EP1247141A1 - Creation of resist structures - Google Patents
Creation of resist structuresInfo
- Publication number
- EP1247141A1 EP1247141A1 EP00993343A EP00993343A EP1247141A1 EP 1247141 A1 EP1247141 A1 EP 1247141A1 EP 00993343 A EP00993343 A EP 00993343A EP 00993343 A EP00993343 A EP 00993343A EP 1247141 A1 EP1247141 A1 EP 1247141A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resist
- acid
- polymer
- salt
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000002253 acid Substances 0.000 claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 14
- 239000000654 additive Substances 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 238000007669 thermal treatment Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000010894 electron beam technology Methods 0.000 claims abstract description 7
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 7
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 claims abstract description 5
- 239000007791 liquid phase Substances 0.000 claims abstract description 5
- 238000006884 silylation reaction Methods 0.000 claims description 17
- -1 benzylthiolanium compound Chemical class 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- YSWBUABBMRVQAC-UHFFFAOYSA-N (2-nitrophenyl)methanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1[N+]([O-])=O YSWBUABBMRVQAC-UHFFFAOYSA-N 0.000 claims description 2
- GXAMYUGOODKVRM-UHFFFAOYSA-N Flurecol Chemical compound C1=CC=C2C(C(=O)O)(O)C3=CC=CC=C3C2=C1 GXAMYUGOODKVRM-UHFFFAOYSA-N 0.000 claims description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 2
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- PUJDIJCNWFYVJX-UHFFFAOYSA-N benzyl carbamate Chemical class NC(=O)OCC1=CC=CC=C1 PUJDIJCNWFYVJX-UHFFFAOYSA-N 0.000 claims description 2
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical class CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 claims description 2
- 125000005520 diaryliodonium group Chemical group 0.000 claims description 2
- 150000003948 formamides Chemical class 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical class COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 claims description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 claims description 2
- UTVGJHKGLOQOQM-UHFFFAOYSA-N (2,6-dinitrophenyl)methyl n-cyclohexylcarbamate Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1COC(=O)NC1CCCCC1 UTVGJHKGLOQOQM-UHFFFAOYSA-N 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- JCJNNHDZTLRSGN-UHFFFAOYSA-N anthracen-9-ylmethanol Chemical compound C1=CC=C2C(CO)=C(C=CC=C3)C3=CC2=C1 JCJNNHDZTLRSGN-UHFFFAOYSA-N 0.000 claims 1
- BCDVUTHECYDOJW-UHFFFAOYSA-N benzyl n-(2-nitrocyclohexyl)carbamate Chemical compound [O-][N+](=O)C1CCCCC1NC(=O)OCC1=CC=CC=C1 BCDVUTHECYDOJW-UHFFFAOYSA-N 0.000 claims 1
- 230000002378 acidificating effect Effects 0.000 abstract description 2
- 239000000470 constituent Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 15
- 238000004132 cross linking Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229920005601 base polymer Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- JGTNAGYHADQMCM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-M 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012822 chemical development Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- 238000000996 ion projection lithography Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WLWUSHPRMWJNAR-UHFFFAOYSA-N 2,4,4-trimethylpent-2-enoic acid Chemical compound OC(=O)C(C)=CC(C)(C)C WLWUSHPRMWJNAR-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ZZJORBXQIFUELH-UHFFFAOYSA-N [N+](=O)([O-])C1C(CCCC1)N(C(O)=O)CC1=CC=CC=C1.[N+](=O)([O-])C1C(CCCC1)NC(=O)OCC1=CC=CC=C1 Chemical compound [N+](=O)([O-])C1C(CCCC1)N(C(O)=O)CC1=CC=CC=C1.[N+](=O)([O-])C1C(CCCC1)NC(=O)OCC1=CC=CC=C1 ZZJORBXQIFUELH-UHFFFAOYSA-N 0.000 description 1
- 125000004036 acetal group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N n-butyl methyl ketone Natural products CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N p-toluenesulfonic acid Substances CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- DNAJDTIOMGISDS-UHFFFAOYSA-N prop-2-enylsilane Chemical compound [SiH3]CC=C DNAJDTIOMGISDS-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- UOUFRTFWWBCVPV-UHFFFAOYSA-N tert-butyl 4-(2,4-dioxo-1H-thieno[3,2-d]pyrimidin-3-yl)piperidine-1-carboxylate Chemical group CC(C)(C)OC(=O)N1CCC(CC1)n1c(=O)[nH]c2ccsc2c1=O UOUFRTFWWBCVPV-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
- G03F7/0758—Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
- G03F7/405—Treatment with inorganic or organometallic reagents after imagewise removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/106—Binder containing
- Y10S430/111—Polymer of unsaturated acid or ester
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/114—Initiator containing
- Y10S430/122—Sulfur compound containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/114—Initiator containing
- Y10S430/124—Carbonyl compound containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/127—Spectral sensitizer containing
Definitions
- CAR chemically amplified resists
- a non-polar chemical group for example a carboxylic acid tert-butyl ester group, a polar in the presence of a photolytically generated acid
- Carboxylic acid group formed is Carboxylic acid group formed.
- Further examples of such "blocked” groups are tert-butoxycarbonyloxy groups (t-BOC groups) and acetal groups.
- t-BOC groups tert-butoxycarbonyloxy groups
- acetal groups tert-butoxycarbonyloxy groups
- the change in polarity is then used - when developing in an aqueous alkaline developer - to selectively dissolve the exposed (polar) regions.
- the negative image of the mask is achieved by using an organic developer instead of the aqueous alkaline developer, which removes the polar regions of the resist, which selectively removes the non-polar (unexposed) regions.
- organic solvents as developers (toxicity, flammability, disposal); such developers are not accepted in semiconductor production.
- a special variant of a positive resist is known from DE-OS 42 26 464.
- This dry-developable resist is based on the chemical combination of a photobase generator with a thermal acid generator, whereby the unexposed areas of the solid resist film are modified in such a way that silicon molecules can be incorporated into the near-surface resist film area in a chemical reaction step following the exposure. Processing does not require the usual wet-chemical development step, instead the latent structures generated during exposure are generated by direct silylation and subsequent etching in oxygen plasma ("top surface imaging", TSI).
- top surface imaging top surface imaging
- the disadvantage here is that due to of acid-base diffusion process. within the resist and due to diffusion of the silylation agent, the structural edges after the silylation are not clearly defined. This leads to a high edge after the final oxygen etching process. roughness and in particular to limit the resolving power. Future lithography generations with a required resolution of ⁇ 150 n cannot be realized in this way.
- a special type of an aqueous-alkaline developable positive resist system is used.
- a base polymer is used in the resist, which has reactive groups. These groups allow the developed resist structure to be treated with suitable reagents.
- the structures are “widened” (“chemical a plification of resist lines”, CARL) or the resist trenches and holes are narrowed.
- Polymer matrix is cross-linked in the developed resist structure. Negative varnishes that work on the basis of cross-linking are therefore not suitable for this system. For the structuring of certain levels in semiconductor production, however, negative resist systems with the type of aftertreatment mentioned are required.
- EP-OS 0 425 142 discloses a photoresist system in which the structuring is carried out by a combined generation of acids and bases. In this way, a negative working resist can be transferred to a positive working resist.
- this system has the same disadvantages as the pos tivresist known from DE-OS 42 26 464, namely high edge roughness and limited resolution.
- the object of the invention is to provide a method for producing negative resist structures, in which the resist which can be developed in aqueous alkaline form is not structured by crosslinking and thus post-treatment is possible after the development step, and with which the problem of edge roughness and limitation of resolution is solved.
- this process is intended to be used both in optical lithography and in direct writing processes (with laser, electron or ion beams) and in electron projection lithography (EPL) and ion projection lithography (IPL) can be used.
- thermosaur generator a compound from which an acid is released by a thermal treatment (thermosaur generator)
- photoreactive compound from which a base is formed when irradiated with light, X-rays, electron beams or ion beams photobase generator
- the structures are not produced by a direct silylation but by a wet chemical development process preceding the silylation.
- the predefined structures are treated with a sylation solution, which gives all the advantages of the CARL process (trench narrowing, high silicon content in double layer technology, large process windows). In this way - compared to the Tecnnik stand - a significantly better structural quality is achieved, combined with a higher resolution.
- the negative resist does not work on the chemical basis Cross-linking and thus preventing the exposed areas from detaching and therefore does not exhibit the resolution-limiting phenomenon "swelling", but instead the solubility of the unexposed areas is greatly increased.
- a negative working variant of the CARL- Another advantage is that inexpensive resists or base polymers can be used.
- the method according to the invention proceeds in the following way.
- the resist is applied to the substrate to be structured and then dried; the solvent evaporates.
- the solid resist film obtained in this way a latent image of the
- the exposed areas having the base formed from the photobase generator.
- the irradiation takes place either optically with light or with X-rays with the aid of a photomask or directly with focused electrons or ions. In one of the irradiated
- PEB post exposure bake
- the acid is trapped by the previously generated base, so that the polymer cannot undergo acid-catalyzed reactions.
- the polymer thus remains largely unchanged in the exposed areas, i.e. it is insoluble in the developer.
- subsequent development which is carried out using an aqueous
- the structured liquid phase substrate is silylated, i.e. treated with a silicon-containing solution; this is done either as immersion silylation or in a puddle facility.
- the silylation in which silicon molecules are built into the developed resist structures - by reaction with the carboxylic acid anhydride groups - gives the resist mask a very high etching stability with respect to an oxygen plasma; at the same time, the silylation enables a lateral expansion of the predefined structures (CARL principle). This enables the process window to be enlarged in the lithographic process under production conditions. It is important that the resist structures developed do not contain cross-linked polymer structures, so that the post-treatment described (in the sense of CARL technology) can be carried out successfully.
- the resist used in the method according to the invention contains a polymer which can acid-catalyze chemical reactions.
- Functional groups are preferably used for this purpose, specifically acid-labile groups, from which molecular fragments are split off. These are advantageously one or more of the following groups: tert. Alkyl esters, tert-butoxycarbonyloxy, acetal, tetrahydrofuranyl and tetrahydropyranyl. A tert is preferred. -Butylester mich.
- the polymer also has carboxylic anhydride groups which are suitable for the chemical attachment of the silylation agent; succinic anhydride groups are preferred.
- carboxylic anhydride groups which are suitable for the chemical attachment of the silylation agent; succinic anhydride groups are preferred.
- the anhydride groups of polymerized itaconic acid, acrylic acid or methacrylic acid anhydride can also be used, and also anhydride groups that are formed, for example, by thermal treatment from carboxylic acids or carboxylic acid derivatives.
- the thermal treatment advantageously releases a sulfonic acid from the thermosaur generator contained in the resist.
- This is preferably an organic sulfonic acid with an aromatic or aliphatic character, in particular an acid from the following group: aromatic sulfonic acids which are present on the aromatic radical - in any position - by halogen atoms, nitro groups or aliphatic radicals (with 1 to 5 carbon atoms) are substituted; aliphatic sulfonic acids which are substituted on the aliphatic radical - in any position - by halogen atoms or nitro groups; aliphatic sulfonic acids with polycyclic aliphatic groups, especially adamantyl and norbornyl groups.
- the exposure or irradiation advantageously releases one minute from the photobase generator present in the resist.
- This is preferably an organic aromatic or aliphatic amm.
- At least one of the following compounds is advantageously used as the photobase generator: O-acyloxime, benzyloxycarbonylamide derivative, formamide derivative, diarylmethane trialkylammonium salt, o-nitrobenzyloxycarbonyl-cyclohexylamine (o-nitrobenzyl-N-cyclohexylcarbamate), 2, 6-diyloxy-benzo carbonyl-cyclohexylamm, nifedipine derivative, such as N-methyl-nifedipm, and polymer-bound photobase generator based on one of the base precursors mentioned.
- Resistless suites known per se are used as solvents, in particular at least one of the following compounds: 1-methoxy-2-propyl acetate, cyclohexanone, ⁇ -butyrolactone and ethyl lactate. L-Methoxy-2-propyl acetate is preferred.
- the resist optionally contains one or more additives which can improve resist properties, such as storage stability, service life and film formation. It is also possible to use additives which act as solubilizers, serve to adjust the exposure or adsorption wavelength, influence the exposure dose or can change properties which improve the process or product. Particularly preferred additives are 9-antracenomethanol and 9-hydroxy-9-fluorenecarboxylic acid. These compounds act as sensitizers, i.e. they absorb energy during the exposure and pass it on to the photobase generator, whereby this can be split in a higher quantum yield than would be the case without the addition of additives.
- the resist is applied to the substrate by methods known in the art, for example by spin coating.
- the drying of the resist is generally carried out at a temperature of about 60 to 160 ° C.
- the resist is preferably irradiated by means of UV light with a wavelength ⁇ of 400 to 1 nm.
- the subsequent thermal treatment, ie the heating of the resist generally takes place at a temperature of approximately 80 to 250 ° C.
- the temperature during the heating step is higher than the temperature during drying.
- known water-alkaline developer solutions are used, in particular developers containing tetramethyl or tetraethylammonium hydroxide.
- the silylation is preferably carried out with an organic compound containing amino groups or with a mixture of such compounds, specifically from the liquid phase.
- the silylation agent is dissolved in an organic solvent, in particular in an alcohol, such as ethanol, 2-propanol and 2-hexanol; the alcohol can also contain water, in particular 0.5 to 30% by weight.
- the silylating agent is preferably a mixture of diammo-oligosiloxanes with 4 to 20 silicon atoms per molecule, in particular one
- a thermal treatment can also be carried out before and / or after the silylation of the resist. This has a positive influence on the resist structure profile, because moisture remaining after development is removed from the resist film or residual solvent remaining after silylation.
- a thermal treatment after the silylation is particularly advantageous for any subsequent dry etching, since in this way a difference in the lateral width of isolated lines and trenches can be avoided.
- a resist which contains the following components: 7.52 parts by weight of a terpolymer, 0.08 parts by weight of thermosaur generator, 0.4 parts by weight of photoase generator and 92 parts by weight of solvent.
- the terpolymer is obtained by radical copolymerization of maleic anhydride, tert-butyl methacrylic acid and allylsilane (molecular weight: approx. 20,000 g / mol).
- thermosaur generator is 4-methoxybenzylthiolanium-2H-nonafluorobutane sulfonate
- the photobase generator is o-nitrobenzyl-N-cyclohexyl carbamate
- l-methoxy-2-propyl acetate serves as the solvent.
- This resist is spun at a speed of 2000 rpm onto a silicon wafer which is coated with a 0.5 ⁇ m thick (235 ° C / 90 s, heating plate) layer of a commercially available novolak (duration: 20 s) and then dried on a hot plate at 100 ° C for 60 s.
- the layer thickness of the top resist located on the bottom resist is approximately 200 nm.
- the top resist according to Example 1 is exposed to UV radiation at 248 n using a gray wedge mask (multi density resolution target / Ditric Optics) on a mask aligner with vacuum contact exposure (MJB 3 / Süss KG with UV-M interference filter / Schott) and then heat treated on a hot plate at 150 ° C for 60 s (PEB).
- the tert. -Butyl ester catalyzed by the acid formed, cleaved.
- the dose at which the resist is fully developed can be determined, ie no remaining layer thickness can be measured in the unexposed areas (Dp (0) dose).
- Evaluation using a contrast curve gives a value for Dp (0) of 50 mJ / cm 2 for the process conditions mentioned.
- the contrast ie the slope of the curve at the turning point, is comparable to the contrast values of commercial resists.
- This example thus shows the basic applicability of the resist system in lithographic applications.
- a wafer coated in accordance with Example 1 is exposed through a mask having 0.15 ⁇ m line / web structures by means of a projection exposure device with a numerical aperture of 0.6 at a wavelength of 248 nm. After exposure, the wafer is heat treated on a hot plate at 150 ° C for 60 s (PEB). After development with a commercial tetramethylammonium hydroxide developer (duration: 60 s), a negative image of the mask is obtained in the resist, the 0.15 ⁇ m structures being shown true to size. The wafer is then covered with a solution consisting of 2% by weight bisamino-oligodimethylsiloxane and 98% by weight hexanol at room temperature.
- the wafer is rinsed with isopropanol and then dried in an air stream.
- the structures which have been silylated and widened in this way have 0.20 ⁇ m webs and 0.10 ⁇ m trenches.
- the silylated top resist structure is subsequently transferred into the underlying bottom resist by means of an anisotropic oxygen plasma.
- the structures obtained in this way have vertical flanks and 0.20 ⁇ m webs and 0.10 ⁇ m trenches.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
Beschreibungdescription
Erzeugung von ResiststrukturenGeneration of resist structures
Die Erfindung betrifft ein Verfahren zur Erzeugung negativer ResiststrukturenThe invention relates to a method for producing negative resist structures
In der Mikroelektronik werden sogenannte chemisch verstärkte Resists („chemical a plification resists"", CAR) für verschie- dene lithographische Technologien im großen Umfang eingesetzt (siehe dazu: „Solid State Technology", Vol. 39 (1996), No . 7, Seiten 164 bis 173) . Das Prinzip der chemischen Verstärkung findet sowohl bei naßentwickelbaren Einlagenresists Anwendung als auch bei ganz oder teilweise trockenentwickelbaren Zwei- lagenresistsystemen. Die Resists können dabei nach dem Prinzip der säurekatalytischen Spaltung arbeiten. Im Falle von positiv arbeitenden Resists wird dann - bei einem Heizschritt (Temperung) - aus einer unpolaren chemischen Gruppe, beispielsweise eine Carbonsäure-tert .-butylestergruppe, in Gegenwart einer photolytisch erzeugten Säure eine polareIn microelectronics, so-called chemically amplified resists (CAR) are widely used for various lithographic technologies (see: "Solid State Technology", Vol. 39 (1996), No. 7, Pages 164 to 173) The principle of chemical amplification applies to both wet-developable single-layer resists and fully or partially dry-developable two-layer resist systems, whereby the resists can work according to the principle of acid catalytic cleavage a heating step (tempering) - from a non-polar chemical group, for example a carboxylic acid tert-butyl ester group, a polar in the presence of a photolytically generated acid
Carbonsäuregruppe gebildet. Weitere Beispiele für derartige „blockierte" Gruppen sind tert . -Butoxycarbonyloxygruppen (t-BOC-Gruppen) und Acetalgruppen. Die Polaritätsänderung wird dann - beim Entwickeln in einem wäßrig-alkalischen Entwickler - zum selektiven Lösen der belichteten (polaren) Bereiche genutzt.Carboxylic acid group formed. Further examples of such "blocked" groups are tert-butoxycarbonyloxy groups (t-BOC groups) and acetal groups. The change in polarity is then used - when developing in an aqueous alkaline developer - to selectively dissolve the exposed (polar) regions.
Im Falle von wäßrig-alkalisch entwickelbaren chemisch verstärkten Negativresists wird bei der Belichtung ebenfalls aus einem Photosäuregenerator eine starke Säure erzeugt. Allerdings dient hierbei die erzeugte Säure bei dem der Belichtung folgenden Heizschritt nicht zur Abspaltung von „blockierten" Gruppen (wie bei den Positivresists) , sondern zur säurekatalysierten Quervernetzung der Resistbasispolymere, üblicher- weise .in Gegenwart geeigneter Vernetzungsagenzien. Säurespaltbare „blockierte" Gruppen am Polymer sind bei diesen Resists somit nicht erforderlich. Ein chemisch verstärkter Negativres ist , der nicht auf der Bas is von Quervernetzung arbeitet , ist aus der US-PS 4 491 628 bekannt . Hierbei wird ein Resistsystem eingesetzt, das aus denselben Komponenten aufgebaut ist wie die vor- stehend beschriebenen chemisch verstärkten Positivresists . Das negative Abbild der Mas ke wird dadurch erreicht, daß anstelle des wäßrig-alkalischen Entwicklers , der die polaren Bereiche des Resists herauslöst, ein organischer Entwickler verwendet wird, der selektiv die unpolaren (unbelichteten) Bereiche herauslöst . Ein Nachteil bes teht hier aber in der Verwendung organischer Lösemittel als Entwickler ( Toxizität, Brennbarkeit , Entsorgung) ; derartige Entwickler werden in der Halbleiterproduktion nicht akzeptiert .In the case of chemically amplified negative resists which can be developed in alkaline water, a strong acid is also generated from a photo acid generator during the exposure. However, the acid generated in the heating step following the exposure does not serve to split off "blocked" groups (as in the case of positive resists), but for acid-catalyzed crosslinking of the resist base polymers, usually in the presence of suitable crosslinking agents. Acid-cleavable "blocked" groups on the polymer are therefore not necessary for these resists. A chemically amplified negative resist that does not work on the basis of cross-linking is known from US Pat. No. 4,491,628. Here, a resist system is used, which is made up of the same components as the chemically amplified positive resists described above. The negative image of the mask is achieved by using an organic developer instead of the aqueous alkaline developer, which removes the polar regions of the resist, which selectively removes the non-polar (unexposed) regions. A disadvantage here is the use of organic solvents as developers (toxicity, flammability, disposal); such developers are not accepted in semiconductor production.
Die chemisch verstärkten Positivres ists sind im übrigen - ebenso wie die chemisch verstärkten Negativresists - seit langem bekannt ( siehe dazu beispielsweise : „Advanced Materials for Optics and Electronics" , Vol . 4 ( 1994 ) , Seiten 83 bis 93 ) .Incidentally, the chemically amplified positive rests - like the chemically amplified negative resists - have long been known (see, for example: "Advanced Materials for Optics and Electronics", Vol. 4 (1994), pages 83 to 93).
Eine spezielle Variante eines Positivresists ist aus der DE-OS 42 26 464 bekannt. Dieser trockenentwickelbare Resist basiert auf der chemischen Kombination eines Photobasebildners mit einem Thermosäurebildner, wodurch die unbelichteten Bereiche des festen Resistfilms in der Weise modifiziert werden, daß in einem auf die Belichtung folgenden chemischen Reaktionsschritt Siliciummoleküle in den oberflächennahen Resistfilmbereich eingebaut werden können. Bei der Prozessierung kommt man ohne den sonst üblichen naßchemischen Entwick- lungsschritt aus, statt dessen werden die bei der Belichtung erzeugten latenten Strukturen durch direkte Silylierung und nachfolgendes Ätzen im Sauerstoffplasma erzeugt („top surface imaging" , TSI) . Nachteilig ist hierbei, daß aufgrund von Säure-Base-Diffusionsprozesser. innerhalb des Resists sowie durch Diffusion des Silylierungsagens die Strukturkanten nach der Silylierung nicht klar definiert sind. Dies führt nach dem abschließenden Sauerstoffatzorozeß zu einer hohen Kanten- rauhigkeit und insbesondere zu einer Limitierung des Auflösungsvermögens. Zukünftige Lithographiegenerationen mit einer geforderten Auflösung von < 150 n können somit auf diese Weise nicht realisiert werden.A special variant of a positive resist is known from DE-OS 42 26 464. This dry-developable resist is based on the chemical combination of a photobase generator with a thermal acid generator, whereby the unexposed areas of the solid resist film are modified in such a way that silicon molecules can be incorporated into the near-surface resist film area in a chemical reaction step following the exposure. Processing does not require the usual wet-chemical development step, instead the latent structures generated during exposure are generated by direct silylation and subsequent etching in oxygen plasma ("top surface imaging", TSI). The disadvantage here is that due to of acid-base diffusion process. within the resist and due to diffusion of the silylation agent, the structural edges after the silylation are not clearly defined. This leads to a high edge after the final oxygen etching process. roughness and in particular to limit the resolving power. Future lithography generations with a required resolution of <150 n cannot be realized in this way.
Bei einem aus der EP-PS 0 395 917 bekannten Verfahren zur Verbreiterung von Photoresiststrukturen wird eine spezielle Art eines wäßrig-alkalisch entwickelbaren Positivresist- systems eingesetzt. Hierbei wird im Resist ein Basispolymer verwendet, das reaktive Gruppen aufweist. Diese Gruppen erlauben es, die entwickelte Resiststruktur mit geeigneten Reagenzien nachzubehandeln. Während der Nachbehandlung werden die Strukturen „aufgeweitet" („chemical a plification of resist lines", CARL) bzw. die Resistgräben und -löcher ver- engt.In a method known from EP-PS 0 395 917 for widening photoresist structures, a special type of an aqueous-alkaline developable positive resist system is used. Here, a base polymer is used in the resist, which has reactive groups. These groups allow the developed resist structure to be treated with suitable reagents. During the aftertreatment, the structures are “widened” (“chemical a plification of resist lines”, CARL) or the resist trenches and holes are narrowed.
Entsprechend einem aus der US-PS 5 234 793 bekannten Verfahren wird die Nachbehandlung zur Silylierung in einem Zwei- lagenresistsystem genutzt (Si-CARL) . Allerdings kann diese Art der Nachbehandlung nicht durchgeführt werden, wenn dieAccording to a process known from US Pat. No. 5,234,793, the aftertreatment is used for silylation in a two-layer resist system (Si-CARL). However, this type of post-treatment cannot be performed if the
Polymermatrix in der entwickelten Resiststruktur quervernetzt ist. Negativlacke, die auf der Basis von Quervernetzung arbeiten, eignen sich deshalb nicht für dieses System. Für die Strukturierung bestimmter Ebenen in der Halbleiterfertigung werden aber Negativresistsysteme mit der genannten Art der Nachbehandlung benötigt.Polymer matrix is cross-linked in the developed resist structure. Negative varnishes that work on the basis of cross-linking are therefore not suitable for this system. For the structuring of certain levels in semiconductor production, however, negative resist systems with the type of aftertreatment mentioned are required.
Insbesondere bei den herkömmlichen wäßrig-alkalisch entwickelbaren Negativresists besteht das Problem des sogenann- ten „swelling" . Zwar werden die belichteten Resistbereiche durch die während des Heizschrittes stattfindende Polymerquervernetzung prinzipiell gegenüber dem Entwickler unlöslich gemacht, problematisch sind aber die Randbereiche der Strukturen. Hier stehen nämlich - aufgrund einer schwächeren Lichteinstrahlungsintensität sowie aufgrund von Diffusionsprozessen - weniger Protonen für die Quervernetzung zur Verfügung. Dadurch kann die Quervernetzung nicht in dem Maße erfolgen, wie es in der Mitte der Strukturen der Fall ist. Die Randbereiche sind zwar im Entwickler unlöslich, sie können aber wahrend der Entwicklung aufquellen und das Strukturprofil verfalschen. Dies ist auf das geringere Ausmaß der Polymerquervernetzung zurückzuführen, wodurch die Strukturen im Randbereich mechanisch weniger stabil sind als im Kernbereich. Speziell bei immer kleiner werdenden Strukturen ist dies e n großes Problem, weil hierbei der Anteil der Randflachen (Kanten) im Vergleich zum eigentlichen Struktur- volumen immer größer wird. Eine originalgetreue Abbildung sehr feiner Strukturen ist mit herkömmlichen Negativresist- systemen deshalb nur sehr schwer zu erreichen, wenn nicht sogar unmöglich.There is the problem of so-called "swelling" in particular in the case of the conventional aqueous-alkaline developable negative resists. Although the exposed resist areas are made insoluble in principle by the polymer crosslinking taking place during the heating step, the edge areas of the structures are problematic - Due to a weaker light irradiation intensity and due to diffusion processes - fewer protons are available for cross-linking as is the case in the middle of the structures. The edge areas are insoluble in the developer, but they can swell during development and distort the structural profile. This is due to the lower degree of polymer crosslinking, which means that the structures in the edge area are mechanically less stable than in the core area. This is a major problem, especially with structures that are getting smaller and smaller, because the proportion of edge surfaces (edges) is getting bigger and bigger compared to the actual structure volume. It is therefore very difficult, if not impossible, to achieve a faithful reproduction of very fine structures with conventional negative resist systems.
Konventionelle Resistsysteme benutzen für die eigentlicheConventional resist systems use for the actual
Strukturierung nur eine einzige photoaktive Komponente. Weitere Additive zielen nicht unmittelbar auf die Strukturier- barkeit ab, sondern gleichen lediglich die störende laterale Diffusion der photoaktiven Komponente aus. Demgegenüber ist aus der EP-OS 0 425 142 ein Photoresistsyste bekannt, bei dem die Strukturierung durch eine kombinierte Sauren- und Basenerzeugung erfolgt. Auf diese Weise kann e n negativ arbeitender Resist m einen positiv arbeitenden Resist überfuhrt werden. Dieses System weist aber dieselben Nachteile auf wie der aus der DE-OS 42 26 464 bekannte Pos tivresist, nämlich hohe Kantenrauhigkeit und begrenztes Auflösungsvermögen .Structuring only a single photoactive component. Other additives are not aimed directly at the structurability, but only compensate for the disruptive lateral diffusion of the photoactive component. In contrast, EP-OS 0 425 142 discloses a photoresist system in which the structuring is carried out by a combined generation of acids and bases. In this way, a negative working resist can be transferred to a positive working resist. However, this system has the same disadvantages as the pos tivresist known from DE-OS 42 26 464, namely high edge roughness and limited resolution.
Aufgabe der Erfindung ist es, ein Verfahren zur Erzeugung negativer Resiststrukturen anzugeben, bei dem der waßrig- alkalisch entwickelbare Resist nicht durch Quervernetzung strukturiert wird und somit nach dem Entwicklungsschritt eine Nachbehandlung möglich ist, und mit dem das Problem der Kantenrauhigkeit und der Auflosungsbegrenzung gelost wird. Außerdem soll dieses Verfahren sowohl bei der optischen Lithographie und bei Direktschreibverfahren (mit Laser-, Elektronen- oαer Ionenstrahlen) als auch bei der Elektronen- projektionslithographie (EPL) und der Ionenprojektionslitho- graphie (IPL) eingesetzt werden können.The object of the invention is to provide a method for producing negative resist structures, in which the resist which can be developed in aqueous alkaline form is not structured by crosslinking and thus post-treatment is possible after the development step, and with which the problem of edge roughness and limitation of resolution is solved. In addition, this process is intended to be used both in optical lithography and in direct writing processes (with laser, electron or ion beams) and in electron projection lithography (EPL) and ion projection lithography (IPL) can be used.
Dies wird erfmdungsgemäß durch ein Verfahren erreicht, das durch folgende Schritte gekennzeichnet ist:According to the invention, this is achieved by a method which is characterized by the following steps:
(a) Aufbringen eines chemisch verstärkten Resists auf ein Substrat, wobei der Resist folgende Komponenten enthalt:(a) applying a chemically amplified resist to a substrate, the resist containing the following components:
- ein Polymer, bei dem durch Einwirkung von Saure eine Veränderung der Polarität erfolgt und das Carbonsaure- anhydridgruppen, gegebenenfalls in latenter Form, aufweist,a polymer in which the polarity changes as a result of the action of acid and which has carboxylic acid anhydride groups, optionally in latent form,
- e ne Verbindung, aus der durch eine thermische Behandlung eine Saure freigesetzt wird (Thermosaurebildner) ,- a compound from which an acid is released by a thermal treatment (thermosaur generator),
- eine photoreaktive Verbindung, aus der bei Bestrahlung mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen eine Base entsteht (Photobasebildner) ,a photoreactive compound from which a base is formed when irradiated with light, X-rays, electron beams or ion beams (photobase generator),
- ein Losemittel,- a solvent,
- gegebenenfalls ein oder mehrere Additive;- optionally one or more additives;
(b) Trocknen des Resists; (c) Bestrahlen des Resists mit Licht, Röntgen-, Elektronenoder Ionenstrahlen;(b) drying the resist; (c) irradiating the resist with light, X-rays, electron beams or ion beams;
(d) Aufheizen des Resists;(d) heating the resist;
(e) Entwickeln des Res scs m t einer waßπg-alkalischen Entwicklerlosung; (f) Silylieren des Resists aus flussiger Phase.(e) developing the res scs m t of a water-alkaline developer solution; (f) Silylating the liquid phase resist.
Beim Verfahren nach der Erfindung werden die Strukturen nicht durch e ne Direktsilylierung erzeugt, sondern durch einen der Silylierung vorgeschalteten naßchemischen Entwicklungsprozeß. Nach der Entwicklung werden die vordefinierten Strukturen mit einer S lylierungslosung behandelt, wobei sich alle Vorteile des CARL-Prozesses ergeben (Grabenverengung, hoher Silicium- gehalt in αer Zwe lagentechnik, große Prozeßfenster) . Auf diese Weise wird - im Vergleicn zum Stand der Tecnnik - eine wesentlicn bessere Strukturqualltat erzielt, verbunden mit einem höheren Auflösungsvermögen. Bei diesem Verfahren arbeitet der Negativresist nicht auf der Basis der chemischen Quervernetzung und damit der Verhinderung des Ablösens der belichteten Bereiche und er weist deshalb nicht das auf- lösungsbegrenzende Phänomen „swelling" auf, sondern es erfolgt eine starke Erhöhung der Löslichkeit der unbelichteten 5 Bereiche. Mit diesem Verfahren wird somit eine negativ arbeitende Variante des CARL-Prozesses geschaffen. Dabei ergibt sich als weiterer Vorteil, daß kostengünstige Resists bzw. Basispolymere eingesetzt werden können.In the process according to the invention, the structures are not produced by a direct silylation but by a wet chemical development process preceding the silylation. After the development, the predefined structures are treated with a sylation solution, which gives all the advantages of the CARL process (trench narrowing, high silicon content in double layer technology, large process windows). In this way - compared to the Tecnnik stand - a significantly better structural quality is achieved, combined with a higher resolution. In this process, the negative resist does not work on the chemical basis Cross-linking and thus preventing the exposed areas from detaching and therefore does not exhibit the resolution-limiting phenomenon "swelling", but instead the solubility of the unexposed areas is greatly increased. With this process, a negative working variant of the CARL- Another advantage is that inexpensive resists or base polymers can be used.
10 Im einzelnen läuft das Verfahren nach der Erfindung in folgender Weise ab. Der Resist wird auf das zu strukturierende Substrat aufgebracht und dann getrocknet; hierbei verdampft das Lösemittel. Im dabei erhaltenen festen Resistfilm wird dann durch gezielte Bestrahlung ein latentes Bild der ge-10 In detail, the method according to the invention proceeds in the following way. The resist is applied to the substrate to be structured and then dried; the solvent evaporates. In the solid resist film obtained in this way, a latent image of the
15 wünschten Struktur erzeugt, wobei die belichteten Bereiche die aus dem Photobasebildner entstandene Base aufweisen. Die Bestrahlung erfolgt entweder optisch mit Licht oder mit Röntgenstrahlen unter Zuhilfenahme einer Photomaske oder direkt mit fokussierten Elektronen oder Ionen. In einem der Bestrah-15 desired structure is produced, the exposed areas having the base formed from the photobase generator. The irradiation takes place either optically with light or with X-rays with the aid of a photomask or directly with focused electrons or ions. In one of the irradiated
20. lung folgenden Heizschritt („post exposure bake" , PEB) wird im gesamten Resistfilm der Thermosäurebildner gespalten und dabei eine Säure gebildet, d.h. eine chemische Verbindung, die saurer ist als die Matrix. Diese Säure katalysiert dann chemische Reaktionen am Polymer, die zur Abspaltung von Mole-20. The following heating step ("post exposure bake", PEB) is split in the entire resist film of the thermo acid generator and an acid is formed in the process, ie a chemical compound that is more acidic than the matrix. This acid then catalyzes chemical reactions on the polymer that lead to Separation of moles
25 külfragmenten führen, wodurch eine Veränderung der Polarität (des Resists) bewirkt wird, d.h. es erfolgt ein Übergang von hydrophob nach hydrophil. Dies ist allerdings nur in Bereichen möglich, in denen eine ausreichende Säuremenge zur Verfügung steht. In den belichteten, d.h. bestrahlten Bereichen25 cooling fragments, causing a change in polarity (resist), i.e. there is a transition from hydrophobic to hydrophilic. However, this is only possible in areas where a sufficient amount of acid is available. In the exposed, i.e. irradiated areas
30 wird die Säure durch die zuvor erzeugte Base weggefangen, so daß das Polymer keine sauer katalysierten Reaktionen eingehen kann. In den belichteten Bereichen bleibt das Polymer somit weitgehend unverändert, d.h. es ist im Entwickler unlöslich. Bei der nachfolgenden Entwicklung, die mittels eines wäßrig-30 the acid is trapped by the previously generated base, so that the polymer cannot undergo acid-catalyzed reactions. The polymer thus remains largely unchanged in the exposed areas, i.e. it is insoluble in the developer. In the subsequent development, which is carried out using an aqueous
35 alkalischen Entwicklers erfolgt, werden deshalb nur die unbelichteten Bereiche weggelöst, und auf diese Weise wird ein negatives Abbild der ursprünglichen Struktur' erzeugt . Dies bedeutet, daß das Substrat an den unbelichteten Bereichen freiliegt, während die belichteten Bereiche noch vom festen Resistfilm geschützt werden.35 alkaline developer takes place, therefore, only the unexposed areas are dissolved away, and in this way a negative image is created of the original structure '. This means that the substrate is exposed at the unexposed areas while the exposed areas are still protected by the solid resist film.
Nach der Entwicklung wird das strukturierte Substrat aus flüssiger Phase silyliert, d.h. mit einer siliciu haltigen Lösung behandelt; dies erfolgt entweder als Tauchsilylierung oder in einer Puddle-Einrichtung. Die Silylierung, bei der in die entwickelten Resiststrukturen - durch Reaktion mit den Carbonsäureanhydridgruppen - Siliciummoleküle eingebaut werden, verleiht der Resist aske eine sehr hohe Ätzstabilität gegenüber einem Sauerstoffplasma; gleichzeitig ermöglicht die Silylierung eine laterale Aufweitung der vordefinierten Strukturen (CARL-Prinzip) . Im lithographischen Prozeß unter Produktionsbedingungen wird dadurch eine Vergrößerung des Prozeßfensters ermöglicht. Wichtig ist dabei, daß die entwickelten Resiststrukturen keine quervernetzten Polymerstrukturen enthalten, so daß die beschriebene Nachbehandlung (im Sinne der CARL-Technologie) erfolgreich durchgeführt werden kann.After development, the structured liquid phase substrate is silylated, i.e. treated with a silicon-containing solution; this is done either as immersion silylation or in a puddle facility. The silylation, in which silicon molecules are built into the developed resist structures - by reaction with the carboxylic acid anhydride groups - gives the resist mask a very high etching stability with respect to an oxygen plasma; at the same time, the silylation enables a lateral expansion of the predefined structures (CARL principle). This enables the process window to be enlarged in the lithographic process under production conditions. It is important that the resist structures developed do not contain cross-linked polymer structures, so that the post-treatment described (in the sense of CARL technology) can be carried out successfully.
Der beim Verfahren nach der Erfindung eingesetzte Resist enthält ein Polymer, welches sauer katalysiert chemische Reaktionen eingehen kann. Dazu dienen vorzugsweise funk- tionelle Gruppen, und zwar säurelabile Gruppen, aus denen Molekülfragmente abgespalten werden. Vorteilhaft sind dies eine oder mehrere folgender Gruppen: tert . -Alkylester, tert.- Butoxycarbonyloxy, Acetal, Tetrahydrofuranyl und Tetrahydro- pyranyl . Bevorzugt wird dabei eine tert . -Butylestergruppe.The resist used in the method according to the invention contains a polymer which can acid-catalyze chemical reactions. Functional groups are preferably used for this purpose, specifically acid-labile groups, from which molecular fragments are split off. These are advantageously one or more of the following groups: tert. Alkyl esters, tert-butoxycarbonyloxy, acetal, tetrahydrofuranyl and tetrahydropyranyl. A tert is preferred. -Butylestergruppe.
Das Polymer weist ferner Carbonsäureanhydridgruppen auf, die für die chemische Anbindung des Silylierungsagens geeignet sind; bevorzugt werden dabei Bernsteinsäureanhydridgruppen. Zu diesem Zweck können aber auch die Anhydridgruppen von einpoly erisiertem Itaconsäure-, Acrylsäure- oder Methacryl- säureanhydrid dienen und ebenso latent vorhandene Anhydrid- gruppen, die beispielsweise durch thermische Behandlung aus Carbonsauren oder Carbonsaurederivaten gebildet werden.The polymer also has carboxylic anhydride groups which are suitable for the chemical attachment of the silylation agent; succinic anhydride groups are preferred. For this purpose, however, the anhydride groups of polymerized itaconic acid, acrylic acid or methacrylic acid anhydride can also be used, and also anhydride groups that are formed, for example, by thermal treatment from carboxylic acids or carboxylic acid derivatives.
Aus dem im Resist enthaltenen Thermosaurebildner wird durch die thermische Behandlung vorteilhaft eine Sulfonsaure freigesetzt. Dies ist vorzugsweise eine organische Sulfonsaure mit aromtischem oder aliphatischem Charakter, insbesondere eine Saure aus der folgenden Gruppe: aromatische Sulfon- säuren, die am aromatischen Rest - in beliebiger Stellung - durch Halogenatome, Nitrogruppen oder aliphatische Reste (mit 1 bis 5 C-Atomen) substituiert sind; aliphatische Sulfon- sauren, die am aliphatisc en Rest - in beliebiger Stellung - durch Halogenatome oder Nitrogruppen substituiert sind; aliphatische Sulfonsauren mit polycyclischen aliphatischen Gruppen, insbesondere Adamantyl- und Norbornylgruppen .The thermal treatment advantageously releases a sulfonic acid from the thermosaur generator contained in the resist. This is preferably an organic sulfonic acid with an aromatic or aliphatic character, in particular an acid from the following group: aromatic sulfonic acids which are present on the aromatic radical - in any position - by halogen atoms, nitro groups or aliphatic radicals (with 1 to 5 carbon atoms) are substituted; aliphatic sulfonic acids which are substituted on the aliphatic radical - in any position - by halogen atoms or nitro groups; aliphatic sulfonic acids with polycyclic aliphatic groups, especially adamantyl and norbornyl groups.
Als Thermosaurebildner dient vorzugsweise wenigstens eine der folgenden Verbindungen: Dialkyl-, Alkylaryl- oder Diaryl- iodoniumsalz und Tπalkyl-, Dialkylaryl- oder Alkyldiaryl- sulfoniu salz eines Sulfonats (mit Alkyl = Cx bis Ci2 und Aryl = C5 bis Cj.3, gegebenenfalls substituiert mit OH, N02, Halogen, Ci- bis Cι2-Alkyl oder -O-Alkyl) ; o-Nitrobenzylsulfonat; Salz einer Benzylthiolamumverbindung, insbesondere einer 4-Methoxybenzylthιolanιumverbmdung; Salz eines mehrfach fluorierten Butansulfonats, insbesondere eines Nonafluor- butansulfonats, wie 4-Methoxybenzylthιolanιum-nonafluor- butansulfonat; N-Sulfonsaureester, beispielsweise N-Phthal- lmid-p-toluolsulfonsaureester .At least one of the following compounds is preferably used as the thermosaur generator: dialkyl, alkylaryl or diaryl iodonium salt and tπalkyl, dialkylaryl or alkyldiaryl sulfonium salt of a sulfonate (with alkyl = C x to C i2 and aryl = C 5 to Cj.3 , optionally substituted with OH, N0 2 , halogen, Ci to -C 2 alkyl or -O-alkyl); o-nitrobenzyl sulfonate; Salt of a benzylthiolamine compound, in particular a 4-methoxybenzylthioolanium compound; Salt of a multiply fluorinated butanesulfonate, in particular a nonafluorobutanesulfonate, such as 4-methoxybenzylthiolanum nonafluorobutanesulfonate; N-sulfonic acid esters, for example N-phthalimid-p-toluenesulfonic acid ester.
Aus dem im Resist vorhandenen Photobasebildner wird durch die Belichtung bzw. Bestrahlung vorteilhaft ein Min freigesetzt. Dies ist vorzugsweise ein organisches aromatisches oder ali- phatisches Amm. Als Photobasebildner dient vorteilhaft wenigstens eine der folgenden Verbindungen: O-Acyloxim, Benzyloxycarbonylamidderivat, Formamidderivat, Diarylmethan- trialkylammoniumsalz, o-Nitrobenzyloxycarbonyl-cyclohexylamin (o-Nitrobenzyl-N-cyclohexylcarbamat) , 2, 6-Dιhιtrobenzyloxy- carbonyl-cyclohexylamm, Nifedipinderivat, wie N-Methyl- nifedipm, und polymergebundener Photobasebildner auf der Basis einer der genannten Basevorstufen.The exposure or irradiation advantageously releases one minute from the photobase generator present in the resist. This is preferably an organic aromatic or aliphatic amm. At least one of the following compounds is advantageously used as the photobase generator: O-acyloxime, benzyloxycarbonylamide derivative, formamide derivative, diarylmethane trialkylammonium salt, o-nitrobenzyloxycarbonyl-cyclohexylamine (o-nitrobenzyl-N-cyclohexylcarbamate), 2, 6-diyloxy-benzo carbonyl-cyclohexylamm, nifedipine derivative, such as N-methyl-nifedipm, and polymer-bound photobase generator based on one of the base precursors mentioned.
Als Losemittel dienen an sich bekannte Resistloseruitel, insbesondere wenigstens eine der folgenden Verbindungen: l-Methoxy-2-propylacetat, Cyclohexanon, γ-Butyrolacton und Ethyllactat. Bevorzugt wird dabei l-Methoxy-2-propylacetat .Resistless suites known per se are used as solvents, in particular at least one of the following compounds: 1-methoxy-2-propyl acetate, cyclohexanone, γ-butyrolactone and ethyl lactate. L-Methoxy-2-propyl acetate is preferred.
Der Resist enthalt gegebenenfalls ein oder mehrere Additive, welche Resisteigenschaften, wie Lagerstabilitat, Standzeitverhalten und Filmbildung, verbessern können. Es können auch Additive verwendet werden, welche als Losungsvermittler wirken, zur Anpassung der Belichtungs- bzw. Adsorptionswellen- lange dienen, die Belichtungsdosis beeinflussen oder prozeß- bzw. produktverbessernde Eigenschaften verandern können. Besonders bevorzugte Additive sind 9-Antnracenmethanol und 9-Hydroxy-9-fluorencarbonsaure . Diese Verbindungen wirken als Sensibilisatoren, d.h. sie absorbieren bei der Belichtung Energie und geben sie an den Photobasebildner weiter, wodurch dieser m einer höheren Quantenausbeute gespalten werden kann als es ohne Additivzugabe der Fall wäre.The resist optionally contains one or more additives which can improve resist properties, such as storage stability, service life and film formation. It is also possible to use additives which act as solubilizers, serve to adjust the exposure or adsorption wavelength, influence the exposure dose or can change properties which improve the process or product. Particularly preferred additives are 9-antracenomethanol and 9-hydroxy-9-fluorenecarboxylic acid. These compounds act as sensitizers, i.e. they absorb energy during the exposure and pass it on to the photobase generator, whereby this can be split in a higher quantum yield than would be the case without the addition of additives.
Der Resist weist im allgemeinen folgende Zusammensetzung auf (GT = Gewichtstelle) , wobei sich die einzelnen Anteile zu 100 erganzen: 2 bis 15 GT Polymer, 0,06 bis 1,5 GT Thermosaurebildner, 0,06 bis 1,5 GT Pnotobasebildner, 85 bis 98 GT Losemittel und 0 bis 1,5 GT Additive.The resist generally has the following composition (GT = weight point), the individual proportions adding up to 100: 2 to 15 GT polymer, 0.06 to 1.5 GT thermosaur generator, 0.06 to 1.5 GT pnotobase generator, 85 up to 98 parts by weight of solvent and 0 to 1.5 parts by weight of additives.
Der Resist wird durch an sicn bekanne Verfahren auf das Substrat aufgebracht, beispielsweise durch Aufschleudern. Die Trocknung des Resists wird im allgemeinen bei einer Temperatur von etwa 60 is 160°C durchgeführt. Die Bestrahlung des Resists erfolgt vorzugsweise mittels UV-Licht mit einer Wellenlange λ von 400 bis 1 nm. Die nachfolgende thermische Behandlung, d.h. das Aufheizen des Resists, geschieht im allgemeinen bei einer Temperatur von etwa 80 bis 250°C. Die Temperatur beim Heizschritt liegt dabei über der Temperatur beim Trocknen. Zur Entwicklung des Resists dienen an sich bekannte waßr g-alkal sche Entwicklerlosungen, insbesondere Tetramethyl- oder Tetraethylammoniumhydroxid enthaltende Entwickler.The resist is applied to the substrate by methods known in the art, for example by spin coating. The drying of the resist is generally carried out at a temperature of about 60 to 160 ° C. The resist is preferably irradiated by means of UV light with a wavelength λ of 400 to 1 nm. The subsequent thermal treatment, ie the heating of the resist, generally takes place at a temperature of approximately 80 to 250 ° C. The The temperature during the heating step is higher than the temperature during drying. To develop the resist, known water-alkaline developer solutions are used, in particular developers containing tetramethyl or tetraethylammonium hydroxide.
Die Silylierung erfolgt vorzugsweise mit einer ammogruppen- haltigen organischen Verbindung oder mit einer Mischung derartiger Verbindungen, und zwar aus flüssiger Phase. Im all- gemeinen ist das Silylierungsagens dabei in einem organischen Losemittel gelost, insbesondere in einem Alkohol, wie Etha- nol, 2-Propanol und 2-Hexanol; der Alkohol kann auch Wasser enthalten, insbesondere 0,5 bis 30 Gew.-%. Das Silylierungsagens ist vorzugsweise ein Gemisch von Diammo-oligosiloxanen mit 4 bis 20 Siliciumatomen pro Molekül, insbesondere einThe silylation is preferably carried out with an organic compound containing amino groups or with a mixture of such compounds, specifically from the liquid phase. In general, the silylation agent is dissolved in an organic solvent, in particular in an alcohol, such as ethanol, 2-propanol and 2-hexanol; the alcohol can also contain water, in particular 0.5 to 30% by weight. The silylating agent is preferably a mixture of diammo-oligosiloxanes with 4 to 20 silicon atoms per molecule, in particular one
Dia mo-oligodimethylsiloxan. Vor und/oder nach der Silylierung des Resists kann noch eine thermische Behandlung durchgeführt werden. Dadurch wird das Resiststrukturprofll positiv beeinflußt, weil nach der Entwicklung verbliebene Feuchtig- keit aus dem Resistfilm entfernt wird bzw. nach der Silylierung verbliebenes Restlosemittel. Für eine sich eventuell anschließende Trockenatzung ist insbesondere eine thermische Behandlung nach der Silylierung von Vorteil, da sich auf diese Weise eine Differenz in der lateralen Breite von iso- lierten Linien und Graben vermeiden laßt.Dia mo-oligodimethylsiloxane. A thermal treatment can also be carried out before and / or after the silylation of the resist. This has a positive influence on the resist structure profile, because moisture remaining after development is removed from the resist film or residual solvent remaining after silylation. A thermal treatment after the silylation is particularly advantageous for any subsequent dry etching, since in this way a difference in the lateral width of isolated lines and trenches can be avoided.
Anhand von Ausfuirungsbeispielen soll die Erfindung noch naher erläutert werden.The invention will be explained in more detail with reference to exemplary embodiments.
Beispiel 1example 1
Herstellung eines Photoresists und Beschichtung eines Substrats (GT = Gewichtstelle)Production of a photoresist and coating of a substrate (GT = weight point)
Es wird ein Resist hergestellt, der folgende Komponenten enthalt: 7,52 GT eines Terpolymers, 0,08 GT Thermosaurebildner, 0,4 GT Photooasebilαner und 92 GT Losemittel. Das Terpolymer wird durch radikalische Copolymerisation von Maleinsäureanhydrid, Methacrylsäure-tert .-butylester und Allylsilan erhalten (Molgewicht: ca. 20000 g/mol). Der Thermosaurebildner ist 4-Methoxybenzylthiolanium-2H-nonafluorbutan- sulfonat, der Photobasebildner o-Nitrobenzyl-N-cyclohexyl- carbamat; als Lösemittel dient l-Methoxy-2-propylacetat .A resist is produced, which contains the following components: 7.52 parts by weight of a terpolymer, 0.08 parts by weight of thermosaur generator, 0.4 parts by weight of photoase generator and 92 parts by weight of solvent. The terpolymer is obtained by radical copolymerization of maleic anhydride, tert-butyl methacrylic acid and allylsilane (molecular weight: approx. 20,000 g / mol). The thermosaur generator is 4-methoxybenzylthiolanium-2H-nonafluorobutane sulfonate, the photobase generator is o-nitrobenzyl-N-cyclohexyl carbamate; l-methoxy-2-propyl acetate serves as the solvent.
Dieser Resist wird bei einer Umdrehungszahl von 2000/min auf einen Siliziumwafer, welcher mit einer 0,5 um dicken aus- geheizten (235°C/90 s, Heizplatte) Schicht eines handelsüblichen Novolaks beschichtet ist, aufgeschleudert (Dauer: 20 s) und anschließend auf einer Heizplatte bei 100°C 60 s getrocknet. Die Schichtdicke des auf dem Bottomresist befindlichen Topresists beträgt ca. 200 nm.This resist is spun at a speed of 2000 rpm onto a silicon wafer which is coated with a 0.5 µm thick (235 ° C / 90 s, heating plate) layer of a commercially available novolak (duration: 20 s) and then dried on a hot plate at 100 ° C for 60 s. The layer thickness of the top resist located on the bottom resist is approximately 200 nm.
Beispiel 2Example 2
Belichtung und Entwicklung des ResistsExposure and development of the resist
Der Topresist entsprechend Beispiel 1 wird über eine Graukeilmaske (Multi density resolution target/Ditric Optics) auf einem Mask Aligner mit Vakuu kontaktbelichtung (MJB 3/Süss KG mit UV-M-Interferenzfilter/Schott) mit UV-Strahlung bei 248 n belichtet und dann auf einer Heizplatte bei 150°C für 60 s temperaturbehandelt (PEB) . Dabei wird der tert. -Butylester, katalysiert durch die gebildete Säure, gespalten. Durch Entwickeln (60 s) in einem auf 23 °C thermostatisierten Gefäß mit einem kommerziellen Entwickler werden die unbelichteten Bereiche des Resists weggelöst, wobei ein negatives Abbild der Maske erhalten wird. Da die Maske Regionen mit verschiedenen Transmissionsgraden aufweist, kann die Dosis ermittelt werden, bei der der Resist vollständig entwickelt ist, d.h. in den unbelichteten Bereichen keine verbliebene Restschichtdicke mehr gemessen werden kann (Dp (0) -Dosis) . Die Auswertung mittels einer Kontrastkurve ergibt für die genannten Prozeßbedingungen einen Wert für Dp(0) von 50 mJ/cm2. Der Kontrast, d.h. die Steigung der Kurve im Wendepunkt, ist vergleichbar mit Kontrastwerten kommerzieller Resists.The top resist according to Example 1 is exposed to UV radiation at 248 n using a gray wedge mask (multi density resolution target / Ditric Optics) on a mask aligner with vacuum contact exposure (MJB 3 / Süss KG with UV-M interference filter / Schott) and then heat treated on a hot plate at 150 ° C for 60 s (PEB). The tert. -Butyl ester, catalyzed by the acid formed, cleaved. By developing (60 s) in a vessel thermostated to 23 ° C. with a commercial developer, the unexposed areas of the resist are detached, a negative image of the mask being obtained. Since the mask has regions with different degrees of transmission, the dose at which the resist is fully developed can be determined, ie no remaining layer thickness can be measured in the unexposed areas (Dp (0) dose). Evaluation using a contrast curve gives a value for Dp (0) of 50 mJ / cm 2 for the process conditions mentioned. The contrast, ie the slope of the curve at the turning point, is comparable to the contrast values of commercial resists.
Dieses Beispiel zeigt somit die prinzipielle Einsetzbarkeit des Resistsystems bei lithographischen Anwendungen.This example thus shows the basic applicability of the resist system in lithographic applications.
Beispiel 3Example 3
Strukturierung des ResistsStructuring the resist
Ein entsprechend Beispiel 1 beschichteter Wafer wird durch eine Maske, die 0,15 um-Linien/Steg-Strukturen aufweist, mittels eines Projektionbelichtungsgerätes mit einer numerischen Apertur von 0,6 bei einer Wellenlänge von 248 nm belichtet. Nach der Belichtung wird der Wafer auf einer Heizplatte bei 150°C für 60 s temperaturbehandelt (PEB) . Nach der Entwicklung mit einem kommerziellen Tetramethylammoniumhydroxid- Entwickler (Dauer: 60 s) wird im Resist ein negatives Abbild der Maske erhalten, wobei die 0,15 um-Strukturen maßhaltig abgebildet sind. Anschließend wird der Wafer bei Raumtemperatur mit einer Lösung, bestehend aus 2 Gew.-% Bisamino- oligodimethylsiloxan und 98 Gew.-% Hexanol, überschichtet. Nach 40 s wird der Wafer mit Isopropanol gespült und anschließend in einem Luftstrom getrocknet. Die derart sily- lierten und aufgeweiteten Strukturen weisen 0,20 μm-Stege und 0,10 um-Gräben auf. In einem Plasmaätzreaktor wird die silylierte Topresist-Struktur nachfolgend mittels eines anisotropen Sauerstoffplasmas in den unterliegenden Bottom- resist übertragen. Die dabei erhaltenen Strukturen weisen senkrechte Flanken sowie 0,20 μm-Stege und 0,10 μm-Gräben auf. A wafer coated in accordance with Example 1 is exposed through a mask having 0.15 μm line / web structures by means of a projection exposure device with a numerical aperture of 0.6 at a wavelength of 248 nm. After exposure, the wafer is heat treated on a hot plate at 150 ° C for 60 s (PEB). After development with a commercial tetramethylammonium hydroxide developer (duration: 60 s), a negative image of the mask is obtained in the resist, the 0.15 μm structures being shown true to size. The wafer is then covered with a solution consisting of 2% by weight bisamino-oligodimethylsiloxane and 98% by weight hexanol at room temperature. After 40 s, the wafer is rinsed with isopropanol and then dried in an air stream. The structures which have been silylated and widened in this way have 0.20 μm webs and 0.10 μm trenches. In a plasma etching reactor, the silylated top resist structure is subsequently transferred into the underlying bottom resist by means of an anisotropic oxygen plasma. The structures obtained in this way have vertical flanks and 0.20 μm webs and 0.10 μm trenches.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19958966 | 1999-12-07 | ||
DE19958966A DE19958966A1 (en) | 1999-12-07 | 1999-12-07 | Generation of resist structures |
PCT/DE2000/004237 WO2001042860A1 (en) | 1999-12-07 | 2000-11-27 | Creation of resist structures |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1247141A1 true EP1247141A1 (en) | 2002-10-09 |
Family
ID=7931715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00993343A Withdrawn EP1247141A1 (en) | 1999-12-07 | 2000-11-27 | Creation of resist structures |
Country Status (6)
Country | Link |
---|---|
US (1) | US6703190B2 (en) |
EP (1) | EP1247141A1 (en) |
KR (1) | KR100573672B1 (en) |
DE (1) | DE19958966A1 (en) |
TW (1) | TW554247B (en) |
WO (1) | WO2001042860A1 (en) |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5868735A (en) * | 1997-03-06 | 1999-02-09 | Scimed Life Systems, Inc. | Cryoplasty device and method |
US6873087B1 (en) * | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
US6921615B2 (en) * | 2000-07-16 | 2005-07-26 | Board Of Regents, The University Of Texas System | High-resolution overlay alignment methods for imprint lithography |
EP1303793B1 (en) * | 2000-07-17 | 2015-01-28 | Board Of Regents, The University Of Texas System | Method and system of automatic fluid dispensing for imprint lithography processes |
CN1221858C (en) * | 2000-08-01 | 2005-10-05 | 得克萨斯州大学系统董事会 | Method for Determining the Space Between Template and Substrate |
EP1390975A2 (en) * | 2000-08-21 | 2004-02-25 | The Board Of Regents, The University Of Texas System | Flexure based translation stage |
EP1352295B1 (en) * | 2000-10-12 | 2015-12-23 | Board of Regents, The University of Texas System | Template for room temperature, low pressure micro- and nano-imprint lithography |
US20060005657A1 (en) * | 2004-06-01 | 2006-01-12 | Molecular Imprints, Inc. | Method and system to control movement of a body for nano-scale manufacturing |
US20050274219A1 (en) * | 2004-06-01 | 2005-12-15 | Molecular Imprints, Inc. | Method and system to control movement of a body for nano-scale manufacturing |
US6964793B2 (en) * | 2002-05-16 | 2005-11-15 | Board Of Regents, The University Of Texas System | Method for fabricating nanoscale patterns in light curable compositions using an electric field |
DE10131489B4 (en) | 2001-06-29 | 2007-04-12 | Infineon Technologies Ag | Negative resist process with simultaneous development and chemical amplification of resist structures |
DE10131487B4 (en) | 2001-06-29 | 2005-11-24 | Infineon Technologies Ag | Negative resist process with simultaneous development and aromatization of resist structures |
DE10147953B4 (en) | 2001-09-28 | 2007-06-06 | Infineon Technologies Ag | CARL for Bioelectronics: Substrate connection via insulating layer |
US7037639B2 (en) * | 2002-05-01 | 2006-05-02 | Molecular Imprints, Inc. | Methods of manufacturing a lithography template |
US20030235787A1 (en) * | 2002-06-24 | 2003-12-25 | Watts Michael P.C. | Low viscosity high resolution patterning material |
JP4410977B2 (en) * | 2002-07-09 | 2010-02-10 | 富士通株式会社 | Chemically amplified resist material and patterning method using the same |
US7077992B2 (en) * | 2002-07-11 | 2006-07-18 | Molecular Imprints, Inc. | Step and repeat imprint lithography processes |
US6908861B2 (en) * | 2002-07-11 | 2005-06-21 | Molecular Imprints, Inc. | Method for imprint lithography using an electric field |
US7070405B2 (en) * | 2002-08-01 | 2006-07-04 | Molecular Imprints, Inc. | Alignment systems for imprint lithography |
US7071088B2 (en) * | 2002-08-23 | 2006-07-04 | Molecular Imprints, Inc. | Method for fabricating bulbous-shaped vias |
US8349241B2 (en) * | 2002-10-04 | 2013-01-08 | Molecular Imprints, Inc. | Method to arrange features on a substrate to replicate features having minimal dimensional variability |
US6980282B2 (en) * | 2002-12-11 | 2005-12-27 | Molecular Imprints, Inc. | Method for modulating shapes of substrates |
US6929762B2 (en) * | 2002-11-13 | 2005-08-16 | Molecular Imprints, Inc. | Method of reducing pattern distortions during imprint lithography processes |
CN100367113C (en) * | 2002-12-11 | 2008-02-06 | 三星电子株式会社 | Composition for forming conjugated polymer pattern and method for forming conjugated polymer pattern using the same composition |
US6871558B2 (en) * | 2002-12-12 | 2005-03-29 | Molecular Imprints, Inc. | Method for determining characteristics of substrate employing fluid geometries |
JP3901645B2 (en) * | 2003-02-17 | 2007-04-04 | 松下電器産業株式会社 | Pattern formation method |
US20040168613A1 (en) * | 2003-02-27 | 2004-09-02 | Molecular Imprints, Inc. | Composition and method to form a release layer |
US7452574B2 (en) * | 2003-02-27 | 2008-11-18 | Molecular Imprints, Inc. | Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer |
US7122079B2 (en) * | 2004-02-27 | 2006-10-17 | Molecular Imprints, Inc. | Composition for an etching mask comprising a silicon-containing material |
US7323417B2 (en) * | 2004-09-21 | 2008-01-29 | Molecular Imprints, Inc. | Method of forming a recessed structure employing a reverse tone process |
US7186656B2 (en) * | 2004-05-21 | 2007-03-06 | Molecular Imprints, Inc. | Method of forming a recessed structure employing a reverse tone process |
US7179396B2 (en) * | 2003-03-25 | 2007-02-20 | Molecular Imprints, Inc. | Positive tone bi-layer imprint lithography method |
US7396475B2 (en) * | 2003-04-25 | 2008-07-08 | Molecular Imprints, Inc. | Method of forming stepped structures employing imprint lithography |
US7157036B2 (en) * | 2003-06-17 | 2007-01-02 | Molecular Imprints, Inc | Method to reduce adhesion between a conformable region and a pattern of a mold |
US20050160934A1 (en) * | 2004-01-23 | 2005-07-28 | Molecular Imprints, Inc. | Materials and methods for imprint lithography |
US7136150B2 (en) * | 2003-09-25 | 2006-11-14 | Molecular Imprints, Inc. | Imprint lithography template having opaque alignment marks |
US8211214B2 (en) * | 2003-10-02 | 2012-07-03 | Molecular Imprints, Inc. | Single phase fluid imprint lithography method |
US7090716B2 (en) * | 2003-10-02 | 2006-08-15 | Molecular Imprints, Inc. | Single phase fluid imprint lithography method |
US8076386B2 (en) * | 2004-02-23 | 2011-12-13 | Molecular Imprints, Inc. | Materials for imprint lithography |
US7906180B2 (en) | 2004-02-27 | 2011-03-15 | Molecular Imprints, Inc. | Composition for an etching mask comprising a silicon-containing material |
US20050276919A1 (en) * | 2004-06-01 | 2005-12-15 | Molecular Imprints, Inc. | Method for dispensing a fluid on a substrate |
US20050275311A1 (en) * | 2004-06-01 | 2005-12-15 | Molecular Imprints, Inc. | Compliant device for nano-scale manufacturing |
US7547504B2 (en) * | 2004-09-21 | 2009-06-16 | Molecular Imprints, Inc. | Pattern reversal employing thick residual layers |
US7241395B2 (en) * | 2004-09-21 | 2007-07-10 | Molecular Imprints, Inc. | Reverse tone patterning on surfaces having planarity perturbations |
US7041604B2 (en) * | 2004-09-21 | 2006-05-09 | Molecular Imprints, Inc. | Method of patterning surfaces while providing greater control of recess anisotropy |
US7252777B2 (en) * | 2004-09-21 | 2007-08-07 | Molecular Imprints, Inc. | Method of forming an in-situ recessed structure |
US7205244B2 (en) * | 2004-09-21 | 2007-04-17 | Molecular Imprints | Patterning substrates employing multi-film layers defining etch-differential interfaces |
WO2006060757A2 (en) * | 2004-12-01 | 2006-06-08 | Molecular Imprints, Inc. | Eliminating printability of sub-resolution defects in imprint lithography |
US20060145398A1 (en) * | 2004-12-30 | 2006-07-06 | Board Of Regents, The University Of Texas System | Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks |
KR100674932B1 (en) * | 2005-01-03 | 2007-01-26 | 삼성전자주식회사 | Method for Forming Fine Pattern of Semiconductor Device Using Chemically Amplified Photoresist Composition Containing Pa and Ta ' |
US7256131B2 (en) * | 2005-07-19 | 2007-08-14 | Molecular Imprints, Inc. | Method of controlling the critical dimension of structures formed on a substrate |
US7419611B2 (en) * | 2005-09-02 | 2008-09-02 | International Business Machines Corporation | Processes and materials for step and flash imprint lithography |
US7488771B2 (en) * | 2005-09-02 | 2009-02-10 | International Business Machines Corporation | Stabilization of vinyl ether materials |
US7259102B2 (en) * | 2005-09-30 | 2007-08-21 | Molecular Imprints, Inc. | Etching technique to planarize a multi-layer structure |
KR100955570B1 (en) * | 2006-09-18 | 2010-04-30 | 주식회사 엘지화학 | Composition for forming a low-temperature curing type protective film, a protective film prepared therefrom, and a substrate comprising the same |
US8586269B2 (en) * | 2007-03-22 | 2013-11-19 | Globalfoundries Inc. | Method for forming a high resolution resist pattern on a semiconductor wafer |
JP5898985B2 (en) * | 2011-05-11 | 2016-04-06 | 東京応化工業株式会社 | Resist pattern forming method |
KR101936435B1 (en) | 2011-09-22 | 2019-01-08 | 도오꾜오까고오교 가부시끼가이샤 | Resist composition and method of forming resist pattern |
US9405200B2 (en) | 2011-09-22 | 2016-08-02 | Toyko Ohka Kogyo Co., Ltd. | Resist composition and method of forming resist pattern |
JP5933364B2 (en) * | 2011-11-09 | 2016-06-08 | 東京応化工業株式会社 | Resist composition and resist pattern forming method |
JP5871577B2 (en) * | 2011-11-16 | 2016-03-01 | 東京応化工業株式会社 | Resist pattern forming method |
JP5871591B2 (en) * | 2011-11-30 | 2016-03-01 | 東京応化工業株式会社 | Resist composition and resist pattern forming method |
US11784046B2 (en) * | 2020-03-30 | 2023-10-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing a semiconductor device |
US11703764B2 (en) * | 2020-09-25 | 2023-07-18 | Khalifa University of Science and Technology | Fabrication of high-aspect ratio nanostructures by localized nanospalling effect |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3001607B2 (en) * | 1989-04-24 | 2000-01-24 | シーメンス、アクチエンゲゼルシヤフト | Dimensionally stable structure transfer method in two-layer method |
DE59010729D1 (en) * | 1989-04-24 | 1997-07-31 | Siemens Ag | Photostructuring process |
US5650261A (en) * | 1989-10-27 | 1997-07-22 | Rohm And Haas Company | Positive acting photoresist comprising a photoacid, a photobase and a film forming acid-hardening resin system |
DE4226464B4 (en) * | 1992-08-10 | 2005-06-02 | Infineon Technologies Ag | positive resist |
JPH07261393A (en) * | 1994-03-25 | 1995-10-13 | Toshiba Corp | Negative resist composition |
US5851733A (en) * | 1994-09-12 | 1998-12-22 | Siemens Aktiengesellschaft | Photolithographic pattern generation |
EP0874281B1 (en) * | 1997-04-23 | 2002-12-04 | Infineon Technologies AG | Chemically amplified resist |
EP0919867B1 (en) * | 1997-11-28 | 2003-05-21 | Infineon Technologies AG | Chemically amplified resist for electron beam lithography |
-
1999
- 1999-12-07 DE DE19958966A patent/DE19958966A1/en not_active Withdrawn
-
2000
- 2000-11-27 EP EP00993343A patent/EP1247141A1/en not_active Withdrawn
- 2000-11-27 WO PCT/DE2000/004237 patent/WO2001042860A1/en not_active Application Discontinuation
- 2000-11-27 KR KR1020027007210A patent/KR100573672B1/en not_active IP Right Cessation
-
2001
- 2001-02-14 TW TW089125891A patent/TW554247B/en active
-
2002
- 2002-06-07 US US10/164,550 patent/US6703190B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0142860A1 * |
Also Published As
Publication number | Publication date |
---|---|
US6703190B2 (en) | 2004-03-09 |
KR100573672B1 (en) | 2006-04-25 |
DE19958966A1 (en) | 2001-06-13 |
KR20030023603A (en) | 2003-03-19 |
WO2001042860A1 (en) | 2001-06-14 |
TW554247B (en) | 2003-09-21 |
US20030008240A1 (en) | 2003-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001042860A1 (en) | Creation of resist structures | |
DE10203838B4 (en) | Fluorine-containing photoresist with reaction anchors for a chemical amplification and improved copolymerization properties | |
EP0919867B1 (en) | Chemically amplified resist for electron beam lithography | |
EP0492253B1 (en) | Photolithographic process | |
DE3750937T2 (en) | Lithographic method using highly sensitive, heat-resistant photoresists that form a network of hydrogen bonds. | |
EP0650608B1 (en) | Positive-acting radiation-sensitive mixture and recording material produced therewith | |
EP0957399B1 (en) | Radiation-sensitive composition and its use | |
DE69131150T2 (en) | Resist materials | |
DE10120673B4 (en) | Process for structuring a photoresist layer | |
EP0874281B1 (en) | Chemically amplified resist | |
EP0955562A1 (en) | Chemically amplified resist | |
EP0737897A1 (en) | Wet developable etch resistant photoresist for UV-exposure at wavelength below 200 nm | |
DE10208448A1 (en) | Lithography process for reducing the lateral loss of chromium structure in photomask production using chemically amplified resists | |
DE10131667B4 (en) | Negative resist process with simultaneous development and silylation | |
DE10137100B4 (en) | Transparency improvement of resist copolymers for 157 nm photolithography by using fluorinated cinnamic acid derivatives | |
EP0708934B1 (en) | Radiation-sensitive paint composition | |
DE10208754B4 (en) | Low glass temperature polymer material for use in chemically amplified photoresists for semiconductor fabrication | |
DE112010003408B4 (en) | Chemically amplified photoresist composition and method of using it | |
WO2001042859A1 (en) | Production of resist structures | |
DE10137099A1 (en) | Chemically-enhanced photo-resist for use, e.g. in the production of structured chips for the semiconductor industry, comprises a solution of polymer with fluorinated acid-labile residues attached to polar groups | |
DE10243742B4 (en) | Method for structuring semiconductor substrates using a photoresist | |
DE10142600B4 (en) | Silicon-containing resist for photolithography at short exposure wavelengths | |
DE10203839B4 (en) | Resist for photolithography with reactive groups for a subsequent modification of the resist structures | |
DE10131670A1 (en) | A chemically strengthened resist useful for semiconductor microchips comprises a film forming polymer | |
DE10228338A1 (en) | Chemically reinforced photoresist including a film forming fluorine-containing polymer useful in microchip production has high transparency at 157 nm wavelength, is chemically reinforced, and is simple and cost effective to produce - |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020529 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE GB NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): GB NL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080704 |