EP1246215B1 - Mikrorelais mit neuem Aufbau - Google Patents

Mikrorelais mit neuem Aufbau Download PDF

Info

Publication number
EP1246215B1
EP1246215B1 EP01810322A EP01810322A EP1246215B1 EP 1246215 B1 EP1246215 B1 EP 1246215B1 EP 01810322 A EP01810322 A EP 01810322A EP 01810322 A EP01810322 A EP 01810322A EP 1246215 B1 EP1246215 B1 EP 1246215B1
Authority
EP
European Patent Office
Prior art keywords
contact piece
movable contact
drive capacitor
microrelay
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01810322A
Other languages
English (en)
French (fr)
Other versions
EP1246215A1 (de
Inventor
Ralf Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP01810322A priority Critical patent/EP1246215B1/de
Priority to DE50115251T priority patent/DE50115251D1/de
Priority to AT01810322T priority patent/ATE451712T1/de
Publication of EP1246215A1 publication Critical patent/EP1246215A1/de
Application granted granted Critical
Publication of EP1246215B1 publication Critical patent/EP1246215B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0078Switches making use of microelectromechanical systems [MEMS] with parallel movement of the movable contact relative to the substrate

Definitions

  • a micro-relay is a microscopic electrical switch in which a movable contact piece is moved electrostatically, electromagnetically, piezoelectrically or otherwise relative to a mating contact to make electrical contact open and close.
  • Micro relays are so to speak, very small relays, as is clear from the name, and are often, but not necessarily, made with the aid of technological processes that are borrowed from semiconductor technology and / or microstructure technology.
  • Micro-relays with electrostatic drives are known per se.
  • the electrostatic drive is effected by a drive capacitor having two spaced conductive surfaces, one of which is fixedly connected to the movable contact piece.
  • the electrostatic forces generated when creating a supply voltage between the surfaces can be used for the mechanical drive of the movable contact piece.
  • the movable contact piece is usually elastically suspended, so that the electrostatic drive acts against a restoring force of the elastic suspension.
  • the movable contact piece consists of a lamella protruding obliquely from a substrate surface, which at the same time contains one of the drive capacitor surfaces, wherein the other drive capacitor surface and the mating contact piece are arranged in the substrate plane.
  • the electrostatic attraction between the driving capacitor surfaces may pull the blade down onto the substrate surface, whereupon contact on the blade-like movable contact contacts the mating contact in the substrate surface.
  • a three-dimensional, electrostatic drive for a microstructure is in Fig. 4 from EP 1 020 984 A2 described.
  • This drive has a fixed base 41 and an arrow 42 movable actuator 42, which is held with four leaf springs 44 at four attachment points 45 and is driven by the electrostatic forces of a comb structure with finger electrodes 43, 46 having capacitor. Since each two of the four leaf springs engage on opposite sides of the actuator 42, the actuator 42 moves only perpendicular to the surfaces of the finger electrodes and the distance between the finger electrodes 43 and 46 remains constant during this movement. However, the distance traveled in the movement is only small.
  • the object is to provide a micro-relay of the type mentioned, which allows relatively low supply voltages to overcome a large isolation distance between the contact pieces.
  • the movable contact piece is suspended such that the direction of movement to the direction of the distance between the drive capacitor surfaces is almost vertical, the largest occurring in operation distance of the drive capacitor surfaces is much smaller than that covered in operation by the movable contact piece movement distance in the direction of movement, and the elastic suspension has a spring constant, which is substantially smaller than a spring constant of the elastic suspension with respect to a movement in the direction of the distance of the drive capacitor surfaces, with respect to a movement of the movable contact piece in the movement direction.
  • the basic idea of the invention is thus to depart from the conventional concept, in which the direction of movement of the movable contact piece is essentially the same or parallel to the electrostatic force.
  • a structure is chosen in which the movable contact piece is elastically suspended so that it is a transverse elastic with respect to the direction of the electrostatic force, ie to the direct distance between the drive capacitor surfaces corresponding direction.
  • a small component in the direction of force must be present, so that the drive capacitor surfaces are approximated or removed from each other. It is essential, however, that the vast majority of the movement of the movable contact piece is perpendicular to the electrostatic force, so the capacitor gap.
  • this may mean that the transverse component in the movements is preferably at least 5 times, more preferably 7.5 times, more preferably 12 times and in the best case even more than 20 times the force-parallel component.
  • This is inventively achieved in that the elastic suspension in the desired direction of movement has a much smaller spring constant than in the (conventional) direction of the distance between the drive capacitor surfaces.
  • the advantages of this structure can be varied: Firstly, in some applications it can lead to more favorable geometric solutions to be able to arrange the drive capacitor surfaces substantially parallel to the direction of movement of the movable contact piece.
  • the invention thus provides a new degree of freedom for the design of micro-relays.
  • An essential, but according to the invention not necessarily standing in the foreground advantage is that relatively large quantitative relationships between the possible path of movement of the movable contact piece on the one hand and the.
  • these quantitative ratios should be as large as possible, preferably over 10, better over 20 and best over 40.
  • the micro-relays according to the invention can therefore combine a high withstand voltage with a small drive voltage.
  • the elastic suspension on the side of the movable contact piece on which the electrically conductive surface is provided, since then a particularly favorable power distribution is achieved.
  • the initial force when applying a voltage is namely given by the production-related distance of the capacitor surfaces.
  • the distance of the plates decreases with increasing movement of the movable contact piece.
  • the driving force is always larger and reaches a maximum when the movable contact piece reaches an end position in which the contacts are closed.
  • the microrelay according to the invention then has a desirably high contact closure force.
  • a favorable embodiment for an elastic suspension with the described properties consists of at least one narrow long carrier whose longitudinal direction corresponds to the direction of the distance of the drive capacitor surfaces and which is much narrower in the direction of movement of the movable contact piece.
  • the carrier may be relatively extended or relatively flat, preferably matched to the corresponding dimensions of the drive capacitor and the remaining components in that direction. This carrier forms a leaf spring-like structure and can not be extended and shortened by the electrostatic force of the drive capacitor, but laterally deformed.
  • At least two of these carriers are provided, which are preferably substantially identical to each other, but spaced apart in the direction of movement.
  • By their common fixed coupling with the movable contact piece then results in a movement of the movable contact piece, which remains tilt-free, that consists essentially only of translational components.
  • the force-displacement relationships, ie the spring constants, can be easily calculated in such carriers using known approximation formulas.
  • the movement of the movable contact piece can be used not only to bring a contact attached to the movable contact piece with an associated contact on a mating contact piece and to separate it, but the same movement can simultaneously a further contact of the movable contact piece with a connect and disconnect the other contact on another mating contact piece in a complementary manner.
  • the movable contact piece between the mating contact pieces is reciprocated.
  • a double switch is obtained which, moreover, offers in a middle position a state in which all the contacts are disconnected.
  • it can also be designed or operated so that it is switched between two states, in each of which one of the two contact pairs is open and the other is closed.
  • the various advantageous applications of such double switches are well known to those skilled in the art.
  • the carrier or carriers described need not necessarily be elongated in the force-free state, so that they are bent by the electrostatic drive. You can also be provided in the production of the micro-relay already with a predetermined slight curvature, which can then be reduced by the electrostatic drive force, repealed or reversed in the direction sense.
  • Nested structures may also be used in which a larger number of drive capacitor surfaces are interleaved, such as two combs engaged with each other.
  • the direction of movement of the micro-relay according to the invention is preferably parallel to a substrate on which the micro-relay is mounted or on which it has preferably been produced integrated.
  • the substrate-parallel direction of movement has the advantage of favoring two-dimensional structures of the microrelay, which are very advantageous in terms of production technology.
  • the typical microtechnological and semiconductor technology methods such as lithography, etching or coating methods are usually initially two-dimensional and in three-dimensional structures to realize only slightly increased effort.
  • the individual functional parts of the micro-relay namely the movable contact piece, the elastic suspension and the drive capacitor, each in their functional structure, preferably purely two-dimensional, in a substrate-parallel plane.
  • a flat structure which is possible due to the substrate-parallel movement is frequently favorable in terms of construction and in particular facilitates subsequent lithography steps, for example those which are required for microelectronic circuits to be produced on the same substrate. Even with a protection of the micro-relay by an encapsulation or cover a flat structure is advantageous.
  • SiO 2 layers are suitable for silicon substrates.
  • SOI structures Silicon on Insulator
  • the material silicon is basically a preferred material for the microrelay according to the invention.
  • silicon has the advantage of being able to be carried out by suitable sorting both insulating and electrically conductive. By ion implantation or diffusion of dopants can thus be easily made conductor tracks with an adapted structure.
  • the underlying technology is known from semiconductor device fabrication.
  • metallizations will be necessary for the contacts themselves.
  • metallizations In the case of a glass microrelay, metallizations must always be applied in order to produce the electrical leads and contacts.
  • RIE reactive ion etching
  • DRIE deep reactive ion etching
  • FIG. 1 shows a plan view of a structure of a movable contact piece 1 with elastic suspension 2.
  • the viewing direction is perpendicular to the substrate plane, which should be a two-dimensional structure.
  • the schematically drawn base 3 should, as indicated by the hatched background, be firmly connected to the substrate, whereas the elastic suspension forming carrier 2 and the movable contact piece 1 are free from the substrate.
  • the parts 1, 2 and 3 are made of Si and integrated from a Si substrate be worked out.
  • the movable contact piece 1 and the carriers 2 have been freed from the substrate by dissolving an SiO 2 layer buried underneath.
  • the solid lines represent the force-free arrangement, while the dashed lines show the movable contact piece 1 and the elastic suspension 2 in the deflected state.
  • This deflection is caused by a force symbolized with N, which in FIG. 1 acts from top to bottom, that is, in the substrate plane, but is the direction of movement seen by the difference between the dashed and the solid drawing substantially perpendicular.
  • N a force symbolized with N
  • the direction of movement is not really a constant direction. Rather, it is clear from this figure that the direction of movement with increasing deflection away from the orthogonal orientation to the normal force. It is essential, however, that the movement path contains a much larger component f perpendicular to the force N than the force-parallel component ⁇ .
  • the component ⁇ is important insofar as it is necessary in order to be able to generate the illustrated movement with the force N at all.
  • the movement behavior of the movable contact piece 1 results from the shape and arrangement of the pair of supports 2 and these are spaced apart in the direction of movement and otherwise identical and aligned to the force N substantially symmetrical, in order to avoid torques as possible.
  • the carriers 2 have a length I in the direction of the force N and, in contrast, are very narrow, as indicated by h.
  • the depth perpendicular to the plane is denoted by b and here corresponds to the depth of the movable contact piece 1. It is for the inventive principle no longer of concern.
  • the area of the driving capacitor also increases linearly with the depth, so that the depth b only depends on the technical limits of the etching process and the desired contact surface.
  • too great a width of the capacitor 4,5 not only increases the mass inertia of the movable contact part 1, but also goes directly into the overall size of the micro-relay. So here a meaningful compromise must be found.
  • FIG. 2 shows the schematic in FIG. 1 explained basic structure in a concrete application form.
  • an electrically conductive surface layer 4 is mounted, which is opposite to a second electrically conductive surface layer 5 on a substrate-fixed part.
  • A is the area of the drive capacitor 4, 5 and also proportional to b.
  • d is the distance between the two drive capacitor surfaces 4 and 5. It can be seen directly that very large electrostatic forces can be generated by correspondingly small distances, because the distance d occurs in the second power. Furthermore, wide capacitors in the sense of the horizontal in the drawing plane, so large distances between the carriers 2, low. At a distance d of 1 ⁇ m, forces in the range of 4 mN result at a supply voltage of 36 V and a typical area A of 450 ⁇ m ⁇ 1500 ⁇ m.
  • FIG. 2 shows that the movable contact piece 1 is switched back and forth between two mating contact pieces 6 and 7.
  • the movable contact piece 1 has, at its ends extending beyond the supports 2, in each case an angled attachment region 8 or 9, which carries in each case two metal contacts, which are connected via a metallic conductor track.
  • These contacts can come in contact with each associated two contacts on the mating contact pieces 6 and 7, which in turn are electrically isolated from each other. you will be So bridged by the contacts on the angled regions 8 and 9 of the movable contact piece 1.
  • the hatched areas in FIG. 2 indicate that the two drive capacitor surfaces 4 and 5 and each of the contacts on the mating contact pieces 6 and 7 outgoing interconnects are formed by ion-implanted Si regions.
  • the black filled contacts are metallized, for example by lateral Schrägbedampfung or plasma deposition and masking.
  • micro-relay off FIG. 2 when unloaded drive capacitor 4, 5 bridges the contacts on the left mating contact piece 7 and can be switched by voltage application of the capacitor 4, 5 so that instead the contacts on the right mating contact piece 6 are bridged.
  • the drive capacitor surfaces 4, 5 are aligned with each other so that they lie directly opposite each other approximately in the middle of this path, so that in each case at the two Wegenden a certain offset is present, which is immaterial because of the actually small quantitative significance.
  • the total contact surfaces can be determined by adjusting the depth b.
  • the metal contacts can also in the in FIG. 2 be made wider in the vertical direction, if the contact surface plays an essential role.
  • FIG. 3 is opposite to the variants FIGS. 1 and 2 to that extent, a deviation before that the carrier 2 'are slightly curved in the illustrated stress-free state slightly S-shaped, namely approximately as in the deformed state FIG. 1 , This can be easily realized by appropriate structuring of the mask in the DRIE process, with which these structures are machined out of the silicon wafer.
  • the drive capacitor in this example is on the compared to FIG. 2 arranged on the other side of the movable contact piece 1, and therefore designated 4 ', 5'.
  • the micro-relay in this case is designed so that the "right switch" 6, 8 is closed in the de-energized state, while the "left switch” 7, 9 is open in the de-energized state.
  • the movable contact piece 1 in FIG. 3 Due to the electrostatic attraction between the drive capacitor surfaces 4 'and 5', the movable contact piece 1 in FIG. 3 be moved to the left, with the carrier 2 'stretch largely or can deform with reversed sense of direction.
  • the arrangement of the drive capacitor 4 '5' should, in the case of simple micro-relays, be such that a maximum contact force results in the closed state, ie the minimum distance between the drive capacitor surfaces 4, 5 or 4 ', 5' is present. In the first and in the second embodiment, this is given for the right switch and for the left switch.
  • FIG. 4 shows a third embodiment, which is a variant of the second embodiment FIG. 3 represents.
  • the drive capacitor in this case consists of comb-like interleaved surfaces, designated 4 "and 5". Again, these are Si structures with corresponding dopings (or metallizations), as the hatching shows.
  • the effective area of the drive capacitor previously designated A can be multiplied, in this case tripled. For the rest, this embodiment corresponds to the previously described.

Landscapes

  • Micromachines (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Relay Circuits (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf ein Mikrorelais nach dem Oberbegriff von Patentanspruch 1. Ein Mikrorelais ist ein mikroskopisch kleiner, elektrischer Schalter, bei dem ein bewegbares Kontaktstück relativ zu einem Gegenkontaktstück elektrostatisch, elektromagnetisch, piezoelektrisch oder in anderer Weise bewegt wird, um einen elektrischen Kontakt zu öffnen und zu schließen. Mikrorelais sind also gewissermaßen sehr kleine Relais, wie sich schon aus dem Namen ergibt, und werden häufig, jedoch nicht notwendigerweise, unter Zuhilfenahme von technologischen Verfahren hergestellt, die der Halbleitertechnologie und/oder der Mikrostrukturtechnik entlehnt sind.
  • Stand der Technik
  • Mikrorelais mit elektrostatischen Antrieben sind an sich bekannt. Der elektrostatische Antrieb wird durch einen Antriebskondensator bewirkt, der zwei beabstandete leitfähige Flächen aufweist, von denen eine mit dem bewegbaren Kontaktstück fest verbunden ist. Dadurch können die beim Anlegen einer Versorgungsspannung erzeugten elektrostatischen Kräfte zwischen den Flächen zum mechanischen Antrieb des bewegbaren Kontaktstücks genutzt werden. Das bewegbare Kontaktstück ist dazu üblicherweise elastisch aufgehängt, so daß der elektrostatische Antrieb gegen eine Rückstellkraft der elastischen Aufhängung wirkt.
  • Bei einigen bekannten Mikrorelais besteht das bewegbare Kontaktstück aus einer aus einer Substratoberfläche schräg herausstehenden Lamelle, die gleichzeitig eine der Antriebskondensatorflächen enthält, wobei die andere Antriebskondensatorfläche und das Gegenkontaktstück in der Substratebene angeordnet sind. Die elektrostatische Anziehungskraft zwischen den Antriebskondensatorflächen kann die Lamelle auf die Substratoberfläche herunterziehen, woraufhin ein Kontakt an dem lamellenartigen bewegbaren Kontaktstück das Gegenkontaktstück in der Substratoberfläche berührt.
  • Ein dreidimensional ausgebildeter, elektrostatischer Antrieb für eine Mikrostruktur ist in Fig. 4 von EP 1 020 984 A2 beschrieben. Dieser Antrieb weist eine feststehende Basis 41 und einen in Richtung eines Pfeils 47 bewegbaren Aktor 42 auf, welcher mit vier Blattfedern 44 an vier Befestigungspunkten 45 gehalten ist und durch die elektrostatischen Kräfte eines Kammstruktur mit Fingerelektroden 43, 46 aufweisenden Kondensators angetrieben wird. Da je zwei der vier Blattfedern an entgegengesetzt gelegenen Seiten des Aktors 42 angreifen, bewegt sich der Aktor 42 ausschliesslich senkrecht zu den Flächen der Fingerelektroden und bleibt der Abstand der Fingerelektroden 43 und 46 während dieser Bewegung konstant. Jedoch ist die bei der Bewegung zurückgelegte Wegstrecke lediglich gering.
  • Darstellung der Erfindung
  • Der Erfindung, so wie sie in den Patentansprüchen angegeben ist, liegt die Aufgabe zugrunde, ein Mikrorelais der eingangs genannten Art zu schaffen, welches mit relativ niedrigen Versorgungsspannungen die Überwindung eines großen Isolationsabstandes zwischen den Kontaktstücken ermöglicht.
  • Beim erfindungsgemässen Mikrorelais ist das bewegbare Kontaktstück derart aufgehängt, daß die Bewegungsrichtung zu der Richtung des Abstandes zwischen den Antriebskondensatorflächen fast senkrecht, ist der größte im Betrieb auftretende Abstand der Antriebskondensatorflächen sehr viel kleiner als die im Betrieb von dem bewegbaren Kontaktstück zurückgelegte Bewegungsstrecke in der Bewegungsrichtung, und weist die elastische Aufhängung bezüglich einer Bewegung des bewegbaren Kontaktstücks in der Bewegungsrichtung eine Federkonstante auf, die wesentlich kleiner ist als eine Federkonstante der elastischen Aufhängung bezüglich einer Bewegung in der Richtung des Abstandes der Antriebskondensatorflächen.
  • Die Grundidee der Erfindung liegt also darin, von dem konventionellen Konzept abzurücken, bei dem die Bewegungsrichtung des bewegbaren Kontaktstücks im wesentlichen gleich gerichtet bzw. parallel zu der elektrostatischen Kraft ist. Erfindungsgemäß wird vielmehr ein Aufbau gewählt, bei dem das bewegbare Kontaktstück elastisch so aufgehängt ist, daß es eine im Bezug zu der Richtung der elektrostatischen Kraft, also zu der dem direkten Abstand zwischen den Antriebskondensatorflächen entsprechenden Richtung, querelastisch ist. Bei dieser Querelastizität muß jedoch eine geringe Komponente in Kraftrichtung vorhanden sein, so daß die Antriebskondensatorflächen aneinander angenähert oder voneinander entfernt werden. Wesentlich ist jedoch, daß der bei weitem überwiegende Teil der Bewegung des bewegbaren Kontaktstücks senkrecht zu der elektrostatischen Kraft, also dem Kondensatorzwischenabstand, liegt. Quantitativ kann das bedeuten, daß die Querkomponente bei den Bewegungen insgesamt vorzugsweise zumindest das 5-fache, besser das 7,5-fache, noch besser das 12-fache und im günstigsten Fall sogar mehr als das 20-fache der kraftparallelen Komponente beträgt. Dies wird erfindungsgemäß dadurch erreicht, daß die elastische Aufhängung in der gewünschten Bewegungsrichtung eine sehr viel kleinere Federkonstante aufweist als in der (konventionellen) Richtung des Abstandes zwischen den Antriebskondensatorflächen.
  • Die Vorteile dieses Aufbaus können verschiedenartig sein: Zum einen kann es bei manchen Anwendungsfällen zu günstigeren geometrischen Lösungen führen, die Antriebskondensatorflächen im wesentlichen parallel zu der Bewegungsrichtung des bewegbaren Kontaktstücks anordnen zu können. Die Erfindung stellt also einen neuen Freiheitsgrad für den Entwurf von Mikrorelais zur Verfügung.
  • Ein wesentlicher, jedoch erfindungsgemäß nicht notwendigerweise im Vordergrund stehender Vorteil besteht darin, daß durch die relativ kleine Komponente der Bewegungen des bewegbaren Kontaktstücks in der Richtung des Abstands der Antriebskondensatorflächen mit dem erfindungsgemäßen Mikrorelais relativ große quantitative Verhältnisse zwischen der möglichen Bewegungsstrecke des bewegbaren Kontaktstücks einerseits und dem maximal auftretenden Zwischenabstand zwischen den Antriebskondensatorflächen andererseits erzielt werden können. Nach einem bevorzugten Gesichtspunkt der Erfindung sollen diese quantitativen Verhältnisse möglichst groß sein, vorzugsweise über 10, besser über 20 und am besten über 40. Dies hat nämlich zur Folge, daß einerseits mit relativ kleinen Versorgungsspannungen ausreichend große elektrostatische Kräfte zwischen den Antriebskondensatorflächen erzeugt werden können, andererseits die Isolationsabstände zwischen dem bewegbaren Kontaktstück und dem Gegenkontaktstück, die ja von dem bewegbaren Kontaktstück bei der Bewegung überwunden werden müssen, dennoch relativ groß ausfallen können. Die erfindungsgemäßen Mikrorelais können also eine hohe Spannungsfestigkeit mit einer kleinen Antriebsspannung kombinieren.
  • Damit wird ein Hauptnachteil elektrostatischer Mikrorelais überwunden, die zwar konventionellerweise bereits relativ niedrige Versorgungsspannungen bzw. - leistungen ermöglichen, jedoch im Hinblick auf die Spannungsfestigkeit dahingehend begrenzt sind, daß der Antriebskondensator auch bei dem größten auftretenden Abstand zwischen den Antriebskondensatorflächen noch eine ausreichend große anziehende Kraft aufbringen können muß.
  • Im übrigen können mit den konventionellen elektrostatischen Mikrorelais im Vergleich zu den elektromagnetischen Antriebslösungen nur sehr kleine Andruckkräfte zwischen den Kontakten, also zwischen dem bewegbaren Kontaktstück und dem Gegenkontaktstück, aufgebracht werden. Aus diesen relativ geringen Kontaktkräften können Schwierigkeiten in der Herstellung der Kontakte und unerwünscht hohe Kontaktwiderstände entstehen. Auch hier bietet die Erfindung eine Abhilfsmöglichkeit.
  • Es empfiehlt sich, die elastische Aufhängung an der Seite des bewegbaren Kontaktstücks anzubringen, an der die elektrisch leitfähige Fläche vorgesehen ist, da dann eine besonders günstige Kraftverteilung erreicht wird. Die anfängliche Kraft beim Anlegen einer Spannung ist nämlich gegeben durch den herstellungsbedingten Abstand der Kondensatorflächen. Bei der vorstehend angegebenen einseitigen Aufhängung veringert sich der Abstand der Platten mit zunehmender Bewegung das beweglichen Kontaktstücks. Dadurch wird die antreibende Kraft immer größer und erreicht ein Maximum wenn das bewegbare Schaltstück eine Endposition erreicht, in der die Kontakte geschlossen sind. In der Einschaltposition weist dann das erfindungsgemäße Mikrorelais eine erwünscht hohe Kontaktschliesskraft auf. Dadurch, daß das bewegbare Kontaktstück ein wenig in Richtung der Kondensatorflächen bewegt wird, können in der Einschaltposition Abstände von weniger als 100 nm erreicht werden. Bei diesen sonst nur sehr schwierig zu realisierenden Abständen wirken bereits bei kleinen Spannungen äusserst große Kräfte.
  • Die gleiche Wirkung wird erreicht, wenn einer oder zwei Träger der elastischen Aufhängung an einer Seite des bewegbaren Kontaktstücks angebracht ist/sind, welche von der die elektrisch leitfähige Fläche tragenden Seite abgewandt ist, und wenn der/die Träger sich entlang seiner/ihrer Länge leicht krümmt/krümmen und durch den Antriebskondensator bei der Bewegung des bewegbaren Kontaktstücks (1) gestreckt werden kann/können.
  • Eine günstige Ausführungsform für eine elastische Aufhängung mit den beschriebenen Eigenschaften besteht aus zumindest einem schmalen langen Träger, dessen Längsrichtung der Richtung des Abstandes der Antriebskondensatorflächen entspricht und der in der Bewegungsrichtung des bewegbaren Kontaktstücks sehr viel schmaler ist. In der dritten verbleibenden Richtung kann der Träger relativ ausgedehnt sein oder auch relativ flach sein, vorzugsweise angepaßt an die entsprechenden Abmessungen des Antriebskondensators und der übrigen Bauteile in dieser Richtung. Dieser Träger bildet eine blattfederähnliche Struktur und kann durch die elektrostatische Kraft des Antriebskondensators zwar nicht verlängert und verkürzt, jedoch seitlich verformt werden.
  • Vorzugsweise sind zumindest zwei dieser Träger vorgesehen, die vorzugsweise im wesentlichen identisch miteinander, jedoch in der Bewegungsrichtung voneinander beabstandet sind. Durch ihre gemeinsame feste Kopplung mit dem bewegbaren Kontaktstück ergibt sich dann eine Bewegung des bewegbaren Kontaktstücks, die verkippungsfrei bleibt, also im wesentlichen nur aus translatorischen Komponenten besteht. Hierzu wird auf die Ausführungsbeispiele verwiesen. Die Kraft-Weg-Zusammenhänge, also die Federkonstanten, können bei solchen Trägem anhand bekannter Näherungsformeln leicht berechnet werden.
  • Die Bewegung des bewegbaren Kontaktstücks kann nicht nur dazu genutzt werden, einen an dem bewegbaren Kontaktstück angebrachten Kontakt mit einem zugeordneten Kontakt an einem Gegenkontaktstück in Verbindung zu bringen und ihn davon zu trennen, vielmehr kann die selbe Bewegung gleichzeitig einen weiteren Kontakt des bewegbaren Kontaktstücks mit einem anderen Kontakt an einem weiteren Gegenkontaktstück in komplementärer Weise verbinden und trennen. Dabei wird also das bewegbare Kontaktstück zwischen den Gegenkontaktstücken hin- und herbewegt. Man erhält gewissermaßen einen Doppelschalter, der zudem in einer Mittenposition einen Zustand bietet, in dem sämtliche Kontakte getrennt sind. Er kann jedoch auch so ausgelegt sein oder betrieben werden, daß er zwischen zwei Zuständen geschaltet wird, in denen jeweils eines der beiden Kontaktpaare offen und das jeweils andere geschlossen ist. Die verschiedenen vorteilhaften Anwendungsmöglichkeiten solcher Doppelschalter sind dem Fachmann ohne weiteres bekannt.
  • Der oder die beschriebenen Träger müssen übrigens im kräftefreien Zustand nicht notwendigerweise grade langgestreckt sein, so daß sie durch den elektrostatischen Antrieb verkrümmt werden. Sie können auch bei der Herstellung des Mikrorelais bereits mit einer vorgegebenen leichten Krümmung versehen sein, die dann durch die elektrostatische Antriebskraft verringert, aufgehoben oder auch im Richtungssinn umgekehrt werden kann.
  • Weiterhin ist es denkbar, den Antriebskondensator komplizierter auszuführen als lediglich mit zwei benachbarten Antriebskondensatorflächen. Es können auch verschachtelte Strukturen Verwendung finden, bei denen eine größere Zahl Antriebskondensatorflächen in verschachtelter Weise einander zugeordnet sind, etwa wie zwei miteinander in Eingriff gebrachte Kämme. Zur Veranschaulichung wird auf das entsprechende Ausführungsbeispiel verwiesen.
  • Die Bewegungsrichtung des erfindungsgemäßen Mikrorelais liegt vorzugsweise parallel zu einem Substrat, auf dem das Mikrorelais angebracht ist oder auf dem es vorzugsweise integriert hergestellt worden ist. Auch hierin besteht ein Unterschied zum Stand der Technik, bei dem die Bewegungsrichtungen mehr oder weniger senkrecht zur Substratebene liegen. Die substratparallele Bewegungsrichtung hat jedoch den Vorteil, zweidimensionale Strukturen des Mikrorelais zu begünstigen, die herstellungstechnisch sehr vorteilhaft sind. So sind die typischen mikrotechnologischen und halbleitertechnologischen Verfahren wie Lithographie-, Ätz- oder Beschichtungsverfahren in der Regel zunächst zweidimensional und bei dreidimensionalen Strukturen nur mit etwas erhöhtem Aufwand zu realisieren. Dementsprechend sind die einzelnen Funktionsteile des Mikrorelais, nämlich das bewegbare Kontaktstück, die elastische Aufhängung sowie der Antriebskondensator, jeweils in ihrer funktionalen Struktur vorzugsweise rein zweidimensional, und zwar in einer substratparallelen Ebene.
  • Ferner ist ein durch die substratparallele Bewegung möglicher flacher Aufbau häufig bautechnisch günstig und erleichtert insbesondere nachfolgende Lithographieschritte, etwa solche, die für auf dem selben Substrat herzustellende mikroelektronische Schaltungen benötigt werden. Auch bei einem Schutz des Mikrorelais durch eine Verkapselung oder Abdeckung ist ein flacher Aufbau vorteilhaft.
  • Um die bewegbaren Teile des Mikrorelais bei einer integrierten Ausführungsform vom Substrat zu lösen, bietet es sich an, vergrabene Schichten an den geeigneten Stellen vorzusehen und zu entfernen, um diese Teile vom Substrat zu befreien und damit elastisch verformbar bzw. bewegbar zu machen. Hier bieten sich insbesondere SiO2-Schichten bei Siliziumsubstraten an. Insbesondere bieten sich hierzu die bekannten SOI-Strukturen (Silicon on Insulator) an, und zwar vor allem die sogenannten SIMOX-Wafer.
  • Der Werkstoff Silizium ist grundsätzlich ein bevorzugter Werkstoff für das erfindungsgemäße Mikrorelais.
  • Eine andere Werkstofflösung sind verschiedene Gläser. Silizium hat allerdings den Vorteil, durch geeignete Sortierung sowohl isolierend als auch elektrisch leitfähig ausgeführt werden zu können. Durch lonenimplantation oder Diffusion von Dotierungsstoffen können somit Leiterbahnen mit angepaßter Struktur leicht hergestellt werden. Die zugrundeliegende Technologie ist aus der Halbleiterbauelementherstellung bekannt.
  • Trotzdem werden beispielsweise für die Kontakte selbst Metallisierungen notwendig sein. Bei einem gläsernen Mikrorelais müssen grundsätzlich Metallisierungen angebracht werden, um die elektrischen Leitungen und Kontakte herzustellen.
  • Besondere Bedeutung für die Herstellung des erfindungsgemäßen Mikrorelais, insbesondere bei einer zweidimensionalen Realisierung mit substratparalleler Ausrichtung, haben die lonenätzverfahren, und zwar insbesondere die sogenannten RIE-Verfahren. Da für das Mikrorelais relativ große Ätztiefen interessant sein können, kommen bevorzugt die sogenannten DRIE-Verfahren in Betracht (deep reactive ion etching). Durch geeignete Prozeßführung lassen sich in erheblichen Tiefen nahezu senkrechte Ätzflanken erzielen, beispielsweise in der Größenordnung von 0,5 mm. Dies kann zur Erzielung ausreichend großer Kontaktflächen wichtig sein, weil sich bei den bevorzugten Ausführungsformen der Erfindung senkrecht auf dem Substrat stehende Kontaktflächen ergeben können. Hierzu wird wiederum auf die Ausführungsbeispiele verwiesen.
  • Als Beispiel wird ferner verwiesen auf den Artikel "Vertical Mirrors Fabricated by Deep Reactive Ion Etching for Fiber Optic Switching Applications". Von C. Marxer at all, Journal of Microelectromechanical Systems, Band 6, Nr. 3, September 1997, Seiten 277 - 285. Dort sind zwar mikrooptische Schalter für faseroptische Anwendungen beschrieben, jedoch lassen sich die Prozeßschritte auch ohne weiteres auf die Erfindung anwenden. Die dort realisierten Wandhöhen von 75 Mikrometer lassen sich leicht übertreffen, wenn dies von Interesse ist.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden werden Ausführungsbeispiele der Erfindung erläutert, wobei die dabei offenbarten Merkmale auch in anderen als den dargestellten Kombinationen erfindungswesentlich sein können.
  • Im einzelnen zeigt:
    • Figur 1 eine schematische Draufsicht auf ein erfindungsgemäßes bewegbares Kontaktstück mit elastischer Aufhängung;
    • Figur 2 ein erstes Ausführungsbeispiel für ein erfindungsgemäßes Mikrorelais;
    • Figur 3 ein zweites Ausführungsbeispiel für ein erfindungsgemäßes Mikrorelais;
    • und Figur 4 ein drittes Ausführungsbeispiel für ein erfindungsgemäßes Mikrorelais.
  • Figur 1 zeigt eine Draufsicht auf eine Struktur aus einem bewegbaren Kontaktstück 1 mit elastischer Aufhängung 2. Die Blickrichtung steht senkrecht auf der Substratebene, wobei es sich um eine zweidimensionale Struktur handeln soll. Die schematisch eingezeichnete Basis 3 soll, wie durch den schraffierten Untergrund angedeutet, fest mit dem Substrat verbunden sein, wohingegen die elastische Aufhängung bildende Träger 2 und das bewegbare Kontaktstück 1 von dem Substrat frei sind. Bei dem konkreten Beispiel sollen die Teile 1, 2 und 3 aus Si bestehen und integriert aus einem Si-Substrat herausgearbeitet sein. Das bewegbare Kontaktstück 1 und die Träger 2 sind von dem Substrat durch Lösen einer darunter vergrabenen SiO2-Schicht befreit worden.
  • Die durchgezogenen Linien stellen dabei die kräftefreie Anordnung dar, während die gestrichelten Linien das bewegbare Kontaktstück 1 und die elastische Aufhängung 2 in ausgelenktem Zustand zeigen. Diese Auslenkung wird bewirkt durch eine mit N symbolisierte Kraft, die in Figur 1 von oben nach unten wirkt, also in der Substratebene liegt, jedoch zu der durch den Unterschied zwischen der gestrichelten und der durchgezogenen Zeichnung erkennbaren Bewegungsrichtung im wesentlichen senkrecht steht. Die Bewegungsrichtung ist dabei übrigens keine wirklich konstante Richtung. Vielmehr ist aus dieser Figur anschaulich, daß sich die Bewegungsrichtung mit zunehmender Auslenkung von der rechtwinkligen Orientierung zur Normalkraft entfernt. Wesentlich ist jedoch, daß die Bewegungsstrecke eine sehr viel größere Komponente f senkrecht zu der Kraft N enthält als die kraftparallele Komponente λ. Die Komponente λ ist jedoch insoweit wichtig, als sie notwendig ist, um die dargestellte Bewegung überhaupt mit der Kraft N erzeugen zu können.
  • Das Bewegungsverhalten des bewegbaren Kontaktstücks 1 ergibt sich aus der Form und Anordnung des Paares der Träger 2 und diese sind in Bewegungsrichtung voneinander beabstandet und dabei im übrigen identisch sowie zu der Kraft N im wesentlichen symmetrisch ausgerichtet, um Drehmomente möglichst zu vermeiden. Die Träger 2 haben eine Länge I in Richtung der Kraft N und sind demgegenüber sehr schmal, wie mit h bezeichnet. Die Tiefe senkrecht zur Zeichenebene ist mit b bezeichnet und entspricht hier der Tiefe des bewegbaren Kontaktstücks 1. Sie ist für das erfindungsgemäße Prinzip nicht weiter von Belang. Wie sich weiter unten ergibt, erhöht sie zwar die Federkonstante linear, jedoch wächst bei den Ausführungsbeispielen die Fläche des Antriebskondensators ebenfalls linear mit der Tiefe, so daß die Tiefe b nur von den technischen Grenzen des Ätzverfahrens und der gewünschten Kontaktfläche abhängt. Eine zu große Breite des Kondensators 4,5 erhöht aber nicht nur die Massenträgheit des bewegbaren Kontaktteils 1, sondern geht auch direkt in die Gesamtbaugröße des Mikrorelais ein. Hier muß also ein sinnvoller Kompromiß gefunden werden.
  • Die Auslenkung f in der gewünschten kraftnormalen Dimension errechnet sich näherungsweise aus f = Nl 3 / 2 Ebh 3
    Figure imgb0001
  • Dabei ist E der Elastizitätsmodul des verwendeten Materials. Man erkennt, daß die Tiefe b linear in die Federkonstante eingeht, diese jedoch in der dritten Potenz von dem Verhältnis aus Länge I und Schmalheit h der Träger 2 abhängt. Die notwendige, jedoch möglichst kleine Bewegungskomponente λ beträgt näherungsweise λ = 3 f 2 / 5 l
    Figure imgb0002
  • Man sieht, daß die Bewegung in zunehmendem Maße von der senkrechten Ausrichtung zur Kraft N abweicht, weil die Komponente λ proportional zum Quadrat der Komponente f ist. Man erkennt außerdem, daß lange Träger günstig sind für eine großes Verhältnis aus der kraftnormalen Komponente f zu der kraftparallelen Komponente λ.
  • Quantitative Beispielswerte könnten eine Länge von I = 1800 µm, eine Schmalheit h von 16 µm und eine Tiefe b von 450 µm sein. Ein beispielhafter Wert für die Kraft N von etwa 4 mN führt dann zu f = 40 µm und λ = 0,53 µm. Die Bewegung des bewegbaren Kontaktschubs 1 ist also so gut wie senkrecht zu N.
  • Figur 2 zeigt die schematisch in Figur 1 erläuterte Grundstruktur in einer konkreten Anwendungsform. An dem bewegbaren Kontaktstück 1 ist, in diesem Fall an der den Trägern 2 zugewandten Seite, eine elektrisch leitfähige Oberflächenschicht 4 angebracht, der eine zweite elektrisch leitfähige Oberflächenschicht 5 an einem substratfesten Teil gegenüber liegt. Zwischen diesen beiden Antriebskondensatorflächen 4 und 5 kann eine Spannung Ud angelegt werden, die die elektrostatische Antriebskraft N gemäß folgendem Näherungszusammenhang hervorruft: N = ε 0 AU d 2 / 2 d 2
    Figure imgb0003
  • Dabei ist A die Fläche des Antriebskondensators 4, 5 und ebenfalls proportional zu b. d ist der Abstand zwischen den beiden Antriebskondensatorflächen 4 und 5. Man erkennt unmittelbar, daß sich durch entsprechend kleine Abstände sehr große elektrostatische Kräfte erzeugen lassen, weil der Abstand d in der zweiten Potenz auftritt. Ferner sind breite Kondensatoren im Sinn der Horizontalen in der Zeichenebene, also große Abstände zwischen den Trägern 2, günstig. Bei einem Abstand d von 1 µm ergeben sich bei einer Versorgungsspannung von 36 V und einer typischen Fläche A von 450 µm x 1500 µm Kräfte im Bereich von 4 mN.
  • Die Bewegung des bewegbaren Kontaktstücks 1 entspricht der Darstellung in Figur 1. Figur 2 zeigt, daß das bewegbare Kontaktstück 1 dabei zwischen zwei Gegenkontaktstücken 6 und 7 hin- und hergeschaltet wird. Hierzu weist es an seinen über die Träger 2 hinausreichenden Enden jeweils einen abgewinkelten Ansatzbereich 8 bzw. 9 auf, der jeweils zwei metallene Kontakte, die über eine metallische Leiterbahn verbunden sind, trägt. Diese Kontakte können in Kontakt mit jeweils zugeordneten zwei Kontakten auf den Gegenkontaktstücken 6 und 7 kommen, die jedoch ihrerseits elektrisch voneinander isoliert sind. Sie werden also durch die Kontakte auf den abgewinkelten Bereichen 8 bzw. 9 des bewegbaren Kontaktstücks 1 überbrückt. Die Kontaktkraft P ergibt sich dabei aus P = f / l N .
    Figure imgb0004
    Für N = 4 mN ergibt das eine Kontaktkraft P von ca. 0,09 mN.
  • Die schraffierten Bereiche in Figur 2 deuten dabei an, daß die beiden Antriebskondensatorflächen 4 und 5 sowie jeweils von den Kontakten an den Gegenkontaktstücken 6 und 7 ausgehende Leiterbahnen durch ionenimplantierte Si-Bereiche gebildet sind. Die schwarz ausgefüllten Kontakte sind metallisiert, etwa durch seitliche Schrägbedampfung oder Plasmaabscheidung und entsprechende Maskierung.
  • Man erkennt ferner, daß das Mikrorelais aus Figur 2 bei ungeladenem Antriebskondensator 4, 5 die Kontakte an dem linken Gegenkontaktstück 7 überbrückt und durch Spannungsbeaufschlagung des Kondensators 4, 5 so umgeschaltet werden kann, daß statt dessen die Kontakte an dem rechten Gegenkontaktstück 6 überbrückt werden. Die Antriebskondensatorflächen 4, 5 sind dabei so zueinander ausgerichtet, daß sie einander etwa in der Mitte dieses Weges direkt gegenüber liegen, so daß jeweils an den beiden Wegenden ein gewisser Versatz vorliegt, der jedoch wegen der tatsächlich geringen quantitativen Bedeutung unwesentlich ist.
  • Es wurde bereits erwähnt, daß die Gesamtkontaktflächen durch Anpassung der Tiefe b bestimmt werden können. Außerdem können die Metallkontakte auch in der in Figur 2 vertikalen Richtung breiter ausgeführt sein, wenn die Kontaktfläche eine wesentliche Rolle spielt.
  • Wenn man sich einen der beiden abgewinkelten Bereiche 8 und 9 und das zugehörige Gegenkontaktstück 6 bzw. 7 in Figur 2 wegdenkt, so erkennt man unmittelbar, daß sich mit diesem Aufbau auch einfache Schalter realisieren lassen, die wahlweise im spannungslosen Zustand offen oder geschlossen sind (normally open / normally closed).
  • Bei dem zweiten Ausführungsbeispiel aus Figur 3 liegt gegenüber den Varianten aus Figur 1 und 2 dahingehend eine Abweichung vor, daß die Träger 2' nur mehr im dargestellten spannungsfreien Zustand leicht S-förmig gekrümmt sind, nämlich etwa so, wie im verformten Zustand aus Figur 1. Dies kann durch entsprechende Strukturierung der Maske bei dem DRIE-Prozeß, mit dem diese Strukturen aus dem Siliziumwafer herausgearbeitet werden, leicht realisiert werden. Außerdem ist der Antriebskondensator bei diesem Beispiel auf der im Vergleich zu Figur 2 anderen Seite des bewegbaren Kontaktstücks 1 angeordnet, und daher mit 4', 5' bezeichnet. Schließlich ist das Mikrorelais in diesem Fall so ausgelegt, daß der "rechte Schalter" 6, 8 im spannungsfreien Zustand geschlossen ist, während der "linke Schalter" 7, 9 im spannungsfreien Zustand offen ist.
  • Durch die elektrostatische Anziehung zwischen den Antriebskondensatorflächen 4' und 5' kann das bewegbare Kontaktstück 1 in Figur 3 nach links bewegt werden, wobei sich die Träger 2' weitgehend strecken bzw. auch mit umgekehrtem Richtungssinn verformen können.
  • Die Anordnung des Antriebskondensators 4' 5' sollte bei einfachen Mikrorelais übrigens so erfolgen, daß sich im geschlossenen Zustand eine maximale Kontaktkraft ergibt, also der minimale Abstand zwischen den Antriebskondensatorflächen 4, 5 bzw. 4', 5' vorliegt. Bei dem ersten und bei dem zweiten Ausführungsbeispiel ist dies für den rechten Schalter bzw. für den linken Schalter gegeben.
  • Figur 4 zeigt ein drittes Ausführungsbeispiel, das eine Variante zu dem zweiten Ausführungsbeispiel aus Figur 3 darstellt. Der Unterschied besteht darin, daß der Antriebskondensator in diesem Fall aus kammartig verschachtelten Flächen besteht, die mit 4" und 5" bezeichnet sind. Es handelt sich wiederum um Si-Strukturen mit entsprechenden Dotierungen (oder Metallisierungen), wie die Schraffuren zeigen. Durch eine herstellungstechnisch wenig problematische Komplizierung des Maskenlayouts kann so die zuvor mit A bezeichnete effektive Fläche des Antriebskondensators vervielfacht werden, in diesem Fall verdreifacht. Im übrigen entspricht dieses Ausführungsbeispiel dem zuvor beschriebenen.
  • Alle Ausführungsbeispiele sind infolge des zweidimensionalen Aufbaus technisch unproblematisch und zeigen andererseits einen ungewöhnlich guten Kompromiß zwischen Kontaktschließkraft, Versorgungsspannung und Spannungsfestigkeit im geöffneten Zustand.
  • Bezugszeichenliste
  • 1
    bewegbares Kontaktstück
    2
    elastische Aufhängung, nämlich schmale lange Träger
    3
    Basis
    4, 4', 4"
    leitfähige Kondensatorfläche am bewegbaren Kontaktstück
    5, 5', 5"
    feste elektrisch leitfähige Antriebskondensatorfläche
    6, 7
    Gegenkontaktstücke
    8, 9
    abgewinkelte Ansatzbereiche des bewegbaren Kontaktstücks
    f
    Bewegungsstrecke quer zur Kraft
    I
    Länge eines Trägers 2
    h
    Schmalheit eines Trägers 2

Claims (14)

  1. Mikrorelais
    mit einem bewegbaren Kontaktstück (1),
    einem Antriebskondensator (4, 5, 4', 5', 4", 5") zum elektrostatischen Antrieb des bewegbaren Kontaktstücks (1),
    welcher Antriebskondensator zwei, im wesentlichen parallel beabstandete, leitfähige Flächen (4, 5, 4', 5', 4", 5") aufweist, von denen eine (4, 4', 4") an einer Seite des bewegbaren Kontaktstücks (1) angebracht ist,
    einer elastischen Aufhängung (2, 2') des bewegbaren Kontaktstücks (1),
    und einem Gegenkontaktstück (6, 7),
    wobei das Mikrorelais so ausgelegt ist, daß durch Ändern des Ladezustands des Antriebskondensators (4, 5, 4', 5', 4", 5") das bewegbare Kontaktstück (1) in einer Bewegungsrichtung in eine und aus einer Anlage an das Gegenkontaktstück (6, 7) bewegt werden kann, um einen elektrischen Kontakt zwischen dem bewegbaren Kontaktstück (1) und dem Gegenkontaktstück (6, 7) zu öffnen und zu schließen,
    dadurch gekennzeichnet, daß das bewegbare Kontaktstück (1) derart aufgehängt ist, daß die Bewegungsrichtung zu der Richtung des Abstandes zwischen den Antriebskondensatorflächen (4, 5, 4', 5', 4", 5") fast senkrecht ist, und daß der größte im Betrieb auftretende Abstand der Antriebskondensatorflächen (4, 5, 4', 5', 4", 5") sehr viel kleiner ist als die im Betrieb von dem bewegbaren Kontaktstück (1) zurückgelegte Bewegungsstrecke (f) in der Bewegungsrichtung, und
    daß die elastische Aufhängung (2, 2') bezüglich einer Bewegung des bewegbaren Kontaktstücks (1) in der Bewegungsrichtung eine Federkonstante aufweist, die wesentlich kleiner ist als eine Federkonstante der elastischen Aufhängung (2, 2') bezüglich einer Bewegung in der Richtung des Abstandes der Antriebskondensatorflächen (4, 5, 4', 5', 4", 5").
  2. Mikrorelais nach Anspruch 1, dadurch gekennzeichnet, daß die elastische Aufhängung (2) an der Seite des bewegbaren Kontaktstücks (1) angebracht ist, an der die elektrisch leitfähige Fläche (4) vorgesehen ist.
  3. Mikrorelais nach Anspruch 1 oder 2, bei dem die elastische Aufhängung (2, 2') einen sich im wesentlichen parallel zu der Richtung des Abstandes der Antriebskondensatorflächen (4, 5, 4', 5', 4", 5") erstreckenden und im Vergleich zu seiner Länge (l) in dieser Richtung in der Bewegungsrichtung sehr viel schmaleren (h) Träger (2, 2') aufweist, der mit dem bewegbaren Kontaktstück (1) fest verbunden ist und dieses aufgrund seiner Länge (l) und Schmalheit (h) elastisch in der Bewegungsrichtung bewegbar hält.
  4. Mikrorelais nach Anspruch 3, bei dem die elastische Aufhängung (2, 2') zumindest zwei der beschriebenen Träger (2) aufweist, die in der Bewegungsrichtung zueinander parallel versetzt sind.
  5. Mikrorelais nach einem der vorstehenden Ansprüche, bei dem das bewegliche Kontaktstück (1) zwischen zwei Gegenkontaktstücken (6, 7) hin- und hergeschaltet werden kann.
  6. Mikrorelais nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der/ die Träger (2') an einer Seite des bewegbaren Kontaktstücks (1) angebracht ist/sind, welche von der die elektrisch leitfähige Fläche (4') tragenden Seite abgewandt ist/sind, und dass der/die Träger (2') sich entlang seiner/ihrer Länge (l) leicht krümmt/krümmen und durch den Antriebskondensator (4', 5', 4", 5") bei der Bewegung des bewegbaren Kontaktstücks (1) gestreckt werden kann/können.
  7. Mikrorelais nach einem der vorstehenden Ansprüche, bei dem der Antriebskondensator (4", 5") eine Vielzahl verschachtelt parallel beabstandeter leitfähiger Flächen (4", 5") aufweist.
  8. Mikrorelais nach einem der vorstehenden Ansprüche mit einem Substrat, auf dem das Mikrorelais befestigt ist (3), wobei die Bewegungsrichtung des bewegbaren Kontaktstücks (1) substratparallel ist.
  9. Mikrorelais nach einem der vorstehenden Ansprüche, das auf dem Substrat in integrierter Weise hergestellt ist.
  10. Mikrorelais nach einem der vorstehenden Ansprüche, zumindest Anspruch 8, bei dem das bewegbare Kontaktstück (1), die elastische Aufhängung (2, 2') und der Antriebskondensator (4, 5, 4', 5', 4", 5") zumindest einen wesentlichen Teil ihrer jeweiligen funktionalen Struktur in Form einer zweidimensionalen Struktur in einer substratparallelen Ebene aufweisen.
  11. Mikrorelais nach Anspruch 9 und Anspruch 10, mit einer zwischen den zweidimensionalen Strukturen und dem Substrat angeordneten vergrabenen Schicht, die unter bewegbaren Strukturteilen (1, 2, 2', 4, 4', 4") entfernt ist.
  12. Mikrorelais nach einem der vorstehenden Ansprüche, das durch ein lonenätzverfahren, vorzugsweise ein DRIE-Verfahren, hergestellt ist.
  13. Mikrorelais nach einem der vorstehenden Ansprüche, das im wesentlichen aus Silizium besteht.
  14. Mikrorelais nach einem der Ansprüche 1 - 12, das im wesentlichen aus Glas besteht.
EP01810322A 2001-03-29 2001-03-29 Mikrorelais mit neuem Aufbau Expired - Lifetime EP1246215B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01810322A EP1246215B1 (de) 2001-03-29 2001-03-29 Mikrorelais mit neuem Aufbau
DE50115251T DE50115251D1 (de) 2001-03-29 2001-03-29 Mikrorelais mit neuem Aufbau
AT01810322T ATE451712T1 (de) 2001-03-29 2001-03-29 Mikrorelais mit neuem aufbau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810322A EP1246215B1 (de) 2001-03-29 2001-03-29 Mikrorelais mit neuem Aufbau

Publications (2)

Publication Number Publication Date
EP1246215A1 EP1246215A1 (de) 2002-10-02
EP1246215B1 true EP1246215B1 (de) 2009-12-09

Family

ID=8183834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810322A Expired - Lifetime EP1246215B1 (de) 2001-03-29 2001-03-29 Mikrorelais mit neuem Aufbau

Country Status (3)

Country Link
EP (1) EP1246215B1 (de)
AT (1) ATE451712T1 (de)
DE (1) DE50115251D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975193B2 (en) 2003-03-25 2005-12-13 Rockwell Automation Technologies, Inc. Microelectromechanical isolating circuit
AU2003254882A1 (en) * 2003-08-07 2005-02-25 Fujitsu Media Devices Limited Micro switching element and method of manufacturing the element
DE602005027131D1 (de) * 2005-11-28 2011-05-05 Abb Research Ltd Elektrostatisches stellglied

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126107C2 (de) * 1991-08-07 1993-12-16 Bosch Gmbh Robert Beschleunigungssensor und Verfahren zur Herstellung
US5179499A (en) * 1992-04-14 1993-01-12 Cornell Research Foundation, Inc. Multi-dimensional precision micro-actuator
KR100459887B1 (ko) * 1999-01-11 2004-12-03 삼성전자주식회사 삼차원 빗살 가진 구조물 및 이를 채용한 관성 감지 센서와 액츄

Also Published As

Publication number Publication date
DE50115251D1 (de) 2010-01-21
ATE451712T1 (de) 2009-12-15
EP1246215A1 (de) 2002-10-02

Similar Documents

Publication Publication Date Title
DE10302618B4 (de) Elektrostatische Betätigungsvorrichtung
WO1994019819A1 (de) Mikromechanisches relais mit hybridantrieb
DE10031569A1 (de) Integrierter Mikroschalter und Verfahren zu seiner Herstellung
DE19823690C1 (de) Mikromechanisches elektrostatisches Relais
DE60203021T2 (de) Mikroeinstellbarer kondensator (mems) mit weitem variationsbereich und niedriger betätigungsspannung
WO2000057445A1 (de) Substratparallel arbeitendes mikrorelais
WO1999043013A1 (de) Mikromechanisches elektrostatisches relais
EP3931623B1 (de) Mikromechanische struktur und verfahren zum bereitstellen derselben
DE112011101117B4 (de) Integrierter elektromechanischer Aktuator und Verfahren zur Herstellung desselben
EP1468436B1 (de) Mikro-elektromechanisches system und verfahren zu dessen herstellung
EP1246215B1 (de) Mikrorelais mit neuem Aufbau
EP4057317A1 (de) Gekapseltes mems-schaltelement, vorrichtung und herstellungsverfahren
DE102021202409A1 (de) Kapazitiv betätigbarer MEMS-Schalter
EP1719144B1 (de) Hochfrequenz-mems-schalter mit gebogenem schaltelement und verfahren zu seiner herstellung
DE19800189A1 (de) Mikromechanischer Schalter und Verfahren zur Herstellung desselben
EP1191559A2 (de) Mikroschalter und Verfahren zu dessen Herstellung
DE102006036499B4 (de) Mikromechanisches Bauelement
DE102021200286B4 (de) Mikromechanisches Relais und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
EP1312100B1 (de) Mikroschalter
EP4002407A1 (de) Mikroelektromechanisches schaltelement, vorrichtung und herstellungsverfahren
WO2000031767A1 (de) Mikromechanisches elektrostatisches relais
EP1156504A2 (de) Mikromechanisches Relais mit verbessertem Schaltverhalten
DE102008005521B4 (de) Kapazitiver Wandler und Verfahren zur Herstellung desselben
DE102019202658B3 (de) Mikromechanische Struktur und Verfahren zum Bereitstellen derselben
WO2009097924A2 (de) Mikromechanisches bauelement und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030331

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115251

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100419

Year of fee payment: 10

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20100331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20100910

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115251

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209