EP1249281B1 - Self-cleaning surface with hydrophobic structure and process for making it - Google Patents

Self-cleaning surface with hydrophobic structure and process for making it Download PDF

Info

Publication number
EP1249281B1
EP1249281B1 EP02004703A EP02004703A EP1249281B1 EP 1249281 B1 EP1249281 B1 EP 1249281B1 EP 02004703 A EP02004703 A EP 02004703A EP 02004703 A EP02004703 A EP 02004703A EP 1249281 B1 EP1249281 B1 EP 1249281B1
Authority
EP
European Patent Office
Prior art keywords
particles
self
elevations
depressions
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP02004703A
Other languages
German (de)
French (fr)
Other versions
EP1249281A2 (en
EP1249281A3 (en
Inventor
Markus Dr. Oles
Bernhard Dr. Schleich
Edwin Dr. Nun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7681410&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1249281(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP1249281A2 publication Critical patent/EP1249281A2/en
Publication of EP1249281A3 publication Critical patent/EP1249281A3/en
Application granted granted Critical
Publication of EP1249281B1 publication Critical patent/EP1249281B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • Y10T428/24388Silicon containing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to structured particles and the use thereof for self-cleaning surfaces and methods for their preparation.
  • Articles having extremely difficult to wet surfaces have a number of economically important features.
  • the economically most important feature is the self-cleaning effect of difficult-to-wet surfaces, since the cleaning of surfaces is time consuming and costly.
  • Self-cleaning surfaces are therefore of the highest economic interest.
  • Adhesive mechanisms are usually conditioned by interfacial energy parameters between the two contacting surfaces. As a rule, the systems try to lower their free surface energy. If the free interfacial energies between two components are inherently very low, it can generally be assumed that the adhesion between these two components is weak. Important here is the relative lowering of the free surface energy. For pairings with high and low interfacial energy, the possibilities of interactions are very often important.
  • hydrophobic materials such as perfluorinated polymers
  • hydrophobic surfaces are known.
  • a further development of these surfaces is to structure the surfaces in the ⁇ m range to the nm range.
  • US Pat. No. 5,599,489 discloses a method in which a surface can be provided in a particularly repellent manner by bombardment with particles of a corresponding size and subsequent perfluorination.
  • Another method is described by H. Saito et al., Service Coatings International 4, 1997, p. 168 et seq.
  • particles of fluoropolymers are applied to metal surfaces, whereby a markedly reduced wettability of the surfaces thus produced to water has been determined with a considerably reduced tendency to freeze.
  • U.S. Patent Nos. 3,354,022 and WO 96/04123 disclose further methods of reducing the wettability of articles by surface topological changes.
  • artificial elevations or depressions with a height of about 5 to 1000 microns and a distance of about 5 to 500 microns are applied to hydrophobic or hydrophobized after structuring materials.
  • Surfaces of this type lead to rapid droplet formation, whereby the rolling drops absorb dirt particles and thus clean the surface.
  • WO 00/58410 describes the structures and claims the formation thereof by spraying hydrophobic alcohols, such as nonakosan-10-ol, or alkanediols, such as nonakosan-5,10-diol.
  • hydrophobic alcohols such as nonakosan-10-ol, or alkanediols, such as nonakosan-5,10-diol.
  • the disadvantage here is the lack of stability of the self-cleaning surfaces, since detergents lead to the replacement of the structure.
  • EP 1 040 874 A2 describes the embossing of microstructures and claims the use of such structures in analytics (microfluidics).
  • a disadvantage of these structures is the insufficient mechanical stability.
  • Self-repeating or self-similar surface structures are described, for example, by Marie E. Turner in Advanced Materials, 2001, 13, no. 3, page 180 ff. Described.
  • JP 11171592 describes a water-repellent product and its preparation wherein the soil-repellent surface is produced by applying a film to the surface to be treated comprising fine particles of metal oxide and the hydrolyzate of a metal alkoxide or chelate.
  • the substrate to which the film has been applied must be sintered at temperatures above 400 ° C. The method can therefore only be used for substrates which are stable even at temperatures above 400 ° C.
  • EP 1 249 280 A2 discloses self-cleaning structures through hydrophobic surfaces having particles in the micrometer to submicrometer range and with a fissured structure in the nanometer range.
  • a curable substance is applied as a carrier to a surface, then the particles are placed on the carrier and, in a final step, the particles are fixed by hardening the carrier.
  • a self-cleaning surface which is characterized in that a substantially smooth substrate surface is coated with particles having a BET surface area above 80 m 2 / g. The particles are firmly bonded to the substrate surface. In order to render the surface water- or oil-repellent, it must be provided with a hydrophobic or oleophobic coating in an additional process step.
  • the object of the present invention was to provide particularly well self-cleaning surfaces with structures in the nanometer range, as well as a simple method for producing such self-cleaning surfaces.
  • the present invention is therefore a self-cleaning surface having an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by fixed on the surface of particles, which is characterized in that the particles have a fissured structure with Have elevations and / or depressions in the nanometer range, which have an average height of 20 to 500 nm, wherein the distance of the elevations or depressions on the particles is less than 500 nm, and the particles are composed of primary particles to agglomerates or aggregates , whose size is between 20 nm and 100 microns.
  • the present invention also provides a process for the production of self-cleaning surfaces, in which a suitable, at least partially hydrophobic surface structure is provided by fixing particles on a surface, which is characterized in that particles, the rugged structures with elevations and / or depressions in the nanometer range, whose elevations and / or depressions have on average a height of 20 to 500 nm, wherein the distance of the elevations or depressions on the particles is less than 500 nm, and which are composed of primary particles to agglomerates or aggregates whose Size between 20 nm and 100 microns, are used.
  • the self-cleaning surface according to the invention which has an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by particles fixed on the surface, is characterized in that the particles have a fissured structure with elevations and / or depressions in the nanometer range.
  • the elevations and / or depressions have on average a height of 20 to 200 nm.
  • the spacing of the elevations or depressions on the particles is preferably less than 200 nm.
  • the rugged structures with elevations and / or pits in the nanometer range can be e.g. cavities, pores, grooves, peaks and / or spikes are formed.
  • the particles themselves have an average size of less than 50 .mu.m, preferably of less than 30 .mu.m and most preferably of less than 20 .mu.m.
  • the particles on the surface preferably have spacings of 0-10 particle diameters, in particular 2-3 particle diameters.
  • the particles may be particles in the sense of DIN 53 206.
  • Particles or particles according to this standard may be individual particles but also aggregates or agglomerates, according to DIN 53 206 under aggregates surface or edge-shaped juxtaposed primary particles (particles) and agglomerates punctiform juxtaposed primary particles (particles) are understood.
  • Particles used are those which aggregate from primary particles to form agglomerates or aggregates.
  • the structure of such Particles may be spherical, strictly spherical, moderately aggregated, nearly spherical, highly agglomerated or porous agglomerated.
  • the preferred size of the agglomerates or aggregates is between 0.2 and 30 microns.
  • the particles have a BET surface area of from 20 to 1000 square meters per gram. Most preferably, the particles have a BET surface area of 50 to 200 m 2 / g.
  • the particles comprise at least one material selected from silicates, doped silicates, minerals, metal oxides, silicas, polymers and silica-coated metal powders.
  • pyrogenic silicic acids or precipitated silicas in particular aerosils, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, zinc powder coated with Aerosil R 974, preferably having a particle size of from 0.2 to 30 ⁇ m, or pulverulent polymers, such as For example, cryogenically ground or spray-dried polytetrafluoroethylene (PTFE) or perfluorinated copolymers or copolymers with tetrafluoroethylene, on.
  • PTFE polytetrafluoroethylene
  • the particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces.
  • the particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic.
  • the hydrophobing of the particles can be carried out in a manner known to those skilled in the art.
  • Typical hydrophobized particles are e.g. Fine powders such as Aerosil-R 8200 (Degussa AG), which are available for purchase.
  • the preferably used silicic acids preferably have a dibutyl phthalate adsorption, based on DIN 53 601, of between 100 and 350 ml / 100 g, preferably values between 250 and 350 ml / 100 g.
  • the particles are fixed to the surface.
  • the fixing can be carried out in a manner known to those skilled in the chemical or physical (mechanical). By order of Particles on the surface in a tightly packed layer can generate the self-cleaning surface.
  • the self-cleaning surfaces according to the invention have an unrolling angle of less than 20 °, particularly preferably less than 10 °, the unrolling angle being defined such that a drop of water applied from a 1 cm height rolls onto a plane surface resting on an inclined plane.
  • the advancing angle and the retreating angle are above 140 °, preferably above 150 ° and have a hysteresis of less than 15 °, preferably less than 10 °. Because the surfaces according to the invention have an advancing and retreating angle above at least 140 °, preferably above 150 °, particularly good self-cleaning surfaces become accessible.
  • the self-cleaning surfaces are semitransparent.
  • the surfaces according to the invention can be contact-transparent, that is to say that after the creation of a surface according to the invention on a labeled object, this inscription, depending on the size of the writing, can still be read.
  • the self-cleaning surfaces according to the invention are preferably produced by the method according to any one of claims 9 to 16 for the production of these surfaces.
  • This method according to the invention for the production of self-cleaning surfaces, in which a suitable, at least partially hydrophobic surface structure is created by fixing particles on the surface is characterized in that, as the particles described above, the rugged structures with elevations and / or depressions in the nanometer range have to be used.
  • those particles which comprise at least one material selected from silicates or doped silicates, minerals, metal oxides, fumed silicas or precipitated silicas or polymers are used.
  • PTFE polytetrafluoroethylene
  • particles having a BET surface area of 50 to 600 m 2 / g are used.
  • particles having a BET surface area of 50 to 200 m 2 / g are used.
  • the particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces.
  • the particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic.
  • the hydrophobing of the particles can be carried out in a manner known to those skilled in the art.
  • Typical hydrophobized particles are e.g. Fine powders such as Aerosil R 974 or Aerosil-R 8200 (Degussa AG), which are available for purchase.
  • the fixing of the particles on the surface can be carried out chemically or physically in a manner known to the person skilled in the art.
  • a chemical method of fixation e.g. the use of a fixing agent can be used.
  • Suitable fixatives are various adhesives, adhesion promoters or lacquers. The person skilled in the art will find further fixing agents or chemical fixing methods.
  • a physical method e.g. the application or impressions of the particles are used in the surface.
  • the person skilled in the art easily recognizes other suitable physical methods for fixing particles to the surface, for example the sintering together of particles with one another or of the particles on a pulverulent carrier material.
  • particles which have hydrophobic properties and / or by treatment with at least one compound from the group of alkylsilanes, alkyldisilazanes, paraffins, waxes, fluoroalkylsilanes, fatty acid esters, functionalized long-chain alkane derivatives or perfluoroalkylsilanes have hydrophobic properties.
  • the hydrophobization of particles is generally known and can be read, for example, in the series Pigments, number 18, the Degussa AG.
  • the particles of the treated surface are treated by treatment with at least one compound selected from the group consisting of alkylsilanes, e.g. can be obtained from the Sivento GmbH, alkyldisilazanes, paraffins, waxes, fluoroalkylsilanes, fatty acid esters, functionalized long-chain alkane derivatives or perfluoroalkylsilanes, be equipped with hydrophobic properties.
  • the treatment is carried out by subjecting the particle-bearing surface to be hydrophobicized to a solution containing a hydrophobing reagent, such as e.g.
  • Alkylsilane has, is dipped, excess hydrophobing reagent is drained and the surface is annealed at the highest possible temperature.
  • the treatment can also be done by spraying the self-cleaning surface with a medium having a hydrophobizing reagent and subsequent heat treatment.
  • Such a treatment is e.g. for the treatment of steel beams or other heavy or bulky objects.
  • the maximum applicable temperature is limited by the softening temperatures of the carrier or substrate.
  • the process according to at least one of claims 9 to 16 can be used excellently for producing self-cleaning surfaces on planar or non-planar objects, in particular on non-planar objects. This is only possible to a limited extent with the conventional methods. In particular, by methods in which prefabricated films are applied to a surface or in processes in which a structure is to be created by embossing, non-planar objects, such as sculptures, are not or only partially accessible. Naturally, the inventive method but also for the production of self-cleaning surfaces on objects with planar surfaces such as greenhouses or public transport.
  • the application of the method according to the invention for the production of self-cleaning surfaces on greenhouses has advantages, since with the method self-cleaning surfaces can be made, for example, on transparent materials such as glass or Plexiglas ® and the self-cleaning surface can be formed at least as far transparent that for the Growth of the plants in the greenhouse can penetrate enough sunlight through the provided with a self-cleaning surface transparent surface.
  • self-cleaning surfaces can be made, for example, on transparent materials such as glass or Plexiglas ® and the self-cleaning surface can be formed at least as far transparent that for the Growth of the plants in the greenhouse can penetrate enough sunlight through the provided with a self-cleaning surface transparent surface.
  • conventional greenhouses which regularly have to be cleaned, inter alia, of foliage, dust, lime and biological material, such as algae
  • greenhouses having a surface according to the invention according to one of claims 1 to 8 with longer Cleaning intervals are operated.
  • the method of the invention may also be used to make self-cleaning surfaces on non-rigid surfaces of articles, such as screens or other surfaces which are kept flexible.
  • the method according to the invention can be used according to at least one of claims 9 to 16, for the production of self-cleaning surfaces on flexible or inflexible walls in the sanitary area.
  • Such walls may be, for example, partitions in public toilets, walls of shower cubicles, swimming pools or saunas, but also shower curtains (flexible wall).
  • the particles have elevations and / or depressions with an average height of 20 to 500 nm, preferably from 20 to 200 nm.
  • the spacing of the elevations and / or depressions on the particle is less than 500 nm, preferably less than 200 nm.
  • the particles according to the invention can be made, for example, of at least one material selected from silicates, doped silicates, minerals, metal oxides, pyrogenic or precipitated silicas, polymers and metal powders.
  • the particles may be particles in the sense of DIN 53 206.
  • Particles or particles in accordance with this standard can be individual particles but also aggregates or agglomerates, where according to DIN 53 206, aggregates are surface or edge-shaped primary particles (particles) and agglomerates are point-like primary particles (particles).
  • Particles used are those which aggregate from primary particles to form agglomerates or aggregates.
  • the structure of such particles may be spherical, strictly spherical, moderately aggregated, nearly spherical, extremely agglomerated or porous agglomerated.
  • the size of the agglomerates or aggregates is between 20 nm and 100 microns, preferably between 0.2 and 30 microns.
  • Example 1 The experiment of Example 1 was repeated, wherein particles of aluminum oxide C (Degussa AG), an aluminum oxide having a BET surface area of 100 m 2 / g, were sprayed electrostatically. After curing of the support according to Example 1 and scrubbing of excess particles, the cured, brushed plate for hydrophobing in a formulation of Tridecafluoroctyltriethoxysilane in ethanol (Dynasilan 8262, Sivento GmbH) was immersed. After draining off excess Dynasilan 8262, the plate was annealed at a temperature of 80 ° C. The surface is rated ++, ie the shape of the water droplets is not ideal, the rolling angle is below 20 °.
  • Aluminum oxide C Degussa AG
  • BET surface area 100 m 2 / g
  • Silica acid Sipernat 350 from Degussa AG is sprinkled onto the support-treated plate from Example 1. After a penetration time of 5 minutes, the treated plate is cured under nitrogen in UV light at 308 nm. Excess particles are brushed off again and the plate is then immersed again in Dynasilan 8262 and then annealed at 80 ° C. The surface is classified as +++.
  • Example 1 The experiment of Example 1 is repeated, but instead of Aerosil VPR 411 Aerosil R 8200 (Degussa AG), which uses a BET surface area of 200 ⁇ 25 m 2 / g.
  • the assessment of the surface is +++.
  • the roll angle has been determined to be 1.3 °.
  • progression and retraction angles were measured, each of which exceeded 150 °.
  • the associated hysteresis is below 10 °.
  • Aerosil VPR 411 was brushed off.
  • the characterization of the surface was initially visual and is logged with +++. +++ means, water droplets are almost completely formed.
  • the rolling angle was 0.5 °. Progressive and retreatment angles greater than 150 ° each were measured. The associated hysteresis is below 10 °.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Detergent Compositions (AREA)
  • Catalysts (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

A self-cleaning surface having a synthetic at least partially hydrophobic surface structure with hills and depressions, formed by particles fixed to the surface by a carrier is new. <??>An Independent claim is included for a process for preparing the self-cleaning surface as above.

Description

Die vorliegende Erfindung betrifft strukturierte Partikel und die Verwendung selbiger für selbstreinigende Oberflächen und Verfahren zu deren Herstellung.The present invention relates to structured particles and the use thereof for self-cleaning surfaces and methods for their preparation.

Gegenstände mit extrem schwer benetzbaren Oberflächen weisen eine Reihe von wirtschaftlich bedeutsamen Merkmalen auf. Das wirtschaftlich bedeutendste Merkmal ist dabei die selbstreinigende Wirkung von schwerbenetzbaren Oberflächen, da die Reinigung von Oberflächen zeit- und kostenintensiv ist. Selbstreinigende Oberflächen sind somit von höchstem wirtschaftlichen Interesse. Haftmechanismen werden in der Regel durch grenzflächenenergetische Parameter zwischen den beiden sich berührenden Oberflächen bedingt. In der Regel versuchen dabei die Systeme ihre freie Grenzflächenenergie zu erniedrigen. Liegen die freien Grenzflächenenergien zwischen zwei Komponenten von sich aus schon sehr niedrig, so kann allgemein davon ausgegangen werden, dass die Haftung zwischen diesen beiden Komponenten schwach ausgeprägt ist. Wichtig ist dabei die relative Erniedrigung der freien Grenzflächenenergie. Bei Paarungen mit einer hohen und einer niedrigen Grenzflächenenergie kommt es sehr oft auf die Möglichkeiten der Wechselwirkungen an. So ist beispielsweise beim Aufbringen von Wasser auf eine hydrophobe Oberfläche nicht möglich, eine merkliche Erniedrigung der Grenzflächenenergie herbeizuführen. Dies ist daran erkennbar, dass die Benetzung schlecht ist. Aufgebrachtes Wasser bildet Tropfen mit sehr hohem Kontaktwinkel. Perfluorierte Kohlenwasserstoffe, z.B. Polytetrafluorethylen, haben sehr niedrige Grenzflächenenergie. Auf solchen Oberflächen haften kaum irgendwelche Komponenten bzw. auf solchen Oberflächen abgelagerte Komponenten können sehr leicht wieder entfernt werden.Articles having extremely difficult to wet surfaces have a number of economically important features. The economically most important feature is the self-cleaning effect of difficult-to-wet surfaces, since the cleaning of surfaces is time consuming and costly. Self-cleaning surfaces are therefore of the highest economic interest. Adhesive mechanisms are usually conditioned by interfacial energy parameters between the two contacting surfaces. As a rule, the systems try to lower their free surface energy. If the free interfacial energies between two components are inherently very low, it can generally be assumed that the adhesion between these two components is weak. Important here is the relative lowering of the free surface energy. For pairings with high and low interfacial energy, the possibilities of interactions are very often important. For example, when water is applied to a hydrophobic surface, it is not possible to bring about a marked lowering of the interfacial energy. This is evident from the fact that the wetting is bad. Applied water forms drops with a very high contact angle. Perfluorinated hydrocarbons, e.g. Polytetrafluoroethylene, have very low interfacial energy. Hardly any components adhere to such surfaces or components deposited on such surfaces can be removed very easily.

Der Einsatz von hydrophoben Materialien, wie perfluorierten Polymeren, zur Herstellung von hydrophoben Oberflächen ist bekannt. Eine Weiterentwicklung dieser Oberflächen besteht darin, die Oberflächen im µm-Bereich bis nm-Bereich zu strukturieren. US PS 5,599,489 offenbart ein Verfahren, bei dem eine Oberfläche durch Beschuss mit Partikeln einer entsprechenden Größe und anschließender Perfluorierung besonders abweisend ausgestattet werden kann. Ein anderes Verfahren beschreiben H. Saito et al in "Service Coatings International" 4, 1997, S. 168 ff. Hier werden Partikel aus Fluorpolymeren auf Metalloberflächen aufgebracht, wobei eine stark erniedrigte Benetzbarkeit der so erzeugten Oberflächen gegenüber Wasser mit einer erheblich reduzierten Vereisungsneigung festgestellt wurde.The use of hydrophobic materials, such as perfluorinated polymers, for the production of hydrophobic surfaces is known. A further development of these surfaces is to structure the surfaces in the μm range to the nm range. US Pat. No. 5,599,489 discloses a method in which a surface can be provided in a particularly repellent manner by bombardment with particles of a corresponding size and subsequent perfluorination. Another method is described by H. Saito et al., Service Coatings International 4, 1997, p. 168 et seq. Here For example, particles of fluoropolymers are applied to metal surfaces, whereby a markedly reduced wettability of the surfaces thus produced to water has been determined with a considerably reduced tendency to freeze.

In US-PS 3 354 022 und WO 96/04123 sind weitere Verfahren zur Erniedrigung der Benetzbarkeit von Gegenständen durch topologische Veränderungen der Oberflächen beschrieben. Hier werden künstliche Erhebungen bzw. Vertiefungen mit einer Höhe von ca. 5 bis 1 000 µm und einem Abstand von ca. 5 bis 500 µm auf hydrophobe oder nach der Strukturierung hydrophobierte Werkstoffe aufgebracht. Oberflächen dieser Art führen zu einer schnellen Tropfenbildung, wobei die abrollenden Tropfen Schmutzteilchen aufnehmen und somit die Oberfläche reinigen.U.S. Patent Nos. 3,354,022 and WO 96/04123 disclose further methods of reducing the wettability of articles by surface topological changes. Here, artificial elevations or depressions with a height of about 5 to 1000 microns and a distance of about 5 to 500 microns are applied to hydrophobic or hydrophobized after structuring materials. Surfaces of this type lead to rapid droplet formation, whereby the rolling drops absorb dirt particles and thus clean the surface.

Dieses Prinzip ist der Natur entlehnt. Kleine Kontaktflächen erniedrigen die Van-der-Waal's-Wechselwirkung, die für die Haftung an ebenen Oberflächen mit niedriger Oberflächenenergie verantwortlich ist. Beispielsweise sind die Blätter der Lotus-Pflanze mit Erhebungen aus einem Wachs versehen, die die Kontaktfläche zu Wasser herabsetzen. WO 00/58410 beschreibt die Strukturen und beansprucht die Ausbildung selbiger durch Aufsprühen von hydrophoben Alkoholen, wie Nonakosan-10-ol, oder Alkandiolen, wie Nonakosan-5,10-diol. Nachteilig hieran ist die mangelhafte Stabilität der selbstreinigenden Oberflächen, da Detergentien zur Ablösung der Struktur führen.This principle is borrowed from nature. Small contact areas lower the van der Waals interaction, which is responsible for adhesion to low surface energy planar surfaces. For example, the leaves of the lotus plant are provided with elevations of a wax, which reduce the contact area with water. WO 00/58410 describes the structures and claims the formation thereof by spraying hydrophobic alcohols, such as nonakosan-10-ol, or alkanediols, such as nonakosan-5,10-diol. The disadvantage here is the lack of stability of the self-cleaning surfaces, since detergents lead to the replacement of the structure.

Eine weitere Methode, leicht reinigbare Oberflächen zu erzeugen, ist in DE 19917367 A1 beschrieben. Überzüge auf Basis fluorhaltiger Kondensate sind aber nicht selbstreinigend. Die Kontaktfläche zwischen Wasser und Oberfläche ist zwar reduziert, jedoch nicht in ausreichendem Maße.Another method for producing easily cleanable surfaces is described in DE 19917367 A1. However, coatings based on fluorine-containing condensates are not self-cleaning. The contact surface between water and surface is indeed reduced, but not sufficiently.

EP 1 040 874 A2 beschreibt das Abprägen von Mikrostrukturen und beansprucht die Verwendung solcher Strukturen in der Analytik (Mikrofluidik). Nachteilig an diesen Strukturen ist die ungenügende mechanische Stabilität.EP 1 040 874 A2 describes the embossing of microstructures and claims the use of such structures in analytics (microfluidics). A disadvantage of these structures is the insufficient mechanical stability.

Selbstwiederholende oder selbstähnlicheStrukturen von Oberflächen werden beispielsweise von Marie E. Turner in Advanced Materials, 2001, 13, No. 3, Seite 180 ff. beschrieben.Self-repeating or self-similar surface structures are described, for example, by Marie E. Turner in Advanced Materials, 2001, 13, no. 3, page 180 ff. Described.

In JP 11171592 wird ein wasserabweisendes Produkt und dessen Herstellung beschrieben, wobei die schmutzabweisende Oberfläche dadurch hergestellt wird, dass ein Film auf die zu behandelnde Oberfläche aufgetragen wird, der feine Partikel aus Metalloxid und das Hydrolysat eines Metallalkoxids oder - chelats aufweist. Zur Verfestigung dieses Films muss das Substrat, auf welches der Film aufgebracht wurde, bei Temperaturen oberhalb 400 °C gesintert werden. Das Verfahren ist deshalb nur für Substrate einsetzbar, welche auch bei Temperaturen oberhalb von 400 °C stabil sind.JP 11171592 describes a water-repellent product and its preparation wherein the soil-repellent surface is produced by applying a film to the surface to be treated comprising fine particles of metal oxide and the hydrolyzate of a metal alkoxide or chelate. To solidify this film, the substrate to which the film has been applied must be sintered at temperatures above 400 ° C. The method can therefore only be used for substrates which are stable even at temperatures above 400 ° C.

EP 1 249 280 A2 offenbart selbstreinigende Strukturen durch hydrophobe Oberflächen, die Partikel mit einer Größe im Mikrometer- bis Submikrometerbereich und mit einer zerklüfteten Struktur im Nanometerbereich aufweisen. Zur Herstellung dieser hydrophoben Oberflächen wird eine härtbare Substanz als Träger auf eine Oberfläche aufgebracht, anschließend die Partikel auf den Träger gebracht und in einem abschließenden Schritt die Partikel durch Härten des Trägers fixiert.EP 1 249 280 A2 discloses self-cleaning structures through hydrophobic surfaces having particles in the micrometer to submicrometer range and with a fissured structure in the nanometer range. To produce these hydrophobic surfaces, a curable substance is applied as a carrier to a surface, then the particles are placed on the carrier and, in a final step, the particles are fixed by hardening the carrier.

In WO 00/39239 wird eine selbstreinigende Oberfläche offenbart, die dadurch gekennzeichnet ist, dass eine im wesentlichen glatte Substratoberfläche mit Partikeln beschichtet wird, die eine BET Oberfläche über 80 m2/g aufweisen. Die Partikel werden fest mit der Substratoberfläche verbunden. Um die Oberfläche wasser- oder ölabweisend zu machen, muss diese in einem zusätzlichen Verfahrensschritt mit einem hydrophoben oder oleophoben Überzug versehen werden.In WO 00/39239 a self-cleaning surface is disclosed, which is characterized in that a substantially smooth substrate surface is coated with particles having a BET surface area above 80 m 2 / g. The particles are firmly bonded to the substrate surface. In order to render the surface water- or oil-repellent, it must be provided with a hydrophobic or oleophobic coating in an additional process step.

Aufgabe der vorliegenden Erfindung war die Bereitstellung von besonders gut selbstreinigenden Oberflächen mit Strukturen im Nanometerbereich, sowie ein einfaches Verfahren zur Herstellung solcher selbstreinigenden Oberflächen.The object of the present invention was to provide particularly well self-cleaning surfaces with structures in the nanometer range, as well as a simple method for producing such self-cleaning surfaces.

Überraschenderweise wurde gefunden, dass selbstreinigende Oberflächen besonders einfach erhalten werden können, wenn Partikel, die eine nanoskalige Struktur aufweisen eingesetzt werden.Surprisingly, it has been found that self-cleaning surfaces can be obtained particularly easily if particles having a nanoscale structure are used.

Gegenstand der vorliegenden Erfindung ist deshalb eine selbstreinigende Oberfläche, die eine künstliche, zumindest teilweise hydrophobe Oberflächenstruktur aus Erhebungen und Vertiefungen aufweist, wobei die Erhebungen und Vertiefungen durch auf der Oberfläche fixierte Partikel gebildet werden, welche dadurch gekennzeichnet ist, dass die Partikel eine zerklüftete Struktur mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen, die im Mittel eine Höhe von 20 bis 500 nm aufweisen, wobei der Abstand der Erhöhungen bzw. Vertiefungen auf den Partikeln weniger als 500 nm beträgt, und die Partikel sich aus Primärteilchen zu Agglomeraten bzw. Aggregaten zusammenlagern, deren Größe zwischen 20 nm und 100 µm liegt.The present invention is therefore a self-cleaning surface having an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by fixed on the surface of particles, which is characterized in that the particles have a fissured structure with Have elevations and / or depressions in the nanometer range, which have an average height of 20 to 500 nm, wherein the distance of the elevations or depressions on the particles is less than 500 nm, and the particles are composed of primary particles to agglomerates or aggregates , whose size is between 20 nm and 100 microns.

Ebenfalls ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung von selbstreinigenden Oberflächen, bei dem eine geeignete, zumindest teilweise hydrophobe Oberflächenstruktur durch Fixieren von Partikeln auf einer Oberfläche geschaffen wird, welches dadurch gekennzeichnet ist, dass Partikel, die zerklüftete Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen, deren Erhöhungen und/oder Vertiefungen im Mittel eine Höhe von 20 bis 500 nm aufweisen, wobei der Abstand der Erhöhungen bzw. Vertiefungen auf den Partikeln weniger als 500 nm beträgt, und die sich aus Primärteilchen zu Agglomeraten oder Aggregaten zusammenlagern, deren Größe zwischen 20 nm und 100 µm liegt, eingesetzt werden.The present invention also provides a process for the production of self-cleaning surfaces, in which a suitable, at least partially hydrophobic surface structure is provided by fixing particles on a surface, which is characterized in that particles, the rugged structures with elevations and / or depressions in the nanometer range, whose elevations and / or depressions have on average a height of 20 to 500 nm, wherein the distance of the elevations or depressions on the particles is less than 500 nm, and which are composed of primary particles to agglomerates or aggregates whose Size between 20 nm and 100 microns, are used.

Durch das erfindungsgemäße Verfahren sind selbstreinigende Oberflächen zugänglich, die Partikel mit einer zerklüfteten Struktur aufweisen. Durch die Verwendung von Partikeln, welche eine zerklüftete Struktur aufweisen, werden auf einfache Weise Oberflächen zugänglich, die bis in den Nanometerbereich strukturiert sind. Im Gegensatz zu herkömmlichen Verfahren, die möglichst kleine Partikel einsetzen, um den Reinigungseffekt zu erzielen, werden in dem erfindungsgemäßen Verfahren Partikel eingesetzt, die selbst eine Struktur im Nanometerbereich aufweisen, weshalb die Partikelgröße selbst weniger kritisch ist, da der Abstand der Erhebungen nicht allein durch die Partikelgröße sondern auch durch die nanoskalige Struktur bestimmt wird.By the method according to the invention self-cleaning surfaces are accessible, having particles with a fissured structure. By using particles which have a fissured structure, surfaces are accessible in a simple manner, which are structured down to the nanometer range. In contrast to conventional methods that use the smallest possible particles to achieve the cleaning effect, particles are used in the inventive method, which themselves have a structure in the nanometer range, which is why the particle size itself is less critical, since the distance of the surveys not only by the particle size but also by the nanoscale structure is determined.

Die erfindungsgemäße selbstreinigende Oberfläche, die eine künstliche, zumindest teilweise hydrophobe Oberflächenstruktur aus Erhebungen und Vertiefungen aufweist, wobei die Erhebungen und Vertiefungen durch auf der Oberfläche fixierten Partikel gebildet werden, zeichnet sich dadurch aus, dass die Partikel eine zerklüftete Struktur mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen. Vorzugsweise weisen die Erhöhungen und/oder Vertiefungen im Mittel eine Höhe von 20 bis 200 nm auf. Der Abstand der Erhöhungen bzw. Vertiefungen auf den Partikeln beträgt vorzugsweise weniger als 200 nm.The self-cleaning surface according to the invention, which has an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by particles fixed on the surface, is characterized in that the particles have a fissured structure with elevations and / or depressions in the nanometer range. Preferably, the elevations and / or depressions have on average a height of 20 to 200 nm. The spacing of the elevations or depressions on the particles is preferably less than 200 nm.

Die zerklüfteten Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich können z.B. über Hohlräume, Poren, Riefen, Spitzen und/oder Zacken gebildet werden. Die Partikel selbst weisen eine durchschnittliche Größe von kleiner 50 µm, vorzugsweise von kleiner 30 µm und ganz besonders bevorzugt von kleiner 20 µm auf. Die Partikel auf der Oberfläche weisen vorzugsweise Abstände von 0 - 10 Partikeldurchmessern, insbesondere von 2 - 3 Partikeldurchmesser auf.The rugged structures with elevations and / or pits in the nanometer range can be e.g. cavities, pores, grooves, peaks and / or spikes are formed. The particles themselves have an average size of less than 50 .mu.m, preferably of less than 30 .mu.m and most preferably of less than 20 .mu.m. The particles on the surface preferably have spacings of 0-10 particle diameters, in particular 2-3 particle diameters.

Die Partikel können Teilchen im Sinne von DIN 53 206 sein. Partikel oder Teilchen gemäß dieser Norm können Einzelteilchen aber auch Aggregate oder Agglomerate sein, wobei gemäß DIN 53 206 unter Aggregaten flächig oder kantenförmig aneinander gelagerte Primärteilchen (Partikel) und unter Agglomeraten punktförmig aneinandergelagerte Primärteilchen (Partikel) verstanden werden. Als Partikel werden solche eingesetzt, die sich aus Primärteilchen zu Agglomeraten oder Aggregaten zusammenlagern. Die Struktur solcher Partikel kann sphärisch, streng sphärisch, mäßig aggregiert, nahezu sphärisch, äußerst stark agglomeriert oder porös agglomeriert sein. Die bevorzugte Größe der Agglomerate bzw. Aggregate liegt zwischen 0,2 und 30 µm.The particles may be particles in the sense of DIN 53 206. Particles or particles according to this standard may be individual particles but also aggregates or agglomerates, according to DIN 53 206 under aggregates surface or edge-shaped juxtaposed primary particles (particles) and agglomerates punctiform juxtaposed primary particles (particles) are understood. Particles used are those which aggregate from primary particles to form agglomerates or aggregates. The structure of such Particles may be spherical, strictly spherical, moderately aggregated, nearly spherical, highly agglomerated or porous agglomerated. The preferred size of the agglomerates or aggregates is between 0.2 and 30 microns.

Bevorzugt weisen die Partikel eine BET-Oberfläche von 20 bis 1000 Quadratmeter pro Gramm auf. Ganz besonders bevorzugt weisen die Partikel eine BET-Oberfläche von 50 bis 200 m2/g auf.Preferably, the particles have a BET surface area of from 20 to 1000 square meters per gram. Most preferably, the particles have a BET surface area of 50 to 200 m 2 / g.

Als strukturbildende Partikel können verschiedenste Verbindungen aus vielen Bereichen der Chemie eingesetzt werden. Vorzugsweise weisen die Partikel zumindest ein Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, Kieselsäuren, Polymeren und mit Kieselsäure beschichteten Metallpulvern, auf. Ganz besonders bevorzugt weisen die Partikel pyrogene Kieselsäuren oder Fällungskieselsäuren, insbesondere Aerosile, Al2O3, SiO2, TiO2, ZrO2, mit Aerosil R974 ummanteltes Zinkpulver, vorzugsweise mit einer Teilchengrößen von 0,2 bis 30 µm oder pulverförmige Polymere, wie z.B. kryogen gemahlenes oder sprühgetrocknetes Polytetrafluorethylen (PTFE) oder perfluorierte Copolymere bzw. Copolymere mit Tetrafluorethylen, auf.As structure-forming particles, a wide variety of compounds from many areas of chemistry can be used. Preferably, the particles comprise at least one material selected from silicates, doped silicates, minerals, metal oxides, silicas, polymers and silica-coated metal powders. Very particular preference is given to using pyrogenic silicic acids or precipitated silicas, in particular aerosils, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, zinc powder coated with Aerosil R 974, preferably having a particle size of from 0.2 to 30 μm, or pulverulent polymers, such as For example, cryogenically ground or spray-dried polytetrafluoroethylene (PTFE) or perfluorinated copolymers or copolymers with tetrafluoroethylene, on.

Vorzugsweise weisen die Partikel zur Generierung der selbstreinigenden Oberflächen neben den zerklüfteten Strukturen auch hydrophobe Eigenschaften auf. Die Partikel können selbst hydrophob sein, wie z.B. PTFE aufweisende Partikel, oder die eingesetzten Partikel können hydrophobiert worden sein. Das Hydrophobieren der Partikel kann auf eine dem Fachmann bekannte Weise erfolgen. Typische hydrophobierte Partikel sind z.B. Feinstpulver wie Aerosil-R 8200 (Degussa AG), die käuflich zu erwerben sind.The particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces. The particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic. The hydrophobing of the particles can be carried out in a manner known to those skilled in the art. Typical hydrophobized particles are e.g. Fine powders such as Aerosil-R 8200 (Degussa AG), which are available for purchase.

Die vorzugsweise verwendeten Kieselsäuren weisen vorzugsweise eine Dibutylphthalat-Adsorbption, angelehnt an DIN 53 601, von zwischen 100 und 350 ml/100 g, bevorzugt Werte zwischen 250 und 350 ml/100 g.The preferably used silicic acids preferably have a dibutyl phthalate adsorption, based on DIN 53 601, of between 100 and 350 ml / 100 g, preferably values between 250 and 350 ml / 100 g.

Die Partikel werden an der Oberfläche fixiert. Das Fixieren kann auf eine dem Fachmann bekannte Weise auf chemisch oder physikalisch (mechanisch) erfolgen. Durch Auftrag der Partikel auf die Oberfläche in einer dicht gepackten Schicht, läßt sich die selbstreinigende Oberfläche generieren.The particles are fixed to the surface. The fixing can be carried out in a manner known to those skilled in the chemical or physical (mechanical). By order of Particles on the surface in a tightly packed layer can generate the self-cleaning surface.

Die erfindungsgemäßen selbstreinigenden Oberflächen weisen eine Abrollwinkel von kleiner 20 °, besonders bevorzugt kleiner 10 ° auf, wobei der Abrollwinkel so definiert ist, dass ein aus 1 cm Höhe auf eine auf einer schiefen Ebene ruhenden planen Oberfläche aufgebrachter Wassertropfen abrollt. Die Fortschreitwinkel und die Rückzugswinkel liegen oberhalb von 140°, bevorzugt oberhalb von 150° und weisen eine Hysterese von kleiner 15°, vorzugsweise kleiner 10° auf. Dadurch, dass die erfindungsgemäßen Oberflächen einen Fortschreit- und Rückzugswinkel oberhalb von zumindest 140°, vorzugsweise oberhalb von 150° aufweisen, werden besonders gute selbstreinigende Oberflächen zugänglich.The self-cleaning surfaces according to the invention have an unrolling angle of less than 20 °, particularly preferably less than 10 °, the unrolling angle being defined such that a drop of water applied from a 1 cm height rolls onto a plane surface resting on an inclined plane. The advancing angle and the retreating angle are above 140 °, preferably above 150 ° and have a hysteresis of less than 15 °, preferably less than 10 °. Because the surfaces according to the invention have an advancing and retreating angle above at least 140 °, preferably above 150 °, particularly good self-cleaning surfaces become accessible.

Je nach verwendeter Oberfläche und je nach Größe und Material der eingesetzten Partikel kann erreicht werden, dass die selbstreinigenden Oberflächen semitransparent sind. Insbesondere können die erfindungsgemäßen Oberflächen kontakttransparent sein, dass heißt das nach Erstellen einer erfindungsgemäßen Oberfläche auf einem beschrifteten Gegenstand diese Beschriftung, in Abhängigkeit von der Größe der Schrift, weiterhin lesbar ist.Depending on the surface used and depending on the size and material of the particles used, it can be achieved that the self-cleaning surfaces are semitransparent. In particular, the surfaces according to the invention can be contact-transparent, that is to say that after the creation of a surface according to the invention on a labeled object, this inscription, depending on the size of the writing, can still be read.

Die erfindungsgemäßen selbstreinigenden Oberflächen werden vorzugsweise durch das erfindungsgemäße Verfahren gemäß einem der Ansprüche 9 bis 16 zur Herstellung dieser Oberflächen hergestellt. Diese erfindungsgemäße Verfahren zur Herstellung von selbstreinigenden Oberflächen, bei dem eine geeignete, zumindest teilweise hydrophobe Oberflächenstruktur durch Fixieren von Partikeln auf der Oberfläche geschaffen wird, zeichnet sich dadurch aus, dass wie oben beschriebene Partikel, die zerklüftete Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen, eingesetzt werden.The self-cleaning surfaces according to the invention are preferably produced by the method according to any one of claims 9 to 16 for the production of these surfaces. This method according to the invention for the production of self-cleaning surfaces, in which a suitable, at least partially hydrophobic surface structure is created by fixing particles on the surface, is characterized in that, as the particles described above, the rugged structures with elevations and / or depressions in the nanometer range have to be used.

Vorzugsweise werden solche Partikel, die zumindest ein Material, ausgewählt aus Silikaten oder dotierten Silikaten, Mineralien, Metalloxiden, pyrogenen Kieselsäuren oder Fällungskieselsäuren oder Polymeren aufweisen, eingesetzt. Ganz besonders bevorzugt weisen die Partikel Silikate, pyrogene Kieselsäuren oder Fällungskieselsäuren, insbesondere Aerosile, Mineralien wie Magadiit Al2O3, SiO2, TiO2, ZrO2 mit Aerosil R 974 ummanteltes Zn-Pulver oder pulverförmige Polymere, wie z.B. kryogen gemahlenes oder sprühgetrocknet Polytetrafluorethylen (PTFE), auf.Preferably, those particles which comprise at least one material selected from silicates or doped silicates, minerals, metal oxides, fumed silicas or precipitated silicas or polymers are used. Most preferably, the particles silicates, fumed silicas or precipitated silicas, in particular aerosils, minerals such as magadiite Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 with Aerosil R 974 sheathed Zn powder or powdered Polymers, such as cryogenically ground or spray-dried polytetrafluoroethylene (PTFE), on.

Besonders bevorzugt werden Partikel mit einer BET-Oberfläche von 50 bis 600 m2/g eingesetzt. Ganz besonders bevorzugt werden Partikel eingesetzt, die eine BET-Oberfläche von 50 bis 200 m2/g aufweisen.Particular preference is given to using particles having a BET surface area of 50 to 600 m 2 / g. Very particularly preferably particles having a BET surface area of 50 to 200 m 2 / g are used.

Vorzugsweise weisen die Partikel zur Generierung der selbstreinigenden Oberflächen neben den zerklüfteten Strukturen auch hydrophobe Eigenschaften auf. Die Partikel können selbst hydrophob sein, wie z.B. PTFE aufweisende Partikel, oder die eingesetzten Partikel können hydrophobiert worden sein. Das Hydrophobieren der Partikel kann auf eine dem Fachmann bekannte Weise erfolgen. Typische hydrophobierte Partikel sind z.B. Feinstpulver wie Aerosil R 974 oder Aerosil-R 8200 (Degussa AG), die käuflich zu erwerben sind.The particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces. The particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic. The hydrophobing of the particles can be carried out in a manner known to those skilled in the art. Typical hydrophobized particles are e.g. Fine powders such as Aerosil R 974 or Aerosil-R 8200 (Degussa AG), which are available for purchase.

Das Fixieren der Partikel auf der Oberfläche kann auf eine dem Fachmann bekannte Art und Weise chemisch oder physikalisch erfolgen. Als chemische Methode der Fixierung kann z.B. die Verwendung eines Fixiermittels eingesetzt werden. Als Fixiermittel kommen verschiedene Klebstoffe, Haftvermittler oder Lacke in Frage. Dem Fachmann ergeben sich weitere Fixiermittel oder chemische Fixiermethoden.The fixing of the particles on the surface can be carried out chemically or physically in a manner known to the person skilled in the art. As a chemical method of fixation, e.g. the use of a fixing agent can be used. Suitable fixatives are various adhesives, adhesion promoters or lacquers. The person skilled in the art will find further fixing agents or chemical fixing methods.

Als physikalische Methode kann z.B. das Auf- bzw. Eindrücken der Partikel in die Oberfläche eingesetzt werden. Der Fachmann erkennt leicht andere geeignete physikalische Methoden zur Fixierung von Partikeln mit der Oberfläche, beispielsweise das Zusammensintern von Partikeln untereinander bzw. der Partikel an ein feinpulveriges Trägermaterial.As a physical method, e.g. the application or impressions of the particles are used in the surface. The person skilled in the art easily recognizes other suitable physical methods for fixing particles to the surface, for example the sintering together of particles with one another or of the particles on a pulverulent carrier material.

Bei der Durchführung des erfindungsgemäßen Verfahrens kann es vorteilhaft sein, Partikel einzusetzen, die hydrophobe Eigenschaften aufweisen und/oder die durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Alkyldisilazane, Paraffine, Wachse, Fluoralkylsilane, Fettsäureester, funktionalisierten langkettige Alkanderivate oder Perfluoralkylsilane, hydrophobe Eigenschaften aufweisen. Die Hydrophobierung von Partikeln ist allgemein bekannt und kann z.B. in der Schriftenreihe Pigmente, Nummer 18, der Degussa AG nachgelesen werden.In carrying out the process according to the invention, it may be advantageous to use particles which have hydrophobic properties and / or by treatment with at least one compound from the group of alkylsilanes, alkyldisilazanes, paraffins, waxes, fluoroalkylsilanes, fatty acid esters, functionalized long-chain alkane derivatives or perfluoroalkylsilanes have hydrophobic properties. The hydrophobization of particles is generally known and can be read, for example, in the series Pigments, number 18, the Degussa AG.

Es kann ebenso vorteilhaft sein, die Partikel nach dem Fixieren auf dem Träger mit hydrophoben Eigenschaften auszustatten. Dies kann z.B. dadurch erfolgen, dass die Partikel der behandelten Oberfläche durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, die z.B. bei der Sivento GmbH zu beziehen sind, Alkyldisilazane, Paraffine, Wachse, Fluoralkylsilane, Fettsäureester, funktionalisierten langkettige Alkanderivate oder Perfluoralkylsilane, mit hydrophoben Eigenschaften ausgestattet werden. Vorzugsweise erfolgt die Behandlung dadurch, dass die Partikel aufweisende Oberfläche, die hydrophobiert werden soll, in eine Lösung, die ein Hydrophobierungsreagenz wie z.B. Alkylsilane aufweist, getaucht wird, überschüssiges Hydrophobierungsreagenz abgetropft wird und die Oberfläche bei einer möglichst hohen Temperatur getempert. Die Behandlung kann aber auch durch Besprühen der selbstreinigenden Oberfläche mit einem ein Hydrophobierungsreagenz aufweisenden Medium und anschließende Temperung, erfolgen. Eine solche Behandlung ist z.B. für die Behandlung von Stahlträgern oder anderen schweren oder sperrigen Gegenständen bevorzugt. Die maximal anwendbare Temperatur ist durch die Erweichungstemperaturen von Träger oder Substrat limitiert.It may also be advantageous to provide the particles with hydrophobic properties after fixing on the support. This can e.g. in that the particles of the treated surface are treated by treatment with at least one compound selected from the group consisting of alkylsilanes, e.g. can be obtained from the Sivento GmbH, alkyldisilazanes, paraffins, waxes, fluoroalkylsilanes, fatty acid esters, functionalized long-chain alkane derivatives or perfluoroalkylsilanes, be equipped with hydrophobic properties. Preferably, the treatment is carried out by subjecting the particle-bearing surface to be hydrophobicized to a solution containing a hydrophobing reagent, such as e.g. Alkylsilane has, is dipped, excess hydrophobing reagent is drained and the surface is annealed at the highest possible temperature. The treatment can also be done by spraying the self-cleaning surface with a medium having a hydrophobizing reagent and subsequent heat treatment. Such a treatment is e.g. for the treatment of steel beams or other heavy or bulky objects. The maximum applicable temperature is limited by the softening temperatures of the carrier or substrate.

Sowohl bei der Hydrophobierung als auch bei der Fixierung der Partikel auf der Oberfläche muss darauf geachtet werden, dass die zerklüftete Struktur der Partikel im Nanometerbereich erhalten bleibt, damit der Selbstreinigungseffekt der Oberfläche erzielt wird.Both in the hydrophobization and in the fixation of the particles on the surface care must be taken that the fissured structure of the particles is maintained in the nanometer range, so that the self-cleaning effect of the surface is achieved.

Das erfindungsgemäße Verfahren gemäß zumindest einem der Ansprüche 9 bis 16 kann hervorragend zur Herstellung von selbstreinigenden Oberflächen auf planaren oder nichtplanaren Gegenständen, insbesondere auf nichtplanaren Gegenständen verwendet werden. Dies ist mit den herkömmlichen Verfahren nur eingeschränkt möglich. Insbesondere über Verfahren, bei denen vorgefertigte Filme auf eine Oberfläche aufgebracht werden oder bei Verfahren, bei denen eine Struktur durch Prägen erstellt werden soll, sind nichtplanare Gegenstände, wie z.B. Skulpturen, nicht oder nur eingeschränkt zugänglich. Naturgemäße kann das erfindungsgemäße Verfahren aber auch zur Herstellung von selbstreinigenden Oberflächen auf Gegenständen mit planaren Oberflächen, wie z.B. Gewächshäusern oder öffentlichen Verkehrsmitteln verwendet werden. Insbesondere die Anwendung des erfindungsgemäßen Verfahrens zur Herstellung von selbstreinigenden Oberflächen an Gewächshäusern weist Vorteile auf, da mit dem Verfahren selbstreinigende Oberflächen z.B. auch auf transparenten Materialien wie Glas oder Plexiglas® hergestellt werden können und die selbstreinigende Oberfläche zumindest soweit transparent ausgebildet werden kann, dass für das Wachstum der Pflanzen im Gewächshaus genügend Sonnenlicht durch die mit einer selbstreinigenden Oberfläche ausgerüstete transparente Oberfläche dringen kann. Im Gegensatz zu herkömmlichen Gewächshäusern, die regelmäßig unter anderem von Laub-, Staub-, Kalk- und biologischem Material, wie z.B. Algen, gereinigt werden müssen, können Gewächshäuser, die eine erfindungsgemäße Oberfläche gemäß einem der Ansprüche 1 bis 8, aufweisen, mit längeren Reinigungsintervallen betrieben werden.The process according to at least one of claims 9 to 16 can be used excellently for producing self-cleaning surfaces on planar or non-planar objects, in particular on non-planar objects. This is only possible to a limited extent with the conventional methods. In particular, by methods in which prefabricated films are applied to a surface or in processes in which a structure is to be created by embossing, non-planar objects, such as sculptures, are not or only partially accessible. Naturally, the inventive method but also for the production of self-cleaning surfaces on objects with planar surfaces such as greenhouses or public transport. In particular, the application of the method according to the invention for the production of self-cleaning surfaces on greenhouses has advantages, since with the method self-cleaning surfaces can be made, for example, on transparent materials such as glass or Plexiglas ® and the self-cleaning surface can be formed at least as far transparent that for the Growth of the plants in the greenhouse can penetrate enough sunlight through the provided with a self-cleaning surface transparent surface. In contrast to conventional greenhouses, which regularly have to be cleaned, inter alia, of foliage, dust, lime and biological material, such as algae, greenhouses having a surface according to the invention according to one of claims 1 to 8, with longer Cleaning intervals are operated.

Das erfindungsgemäße Verfahrens kann außerdem zur Herstellung von selbstreinigenden Oberflächen auf nicht starren Oberflächen von Gegenständen, verwendet werden, wie z.B. Schirmen oder anderen Oberflächen die flexibel gehalten sind. Ganz besonders bevorzugt kann das erfindungsgemäße Verfahren gemäß zumindest einem der Ansprüche 9 bis 16, zur Herstellung selbstreinigender Oberflächen auf flexiblen oder unflexiblen Wänden im Sanitärbereich verwendet werden. Solche Wände können z.B. Trennwände in öffentlichen Toiletten, Wände von Duschkabinen, Schwimmbädern oder Saunen, aber auch Duschvorhänge (flexible Wand) sein.The method of the invention may also be used to make self-cleaning surfaces on non-rigid surfaces of articles, such as screens or other surfaces which are kept flexible. Very particularly preferably, the method according to the invention can be used according to at least one of claims 9 to 16, for the production of self-cleaning surfaces on flexible or inflexible walls in the sanitary area. Such walls may be, for example, partitions in public toilets, walls of shower cubicles, swimming pools or saunas, but also shower curtains (flexible wall).

Die Partikel weisen Erhebungen und/oder Vertiefungen mit im Mittel einer Höhe von 20 bis 500 nm, vorzugsweise von 20 bis 200 nm auf. Der Abstand der Erhebungen und/oder Vertiefungen auf dem Partikel beträgt weniger als 500 nm, vorzugsweise weniger als 200 nm. Die erfindungsgemäßen Partikel können z.B. aus zumindest einem Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, pyrogenen- oder Fällungskieselsäuren, Polymeren und Metallpulvern ausgewählt sein.The particles have elevations and / or depressions with an average height of 20 to 500 nm, preferably from 20 to 200 nm. The spacing of the elevations and / or depressions on the particle is less than 500 nm, preferably less than 200 nm. The particles according to the invention can be made, for example, of at least one material selected from silicates, doped silicates, minerals, metal oxides, pyrogenic or precipitated silicas, polymers and metal powders.

Die Partikel können Teilchen im Sinne von DIN 53 206 sein. Partikel oder Teilchen gemäß dieser Norm können Einzelteilchen aber auch Aggregate oder Agglomeratesein, wobei gemäß DIN 53 206 unter Aggregaten flächig oder kantenförmig aneinander gelagerte Primärteilchen (Partikel) und unter Agglomeraten punktförmig aneinandergelagerte Primärteilchen (Partikel) verstanden werden. Als Partikel werden solche eingesetzt, die sich aus Primärteilchen zu Agglomeraten oder Aggregaten zusammenlagern. Die Struktur solcher Partikel kann sphärisch, streng sphärisch, mäßig aggregiert, nahezu sphärisch, äußerst stark agglomeriert oder porös agglomeriert sein. Die Größe der Agglomerate bzw. Aggregate liegt zwischen 20 nm und 100 µm, bevorzugt zwischen 0,2 und 30 µm.The particles may be particles in the sense of DIN 53 206. Particles or particles in accordance with this standard can be individual particles but also aggregates or agglomerates, where according to DIN 53 206, aggregates are surface or edge-shaped primary particles (particles) and agglomerates are point-like primary particles (particles). Particles used are those which aggregate from primary particles to form agglomerates or aggregates. The structure of such particles may be spherical, strictly spherical, moderately aggregated, nearly spherical, extremely agglomerated or porous agglomerated. The size of the agglomerates or aggregates is between 20 nm and 100 microns, preferably between 0.2 and 30 microns.

In den Fig. 1 und 2 sind Rasterelektronenmikroskopische- (REM-) Aufnahmen von als Strukturbildnern eingesetzten Partikeln wiedergegeben.

  • Fig. 1 zeigt eine REM-Aufnahme des Aluminiumoxids Aluminiumoxide C (Degussa AG).
  • Fig. 2 zeigt eine REM-Aufnahme der Oberfläche von Partikeln der Kieselsäure Sipernat FK 350 (Degussa AG) auf einem Träger.
Scattered electron micrographs (SEM) of particles used as structuring agents are reproduced in FIGS. 1 and 2.
  • 1 shows a SEM image of the aluminum oxide aluminum oxides C (Degussa AG).
  • 2 shows a SEM image of the surface of particles of the silica Sipernat FK 350 (Degussa AG) on a carrier.

Die nachfolgenden Beispiele sollen die erfindungsgemäßen Oberflächen bzw. das Verfahren zur Herstellung der Oberflächen näher erläutern, ohne dass die Erfindung auf diese Ausführungsarten beschränkt sein soll.The following examples are intended to explain the surfaces according to the invention or the method for producing the surfaces, without the invention being restricted to these embodiments.

Beispiel 1:Example 1:

20 Gew.-% Methylmethacrylat, 20 Gew.-% Pentaeritrittetraacrylat und 60 Gew.-% Hexandioldimethacrylat wurden miteinander vermischt. Bezogen auf diese Mischung werden 14 Gew.-% Plex 4092 F, ein acrylisches Copolymerisat der Röhm GmbH und 2 Gew.-% UV-Härter Darokur 1173 zugesetzt und mindestens 60 min lang gerührt. Diese Mischung wurde als Träger auf eine 2 mm dicken PMMA-Platte in einer Dicke von 50 µm aufgetragen. Die Schicht wurde für 5 min angetrocknet. Anschließend wurden als Partikel hydrophobierte, pyrogene Kieselsäure Aerosil VPR 411 (Degussa AG) mittels einer elektrostatischen Sprühpistole aufgesprüht. Nach 3 min wurde der Träger bei einer Wellenlänge von 308 nm unter Stickstoff gehärtet. Nach dem Härten des Trägers wurde überschüssiges Aerosil VPR 411 abgebürstet. Die Charakterisierung der Oberfläche erfolgte anfänglich visuell und ist mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus. Der Abrollwinkel betrug 2,4°. Gemessen wurden Fortschreit- und Rückzugswinkel zu jeweils größer als 150°. Die zugehörige Hysterese liegt unterhalb von 10°.20% by weight of methyl methacrylate, 20% by weight of pentaerythritol tetraacrylate and 60% by weight of hexanediol dimethacrylate were mixed together. Based on this mixture, 14% by weight Plex 4092 F, an acrylic copolymer from Röhm GmbH and 2% by weight Darokur 1173 UV curing agent are added and the mixture is stirred for at least 60 minutes. This mixture was applied as a support to a 2 mm thick PMMA sheet in a thickness of 50 microns. The layer was dried for 5 minutes. Subsequently, hydrophobic fumed silica Aerosil VPR 411 (Degussa AG) was sprayed on as particles by means of an electrostatic spray gun. After 3 minutes, the support became at a wavelength of 308 nm under nitrogen hardened. After curing the backing, excess Aerosil VPR 411 was brushed off. The characterization of the surface was initially visual and is logged with +++. +++ means, water droplets are almost completely formed. The roll-off angle was 2.4 °. Progressive and retreatment angles greater than 150 ° each were measured. The associated hysteresis is below 10 °.

Beispiel 2:Example 2:

Der Versuch aus Beispiel 1 wurde wiederholt, wobei Partikel aus Aluminiumoxid C (Degussa AG), ein Aluminiumoxid mit einer BET-Oberfläche von 100 m2/g, elektrostatisch aufgesprüht wurden. Nach erfolgter Härtung des Trägers gemäß Beispiel 1 und Abbürsten überschüssiger Partikel, wurde die gehärtete, abgebürstete Platte zum Hydrophobieren in eine Formulierung von Tridecafluoroctyltriethoxysilan in Ethanol (Dynasilan 8262, Sivento GmbH) getaucht. Nach Abtropfen von überschüssigem Dynasilan 8262 wurde die Platte bei einer Temperatur von 80 °C getempert. Die Oberfläche wird mit ++ eingestuft, d.h., die Ausformung der Wassertropfen ist nicht ideal, der Abrollwinkel liegt unterhalb von 20 °.The experiment of Example 1 was repeated, wherein particles of aluminum oxide C (Degussa AG), an aluminum oxide having a BET surface area of 100 m 2 / g, were sprayed electrostatically. After curing of the support according to Example 1 and scrubbing of excess particles, the cured, brushed plate for hydrophobing in a formulation of Tridecafluoroctyltriethoxysilane in ethanol (Dynasilan 8262, Sivento GmbH) was immersed. After draining off excess Dynasilan 8262, the plate was annealed at a temperature of 80 ° C. The surface is rated ++, ie the shape of the water droplets is not ideal, the rolling angle is below 20 °.

Beispiel 3:Example 3:

Auf die mit dem Träger behandelte Platte aus Beispiel 1 wird Kieselsäure Sipernat 350 der Degussa AG gestreut. Nach 5 min Eindringzeit wird die behandelte Platte unter Stickstoff im UV-Licht bei 308 nm gehärtet. Überschüssige Partikel werden wiederum abgebürstet und die Platte wird anschließend wiederum in Dynasilan 8262 getaucht und anschließend bei 80 °C getempert. Die Oberfläche wird mit +++ eingestuft.Silica acid Sipernat 350 from Degussa AG is sprinkled onto the support-treated plate from Example 1. After a penetration time of 5 minutes, the treated plate is cured under nitrogen in UV light at 308 nm. Excess particles are brushed off again and the plate is then immersed again in Dynasilan 8262 and then annealed at 80 ° C. The surface is classified as +++.

Beispiel 4:Example 4:

Der Versuch aus Beispiel 1 wird wiederholt, aber an Stelle von Aerosil VPR 411 wird Aerosil R 8200 (Degussa AG), welches eine BET-Oberfläche von 200 ± 25 m2/g eingesetzt. Die Beurteilung der Oberfläche ist +++. Der Abrollwinkel ist zu 1,3° bestimmt worden. Gemessen wurden außerdem Fortschreit- und Rückzugswinkel, die jeweils größer als 150° betrugen. Die zugehörige Hysterese liegt unterhalb von 10°.The experiment of Example 1 is repeated, but instead of Aerosil VPR 411 Aerosil R 8200 (Degussa AG), which uses a BET surface area of 200 ± 25 m 2 / g. The assessment of the surface is +++. The roll angle has been determined to be 1.3 °. In addition, progression and retraction angles were measured, each of which exceeded 150 °. The associated hysteresis is below 10 °.

Beispiel 5:Example 5:

Dem Lack aus Beispiel 1, der mit dem UV-Härter bereits vermischt wurde, wurden zusätzlich 10 Gew.-% (bezogen auf das Gesamtgewicht der Lackmischung) 2-(N-Ethylperfluoroctansulfonamido)-ethylacrylat zugesetzt. Auch dieses Gemisch wurde wieder mindestens 60 min lang gerührt. Diese Mischung wurde als Träger auf eine 2 mm dicken PMMA-Platte in einer Dicke von 50 µm aufgetragen. Die Schicht wurde für 5 min angetrocknet. Anschließend wurden als Partikel hydrophobierte, pyrogene Kieselsäure Aerosil VPR 411 (Degussa AG) mittels einer elektrostatischen Sprühpistole aufgesprüht. Nach 3 min wurde der Träger bei einer Wellenlänge von 308 nm unter Stickstoff gehärtet. Nach dem Härten des Trägers wurde überschüssiges Aerosil VPR 411 abgebürstet. Die Charakterisierung der Oberfläche erfolgte anfänglich visuell und ist mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus. Der Abrollwinkel betrug 0,5°. Gemessen wurden Fortschreit- und Rückzugswinkel zu jeweils größer als 150°. Die zugehörige Hysterese liegt unterhalb von 10°.In addition, 10% by weight (based on the total weight of the coating mixture) of 2- (N-ethylperfluorooctanesulfonamido) -ethyl acrylate was added to the paint from Example 1 which had already been mixed with the UV curing agent. This mixture was stirred again for at least 60 minutes. This mixture was applied as a support to a 2 mm thick PMMA sheet in a thickness of 50 microns. The layer was dried for 5 minutes. Subsequently, hydrophobic fumed silica Aerosil VPR 411 (Degussa AG) was sprayed on as particles by means of an electrostatic spray gun. After 3 minutes, the support was cured at a wavelength of 308 nm under nitrogen. After curing the backing, excess Aerosil VPR 411 was brushed off. The characterization of the surface was initially visual and is logged with +++. +++ means, water droplets are almost completely formed. The rolling angle was 0.5 °. Progressive and retreatment angles greater than 150 ° each were measured. The associated hysteresis is below 10 °.

Claims (16)

  1. Self-cleaning surface which has an artificial, at least to some extent hydrophobic, surface structure made from elevations and depressions, where the elevations and depressions are formed by particles secured to the surface,
    characterized in that
    the particles have a fissured structure with elevations and/or depressions in the nanometre range, which have an average height of from 20 nm to 500 nm, where the distance between the elevations and, respectively, depressions on the particles is below 500 nm,
    and the particles accrete from primary particles to give agglomerates or aggregates whose size is from 20 nm to 100 µm.
  2. Self-cleaning surface according to Claim 1,
    characterized in that
    the particles comprise fumed or precipitated silicas.
  3. Self-cleaning surface according to at least one of Claims 1 and 2,
    characterized in that
    the particles have hydrophobic properties.
  4. Self-cleaning surface according to at least one of Claims 1 to 3,
    characterized in that
    the distances between the individual particles on the surface are from 2 to 3 particle diameters.
  5. Self-cleaning surface according to Claim 4,
    characterized in that
    the average height of the elevations and/or depressions is from 20 to 200 nm.
  6. Self-cleaning surface according to any of Claims 1 to 5,
    characterized in that
    the distance between the elevations and, respectively, depressions on the particles is below 200 nm.
  7. Process for producing self-cleaning surfaces by creating a suitable, at least to some extent hydrophobic, surface structure by securing particles on a surface by means of a carrier,
    characterized in that
    the particles used have a fissured structure with elevations and/or depressions in the nanometre range, which have an average height of from 20 nm to 500 nm, where the distance between the elevations and, respectively, depressions on the particles is below 500 nm, and the particles accrete from primary particles to give agglomerates or aggregates whose size is from 20 nm to 100 µm.
  8. Process according to Claim 7,
    characterized in that
    use is made of particles which comprise at least one material selected from the group consisting of fumed or precipitated silicas.
  9. Process according to at least one of Claims 7 and 8,
    characterized in that
    the particles are secured to the surface by chemical or physical methods.
  10. Process according to Claim 9,
    characterized in that
    the particles are secured chemically using a fixative, or physically by pressing the particles into the surface, or by sintering the particles to one another or sintering particles to a fine-powder carrier material.
  11. Process according to at least one of Claims 7 to 10,
    characterized in that
    use is made of particles which have hydrophobic properties.
  12. Process according to at least one of Claims 7 to 11,
    characterized in that
    use is made of particles which have hydrophobic properties by virtue of treatment with at least one compound selected from the group consisting of the alkylsilanes, perfluoroalkylsilanes, alkyldisilazanes, fluoroalkylsilanes, disilazanes, waxes, paraffins, fatty esters, and functionalized long-chain alkane derivatives.
  13. Process according to at least one of Claims 7 to 12,
    characterized in that
    the particles are provided with hydrophobic properties after the process of securing to the surface.
  14. Process according to Claim 13,
    characterized in that
    the particles are provided with hydrophobic properties by virtue of treatment with at least one compound selected from the group consisting of the alkylsilanes, perfluoroalkylsilanes, alkyldisilazanes, fluoroalkylsilanes, waxes, paraffins, fatty esters, and functionalized long-chain alkane derivatives, and fluoroalkane derivatives.
  15. Use of the process according to at least one of Claims 7 to 14 for producing self-cleaning surfaces on planar or nonplanar objects.
  16. Use of the process according to at least one of Claims 7 to 15 for producing self-cleaning surfaces on nonrigid surfaces of objects.
EP02004703A 2001-04-12 2002-03-01 Self-cleaning surface with hydrophobic structure and process for making it Revoked EP1249281B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118345 2001-04-12
DE10118345A DE10118345A1 (en) 2001-04-12 2001-04-12 Properties of structure formers for self-cleaning surfaces and the production of the same

Publications (3)

Publication Number Publication Date
EP1249281A2 EP1249281A2 (en) 2002-10-16
EP1249281A3 EP1249281A3 (en) 2003-01-02
EP1249281B1 true EP1249281B1 (en) 2007-05-16

Family

ID=7681410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02004703A Revoked EP1249281B1 (en) 2001-04-12 2002-03-01 Self-cleaning surface with hydrophobic structure and process for making it

Country Status (8)

Country Link
US (1) US6811856B2 (en)
EP (1) EP1249281B1 (en)
JP (1) JP4102583B2 (en)
AT (1) ATE362404T1 (en)
CA (1) CA2381747C (en)
DE (2) DE10118345A1 (en)
DK (1) DK1249281T3 (en)
ES (1) ES2286169T3 (en)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118345A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Properties of structure formers for self-cleaning surfaces and the production of the same
DE10118351A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
DE10118346A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning, water-repellent textiles, used e.g. for tents, sports clothing and carpets, made by impregnating textile material with a suspension of hydrophobic particles and then removing the solvent
DE10118352A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
DE10134477A1 (en) * 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
DE10159767A1 (en) * 2001-12-05 2003-06-18 Degussa Process for the manufacture of articles with anti-allergic surfaces
DE10160054A1 (en) * 2001-12-06 2003-06-18 Degussa Light-scattering materials with self-cleaning surfaces
DE10205007A1 (en) * 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Process for the production of protective layers with dirt and water repellent properties
DE10210668A1 (en) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Device manufactured by injection molding, for storing liquids and processes for the production of this device
DE10210667A1 (en) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Production of web products with self-cleaning surfaces by means of a calendering process, web products themselves and the use of these
DE10210666A1 (en) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Shaping process for the production of moldings with at least one surface which has self-cleaning properties, and moldings produced using this process
DE10210671A1 (en) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Mold release agent which has hydrophobic, nanoscale particles and use of these mold release agents
DE10210673A1 (en) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Injection molded body with self-cleaning properties and method for producing such injection molded body
DE10210674A1 (en) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Surface extrudates with self-cleaning properties and process for producing such extrudates
DE10231757A1 (en) 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Process for the preparation of a surfactant-free suspension on an aqueous basis of nanostructured, hydrophobic particles and their use
DE10233830A1 (en) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Method for preparation of self cleaning surfaces by application and fixing of particles to the surface useful for production of films, shaped parts, objects subjected to high dirt and water loads, especially in outdoor sports
DE10233831A1 (en) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh A process for preparation of structured surfaces with a carrier layer coated with nano particles useful for preparation of structured surfaces or films
DE10242560A1 (en) * 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Process for preparation of self-cleaning surfaces on coated flat textile structures useful for cladding technical textiles and structures obtained from these and production of raincoats and safety clothing with signaling effect
US7196043B2 (en) * 2002-10-23 2007-03-27 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
DE10250328A1 (en) * 2002-10-29 2004-05-13 Creavis Gesellschaft Für Technologie Und Innovation Mbh Production of suspensions of hydrophobic oxide particles
US6811884B2 (en) * 2002-12-24 2004-11-02 Ppg Industries Ohio, Inc. Water repellant surface treatment and treated articles
DE10308379A1 (en) * 2003-02-27 2004-09-09 Creavis Gesellschaft Für Technologie Und Innovation Mbh Dispersion of water in hydrophobic oxides for the production of hydrophobic nanostructured surfaces
DE10315128A1 (en) * 2003-04-03 2004-10-14 Creavis Gesellschaft Für Technologie Und Innovation Mbh Process for suppressing mold formation using hydrophobic substances and an anti-mold agent for parts of buildings
ES2275039T3 (en) * 2003-04-24 2007-06-01 Goldschmidt Gmbh PROCEDURE FOR THE PRODUCTION OF REMOVABLE LAMINAR COATINGS, DIRTY AND WATER REPELLENTS.
DE10321851A1 (en) * 2003-05-15 2004-12-02 Creavis Gesellschaft Für Technologie Und Innovation Mbh Use of particles hydrophobized with fluorosilanes for the production of self-cleaning surfaces with lipophobic, oleophobic, lactophobic and hydrophobic properties
DE10341670A1 (en) * 2003-09-08 2005-04-07 Henkel Kgaa Process for the surface modification of coated substrates
US8034173B2 (en) * 2003-12-18 2011-10-11 Evonik Degussa Gmbh Processing compositions and method of forming the same
US8974590B2 (en) 2003-12-18 2015-03-10 The Armor All/Stp Products Company Treatments and kits for creating renewable surface protective coatings
US7828889B2 (en) * 2003-12-18 2010-11-09 The Clorox Company Treatments and kits for creating transparent renewable surface protective coatings
US7213309B2 (en) 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
DE102004019951A1 (en) * 2004-04-02 2005-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device with a scratch-resistant and optimized wetting properties having technical surface and method for producing the device
US7713632B2 (en) 2004-07-12 2010-05-11 Cardinal Cg Company Low-maintenance coatings
DE102004036073A1 (en) * 2004-07-24 2006-02-16 Degussa Ag Process for sealing natural stones
US7697808B2 (en) * 2004-07-27 2010-04-13 Ut-Battelle, Llc Multi-tipped optical component
US7258731B2 (en) * 2004-07-27 2007-08-21 Ut Battelle, Llc Composite, nanostructured, super-hydrophobic material
DE102004062743A1 (en) * 2004-12-27 2006-07-06 Degussa Ag Process for increasing the water-tightness of textile fabrics, textile fabrics treated in this way and their use
DE102004062739A1 (en) * 2004-12-27 2006-07-06 Degussa Ag Self-cleaning surfaces with protrusions formed by hydrophobic particles, with improved mechanical strength
DE102004062740A1 (en) * 2004-12-27 2006-07-13 Degussa Ag Process for increasing the water-tightness of textile fabrics, textile fabrics treated in this way and their use
DE102004062742A1 (en) * 2004-12-27 2006-07-06 Degussa Ag Textile substrates with self-cleaning properties (lotus effect)
US20060216476A1 (en) * 2005-03-28 2006-09-28 General Electric Company Articles having a surface with low wettability and method of making
US7772393B2 (en) 2005-06-13 2010-08-10 Innovative Surface Technologies, Inc. Photochemical crosslinkers for polymer coatings and substrate tie-layer
DE102005037338A1 (en) * 2005-08-04 2007-02-08 Starnberger Beschichtungen Gmbh Producing a nonstick coating on a substrate comprises applying a primer coat having inclusions, applying a top coat and heat-treating the top coat
WO2007053242A2 (en) * 2005-09-19 2007-05-10 Wayne State University Transparent hydrophobic article having self-cleaning and liquid repellant features and method of fabricating same
US20090231714A1 (en) 2005-09-19 2009-09-17 Yang Zhao Transparent anti-reflective article and method of fabricating same
US20070141306A1 (en) * 2005-12-21 2007-06-21 Toshihiro Kasai Process for preparing a superhydrophobic coating
DE102006001641A1 (en) * 2006-01-11 2007-07-12 Degussa Gmbh Coating substrate, particularly wall paper, comprises e.g. applying composition containing inorganic compound comprising metal/half metal, silane-containg coating, coating containing biocidal and/or anti-microbial substances, and drying
US8258206B2 (en) 2006-01-30 2012-09-04 Ashland Licensing And Intellectual Property, Llc Hydrophobic coating compositions for drag reduction
US20080221009A1 (en) * 2006-01-30 2008-09-11 Subbareddy Kanagasabapathy Hydrophobic self-cleaning coating compositions
US20080221263A1 (en) * 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
US20090018249A1 (en) * 2006-01-30 2009-01-15 Subbareddy Kanagasabapathy Hydrophobic self-cleaning coating compositions
US20070184247A1 (en) * 2006-02-03 2007-08-09 Simpson John T Transparent, super-hydrophobic, disordered composite material
FI121336B (en) * 2006-03-27 2010-10-15 Beneq Oy Hydrophobic glass surface
JP5129975B2 (en) 2006-04-11 2013-01-30 日本板硝子株式会社 Photocatalytic coating with improved low maintenance properties
IL175477A (en) * 2006-05-08 2013-09-30 Efraim Kfir Assembly for lifting the sinus membrane for use in dental implant surgery
DE102006027480A1 (en) * 2006-06-14 2008-01-10 Evonik Degussa Gmbh Scratch and abrasion resistant coatings on polymeric surfaces
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US20080070146A1 (en) 2006-09-15 2008-03-20 Cabot Corporation Hydrophobic-treated metal oxide
GB0624729D0 (en) * 2006-12-12 2007-01-17 Univ Leeds Reversible micelles and applications for their use
DE102007009590A1 (en) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Shiny and scratch-resistant nail polish by adding sol-gel systems
DE102007009589A1 (en) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Shiny and scratch-resistant nail polish by addition of silanes
US7943234B2 (en) * 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
US7732497B2 (en) * 2007-04-02 2010-06-08 The Clorox Company Colloidal particles for lotus effect
US20080250978A1 (en) * 2007-04-13 2008-10-16 Baumgart Richard J Hydrophobic self-cleaning coating composition
JP2008279398A (en) * 2007-05-14 2008-11-20 Kagawa Gakusei Venture:Kk Member having water-repellent and oil-repellent antifouling property surface, and manufacturing method of the water-repellent and oil-repellent antifouling property surface
US8193406B2 (en) * 2007-05-17 2012-06-05 Ut-Battelle, Llc Super-hydrophobic bandages and method of making the same
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
JP5202626B2 (en) * 2007-06-29 2013-06-05 スヴェトリー・テクノロジーズ・アーベー Method for preparing superhydrophobic surfaces on solids with rapidly expanding solutions
TW200902654A (en) * 2007-07-12 2009-01-16 Dept Of Fisheries Administration The Council Of Agriculture Anti-fouling drag reduction coating material for ships
US20090042469A1 (en) * 2007-08-10 2009-02-12 Ut-Battelle, Llc Superhydrophilic and Superhydrophobic Powder Coated Fabric
US20090064894A1 (en) * 2007-09-05 2009-03-12 Ashland Licensing And Intellectual Property Llc Water based hydrophobic self-cleaning coating compositions
JP5474796B2 (en) 2007-09-14 2014-04-16 日本板硝子株式会社 Low maintenance coating and method of manufacturing low maintenance coating
FI123691B (en) * 2007-12-10 2013-09-30 Beneq Oy A method for producing a highly hydrophobic surface
FI20070953L (en) * 2007-12-10 2009-06-11 Beneq Oy Method and device for structuring a surface
US8124189B2 (en) * 2008-01-16 2012-02-28 Honeywell International Inc. Hydrophobic coating systems, suspensions for forming hydrophobic coatings, and methods for fabricating hydrophobic coatings
US8870839B2 (en) * 2008-04-22 2014-10-28 The Procter & Gamble Company Disposable article including a nanostructure forming material
DE102008041480A1 (en) * 2008-08-22 2010-02-25 BSH Bosch und Siemens Hausgeräte GmbH Refrigerating appliance and evaporator
US9073782B2 (en) 2009-01-12 2015-07-07 Cleansun Energy Ltd. Substrate having a self cleaning anti-reflecting coating and method for its preparation
US8691983B2 (en) * 2009-03-03 2014-04-08 Innovative Surface Technologies, Inc. Brush polymer coating by in situ polymerization from photoreactive surface
WO2011038325A2 (en) * 2009-09-25 2011-03-31 Hunter Fan Company Dust-repellent nanoparticle surfaces
US8147607B2 (en) * 2009-10-26 2012-04-03 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
GB201111439D0 (en) 2011-07-04 2011-08-17 Syngenta Ltd Formulation
US9428651B2 (en) * 2012-08-29 2016-08-30 Teledyne Scientific & Imaging, Llc Fouling and stiction resistant coating
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
US9828284B2 (en) 2014-03-28 2017-11-28 Ut-Battelle, Llc Thermal history-based etching
US9546284B1 (en) 2014-07-10 2017-01-17 Hkc-Us, Llc Dust prevention compositions, coatings and processes of making
EP3181615A1 (en) * 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymer powder for powder bed fusion method
BR112018075724B1 (en) 2016-06-15 2022-04-05 Bemis Company, Inc Heat-seal lid with non-heat-seal layer and hydrophobic wrap
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
CN107880302B (en) * 2017-12-19 2021-02-02 中物院成都科学技术发展中心 Patterned polymer and preparation method thereof
JP2022036387A (en) * 2020-08-24 2022-03-08 ジヤトコ株式会社 Speed reducer case

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US5432000A (en) * 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5141915A (en) * 1991-02-25 1992-08-25 Minnesota Mining And Manufacturing Company Dye thermal transfer sheet with anti-stick coating
KR940018419A (en) 1993-01-18 1994-08-18 이마무라 가즈수케 Fluorine-containing polymer molded article having improved water repellency and cleaning jig prepared therefrom
WO1996004123A1 (en) 1994-07-29 1996-02-15 Wilhelm Barthlott Self-cleaning surfaces of objects and process for producing same
DE19860139C1 (en) * 1998-12-24 2000-07-06 Bayer Ag Process for producing an ultraphobic surface based on nickel hydroxide, ultraphobic surface and their use
YU67701A (en) 1999-03-25 2003-08-29 Wilhelm Barthlott Method of producing self-cleaning detachable surfaces
DE19914007A1 (en) 1999-03-29 2000-10-05 Creavis Tech & Innovation Gmbh Structured liquid-repellent surfaces with locally defined liquid-wetting parts
DE19917367A1 (en) 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Production of easy-to-clean coatings on substrates e.g. metal, plastics, glass or textiles, comprises applying fluorinated condensate-forming composition and drying at room temperature
DE10015855A1 (en) * 2000-03-30 2001-10-11 Basf Ag Application of the lotus effect in process engineering
DE10022246A1 (en) * 2000-05-08 2001-11-15 Basf Ag Coating agent for the production of difficult to wet surfaces
US20020045010A1 (en) * 2000-06-14 2002-04-18 The Procter & Gamble Company Coating compositions for modifying hard surfaces
DE10118351A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
DE10118345A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Properties of structure formers for self-cleaning surfaces and the production of the same
DE10118352A1 (en) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Self-cleaning surfaces through hydrophobic structures and processes for their production
US20030114571A1 (en) * 2001-10-10 2003-06-19 Xiao-Dong Pan Wet traction in tire treads compounded with surface modified siliceous and oxidic fillers

Also Published As

Publication number Publication date
DK1249281T3 (en) 2007-09-10
DE10118345A1 (en) 2002-10-17
US20020150726A1 (en) 2002-10-17
EP1249281A2 (en) 2002-10-16
ATE362404T1 (en) 2007-06-15
CA2381747C (en) 2012-01-24
US6811856B2 (en) 2004-11-02
EP1249281A3 (en) 2003-01-02
JP2002346470A (en) 2002-12-03
JP4102583B2 (en) 2008-06-18
DE50210148D1 (en) 2007-06-28
CA2381747A1 (en) 2002-10-12
ES2286169T3 (en) 2007-12-01

Similar Documents

Publication Publication Date Title
EP1249281B1 (en) Self-cleaning surface with hydrophobic structure and process for making it
EP1249280B1 (en) Self-cleaning surfaces with hydrophobic structures and process for making them
EP1249467B1 (en) Self-cleaning surfaces due to hydrophobic structure and process for the preparation thereof
EP1283076B1 (en) Self cleaning surfaces due to hydrophobic structures and method for the preparation thereof
EP1674535A1 (en) Self cleaning surfaces having a surface structure made up of hydrophobic structural particles and wax particles
EP1483104B1 (en) Injection molded body having self-cleaning properties, and method for producing injection molded bodies of this type
DE10210674A1 (en) Surface extrudates with self-cleaning properties and process for producing such extrudates
EP1283077A1 (en) Obtaining a Lotus effect by preventing microbial growth on self-cleaning surfaces
EP1317967A2 (en) Diffusely reflecting surface and process for making it
EP1249468A2 (en) Self-cleaning surfaces by hydrophobic structures and process for preparation
DE10205007A1 (en) Process for the production of protective layers with dirt and water repellent properties
EP1492633A1 (en) Shaping method for producing shaped bodies with at least one surface that has self-cleaning properties, and shaped bodies produced according to this method
WO2004014575A1 (en) Method for powder coating surfaces in order to produce the lotus effect
DE10233831A1 (en) A process for preparation of structured surfaces with a carrier layer coated with nano particles useful for preparation of structured surfaces or films
DE102013218380A1 (en) Self-generating textured surfaces with self-cleaning properties and a process for producing these surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20041118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50210148

Country of ref document: DE

Date of ref document: 20070628

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070724

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286169

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071016

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BASF AKTIENGESELLSCHAFT GLOBAL INTELLECTUAL PROPER

Effective date: 20080218

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070817

NLR1 Nl: opposition has been filed with the epo

Opponent name: BASF AKTIENGESELLSCHAFT GLOBAL INTELLECTUAL PROPER

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090320

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: EVONIK DEGUSSA GMBH

Free format text: DEGUSSA GMBH#BENNIGSENPLATZ 1#40474 DUESSELDORF (DE) -TRANSFER TO- EVONIK DEGUSSA GMBH#RELLINGHAUSER STRASSE 1-11#45128 ESSEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20100223

Ref country code: NL

Ref legal event code: SD

Effective date: 20100223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100325

Year of fee payment: 9

Ref country code: DK

Payment date: 20100310

Year of fee payment: 9

Ref country code: ES

Payment date: 20100324

Year of fee payment: 9

Ref country code: IE

Payment date: 20100325

Year of fee payment: 9

Ref country code: LU

Payment date: 20100312

Year of fee payment: 9

Ref country code: MC

Payment date: 20100312

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100402

Year of fee payment: 9

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100311

Year of fee payment: 9

Ref country code: GB

Payment date: 20100322

Year of fee payment: 9

27W Patent revoked

Effective date: 20100119

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100119

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100326

Year of fee payment: 9

Ref country code: NL

Payment date: 20100315

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20070516

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100312

Year of fee payment: 9