EP1247878B1 - Apparatus for powder coating by laser - Google Patents

Apparatus for powder coating by laser Download PDF

Info

Publication number
EP1247878B1
EP1247878B1 EP02002933A EP02002933A EP1247878B1 EP 1247878 B1 EP1247878 B1 EP 1247878B1 EP 02002933 A EP02002933 A EP 02002933A EP 02002933 A EP02002933 A EP 02002933A EP 1247878 B1 EP1247878 B1 EP 1247878B1
Authority
EP
European Patent Office
Prior art keywords
lance
laser
coating
light guide
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02002933A
Other languages
German (de)
French (fr)
Other versions
EP1247878A1 (en
Inventor
Stefan Dr. Kasperowski
Götz Mielsch
Nigel Dr. Stothard
Johannes Dr. Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1247878A1 publication Critical patent/EP1247878A1/en
Application granted granted Critical
Publication of EP1247878B1 publication Critical patent/EP1247878B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Definitions

  • the invention relates to a device for laser coating of component inner surfaces with a particular powdery additional material, after the preamble of claim 1 or 4.
  • the laser beam becomes guided in a light guide from the solid-state laser to a rotary guide, which allows an endless rotation of the flanged coating lance.
  • the laser beam is coupled out of the light guide, collimated and then passes free-radiating through the lance to a deflection and Focusing optics, where the beam is deflected to the cylindrical surface to be coated and being focused.
  • the coating is done by immersing the lance in the Cylinder bore, where the powder via a jet nozzle to the coating site blown out and melted there in the laser beam.
  • EP-A-950 461, JP-A-03128183, JP-A-07292 481, EP-A-418 519 or US-A-5 426 278 of coating equipment is the dipping into the workpiece bore Coating lance in a rear, non-rotating lance part with one in this coaxially mounted optical fiber and a front, rotating Lancet part divided, which with the interposition of a pivot bearing and a rotary drive to the Vietnameserot Schlierendenh lance part connects and in which the focusing and deflection optics are either coaxial or off-center is arranged to the axis of rotation.
  • the laser light guide takes place in rotating lance either turn over a free jet or with Consideration of the eccentric arrangement of the focusing and deflection system via a second optical fiber piece in the coating lance, which is of the Optical fiber end in the non-rotating lance part eccentrically bent to the focusing system runs at the lance tip.
  • these known coating devices poses the problem that not only an optical rotary coupling for the second light guide piece or a free-jet guide, but in addition also the entire, consisting of pivot bearing and rotary drive unit within the coating lance must be accommodated, with the consequence that these devices also require a correspondingly large lance diameter and therefore also for the full-surface coating of component inner surfaces high slenderness are unsuitable.
  • the object of the invention is the coating device of the aforementioned To train in a structurally simple way so that even difficult to access Component inner surfaces, and in particular the deeper surface sections high-tonnage cylinder bores, easily and with high To coat radiation efficiency.
  • the coating device according to the invention is for the entire coating lance a very small lance cross section with virtually any Lance length required and at the same time a very low-loss energy transfer in the coating lance especially of laser beams with high Achieved jet parameter product, without the need for elaborate lens systems or separate light guide pieces in the inside of the lance or one likewise elaborate formation of the coating lance as an optical waveguide requirement.
  • the laser light guide which rotates with the coating lance, extends according to a first variant of the invention according to claim 1 throughout over the entire lance length of the device head outside of the component inner surface to the lance tip, the laser radiation via an optical rotation coupling on the head, but preferably directly from the on this arranged and also co-rotating laser source, in the device side Fiber optic end is coupled.
  • the coating device not limited to linear lances, but it can be without also other, depending on the application differently curved Use lance shapes and a deflecting mirror at the lance tip to dispense with the lateral beam deflection in a simple way that the Light guide is bent at auskoppel disorderen end portion or one for Has light guide axis inclined end face, while in the second variant
  • the between Lanzenau zinc- and inner tube existing annulus is preferably as cooling and / or working fluid, e.g
  • the invention is as a laser source Diode laser provided, the in itself unfavorably high beam parameter product because of the superior transmission quality of the invention Coating device even with a very slender designed coating lance without affecting the effectively applied laser power remaining in the Remaining but much better performance (socket efficiency) as a conventional solid, e.g. Nd: YAG laser owns.
  • the Process monitoring expediently facilitated by that in the light guide from the lance tip in the opposite direction to the laser beam optical, e.g. the Melting temperature at the respective coating location indicating infrared signals recycled and decoupled for process control at the device head.
  • the Process monitoring expediently facilitated by that in the light guide from the lance tip in the opposite direction to the laser beam optical, e.g. the Melting temperature at the respective coating location indicating infrared signals recycled and decoupled for process control at the device head.
  • the coating apparatus shown in Fig. 1 contains a main components High-power diode laser 1, one of these via a light guide 2 optically coupled device head 3 and a coating lance 4, which at a Rotary guide 5 of the device head 3 mounted and by means of a drive motor. 6 including a slip clutch 7 about a central axis A-A endlessly rotatable is driven.
  • the light guide 2 passes through the device head 3 in a firmly connected to this, to the axis A-A coaxial standpipe 8 continuously to the lance tip and is at the standpipe end by means of a Faserendsteckers 9 and one between this and the rotating outer tube 10 of the coating lance 4 effective ball bearing 11 exactly centric attached to the axis of rotation A-A coating lance 4.
  • a lance tube 10 co-rotates with the latter, replaceable insert 12 with a collimating optics 13 and a Turning and focusing mirror 14 attached.
  • the end of the light guide divergent emerging laser beam is rotated by the light guide axis Collimating optics 13 converted into an axis-parallel light beam and from the deflecting mirror 14 through a protective glass window 15 through to be coated Component inner surface 16, such as the cylinder surface of an engine block, redirected and focused.
  • the coating device is completed by the outside of the lance tube 10 attached Powder and gas supply lines 17, 18, via which the coating powder, such as a high-silica aluminum powder, and a protective gas on the focus region of the laser beam are blown out, and one in the outer tube 10 from the device head 3 to the lance tip extending compressed air channel 18 for generating a the protective glass window 15 frereiblasenden cross-jet and a Cooling water circuit for cooling the distal end of the optical fiber, which a Coolant flowed through, in the region of the fiber end plug in the annulus between Stand and lance tube 8, 10 arranged cooling water jacket 20 and associated supply and return channels 21, 22 in the lance tube 10 (Fig. 1b) contains.
  • the coating powder such as a high-silica aluminum powder
  • a protective gas on the focus region of the laser beam are blown out
  • a lance tube 110 In the area of the lance tip are the lance tube 110 and the optical fiber 102 is bent so that the laser beam at the optical fiber end obliquely to the axis of rotation A-A of the coating lance 104 emitted and by a downstream, again interchangeable collimation and focusing optics 24 is bundled on the cylinder surface 116 without it
  • a lance tube 110 may be required in the bending direction be designed adjustable so as to the deflection angle of the laser beam to be able to change.
  • the diode laser directly on Arranging the device head, wherein the laser light guide on the beam side to the diode laser is extended and this in the embodiment of FIG. 2 either co-rotated with the coating lance 104 or fixed to the device head 103 connected and the laser light guide 102 then via a rotary coupling on the laser 101 is connected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung bezieht sich auf ein Gerät zur Laserbeschichtung von Bauteil-Innenflächen mit einem insbesondere pulverförmigen Zusatzmaterial, nach dem Oberbegriff des Patentanspruchs 1 bzw. 4.The invention relates to a device for laser coating of component inner surfaces with a particular powdery additional material, after the preamble of claim 1 or 4.

Geräte zur Laser-Pulverbeschichtung von mechanisch hoch belasteten Bauteilflächen sind in zahlreichen Ausführungsformen bekannt.Devices for laser powder coating of mechanically highly loaded component surfaces are known in numerous embodiments.

So werden bei dem aus der DE 196 43 029 A1 bekannten Gerät der eingangs genannten Art mittels einer drehbaren, mit einem Nd:YAG-Festkörperlaser optisch verbundenen Beschichtungslanze Zylinderlaufbahnen mit einem hochsiliziumhaltigen Aluminiumpulver beschichtet, um so eine verschleißbeständige Lauffläche in Aluminium-Kurbelgehäusen zu erzeugen. Dabei wird der Laserstrahl in einem Lichtleiter vom Festkörperlaser zu einer Drehführung geleitet, die eine endlose Drehung der angeflanschten Beschichtungslanze gestattet. An der Drehführung wird der Laserstrahl aus dem Lichtleiter ausgekoppelt, kollimiert und gelangt dann freistrahlend durch die Lanze zur einer Umlenk- und Fokussieroptik, wo der Strahl auf die zu beschichtende Zylinderfläche umgelenkt und fokussiert wird. Zusätzlich in die Lanze integriert sind Versorgungsleitungen für Kühlmedien, Pulverwerkstoff, Schutzgas und ein Spülgas zur Erzeugung eines das Austrittsfenster des Laserstrahls an der Lanzenspitze freiblasenden Cross-Jets. Das Beschichten erfolgt durch Eintauchen der Lanze in die Zylinderbohrung, wobei das Pulver über eine Strahldüse zum Beschichtungsort ausgeblasen und dort im Laserstrahl aufgeschmolzen wird. Durch das gleichzeitige Drehen und Verschieben der Beschichtungslanze entstehen spiralförmig aneinanderliegende Raupen, die eine zusammenhängende Laufflächen-Beschichtung bilden. Aufgrund des inhärenten Strahlparameterprodukts (Strahldivergenz und Strahltaillierung) des Festkörperlasers sind derartige Geräte jedoch auf ein verhältnismäßig niedriges Längen-/Durchmesserverhältnis der Beschichtungslanze beschränkt, so dass sie zur vollflächigen Beschichtung von schlanken Zylinderbohrungen oder anderen, schwer zugänglichen Bauteil-Hohlräumen ungeeignet sind.Thus, in the device known from DE 196 43 029 A1 of the above mentioned type by means of a rotatable, optically with a Nd: YAG solid-state laser associated coating lance cylinder liners with a high silicon content Aluminum powder coated so as to be wear resistant To produce tread in aluminum crankcases. At the same time, the laser beam becomes guided in a light guide from the solid-state laser to a rotary guide, which allows an endless rotation of the flanged coating lance. At the rotation guide, the laser beam is coupled out of the light guide, collimated and then passes free-radiating through the lance to a deflection and Focusing optics, where the beam is deflected to the cylindrical surface to be coated and being focused. In addition to the lance integrated supply lines for cooling media, powder material, inert gas and a purge gas for generation one of the exit window of the laser beam at the lance tip frereiblasenden Cross-Jets. The coating is done by immersing the lance in the Cylinder bore, where the powder via a jet nozzle to the coating site blown out and melted there in the laser beam. By the simultaneous Turning and moving the coating lance are spiraling adjacent caterpillars that have a continuous tread coating form. Due to the inherent beam parameter product (Beam divergence and Strahltaillierung) of the solid state laser are such devices however, to a relatively low length / diameter ratio the coating lance limited so that they for full-surface coating lean cylinder bores or other hard-to-reach component cavities are unsuitable.

Bei einer weiteren, aus der EP-A-950 461, der JP-A-03128 183, der JP-A-07292 481, der EP-A-418 519 oder der US-A-5 426 278 bekannten Ausführungsform von Beschichtungsgeräten ist die in die Werkstückbohrung eintauchende Beschichtungslanze in einen hinteren, nichtrotierenden Lanzenteil mit einem in diesem koaxial befestigten Lichtwellenleiter und einen vorderen, rotierenden Lanzenteil unterteilt, welcher unter Zwischenschaltung einer Drehlagerung und eines Drehantriebs an den nichtrotierendenh Lanzenteil anschließt und in welchem die Fokussier- und Umlenkoptik entweder koaxial oder außermittig zur Rotationsachse angeordnet ist. Dabei erfolgt die Laserlichtführung im rotierenden Lanzenteil entweder wiederum über eine Freistrahlstrecke oder mit Rücksicht auf die außermittige Anordnung des Fokussier- und Umlenksystems über ein zweites Lichtleiterstück in der Beschichtungslanze, welches von dem Lichtleiterende im nichtrotierenden Lanzenteil außermittig gebogen zum Fokussiersystem an der Lanzenspitze verläuft. Bei diesen bekannten Beschichtungsgeräten stellt sich das Problem, dass nicht nur eine optische Drehkopplung für das zweite Lichtleiterstück oder eine Freistrahlführung, sondern zusätzlich auch der gesamte, aus Drehlagerung und Drehantrieb bestehende Geräteteil innerhalb der Beschichtungslanze untergebracht werden müssen, mit der Folge, dass auch diese Geräte einen entsprechend großen Lanzendurchmesser benötigen und daher gleichfalls zur vollflächigen Beschichtung von Bauteil-Innenflächen hohen Schlankheitsgrades ungeeignet sind.In another of EP-A-950 461, JP-A-03128183, JP-A-07292 481, EP-A-418 519 or US-A-5 426 278 of coating equipment is the dipping into the workpiece bore Coating lance in a rear, non-rotating lance part with one in this coaxially mounted optical fiber and a front, rotating Lancet part divided, which with the interposition of a pivot bearing and a rotary drive to the nichtrotierendenh lance part connects and in which the focusing and deflection optics are either coaxial or off-center is arranged to the axis of rotation. The laser light guide takes place in rotating lance either turn over a free jet or with Consideration of the eccentric arrangement of the focusing and deflection system via a second optical fiber piece in the coating lance, which is of the Optical fiber end in the non-rotating lance part eccentrically bent to the focusing system runs at the lance tip. In these known coating devices poses the problem that not only an optical rotary coupling for the second light guide piece or a free-jet guide, but in addition also the entire, consisting of pivot bearing and rotary drive unit within the coating lance must be accommodated, with the consequence that these devices also require a correspondingly large lance diameter and therefore also for the full-surface coating of component inner surfaces high slenderness are unsuitable.

Aufgabe der Erfindung ist es, das Beschichtungsgerät der eingangs genannten Art auf baulich einfache Weise so auszubilden, dass auch schwer zugängliche Bauteil-Innenflächen, und insbesondere die tieferliegenden Flächenabschnitte von Zylinderbohrungen hohen Schlankheitsgrades, problemlos und mit hoher Strahlungseffizienz zu beschichten sind.The object of the invention is the coating device of the aforementioned To train in a structurally simple way so that even difficult to access Component inner surfaces, and in particular the deeper surface sections high-tonnage cylinder bores, easily and with high To coat radiation efficiency.

Diese Aufgabe wird erfindungsgemäß durch das im Anspruch 1 bzw. 4 angegebene Beschichtungsgerät gelöst.This object is achieved by the specified in claim 1 or 4 Coating device solved.

Mit dem erfindungsgemäßen Beschichtungsgerät wird für die gesamte Beschichtungslanze ein sehr kleiner Lanzenquerschnitt bei praktisch beliebiger Lanzenlänge benötigt und zugleich eine äußerst verlustarme Energieübertragung in der Beschichtungslanze vor allem auch von Laserstrahlen mit hohem Strahlparameterprodukt erzielt, ohne dass es hierzu aufwändiger Linsensysteme oder voneinander getrennter Lichtleiterstücke im Lanzeninneren oder einer ebenfalls aufwändigen Ausbildung der Beschichtungslanze als optischer Hohlleiter bedarf.With the coating device according to the invention is for the entire coating lance a very small lance cross section with virtually any Lance length required and at the same time a very low-loss energy transfer in the coating lance especially of laser beams with high Achieved jet parameter product, without the need for elaborate lens systems or separate light guide pieces in the inside of the lance or one likewise elaborate formation of the coating lance as an optical waveguide requirement.

Dabei erstreckt sich der Laserlichtleiter, der mit der Beschichtungslanze mitrotiert, nach einer ersten Variante der Erfindung gemäß Anspruch 1 durchgehend über die gesamte Lanzenlänge vom Gerätekopf außerhalb der Bauteil-Innenfläche bis zur Lanzenspitze, wobei die Laserstrahlung über eine optische Drehkoppelung am Gerätekopf, vorzugsweise aber unmittelbar von der an diesem angeordneten und ebenfalls mitrotierenden Laserquelle, in das geräteseitige Lichtleiterende eingekoppelt wird. In diesem Fall ist das Beschichtungsgerät nicht auf geradlinige Lanzenformen beschränkt, sondern es lassen sich ohne weiteres auch andere, je nach Anwendungsfall unterschiedlich gekrümmte Lanzenformen verwenden und auf einen Umlenkspiegel an der Lanzenspitze zur seitlichen Strahlablenkung auf einfache Weise dadurch verzichten, dass der Lichtleiter am auskoppelseitigen Endabschnitt abgebogen ist oder eine zur Lichtleiterachse geneigte Stirnfläche besitzt, während sich bei der zweiten Variante der Erfindung nach Anspruch 4, bei der die Laserlichtführung in der Beschichtungslanze durch einen drehfest angeordneten Lichtleiter erfolgt, welcher in einem gleichfalls drehfest mit dem Gerätekopf verbundenen Innenrohr der Beschichtungslanze exakt koaxial zur Drehachse der Beschichtungslanze fixiert ist, auch dann eine weiter verbesserte Energietransmission ergibt, wenn die Laserquelle entfernt vom Gerätekopf angeordnet ist, da sich in diesem Fall der Lichtleiter in optisch und baulich günstiger Weise von der Lanzenspitze bis zur Laserquelle durchgehend drehkopplungsfrei ausbilden lässt. Der zwischen Lanzenaußen- und -innenrohr vorhandene Ringraum wird dabei vorzugsweise als Kühl- und/oder Arbeitsmittel-, z.B. Schutzgaskanal genutzt. In this case, the laser light guide, which rotates with the coating lance, extends according to a first variant of the invention according to claim 1 throughout over the entire lance length of the device head outside of the component inner surface to the lance tip, the laser radiation via an optical rotation coupling on the head, but preferably directly from the on this arranged and also co-rotating laser source, in the device side Fiber optic end is coupled. In this case, the coating device not limited to linear lances, but it can be without also other, depending on the application differently curved Use lance shapes and a deflecting mirror at the lance tip to dispense with the lateral beam deflection in a simple way that the Light guide is bent at auskoppelseitigen end portion or one for Has light guide axis inclined end face, while in the second variant The invention of claim 4, wherein the laser light guide is in the coating lance takes place by a non-rotatably arranged light guide, which in a likewise rotatably connected to the device head inner tube of the Coating lance exactly coaxial with the axis of rotation of the coating lance fixed is, even then results in a further improved energy transmission, if the Laser source is located away from the device head, since in this case the Optical fiber in optically and structurally favorable way from the lance tip to the Laser source can be formed continuously free of rotation. The between Lanzenaußen- and inner tube existing annulus is preferably as cooling and / or working fluid, e.g. Protective gas channel used.

In besonders bevorzugter Ausgestaltung der Erfindung ist als Laserquelle ein Diodenlaser vorgesehen, dessen an sich ungünstig hohes Strahlparameterprodukt wegen der überlegenen Übertragungsqualität des erfindungsgemäßen Beschichtungsgeräts selbst bei einer sehr schlank gestalteten Beschichtungslanze ohne Auswirkung auf die effektiv applizierte Laserleistung bleibt, der im Übrigen aber wesentlich bessere Leistungswerte (Steckdosenwirkungsgrad) als ein herkömmlicher Festkörper-, z.B. Nd:YAG-Laser besitzt. Ferner wird die Prozessüberwachung zweckmäßigerweise dadurch erleichtert, dass im Lichtleiter von der Lanzenspitze aus gegenläufig zum Laserstrahl optische, z.B. die Schmelztemperatur am jeweiligen Beschichtungsort angebende Infrarotsignale rückgeführt und zur Prozesssteuerung am Gerätekopf ausgekoppelt werden. Um die Abstrahlcharakteristik des Laserstrahls an der Lanzenspitze auf einfache Weise an den jeweiligen Anwendungsfall anpassen zu können, enthält diese zweckmäßigerweise eine auswechselbare Fokussieroptik.In a particularly preferred embodiment of the invention is as a laser source Diode laser provided, the in itself unfavorably high beam parameter product because of the superior transmission quality of the invention Coating device even with a very slender designed coating lance without affecting the effectively applied laser power remaining in the Remaining but much better performance (socket efficiency) as a conventional solid, e.g. Nd: YAG laser owns. Furthermore, the Process monitoring expediently facilitated by that in the light guide from the lance tip in the opposite direction to the laser beam optical, e.g. the Melting temperature at the respective coating location indicating infrared signals recycled and decoupled for process control at the device head. To the radiation characteristics of the laser beam at the lance tip to simple Way to adapt to the particular application, contains this expediently a replaceable focusing optics.

Die Erfindung wird nunmehr anhand zweier in der Zeichnung stark schematisiert dargestellter Ausführungsbeispiele näher erläutert. Diese zeigt in

Fig. 1a, b
ein Beschichtungsgerät in einer ersten Ausführungsform der Erfindung im Längs- (a) und im Querschnitt (b); und
Fig.2
eine der Fig. 1 entsprechende Darstellung eines zweiten Ausführungsbeispiels der Erfindung.
The invention will now be described with reference to two highly schematically illustrated in the drawings embodiments. This shows in
Fig. 1a, b
a coating apparatus in a first embodiment of the invention in the longitudinal (a) and in the cross section (b); and
Fig.2
a representation corresponding to FIG. 1 of a second embodiment of the invention.

Das in Fig. 1 gezeigte Beschichtungsgerät enthält als Hauptbestandteile einen Hochleistungs-Diodenlaser 1, einen an diesen über einen Lichtleiter 2 optisch angekoppelten Gerätekopf 3 und eine Beschichtungslanze 4, die an einer Drehführung 5 des Gerätekopfs 3 gelagert und mittels eines Antriebsmotors 6 einschließlich einer Rutschkupplung 7 um eine zentrale Achse A-A endlos rotierbar angetrieben ist. Der Lichtleiter 2 verläuft durch den Gerätekopf 3 hindurch in einem mit diesem fest verbundenen, zur Achse A-A koaxialen Standrohr 8 durchgehend bis zur Lanzenspitze und ist am Standrohrende mittels eines Faserendsteckers 9 und eines zwischen diesem und dem rotierenden Außenrohr 10 der Beschichtungslanze 4 wirksamen Kugellagers 11 exakt zentrisch zur Drehachse A-A der Beschichtungslanze 4 befestigt.The coating apparatus shown in Fig. 1 contains a main components High-power diode laser 1, one of these via a light guide 2 optically coupled device head 3 and a coating lance 4, which at a Rotary guide 5 of the device head 3 mounted and by means of a drive motor. 6 including a slip clutch 7 about a central axis A-A endlessly rotatable is driven. The light guide 2 passes through the device head 3 in a firmly connected to this, to the axis A-A coaxial standpipe 8 continuously to the lance tip and is at the standpipe end by means of a Faserendsteckers 9 and one between this and the rotating outer tube 10 of the coating lance 4 effective ball bearing 11 exactly centric attached to the axis of rotation A-A coating lance 4.

Im Bereich der Lanzenspitze ist am Lanzenrohr 10 ein mit diesem mitrotierendes, auswechselbares Einsatzstück 12 mit einer Kollimationsoptik 13 und einem Umlenk- und Fokussierspiegel 14 angebracht. Der vom Lichtleiterende divergent austretende Laserstrahl wird durch die um die Lichtleiterachse rotierende Kollimationsoptik 13 in ein achsparalleles Lichtbündel umgewandelt und vom Umlenkspiegel 14 durch ein Schutzglasfenster 15 hindurch auf die zu beschichtende Bauteil-Innenfläche 16, etwa die Zylinderlauffläche eines Motorblocks, umgelenkt und fokussiert.In the area of the lance tip, a lance tube 10 co-rotates with the latter, replaceable insert 12 with a collimating optics 13 and a Turning and focusing mirror 14 attached. The end of the light guide divergent emerging laser beam is rotated by the light guide axis Collimating optics 13 converted into an axis-parallel light beam and from the deflecting mirror 14 through a protective glass window 15 through to be coated Component inner surface 16, such as the cylinder surface of an engine block, redirected and focused.

Komplettiert wird das Beschichtungsgerät durch außen am Lanzenrohr 10 befestigte Pulver- und Gaszuleitungen 17, 18, über die das Beschichtungspulver, etwa ein hochsiliziumhaltiges Aluminiumpulver, und ein Schutzgas auf die Fokusregion des Laserstrahls ausgeblasen werden, sowie einen im Außenrohr 10 vom Gerätekopf 3 zur Lanzenspitze verlaufenden Druckluftkanal 18 zur Erzeugung eines das Schutzglasfenster 15 freiblasenden Cross-Jets und einen Kühlwasserkreislauf zur Kühlung des distalen Lichtleiterendes, welcher einen kühlmitteldurchströmten, im Bereich des Faserendsteckers im Ringraum zwischen Stand- und Lanzenrohr 8, 10 angeordneten Kühlwassermantel 20 und zugeordnete Vor- und Rücklaufkanäle 21, 22 im Lanzenrohr 10 (Fig. 1b) enthält.The coating device is completed by the outside of the lance tube 10 attached Powder and gas supply lines 17, 18, via which the coating powder, such as a high-silica aluminum powder, and a protective gas on the focus region of the laser beam are blown out, and one in the outer tube 10 from the device head 3 to the lance tip extending compressed air channel 18 for generating a the protective glass window 15 frereiblasenden cross-jet and a Cooling water circuit for cooling the distal end of the optical fiber, which a Coolant flowed through, in the region of the fiber end plug in the annulus between Stand and lance tube 8, 10 arranged cooling water jacket 20 and associated supply and return channels 21, 22 in the lance tube 10 (Fig. 1b) contains.

Beim Beschichten der Zylinderlauffläche 16 wird das über die Pulverzuleitung 17 zur Fokusregion zuströmende Beschichtungspulver durch den Laserstrahl aufgeschmolzen, und durch Drehung der Beschichtungslanze 4 und gleichzeitige Verschiebung des Gerätekopfes 3 in Pfeilrichtung P entstehen spiralförmig aneinanderliegende Beschichtungsraupen, durch die sich eine großflächige Laufflächenbeschichtung erzeugen lässt. Aufgrund des praktisch beliebig großen Längen-/Querschnittsverhältnisses der Beschichtungslanze 4 können auf diese Weise Zylinderlaufflächen 16 hohen Schlankheitsgrades oder auch andere, schlecht zugängliche Bauteil-Innenflächen mit geringen Laser-Leistungsverlusten beschichtet werden. Weiterhin lassen sich Signale zur Prozessüberwachung z. B. temperaturanzeigende Infrarotsignale vom Beschichtungsort gegenläufig zum Laserstrahl im Lichtleiter 2 zum Gerätekopf 3 zurückführen, wo sie über ein halbdurchlässiges Spiegelelement zu einer Prozesssteuereinheit (nicht gezeigt), etwa zur thermischen Prozessregulierung des Beschichtungsvorgangs, ausgekoppelt werden.When coating the cylinder surface 16, the over the powder feed line 17 to the focus region inflowing powder coating by the laser beam melted, and by rotation of the coating lance 4 and simultaneous Displacement of the device head 3 in the direction of arrow P arise spirally Adjacent coating beads through which a large area Produce tread coating. Because of the virtually arbitrarily large Length / cross-sectional ratio of the coating lance 4 can this way cylinder surfaces 16 high slenderness or other, poorly accessible component inner surfaces with low laser power losses be coated. Furthermore, signals for process monitoring can be obtained z. B. temperature-indicating infrared signals from the coating site traverse in the opposite direction to the laser beam in the light guide 2 to the device head 3, where she has a semi-transparent mirror element to a process control unit (not shown), for example for thermal process regulation of the coating process, are decoupled.

Das in Fig. 2 gezeigte Ausführungsbeispiel, wo die der oben beschriebenen Ausführungsform entsprechenden Komponenten durch ein um 100 erhöhtes Bezugszeichen gekennzeichnet sind, unterscheidet sich von dieser in erster Linie dadurch, dass der in der Beschichtungslanze 104 angeordnete Lichtleiter 102 nicht in einem feststehenden Standrohr angeordnet ist, sondern mit der Beschichtungslanze 104 mitrotiert. Der Laserstrahl des Diodenlasers 101 wird an den Gerätkopf 103 über einen mit diesem fest verbundenen, weiteren Lichtleiter 102' übertragen und gelangt über eine optische Drehkoppelung 23 in den rotierenden Lichtleiter 102. Im Bereich der Lanzenspitze sind das Lanzenrohr 110 und der Lichtleiter 102 abgebogen, so dass der Laserstrahl am Lichtleiterende schräg zur Drehachse A-A der Beschichtungslanze 104 emittiert und durch eine nachgeschaltete, wiederum auswechselbare Kollimations- und Fokussieroptik 24 auf die Zylinderlauffläche 116 gebündelt wird, ohne dass es hierzu eines Umlenkspiegels bedarf Dabei kann das Lanzenrohr 110 in Biegerichtung verstellbar ausgebildet sein, um so den Umlenkwinkel des Laserstrahls verändern zu können. Im Übrigen ist die Bau- und Betriebsweise dieses Ausführungsbeispiels die gleiche wie bei dem Beschichtungsgerät nach Fig. 1.The embodiment shown in Fig. 2, where the one described above Embodiment corresponding components by a 100 increased Reference numerals are different from those in the first Line in that the arranged in the coating lance 104 light guide 102 is not arranged in a stationary standpipe, but with the Coating lance 104 co-rotated. The laser beam of the diode laser 101 becomes to the device head 103 via a permanently connected to this, another Optical fiber 102 'transmitted and passes through an optical rotation coupling 23 in the rotating optical fiber 102. In the area of the lance tip are the lance tube 110 and the optical fiber 102 is bent so that the laser beam at the optical fiber end obliquely to the axis of rotation A-A of the coating lance 104 emitted and by a downstream, again interchangeable collimation and focusing optics 24 is bundled on the cylinder surface 116 without it In this case, a lance tube 110 may be required in the bending direction be designed adjustable so as to the deflection angle of the laser beam to be able to change. Incidentally, the construction and operation of this Embodiment the same as in the coating apparatus of FIG. 1.

Im Rahmen der Erfindung ist es auch möglich, den Diodenlaser unmittelbar am Gerätekopf anzuordnen, wobei der Laserlichtleiter einstrahlseitig bis zum Diodenlaser verlängert ist und dieser in der Ausführungsform nach Fig. 2 entweder mit der Beschichtungslanze 104 mitrotiert oder feststehend mit dem Gerätekopf 103 verbunden und der Laserlichtleiter 102 dann über eine Drehkoppelung an den Laser 101 angeschlossen ist.In the context of the invention, it is also possible, the diode laser directly on Arranging the device head, wherein the laser light guide on the beam side to the diode laser is extended and this in the embodiment of FIG. 2 either co-rotated with the coating lance 104 or fixed to the device head 103 connected and the laser light guide 102 then via a rotary coupling on the laser 101 is connected.

Claims (9)

  1. A device for laser coating component inner faces with an, in particular, powdery additional material, comprising a laser source and a device head optically connected thereto, with a coating lance which is mounted thereon via a rotating guide and can be moved over the inner face in a translatory and rotary manner, in which coating lance the laser beam is directed axially from the rotating guide to the tip of the lance and from there to the component inner face, characterised in that the coating lance (4; 104) contains a laser beam-guiding light guide (2; 102) extending from the rotating guide (5; 105) of the device head (3; 103) outside the component inner face (16; 116), continuously over the entire length of the lance to the tip of the lance.
  2. A device according to claim 1, characterised in that the laser light guide (102) is rotatably driven together with the coating lance (104), and an optical rotary coupling (23) is provided in the region of the light guide end on the device head side for coupling the laser beam.
  3. A device according to claim 2, characterised in that the laser source is arranged on the device head and the laser beam emitted by the laser source is coupled directly into the laser light guide co-rotating with the coating lance.
  4. A device for laser coating component inner faces with an, in particular, powdery additional material, comprising a laser source and a device head optically connected thereto, with a coating lance which is mounted thereon via a rotating guide and can be moved over the inner face in a translatory and rotary manner and in which the laser beam is directed axially from the rotating guide to the tip of the lance and from there to the component inner face, characterised in that the coating lance (4) has a rotatably driven outer tube (10) and an inner tube (8) arranged therein and non-rotatably connected to the device head (3), including a laser beam-guiding light guide (2) fixed in the non-rotatable inner tube coaxially to the axis of rotation (A-A) of the outer tube (10) and extending from the rotating guide (5) to the tip of the lance.
  5. A device according to claim 4, characterised in that the laser source (1) is arranged remote from the device head (3) and the laser light guide (2) is continuously extended up to the laser source beyond the rotating guide (5).
  6. A device according to claim 4 or 5, characterised by channels for coolant and/or (19, 21, 22) for operating medium surrounding the inner tube (8).
  7. A device according to any one of the preceding claims, characterised in that the laser source (1; 101) is a diode laser.
  8. A device according to any one of the preceding claims, characterised in that optical signals are returned in the laser light guide (2; 102) from the distal light guide end in the opposite direction to the laser beam for process monitoring.
  9. A device according to any one of the preceding claims, characterised in that the tip of the lance contains a replaceable optical focusing system (13, 14, 24).
EP02002933A 2001-04-04 2002-02-09 Apparatus for powder coating by laser Expired - Lifetime EP1247878B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10116720 2001-04-04
DE10116720A DE10116720A1 (en) 2001-04-04 2001-04-04 Laser powder coating device

Publications (2)

Publication Number Publication Date
EP1247878A1 EP1247878A1 (en) 2002-10-09
EP1247878B1 true EP1247878B1 (en) 2005-02-02

Family

ID=7680319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02002933A Expired - Lifetime EP1247878B1 (en) 2001-04-04 2002-02-09 Apparatus for powder coating by laser

Country Status (3)

Country Link
EP (1) EP1247878B1 (en)
DE (2) DE10116720A1 (en)
ES (1) ES2233723T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136163A (en) * 2012-02-10 2014-11-05 Limo专利管理有限及两合公司 Device for the laser processing of a surface of a workpiece or for the post-treatment of a coating on the outside or the inside of a workpiece

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909298B1 (en) * 2006-12-02 2009-07-10 Technogenia Soc Par Actions Si LASER RECHARGEABLE CONCAVE PIECE, METHOD AND DEVICE FOR REALIZING SAME
DE102009024957B3 (en) * 2009-06-11 2010-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modular system for build-up welding on internal surfaces of workpieces with a laser beam
US9168613B2 (en) * 2010-10-22 2015-10-27 Paul T. Colby Vertical laser cladding system
DE102012204091A1 (en) 2012-03-15 2013-09-19 Robert Bosch Gmbh Powder coating apparatus and powder coating method
US20170145554A1 (en) 2014-06-26 2017-05-25 Shell Oil Company Coating method and coated substrate
CN113663828B (en) * 2020-04-30 2023-05-23 上海飞机制造有限公司 Electrostatic spray gun
CN113510249B (en) * 2021-07-02 2022-12-27 西安交通大学 Multi-runner high-speed rotary sealing device capable of conveying hard powder
DE102021211371A1 (en) 2021-10-08 2023-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device and method for forming a coating on an inner wall of a hollow cylindrical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418519A2 (en) * 1989-08-07 1991-03-27 Mitsubishi Jukogyo Kabushiki Kaisha Reflecting mirror for a laser beam and laserbeam welding apparatus including the same
JPH03128183A (en) * 1989-10-13 1991-05-31 Toshiba Corp Laser beam machine
JPH07292481A (en) * 1994-04-25 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd Coating film cladding apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE856712C (en) * 1951-04-29 1952-11-24 Kuehnle Ag Process for coating fusible, in particular metallic, surfaces with wear and corrosion-resistant protective material layers
DE1295960B (en) * 1965-02-22 1969-05-22 Gewerk Eisenhuette Westfalia Method and device for applying metallic coating materials to the surfaces of workpieces
DE2145921C2 (en) * 1971-09-14 1982-05-06 Günther Dr. 8022 Grünwald Nath Device for material processing by means of a laser beam with a flexible light guide
JPS5645293A (en) * 1979-09-19 1981-04-24 Hitachi Ltd Laser welding device
JPS6032555B2 (en) * 1979-09-28 1985-07-29 株式会社日立製作所 Laser beam welding rotating head
US4827098A (en) * 1987-07-06 1989-05-02 Westinghouse Electric Corp. Flexible laser welding head for sleeve-to-tube welding
EP0300458B1 (en) * 1987-07-21 1991-12-18 Mitsubishi Jukogyo Kabushiki Kaisha Laser beam welding method for an inner cicumferential surface of a tube
DE3935009A1 (en) * 1989-10-20 1991-04-25 Inst Nat Sciences Appliq DEVICE FOR THE LASER PLASMA COATING
DE4017286A1 (en) * 1990-05-29 1991-12-05 Cooper Ind Inc (De)soldering device for small precision soldering - has laser beam directed through tapered cap and focussed at end of cap onto solder area
DE4115561A1 (en) * 1990-08-17 1992-02-20 Siemens Ag DEVICE AND METHOD FOR LASER WELDING A TUBE
JPH0715554Y2 (en) * 1991-06-07 1995-04-12 株式会社モリタ製作所 Fiber type laser therapy device
JP3214074B2 (en) * 1992-07-15 2001-10-02 石川島播磨重工業株式会社 Laser irradiation torch
US5359172A (en) * 1992-12-30 1994-10-25 Westinghouse Electric Corporation Direct tube repair by laser welding
DE19606555A1 (en) * 1996-02-22 1997-08-28 Laser Medizin Zentrum Ggmbh Laser light conductor amplifier apparatus for materials processing
DE19643029A1 (en) * 1996-10-18 1998-04-23 Bayerische Motoren Werke Ag Method for coating an internal combustion engine component made of an aluminum alloy with silicon
DE19809367B4 (en) * 1998-03-05 2007-04-05 Nagel Maschinen- Und Werkzeugfabrik Gmbh Method and device for fine machining of piston raceways
DE19812892B4 (en) * 1998-03-24 2005-06-23 Hans Roßner & Sohn GmbH Muzzle element for laser beams
DE19826138B4 (en) * 1998-04-17 2007-06-28 NU TECH Gesellschaft für Lasertechnik Materialprüfung und Meßtechnik mbH Method for producing a workpiece with a wear-resistant surface
DE19834877A1 (en) * 1998-08-01 2000-02-10 Martin Walter Procedure for removing combustion products which can be deposited on combustion plant by means of pulsed laser radiation of laser source, has pulsed laser beam guided over surface
DE19915038A1 (en) * 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Light metal cylinder block, method for its production and device for carrying out the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418519A2 (en) * 1989-08-07 1991-03-27 Mitsubishi Jukogyo Kabushiki Kaisha Reflecting mirror for a laser beam and laserbeam welding apparatus including the same
JPH03128183A (en) * 1989-10-13 1991-05-31 Toshiba Corp Laser beam machine
JPH07292481A (en) * 1994-04-25 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd Coating film cladding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136163A (en) * 2012-02-10 2014-11-05 Limo专利管理有限及两合公司 Device for the laser processing of a surface of a workpiece or for the post-treatment of a coating on the outside or the inside of a workpiece
CN104136163B (en) * 2012-02-10 2016-02-03 Limo专利管理有限及两合公司 For carrying out Laser Processing or the equipment for carrying out post processing to the coating on workpiece lateral surface or medial surface to the surface of workpiece

Also Published As

Publication number Publication date
ES2233723T3 (en) 2005-06-16
DE10116720A1 (en) 2002-10-10
EP1247878A1 (en) 2002-10-09
DE50202153D1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
DE4226461C2 (en) Dental instrument for the treatment of teeth using laser beams
EP0762947B1 (en) Device for machining material with a laser
DE102009024957B3 (en) Modular system for build-up welding on internal surfaces of workpieces with a laser beam
DE69914223T2 (en) DEVICE FOR CARRYING OUT OPERATIONS ON A WORKPIECE IN AN INAccessible SITE
EP0543830B1 (en) Device and process for laser-welding pipes
EP1247878B1 (en) Apparatus for powder coating by laser
EP2429755B1 (en) Device and method for machining the circumference of a material strand by means of a laser
EP0727967B1 (en) Hand-held unit and a process for flushing the operating point of a laser beam emerging from an optical fiber
EP2476504B1 (en) Processing device
EP2412471A2 (en) Device and method for thermal machining a workpiece using laser beams
EP0908264B1 (en) Apparatus for hardening the internal contour of a gun barrel with laser beam
DE202004013136U1 (en) Modular optical waveguide lens system esp. for laser optics having a main carrier with a connector and exchangeable lens module
EP1322939B1 (en) Device used for the chemical analysis of material samples
EP0543829B1 (en) Device and process for laser-welding a pipe
EP2468445A1 (en) Laser processing machine with a diode laser, which laser beam can rotate around its axis, and method of machining a workpiece
EP1661658B1 (en) Device for making a bore by means of laser beam
DE10215446B4 (en) Combined laser head for various laser processing
DE102019204032B4 (en) Device for generating a spatially modulatable power density distribution from laser radiation
DE102020107925A1 (en) Device for the generative production of components, in particular by means of selective melting or sintering
DE10208485A1 (en) Cleaning surface of optical window for observing combustion processes in an IC engine, involves subjecting surface facing engine combustion chamber to laser light suitable for cleaning via light waveguide outside combustion periods
DE102004051225B4 (en) Robot and method for controlling a robot
DE202018104350U1 (en) Laser processing head with a carrier for several processing optics as well as carriers with the several processing optics for the laser processing head and laser system with the laser processing head
DE102021103603B4 (en) Method of processing an optical fiber, optical fiber and coupling arrangement
EP1464436B1 (en) Tool for precise machining with laser beam the bore surface
DE102006062695A1 (en) Temperature and humidity change compensation in the resulting change in length of optical fiber to keep the inlet and outlet position

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021025

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20030617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050214

REF Corresponds to:

Ref document number: 50202153

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2233723

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140227

Year of fee payment: 13

Ref country code: FR

Payment date: 20140227

Year of fee payment: 13

Ref country code: ES

Payment date: 20140120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140227

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202153

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150210