-25 Ucl Business Plc Peptides
KR100900742B1 (en) * 2007-05-17 2009-06-08 크레아젠 주식회사 Animal Models Carrying Tumors Expressing Human Liver Cancer-Specific Antigen and Method for Analyzing Prevention and Treatment Efficacy of Dendritic Cells-Derived Immunotherapeutics Using the Above
US8541543B2 (en) * 2007-11-20 2013-09-24 Academia Sinica Peptides specific for hepatocellular carcinoma cells and applications thereof
SG10201913158PA (en) * 2015-04-03 2020-02-27 Eureka Therapeutics Inc Constructs targeting afp peptide/mhc complexes and uses thereof
CN113072636A (en) * 2020-01-06 2021-07-06 香雪生命科学技术(广东)有限公司 T cell receptor for identifying AFP and its code sequence
CN113321725A (en) * 2020-02-28 2021-08-31 香雪生命科学技术(广东)有限公司 T cell receptor for identifying AFP

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1226551B (en) * 1988-07-29 1991-01-24 Sclavo Spa IMMUNOLOGICALLY ACTIVE SYNTHETIC PEPTIDE CAPABLE OF INDUCING THE PRODUCTION OF ANTIBODIES WITH HIGH SPECIFICITY TOWARDS ALPHA-PHETOPROTEIN AND THEIR USE IN THE DIAGNOSTIC FIELD
EP0805687A4 (en) * 1995-01-24 2000-05-31 Robert A Murgita Recombinant human alpha-fetoprotein and uses thereof
CN1739791A (en) * 1997-02-13 2006-03-01 加利福尼亚大学董事会 Prevention and treatment of hepatocellular cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUTTERFIELD L H ET AL: "T cell responses to HLA-A* 0201-restricted peptides derived from human ÄalphaÜ fetoprotein" JOURNAL OF IMMUNOLOGY 15 APR 2001 UNITED STATES, vol. 166, no. 8, 15 April 2001 (2001-04-15), pages 5300-5308, XP002235963 ISSN: 0022-1767 *
See also references of WO0158922A2 *

Also Published As

Publication number Publication date
WO2001058922A2 (en) 2001-08-16
CN1255427C (en) 2006-05-10
WO2001058922A9 (en) 2002-10-17
EP1253930A4 (en) 2003-05-21
HK1046853A1 (en) 2003-01-30
KR20020073203A (en) 2002-09-19
JP2003522195A (en) 2003-07-22
AU2001238179A1 (en) 2001-08-20
CN1398187A (en) 2003-02-19
JP3876162B2 (en) 2007-01-31
KR100482920B1 (en) 2005-04-14
WO2001058922A3 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
US20060286075A1 (en) Method and compositions for treating hepatocellular cancer
US11707512B2 (en) Cancer vaccine composition
Butterfield et al. T cell responses to HLA-A* 0201-restricted peptides derived from human α fetoprotein
AU2006277295B2 (en) Glypican-3 (GPC3)-derived tumor rejection antigenic peptides useful for HLA-A2-positive patients and pharmaceutical comprising the same
Mayordomo et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines.
JP4926714B2 (en) Proteins belonging to the BCL-2 family and fragments thereof, and their use in cancer patients
US7994276B2 (en) Composition of tumour-associated peptides and related anti-cancer vaccine
Ishida et al. Dendritic cells transduced with wild‐type p53 gene elicit potent anti‐tumour immune responses
EP3263585B1 (en) Foxm1 peptide and medicinal agent comprising the same
EP2470200B1 (en) Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
EP3148566B1 (en) Synthetic long peptides (slp) for therapeutic vaccination against hepatitis b virus infection
BR112020025764A2 (en) neoantigens and their uses
KR20210040355A (en) Neo antigen and its use
JP5065273B2 (en) HLA-A24 molecule binding peptide derived from KIF
WO2001058922A2 (en) Method and compositions for treating hepatocellular cancer
JP4780540B2 (en) Survivin-derived cancer antigen peptide
WO2007120603A2 (en) Immunogenic bcr-abl peptides and methods of use thereof
KR20210018295A (en) Composition for inducing an immune response
Minev Melanoma vaccines
WO2004012685A2 (en) Shed antigen vaccine with dendritic cells adjuvant
RU2805196C2 (en) Neoantigens and their application
EP2421891A1 (en) Immunogenic epitopes of ngep antigen
WO2007047763A2 (en) Bcr-abl vaccines and methods of use thereof
WO2001098363A2 (en) Peptides for use in the immunotherapy of renal cell carcinoma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020724

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20030408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20061230

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1046853

Country of ref document: HK