EP1242738B1 - Regulation of true running for diesel engines - Google Patents

Regulation of true running for diesel engines Download PDF

Info

Publication number
EP1242738B1
EP1242738B1 EP01993755A EP01993755A EP1242738B1 EP 1242738 B1 EP1242738 B1 EP 1242738B1 EP 01993755 A EP01993755 A EP 01993755A EP 01993755 A EP01993755 A EP 01993755A EP 1242738 B1 EP1242738 B1 EP 1242738B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
speed
cylinders
engine
injection quantities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01993755A
Other languages
German (de)
French (fr)
Other versions
EP1242738A1 (en
Inventor
Jörg REMELE
Andreas Schneider
Albrecht Debelak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1242738A1 publication Critical patent/EP1242738A1/en
Application granted granted Critical
Publication of EP1242738B1 publication Critical patent/EP1242738B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation

Definitions

  • the invention relates to a method for concentricity control, such as that from DE 195 48 604 C1 emerges as known.
  • the known method serves Differences in the torque contributions of individual cylinders of an internal combustion engine based on to determine the crankshaft speed curve. It builds on the knowledge that the rotary motion of the crankshaft under the action of gas and mass forces runs irregularly.
  • To the speed or torque component of a cylinder determine individual cylinders are specifically switched off during engine operation.
  • the torque percentage of each individual cylinder can be Display the total engine torque in isolation based on the speed signal.
  • the of Production tolerances resulting from injection quantity variations are recognized and should be can be compensated by using the same mean pressures in all cylinders Injection quantity variation can be produced.
  • the fuel supply can be one Cylinder are switched off, which then works as a compressor, for example.
  • the fuel supply is provided to change the remaining, normally working cylinders in a suitable manner. It should be possible to determine through experimentation and calculation in which way the Torque of the cylinder is to be distributed in order to optimally suppress the To achieve vibrations. For certain operating cases, this way determined data available, according to which the internal combustion engine is controlled.
  • the Injection quantities are obviously distributed among the individual cylinders so that the Vibrations of the 0.5th to 3rd orders are suppressed, since only they in the Practice are responsible for noticeable vibrations. However, the Obviously, vibrations of the different orders are not always equally suppress.
  • the appropriate fuel distribution is apparently related to the Size of the vector responsible for the vibrations.
  • WO 98/07971 also describes a method for cylinder-selective control of a self-igniting internal combustion engine as known.
  • multi-cylinder Motors add up the deviations of the individual cylinders so unfavorably that the Impact is the same as if a cylinder has completely failed.
  • interruptions in operation occur due to faults in the injection system. Damaged one or Exhaust valves can result in loss of compression. Switching off too of cylinders represents an operating case, the torsional vibration stress changed.
  • the effect of operating conditions that deviate from normal operation the excitation behavior of the motor is shown by a vector representation of the excitation forces clarified. It is further stated that only the excitatory ones in dropout operation Forces of the 0.5th, 1st and 1.5th order are of interest.
  • the exciting one Alternating torque is calculated from the vector sum according to the phase position the harmonic.
  • engine interventions e.g. are practically not feasible by changing the ignition pressure.
  • the invention has for its object a concentricity control especially for to represent high-cylinder internal combustion engines.
  • the cylinders are switched off one after the other and the speed above Crank angle recorded.
  • the speed curve of the healthy is intact Motors, that is, when all cylinders work normally. It can be a brand new engine in normal operation, due to tolerances has slight differences in the speed components of each cylinder, or by one ideal engine whose cylinder, for example, by using the invention Procedure are equal in terms of their shares in the speed acceleration.
  • ideal means that before the reference values are recorded, for example by varying the injection quantities of individual cylinders, a setting is made in which the fluctuations in the speed contributions of the cylinders are minimized. This setting is retained in normal operation.
  • new curves are then generated which reflect the influence of each cylinder on the overall speed curve.
  • These response curves are subjected to a Fourier decomposition. However, only low-frequency harmonic vibrations, expediently the 0.5th to 3rd order, and the associated spectral impulse responses are considered I of the speed curve of a working cycle of each cylinder.
  • the speed curve of the crankshaft is now continuously recorded over the angle and the spectrum of the speed curve is analyzed in an analogous manner by Fourier decomposition of the curve curve obtained R of a working game.
  • the Fourier coefficients of the low-frequency vibrations are used, namely preferably the harmonics of the 0.5th to 3rd order, which are processed to form a line matrix.
  • the spectral impulse responses I and the resultant from Fourier coefficients of the speed curve R can be represented for each harmonic as a vector pointer over the crank angle. If the resultant is zero, no correction of the injection quantities is necessary.
  • the matrix multiplication of impulse responses I with the vector of the spectral speed curve R results in values different from zero and leads to a correction of the injection quantities if there is a runout deviation in normal operation.
  • the correction values which are standardized, are fed to a controller and the injection quantities ⁇ Q are determined, which can be positive or negative and accordingly correct the injection quantities determined by the engine controller for each injector of a cylinder.
  • a speed control loop is shown, as it is known for example from DE 195 15 481 A1.
  • Reference numeral 1 denotes a diesel engine
  • the crankshaft not shown, is connected to a measuring wheel 2.
  • the speed curve of the crankshaft can be recorded over the angle.
  • a filter 4 and a filter 5 faults are masked out and the curve shape is averaged by comparing the recorded curve shapes over several work cycles.
  • the speed curve of the crankshaft is continuously recorded over the angle in normal engine operation.
  • the speed signal of a work cycle is shown by way of example in FIG. 2.
  • the radius marked with r corresponds to the current speed at the angle ⁇ .
  • the speed curve shows a deformation that occurs when a cylinder fails.
  • the spectral speed curve is obtained with the resulting vectors R 1 to R n , where the indices correspond to the considered harmonics.
  • the corresponding operation is carried out in the symbolically represented function block 7.
  • the vectors obtained by Fourier decomposition R are the Fourier coefficients.
  • Preferably only the harmonic vibrations of the 0.5th to 3rd order are considered. With ideal concentricity, no resulting parts of the corresponding harmonics occur or are at least negligible. In reality, however, there is a small resulting vector R , because the harmonic components are not evenly distributed over the circumference.
  • the injection quantity must be corrected individually for each cylinder if, as shown in FIG. 4b, a resultant due to the low-frequency vibration components R is not zero. In the corresponding case, it is assumed that a cylinder has failed and a harmonic of the 0.5th order occurs, which has the phase position shown with respect to the cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Rundlaufregelung, wie es beispielsweise aus der DE 195 48 604 C1 als bekannt hervorgeht. Das bekannte Verfahren dient dazu, Unterschiede der Momentenbeiträge einzelner Zylinder einer Brennkraftmaschine anhand des Kurbelwellendrehzahlverlaufs zu bestimmen. Dabei wird auf der Erkenntnis aufgebaut, dass die Drehbewegung der Kurbelwelle unter der Wirkung von Gas- und Massenkräften ungleichförmig verläuft. Um den Drehzahl- bzw. Drehmomentenanteil eines Zylinders zu bestimmen, werden während des Motorbetriebs einzelne Zylinder gezielt abgeschaltet. Durch Vergleich mit dem Drehzahlverlauf des ohne Zylinderabschaltung betriebenen Motors lässt sich der Momentenanteil jedes einzelnen Zylinders am Gesamtmotordrehmoment anhand des Drehzahlsignals isoliert darstellen. Die von Fertigungstoleranzen herrührenden Einspritzmengenstreuungen werden erkannt und sollen ausgeglichen werden, indem in allen Zylindern gleiche Mitteldrücke durch Einspritzmengenvariierung hergestellt werden.The invention relates to a method for concentricity control, such as that from DE 195 48 604 C1 emerges as known. The known method serves Differences in the torque contributions of individual cylinders of an internal combustion engine based on to determine the crankshaft speed curve. It builds on the knowledge that the rotary motion of the crankshaft under the action of gas and mass forces runs irregularly. To the speed or torque component of a cylinder determine, individual cylinders are specifically switched off during engine operation. By comparison with the speed curve of the operated without cylinder deactivation Engine, the torque percentage of each individual cylinder can be Display the total engine torque in isolation based on the speed signal. The of Production tolerances resulting from injection quantity variations are recognized and should be can be compensated by using the same mean pressures in all cylinders Injection quantity variation can be produced.

Ein ähnliches Verfahren ist in der DE 41 22 139 C2 beschrieben. Auch hier wird davon ausgegangen, dass Drehungleichförmigkeiten auftreten, die darauf beruhen, dass aufgrund von Toleranzen in den Einspritzvorrichtungen in die einzelnen Zylindern der Brennkraftmaschine unterschiedliche Kraftstoffmengen eingespritzt werden. Ansatz ist, dass das Drehmoment bzw. die Drehbeschleunigung direkt proportional zur eingespritzten Kraftstoffmenge ist. Um die Drehzahlungleichförmigkeiten zu vermeiden, wird der Anteil eines jeden Verbrennungsvorgangs an der Drehbeschleunigung erfasst. Die Messwerte werden durch Bildung von Mittelwerten miteinander verglichen und auf diese Weise Abweichungen festgestellt. Die Kraftstoffeinspritzmengen der einzelnen Zylinder werden schließlich so verändert, dass die Abweichungen verschwinden. Die Summe der Änderungen der in die einzelnen Zylindern eingespritzten Kraftstoffmenge wird so gewählt, dass sie insgesamt Null ergibt.A similar process is described in DE 41 22 139 C2. Here too it will assumed that rotational nonuniformities occur due to the fact that of tolerances in the injectors into the individual cylinders of the Internal combustion engine different amounts of fuel are injected. Approach is that the torque or the rotational acceleration is directly proportional to the injected Amount of fuel. To avoid the speed irregularities, the portion of every combustion process at the spin. The measured values are compared with each other by forming averages and in this way Discrepancies detected. The fuel injection quantities of the individual cylinders are finally changed so that the deviations disappear. The sum of the Changes in the amount of fuel injected into the individual cylinders are selected so that it gives a total of zero.

Bei einer Brennkraftmaschine nach der WO 97/23716 kann die Kraftstoffzufuhr eines Zylinders abgeschaltet werden, der dann beispielsweise als Kompressor arbeitet. Um in dieser Betriebsweise Schwingungen zu vermeiden, ist es vorgesehen, die Kraftstoffzufuhr zu den verbleibenden, normal arbeitenden Zylindern in geeigneter Weise zu verändern. Es soll möglich sein, durch Experimente und Berechnung festzustellen, in welcher Weise das Drehmoment der Zylinder zu verteilen ist, um eine optimale Unterdrückung der Schwingungen zu erreichen. Für bestimmte Betriebsfälle werden auf diese Weise ermittelte Daten bereitgehalten, nach denen die Brennkraftmaschine gesteuert wird. Die Einspritzmengen werden auf die einzelnen Zylinder offensichtlich so aufgeteilt, dass die Schwingungen der 0,5-ten bis 3-ten Ordnungen unterdrückt werden, da nur sie in der Praxis für spürbare Vibrationen verantwortlich sind. Allerdings lassen sich die Schwingungen der verschiedenen Ordnungen offensichtlich nicht immer gleichermaßen unterdrücken. Die geeignete Kraftstoffverteilung steht offenbar im Zusammenhang mit der Größe des Vektors, der für die Schwingungen verantwortlich ist.In an internal combustion engine according to WO 97/23716, the fuel supply can be one Cylinder are switched off, which then works as a compressor, for example. To in In this mode of operation to avoid vibrations, the fuel supply is provided to change the remaining, normally working cylinders in a suitable manner. It should be possible to determine through experimentation and calculation in which way the Torque of the cylinder is to be distributed in order to optimally suppress the To achieve vibrations. For certain operating cases, this way determined data available, according to which the internal combustion engine is controlled. The Injection quantities are obviously distributed among the individual cylinders so that the Vibrations of the 0.5th to 3rd orders are suppressed, since only they in the Practice are responsible for noticeable vibrations. However, the Obviously, vibrations of the different orders are not always equally suppress. The appropriate fuel distribution is apparently related to the Size of the vector responsible for the vibrations.

Aus der WO 98/07971 geht ebenfalls ein Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine als bekannt hervor. Dabei dient eine Messvorrichtung zur Erfassung des Kurbelwellendrehwinkels und zur Bestimmung der momentanen Kurbelwellendrehzahl. Aus der Kurbelwellendrehzahl ermittelt ein Steuergerät geeignete Kenngrößen, die in verschiedenen Betriebsbereichen der Brennkraftmaschine eine zylinderselektive Gleichstellung bzw. eine definierte Ungleichstellung der Mitteldrücke ermöglichen, wobei die Auswirkung von Bauteildifferenzen der Kraftstoffzuführung und des Verbrennungssystems auf den Verbrennungsvorgang minimiert werden.WO 98/07971 also describes a method for cylinder-selective control of a self-igniting internal combustion engine as known. One serves Measuring device for detecting the crankshaft rotation angle and for determining the current crankshaft speed. Determined from the crankshaft speed Control unit suitable parameters that in different operating areas of the Internal combustion engine a cylinder-selective equality or a defined Enable inequality of mean pressures, with the effect of Component differences in the fuel supply and the combustion system on the Combustion process can be minimized.

In der Dissertation von Jochen Tonndorf: "Einfluß des Aussetzerbetriebes auf das Drehschwingungsverhalten von Antriebsanlagen mit Kolbenmotoren", genehmigt von der Fakultät für Maschinenbau der Rheinisch-Westfälischen Technischen Hochschule Aachen wird das Drehschwingungsverhalten von Motoren untersucht. Dabei wird konstatiert, dass es Betriebszustände gibt, die sich wesentlich vom Normalbetrieb unterscheiden. So führen toleranzbedingte Fertigungsunterschiede bei Zylinder und Einspritzvorrichtung, aber auch im Verlauf der Betriebszeit durch Verschleiß bedingte Abweichungen zu Unterschieden gegenüber dem Normalbetrieb. Dadurch können angeblich Leistungsabweichungen der einzelnen Zylinder von etwa +/- 10% hervorgerufen werden, was die Entstehung einer Drehschwingungserregerkraft bewirkt. Insbesondere können sich bei vielzylindrigen Motoren die Abweichungen der einzelnen Zylinder so ungünstig summieren, dass die Auswirkung die gleiche ist, als wenn ein Zylinder völlig ausgefallen ist. Des weiteren kann es durch Störungen im Einspritzsystem zum Aussetzerbetrieb kommen. Beschädigte Einoder Auslassventile können zum Verlust der Kompression führen. Auch das Abschalten von Zylindern stellt einen Betriebsfall dar, der die Drehschwingungsbeanspruchung verändert. Die Auswirkung der vom Normalbetrieb abweichenden Betriebszustände auf das Erregungsverhalten des Motors wird durch eine Vektordarstellung der Erregerkräfte verdeutlicht. Im weiteren wird konstatiert, dass im Aussetzerbetrieb nur die erregenden Kräfte der 0,5-ten, 1-ten und 1,5-ten Ordnung von Interesse sind. Das erregende Wechseldrehmoment errechnet sich aus der Vektorsumme entsprechend der Phasenlage der Harmonischen. Der Autor kommt jedoch zu dem Schluss, dass Eingriffe am Motor, z.B. durch Änderung des Zünddrucks praktisch nicht durchführbar sind.In the dissertation by Jochen Tonndorf: "Influence of misfiring on the Torsional vibration behavior of drive systems with piston engines ", approved by the Faculty of Mechanical Engineering of the Rheinisch-Westfälische Technische Hochschule Aachen the torsional vibration behavior of motors is examined. It is stated that there are operating conditions that differ significantly from normal operation. So lead Tolerance-related manufacturing differences for cylinders and injection devices, but also differences due to wear and tear in the course of the operating time compared to normal operation. This can allegedly result in deviations in performance individual cylinders of about +/- 10%, which is the origin of a Torsional vibration excitation force causes. In particular, multi-cylinder Motors add up the deviations of the individual cylinders so unfavorably that the Impact is the same as if a cylinder has completely failed. Furthermore, interruptions in operation occur due to faults in the injection system. Damaged one or Exhaust valves can result in loss of compression. Switching off too of cylinders represents an operating case, the torsional vibration stress changed. The effect of operating conditions that deviate from normal operation the excitation behavior of the motor is shown by a vector representation of the excitation forces clarified. It is further stated that only the excitatory ones in dropout operation Forces of the 0.5th, 1st and 1.5th order are of interest. The exciting one Alternating torque is calculated from the vector sum according to the phase position the harmonic. However, the author concludes that engine interventions, e.g. are practically not feasible by changing the ignition pressure.

Der Erfindung liegt die Aufgabe zugrunde, eine Rundlaufregelung insbesondere für hochzylindrige Brennkraftmaschinen darzustellen.The invention has for its object a concentricity control especially for to represent high-cylinder internal combustion engines.

Diese Aufgabe wird durch die im Patentanspruch 1 aufgeführten Merkmale gelöst. Während bei Brennkraftmaschinen mit wenigen Zylindern die auf die einzelnen Zylinder zurückgehenden Drehzahlanteile in der Drehzahlkurve eines Arbeitsspiels eindeutig auszumachen sind, ist dies bei hochzylindrigen Brennkraftmaschinen nicht der Fall. Vielmehr überlagern sich die Drehzahlanteile in einer Weise, dass bei Betrachtung der Drehzahlkurve keine Rückschlüsse auf den verursachenden Zylinder mehr möglich sind, was neue Auswertungsmethoden bedingt. Nichtsdestotrotz ist die erfinderische Methode auch auf niederzylindrige Brennkraftmaschinen anzuwenden, wenn dort auch Beschränkungen aufgrund der geringen Zylinderanzahl bestehen. Für die Rundlaufregelung werden die tieffrequenten Schwingungsanteile betrachtet. Hierzu wird das Impulsantwortspektrum jedes Zylinders durch Rechnung oder Messung festgestellt. Zur Feststellung des Impulsanteils eines Zylinders an der Drehgeschwindigkeit durch Messung werden die Zylinder nacheinander einzeln abgeschaltet und die Drehzahl über dem Kurbelwinkel aufgezeichnet. Außerdem wird der Drehzahlverlauf des gesunden intakten Motors, das heißt, wenn alle Zylinder normal arbeiten, aufgenommen. Dabei kann es sich um einen fabrikneuen Motor im Normalbetrieb handeln, der aufgrund von Toleranzen geringe Unterschiede in den Drehzahlanteilen jedes Zylinders aufweist, oder um einen idealen Motor, dessen Zylinder beispielsweise durch Anwendung des erfindungsgemäßen Verfahrens hinsichtlich ihrer Anteile an der Drehzahlbeschleunigung gleichgestellt sind. This object is achieved by the features listed in claim 1. While in internal combustion engines with a few cylinders, the individual cylinders declining speed components clearly in the speed curve of a work cycle can be seen, this is not the case with high-cylinder internal combustion engines. Rather, the speed components overlap in such a way that when the Speed curve it is no longer possible to draw any conclusions about the cylinder causing it, which requires new evaluation methods. Nonetheless, the inventive method is also apply to low-cylinder internal combustion engines, if there too There are restrictions due to the small number of cylinders. For the concentricity control the low-frequency vibrations are considered. For this, the Pulse response spectrum of each cylinder determined by calculation or measurement. to Determination of the momentum component of a cylinder in the speed of rotation by measurement the cylinders are switched off one after the other and the speed above Crank angle recorded. In addition, the speed curve of the healthy is intact Motors, that is, when all cylinders work normally. It can be a brand new engine in normal operation, due to tolerances has slight differences in the speed components of each cylinder, or by one ideal engine whose cylinder, for example, by using the invention Procedure are equal in terms of their shares in the speed acceleration.

Ideal in diesem Sinne heißt, dass vor Aufnahme der Referenzwerte, z.B. durch Variieren der Einspritzmengen einzelner Zylinder, eine Einstellung vorgenommen wird, in der die Schwankungen der Drehzahlbeiträge der Zylinder minimiert sind. Diese Einstellung wird im Normalbetrieb beibehalten. Es werden dann durch Differenzbildung des Kurvenverlaufs des gesunden Motors und der Kurvenverläufe für einzeln abgeschaltete Zylinder neue Kurven erzeugt, die den Einfluss eines jeden Zylinders am Gesamtdrehzahlverlauf wiedergeben. Diese Antwortkurven werden einer Fourierzerlegung unterzogen. Es werden jedoch nur tieffrequente harmonische Schwingungen, zweckmäßigerweise der 0,5-ten bis 3-ten Ordnung betrachtet und die zugehörigen spektralen Impulsantworten I des Drehzahlverlaufs eines Arbeitsspieles jeden Zylinders aufgenommen. Im normalen Motorbetrieb wird nun ständig der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgezeichnet und in analoger Weise durch Fourierzerlegung des erhaltenen Kurvenverlaufs das Spektrum des Drehzahlverlaufs R eines Arbeitsspiels gebildet. Zur Darstellung des spektralen Drehzahlverlaufs werden wiederum nur die Fourierkoeffizienten der tieffrequenten Schwingungen benutzt, nämlich vorzugsweise der Harmonischen der 0,5-ten bis 3-ten Ordnung, die zu einer Zeilenmatrix verarbeitet werden. Die spektralen Impulsantworten I und die aus Fourierkoeffizienten des Drehzahlverlaufs Resultierende R sind für jede Harmonische als Vektorzeiger über dem Kurbelwinkel darstellbar. Ist die Resultierende gleich Null, so ist keine Korrektur der Einspritzmengen erforderlich. Ist jedoch eine Resultierende gegeben, heißt das, dass in einem Zylinder eine Mindereinspritzung erfolgt, und es muss durch Korrektur der Einspritzmengen der einzelnen Injektoren die Resultierende zu Null gemacht werden. Die Aufteilung der für den gegebenen Lastfall erforderlichen Gesamteinspritzmenge erfolgt in der Weise, dass die in Richtung der Impulsantwortzeiger liegenden Komponenten der Resultierenden mit den Impulsantworten I multipliziert werden. Das Ergebnis sind Korrekturfaktoren für die Einspritzmengen. Zylinder, die in Richtung der Resultierenden R liegen, werden mit positivem oder negativem Vorzeichen stärker korrigiert als eher orthogonal liegende. Die mathematische Operation, die die entsprechende Leistung vollbringen kann, ist die Bildung des Skalarprodukts oder des vektoriellen Inprodukts aus der Resultierenden R und den spektralen Impulsantworten I. Hierfür werden die erforderlichen Daten in Matrizenform zur Verfügung gehalten. Die Matrixmultiplikation der Impulsantworten I mit dem Vektor des spektralen Drehzahlverlaufs R ergibt von Null verschiedene Werte und führt zu einer Korrektur der Einspritzmengen, wenn eine Rundlaufabweichung im Normalbetrieb gegeben ist. Die Korrekturwerte, die normiert werden, werden einem Regler zugeführt und die Einspritzmengen ΔQ bestimmt, die positiv oder negativ sein können und dementsprechend die vom Motorregler bestimmten Einspritzmengen für jeden Injektor eines Zylinders korrigieren.In this sense, ideal means that before the reference values are recorded, for example by varying the injection quantities of individual cylinders, a setting is made in which the fluctuations in the speed contributions of the cylinders are minimized. This setting is retained in normal operation. By forming the difference between the curve shape of the healthy engine and the curve shapes for individually deactivated cylinders, new curves are then generated which reflect the influence of each cylinder on the overall speed curve. These response curves are subjected to a Fourier decomposition. However, only low-frequency harmonic vibrations, expediently the 0.5th to 3rd order, and the associated spectral impulse responses are considered I of the speed curve of a working cycle of each cylinder. In normal engine operation, the speed curve of the crankshaft is now continuously recorded over the angle and the spectrum of the speed curve is analyzed in an analogous manner by Fourier decomposition of the curve curve obtained R of a working game. To represent the spectral speed curve, only the Fourier coefficients of the low-frequency vibrations are used, namely preferably the harmonics of the 0.5th to 3rd order, which are processed to form a line matrix. The spectral impulse responses I and the resultant from Fourier coefficients of the speed curve R can be represented for each harmonic as a vector pointer over the crank angle. If the resultant is zero, no correction of the injection quantities is necessary. However, if there is a resultant, this means that there is a reduced injection in a cylinder, and the resultant must be made zero by correcting the injection quantities of the individual injectors. The division of the total injection quantity required for the given load case takes place in such a way that the components of the resultant in the direction of the impulse response pointers with the impulse responses I be multiplied. The result is correction factors for the injection quantities. Cylinders pointing towards the resultant R are corrected more with a positive or negative sign than orthogonal ones. The mathematical operation that can accomplish the corresponding achievement is the formation of the dot product or the vectorial product from the resultant R and the spectral impulse responses I. The necessary data are available in matrix form for this. The matrix multiplication of impulse responses I with the vector of the spectral speed curve R results in values different from zero and leads to a correction of the injection quantities if there is a runout deviation in normal operation. The correction values, which are standardized, are fed to a controller and the injection quantities ΔQ are determined, which can be positive or negative and accordingly correct the injection quantities determined by the engine controller for each injector of a cylinder.

Die Erfindung wird dargestellt anhand der Zeichnungen mit Figuren 1 bis 4. Es zeigen:

  • Figur 1: Einen Drehzahlregelkreis mit den für die Drehschwingungsanalyse notwendigen Elementen in schematischer Darstellung;
  • Figur 2: Den Drehzahlverlauf der Kurbelwelle über dem Winkel für ein Arbeitsspiel des Motors;
  • Figur 3: Eine spektrale Darstellung der Impulsantwort I eines Zylinders;
  • Figur 4: Eine Zeigerdarstellung der Drehzahlanteile der Zylinder an der 0,5-ten Ordnung für einen Sechszylinder-Motor und zwar für einen gesunden Motor (Figur 4a), einen Motor mit fehlendem Injektor (Figur 4b) und für einen Motor mit korrigierter Einspritzmenge (4c).
  • The invention is illustrated by means of the drawings with FIGS. 1 to 4. The figures show:
  • Figure 1: A speed control loop with the elements necessary for torsional vibration analysis in a schematic representation;
  • Figure 2: The speed curve of the crankshaft over the angle for a working cycle of the engine;
  • Figure 3: A spectral representation of the impulse response I a cylinder;
  • FIG. 4: A pointer representation of the speed components of the cylinders in the 0.5th order for a six-cylinder engine, specifically for a healthy engine (FIG. 4a), an engine with no injector (FIG. 4b) and for an engine with corrected injection quantity ( 4c).
  • In Figur 1 ist ein Drehzahlregelkreis dargestellt, wie er beispielsweise aus der DE 195 15 481 A1 als bekannt hervorgeht. Mit Bezugsziffer 1 ein Dieselmotor bezeichnet, dessen nicht dargestellte Kurbelwelle mit einem Messrad 2 verbunden ist. Mit dem Messrad 2 und einem Messwertaufnehmer 3 kann der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgenommen werden. Mit einem Filter 4 und einem Filter 5 werden Störungen ausgeblendet, sowie eine Mittelung des Kurvenverlaufs durchgeführt, indem die aufgenommene Kurvenverläufe über mehrere Arbeitsspiele hinweg abgeglichen werden. Zur Rundlaufregelung wird im normalen Motorbetrieb ständig der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgezeichnet. Das Drehzahlsignal eines Arbeitsspieles ist beispielhaft in Figur 2 dargestellt. Der mit r gekennzeichnete Radius entspricht der momentanen Drehzahl beim Winkel . Der Drehzahlverlauf zeigt eine Deformation, wie sie beim Ausfall eines Zylinders auftritt. Durch Fourierzerlegung der Drehzahlverlaufskurve wird der spektrale Drehzahtverlauf erhalten mit den resultierenden Vektoren R 1 bis R n, wobei die Indizes den betrachteten Oberwellen entsprechen. Die entsprechende Operation wird in dem symbolisch dargestellten Funktionsblock 7 ausgeführt. Die durch Fourierzerlegung erhaltenen Vektoren R sind die Fourierkoeffizienten. Vorzugsweise werden nur die harmonischen Schwingungen der 0,5-ten bis 3-ten Ordnung betrachtet. Bei idealem Rundlauf treten keine resultierenden Anteile der entsprechenden Harmonischen auf oder sind zumindest vernachlässigbar. Real ergibt sich allerdings ein kleiner resultierender Vektor R , da die Oberwellenanteile am Umfang nicht gleichmäßig verteilt sind. Dieser Fall ist für einen Motor mit sechs Zylindern beispielhaft für die Harmonische der 0,5-ten Ordnung in Figur 4a dargestellt. Jeder Zylinder leistet näherungsweise den gleichen Beitrag zur Drehbeschleunigung, wie die Vektorzeiger I 1 bis I 6 verdeutlichen. In diesem Fall erfolgt keine Korrektur der aufgrund der vorgegebenen Soll-und Istdrehzahlen im Drehzahlregler 9 und von der Einspritzsoftware 10 ermittelten Einspritzmengen durch die jedem Zylinder zugeordneten Injektoren 11.In Figure 1, a speed control loop is shown, as it is known for example from DE 195 15 481 A1. Reference numeral 1 denotes a diesel engine, the crankshaft, not shown, is connected to a measuring wheel 2. With the measuring wheel 2 and a sensor 3, the speed curve of the crankshaft can be recorded over the angle. With a filter 4 and a filter 5, faults are masked out and the curve shape is averaged by comparing the recorded curve shapes over several work cycles. For concentricity control, the speed curve of the crankshaft is continuously recorded over the angle in normal engine operation. The speed signal of a work cycle is shown by way of example in FIG. 2. The radius marked with r corresponds to the current speed at the angle . The speed curve shows a deformation that occurs when a cylinder fails. By Fourier decomposition of the speed curve, the spectral speed curve is obtained with the resulting vectors R 1 to R n , where the indices correspond to the considered harmonics. The corresponding operation is carried out in the symbolically represented function block 7. The vectors obtained by Fourier decomposition R are the Fourier coefficients. Preferably only the harmonic vibrations of the 0.5th to 3rd order are considered. With ideal concentricity, no resulting parts of the corresponding harmonics occur or are at least negligible. In reality, however, there is a small resulting vector R , because the harmonic components are not evenly distributed over the circumference. This case is shown for an engine with six cylinders as an example for the harmonic of the 0.5th order in Figure 4a. Each cylinder makes approximately the same contribution to the rotational acceleration as the vector pointer I 1 to I 6 clarify. In this case, the injection quantities determined on the basis of the predetermined target and actual speeds in the speed controller 9 and by the injection software 10 are not corrected by the injectors 11 assigned to each cylinder.

    Die Einspritzmenge muss jedoch zylinderindividuell korrigiert werden, wenn, wie in Figur 4b dargestellt, eine auf die tieffrequenten Schwingungsanteile zurückgehende Resultierende R ungleich Null ist. Im entsprechenden Fall ist angenommen, dass ein Zylinder ausgefallen ist und eine Harmonische 0,5-ter Ordnung auftritt, die die dargestellte Phasenlage in Bezug auf die Zylinder hat.However, the injection quantity must be corrected individually for each cylinder if, as shown in FIG. 4b, a resultant due to the low-frequency vibration components R is not zero. In the corresponding case, it is assumed that a cylinder has failed and a harmonic of the 0.5th order occurs, which has the phase position shown with respect to the cylinders.

    Um zur Herstellung des Rundlaufs geeignete Korrekturfaktoren für die Einspritzmengen der Injektoren berechnen zu können, muss der Impulsanteil jedes Zylinders an der Drehzahl bekannt sein. Die entsprechenden drehzahlabhängigen Daten werden im Funktionsblock 8 bereit gehalten. Zur Feststellung des Impulsanteils eines Zylinders an der Drehgeschwindigkeit werden die Zylinder in einem Messlauf nacheinander einzeln abgeschaltet und die Drehzahl über dem Kurbelwinkel aufgezeichnet. Durch Vergleich mit dem Drehzahlverlauf des gesunden Motors erhält man aus der Differenz der beiden Kurvenverläufe neue Kurvenverläufe, die die Impulsantworten I des Motors auf die Abschaltung der Zylinder darstellen. Die Impulsantworten I werden einer Fouriertransformation unterzogen, wobei man die spektralen Impulsantworten I erhält. Es werden nur die auf die tieffrequenten harmonischen Schwingungen der 0,5-ten bis 3-ten Ordnung zurückgehenden Anteile betrachtet. Die spektrale Impulsantwort I = (I 0,5, I 1,0, I 1,5, I 2,0, I 2,5, I 3,0) eines Zylinders ist in Figur 3 dargestellt. Die Vektorzeiger verdeutlichen Betrag und Phase der entsprechenden Harmonischen. Die Impulsantworten I werden für die mathematische Verarbeitung in Matrixform abgelegt. Durch Bildung des skalaren Inprodukts der resultierenden Vektoren R mit den Impulsantworten I werden Korrekturfaktoren für die Einspritzmengen der einzelnen Injektoren erzeugt. Dies erfolgt in der Multiplikationsstelle 13. Das skalare Vektorprodukt bewirkt, dass nur die in Richtung der Impulsantwortvektoren liegenden Komponenten der Resultierenden R einen Beitrag zu den Korrekturfaktoren liefern, das heißt, dass kollineare Vektoren stark korrigiert werden und orthogonale Vektoren gar nicht korrigiert werden. In Figur 4c sind die Korrekturwerte in Form von Vektorpfeilen für die einzelnen Injektoren eingetragen. Die Korrekturfaktoren werden durch Multiplikation mit einem konstanten Faktor in Einspritzmengen ΔQ für jeden Injektor umgerechnet, die positiv oder negativ sein können und dementsprechend die vom Motorregler bestimmte Einspritzmenge Q für jeden Injektor eines Zylinders in einer Summationsstelle 12 positiv oder negativ korrigiert.
    Die Berechnung erfolgt nach folgenden Gleichungen:

  • Bildung des Skalarprodukts: R T* I = K oder:
    Figure 00070001
  • R T = Spektrum des Drehzahlverlaufs eines Arbeitsspiels (Transponierte)
  • I = Spektrale Impulsantworten
  • K = Korrekturfaktoren für die Einspritzmenge
  • In order to be able to calculate suitable correction factors for the injection quantities of the injectors in order to produce the concentricity, the pulse share of the speed of each cylinder must be known. The corresponding speed-dependent data are kept ready in function block 8. To determine the momentum component of a cylinder in the speed of rotation, the cylinders are switched off one after the other in a measuring run and the speed is recorded over the crank angle. By comparing the speed curve of the healthy engine, the difference between the two curve curves gives new curve curves that give the impulse responses I of the engine on the cylinder shutdown. The impulse responses I are subjected to a Fourier transformation, taking the spectral impulse responses I receives. Only the parts due to the low-frequency harmonic vibrations of the 0.5th to 3rd order are considered. The spectral impulse response I = ( I 0.5 , I 1.0 , I 1.5 , I 2.0 , I 2.5 , I 3,0 ) of a cylinder is shown in Figure 3. The vector pointers indicate the amount and phase of the corresponding harmonic. The impulse responses I are stored in matrix form for mathematical processing. By forming the scalar in-product of the resulting vectors R with the impulse responses I correction factors for the injection quantities of the individual injectors are generated. This takes place in the multiplication point 13. The scalar vector product has the effect that only the components of the resultants lying in the direction of the impulse response vectors R make a contribution to the correction factors, that is to say that collinear vectors are strongly corrected and orthogonal vectors are not corrected at all. The correction values are entered in the form of vector arrows for the individual injectors in FIG. 4c. The correction factors are converted by multiplication by a constant factor into injection quantities ΔQ for each injector, which can be positive or negative, and accordingly the injection quantity Q determined by the engine controller for each injector of a cylinder is corrected positively or negatively in a summation point 12.
    The calculation is based on the following equations:
  • Formation of the dot product: R T * I = K or:
    Figure 00070001
  • R T = spectrum of the speed curve of a work cycle (transposed)
  • I = Spectral impulse responses
  • K = correction factors for the injection quantity
  • Durch Multiplikation der skalaren Größe K mit dem Einheitsvektor e I der Impulsantwort wird K erhalten: K = K * e l By multiplying the scalar size K by the unit vector e I the impulse response K receive: K = K * e l

    Claims (9)

    1. Method for regulating the smooth running of the crankshaft of an internal combustion engine, the contributions of the individual cylinders of the internal combustion engine to the rotational acceleration being determined with the aid of the crankshaft speed characteristic, and the injection quantities of the injectors assigned to the cylinders being varied for the purpose of setting defined speed contributions to the speed characteristic, characterized in that a pulse response spectrum I of a working cycle is formed for each cylinder, at least for the harmonic of the 0.5th order, on the basis of calculated or measured crankshaft speed characteristic curves, in that in normal operation in each case the crankshaft speed characteristic is recorded over the angle of a working cycle, and the Fourier coefficients are determined by Fourier transformation as resultants R at least of the harmonic of the 0.5th order, and in that correction factors are subsequently obtained for the injection quantities of the individual cylinders by multiplying the components of the resultants R lying in the direction of the pulse response vectors by the pulse responses I and combining them by addition.
    2. Method for regulating smooth running according to Claim 1, characterized in that the pulse response spectrum I is obtained from the difference between the speed curve of the healthy engine and the speed curve of the engine with in each case one cylinder cut off for each cylinder by Fourier transformation of the differential speed curve.
    3. Method according to Claim 1 or 2, characterized in that the scalar product is formed from the pulse responses I and the Fourier coefficients R , the terms of which product represent in magnitude and direction, after multiplication by the unit vector, the correction factors for the injection quantities of each cylinder.
    4. Method according to Claim 1, 2 or 3, characterized in that the low-frequency components of a plurality of harmonics are determined by Fourier transformation from the courses of the curves, and correction factors for the injection quantities of each cylinder are represented therefrom.
    5. Method according to Claim 4, characterized in that the harmonics of the 0.5th to 3th order are considered.
    6. Method according to Claim 4, characterized in that the Fourier coefficients of the 0.5th and 1th order are used.
    7. Method according to Claim 5, characterized in that the harmonics of the 1.5th order are additionally taken into account.
    8. Method according to one of Claims 1 to 7,
      characterized in that the coefficients of the Fourier transformations are stored and processed in the form of matrices in an onboard computer.
    9. Method according to one of Claims 1 to 8, characterized in that the setting of the injection quantities of the individual cylinders of the healthy engine is corrected until the contributions of the cylinders, at least as regards low-frequency harmonics, are largely equal to the rotational acceleration, and in that the contributions of the individual cylinders to the speed characteristic are determined in relation to this speed characteristic.
    EP01993755A 2000-11-07 2001-11-02 Regulation of true running for diesel engines Expired - Lifetime EP1242738B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10055192A DE10055192C2 (en) 2000-11-07 2000-11-07 Concentricity control for diesel engines
    DE10055192 2000-11-07
    PCT/EP2001/012697 WO2002038936A1 (en) 2000-11-07 2001-11-02 Regulation of true running for diesel engines

    Publications (2)

    Publication Number Publication Date
    EP1242738A1 EP1242738A1 (en) 2002-09-25
    EP1242738B1 true EP1242738B1 (en) 2003-07-23

    Family

    ID=7662466

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01993755A Expired - Lifetime EP1242738B1 (en) 2000-11-07 2001-11-02 Regulation of true running for diesel engines

    Country Status (4)

    Country Link
    US (1) US6820593B2 (en)
    EP (1) EP1242738B1 (en)
    DE (2) DE10055192C2 (en)
    WO (1) WO2002038936A1 (en)

    Families Citing this family (37)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE522658C2 (en) * 2002-06-28 2004-02-24 Scania Cv Abp Method for identifying a fault associated with a particular cylinder in a multi-cylinder internal combustion engine and computer program for carrying out the method
    DE10235665A1 (en) * 2002-07-31 2004-02-12 Conti Temic Microelectronic Gmbh Regulating the operation of an internal combustion engine, involves determining a revolution rate signal and transforming it into an angular frequency range using a Hartley transformation
    DE10235105B4 (en) * 2002-08-01 2015-02-26 Robert Bosch Gmbh Method for operating an internal combustion engine, in particular of a motor vehicle
    DE10302806B4 (en) * 2003-01-24 2004-12-09 Siemens Ag Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine working with direct fuel injection and for controlling its injection valves
    US7231994B2 (en) 2003-11-24 2007-06-19 Daimlerchrysler Corporation Hybrid vehicle with integral generator for auxiliary loads
    DE102004010412B4 (en) * 2004-03-01 2018-03-15 Robert Bosch Gmbh Device for operating an internal combustion engine
    US7292933B2 (en) 2004-11-15 2007-11-06 Lotus Engineering, Inc. Engine misfire detection
    US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
    DE102005047829B3 (en) * 2005-10-05 2007-05-03 Universität Kassel Method for controlling of smooth running of reciprocating engines, involves selection of order so that odd multiple of half camshaft frequency with in row representation is taken into consideration, for generation of control divergence
    FI121150B (en) * 2005-11-30 2010-07-30 Waertsilae Finland Oy Apparatus and method for a piston combustion engine for identifying an uneven cylinder power ratio
    DE102006056860A1 (en) * 2006-12-01 2008-06-05 Conti Temic Microelectronic Gmbh Method and device for controlling the operation of an internal combustion engine
    DE102008021495B4 (en) * 2008-04-29 2019-09-19 Conti Temic Microelectronic Gmbh Method for balancing an injection system of an internal combustion engine
    FI122489B (en) * 2008-05-26 2012-02-15 Waertsilae Finland Oy Method and apparatus for stabilizing the diesel engine cylinders
    GB2463022B (en) * 2008-08-28 2012-04-11 Gm Global Tech Operations Inc A method for correcting the cylinder unbalancing in an internal combustion engine
    DE102008052245A1 (en) * 2008-10-18 2010-04-22 Conti Temic Microelectronic Gmbh Method for determining crank shaft torsional optimal operating method of internal combustion engine, involves determining speed signals of crank shaft under operating condition of internal combustion engine
    DE102008054215A1 (en) 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Method for trimming determination, particularly signal evaluation by Fourier analysis for synchronizing cylinders in internal-combustion engine, involves measuring signal by operating cycle of internal-combustion engine
    DE102009008742A1 (en) 2009-02-12 2010-08-19 Bayerische Motoren Werke Aktiengesellschaft Straight cylinder-internal combustion engine has crank mechanism with crankshaft, which is supported in crankshaft bearing of crankcase
    DE102011005289B3 (en) * 2011-03-09 2012-08-16 Continental Automotive Gmbh Method for evaluating measurement signal of e.g. self-activating internal combustion engine for motor car in energized operating state, involves enforcing identical injection quantities to cylinders in energized reference state
    US8626371B2 (en) * 2011-09-15 2014-01-07 General Electric Company Systems and methods for diagnosing auxiliary equipment associated with an engine
    EP2843219B1 (en) * 2012-04-24 2017-07-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
    US9606022B2 (en) 2012-08-31 2017-03-28 General Electric Company Systems and methods for diagnosing engine components and auxiliary equipment associated with an engine
    DE102012020490B3 (en) * 2012-10-10 2014-03-13 Mtu Friedrichshafen Gmbh Method for failure detection of injectors in an internal combustion engine, engine control unit and system for carrying out a method
    DE102012020489B4 (en) 2012-10-10 2014-04-30 Mtu Friedrichshafen Gmbh Method for adjusting the injection behavior of injectors in an internal combustion engine, engine control unit and system for adjusting an injection behavior
    DE102012020488B3 (en) * 2012-10-10 2014-03-20 Mtu Friedrichshafen Gmbh Method for torque control of an internal combustion engine and internal combustion engine
    DE102013222556A1 (en) * 2013-11-06 2015-05-07 Bayerische Motoren Werke Aktiengesellschaft Method for detecting defective injection nozzles of an internal combustion engine
    US9624851B2 (en) * 2014-02-12 2017-04-18 GM Global Technology Operations LLC Method of operating a vehicle powertrain having a gas phase fuelable engine
    FR3035157B1 (en) * 2015-04-16 2017-04-21 Continental Automotive France METHOD AND DEVICE FOR DETECTION OF REVERSE ROTATION OF AN INTERNAL COMBUSTION ENGINE
    US9605612B2 (en) * 2015-06-15 2017-03-28 GM Global Technology Operations LLC System and method for determining the speed of an engine when one or more cylinders of the engine are deactivated
    EP3165745A1 (en) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Internal combustion engine with injection amount control
    EP3165750A1 (en) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Internal combustion engine with fuel injector diagnosis
    EP3165747A1 (en) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Internal combustion engine with injection amount control
    CN109790786B (en) * 2016-09-16 2020-04-14 日产自动车株式会社 Method and device for controlling vehicle engine
    CA3076454A1 (en) * 2017-10-04 2019-04-11 The Board Of Trustees Of Western Michigan University Torque sensor for engines
    IT201800001107A1 (en) * 2018-01-16 2019-07-16 Ferrari Spa SYSTEM OF IDENTIFICATION AND SUPPRESSION OF A TORQUE DELIVERY UNBALANCE OF AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH TWO OR MORE CYLINDERS
    DE102018209253B4 (en) 2018-06-11 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Fourier diagnosis of a gas exchange behavior of an internal combustion engine
    JP7261189B2 (en) * 2020-01-31 2023-04-19 日立Astemo株式会社 INTERNAL COMBUSTION ENGINE CONTROL DEVICE AND INTERNAL COMBUSTION ENGINE CONTROL METHOD
    CN112761802B (en) * 2021-02-23 2023-02-17 上海新动力汽车科技股份有限公司 Sudden unloading speed regulating method for diesel engine

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4122139C2 (en) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Method for cylinder equalization with regard to the fuel injection quantities in an internal combustion engine
    DE19548604C1 (en) * 1995-09-14 1997-02-20 Mtu Friedrichshafen Gmbh Method for the cylinder-specific determination of relative differences in non-uniform cylinder torques in a piston internal combustion engine and application of the method
    SE512556C2 (en) * 1995-12-22 2000-04-03 Volvo Ab Method for reducing vibration in a vehicle and device for carrying out the method
    US6082187A (en) * 1998-12-18 2000-07-04 Caterpillar Inc. Method for detecting a power loss condition of a reciprocating internal combustion engine
    DE19633066C2 (en) * 1996-08-16 1998-09-03 Telefunken Microelectron Method for the cylinder-selective control of a self-igniting internal combustion engine
    US6021758A (en) 1997-11-26 2000-02-08 Cummins Engine Company, Inc. Method and apparatus for engine cylinder balancing using sensed engine speed
    US6189378B1 (en) * 1998-12-14 2001-02-20 Caterpillar Inc. Electronically controlled fuel injector trimming
    DE19859074A1 (en) * 1998-12-21 2000-06-29 Bosch Gmbh Robert Electronic control unit for equal setting of torque contributions of different cylinders of IC engine to their total torque with sensor for detecting first measure of running instability of IC engine in its engine braking operation
    US6668812B2 (en) * 2001-01-08 2003-12-30 General Motors Corporation Individual cylinder controller for three-cylinder engine
    US6546912B2 (en) * 2001-03-02 2003-04-15 Cummins Engine Company, Inc. On-line individual fuel injector diagnostics from instantaneous engine speed measurements

    Also Published As

    Publication number Publication date
    EP1242738A1 (en) 2002-09-25
    WO2002038936A1 (en) 2002-05-16
    DE50100412D1 (en) 2003-08-28
    DE10055192C2 (en) 2002-11-21
    US20030089338A1 (en) 2003-05-15
    DE10055192A1 (en) 2002-05-29
    US6820593B2 (en) 2004-11-23

    Similar Documents

    Publication Publication Date Title
    EP1242738B1 (en) Regulation of true running for diesel engines
    DE102020104290B4 (en) Misfire detection device for an internal combustion engine, misfire detection system for an internal combustion engine, data analysis device, controller for an internal combustion engine, method of detecting a misfire of an internal combustion engine, and reception executing device
    DE69205650T2 (en) Method and device for torque measurement of heat engines with internal combustion.
    EP3374617B1 (en) Method for the combined identification of a piston stroke phase difference, an inlet valve stroke phase difference and an outlet valve stroke phase difference of an internal combustion engine
    DE69004410T2 (en) Method and device to detect the state of combustion in a multi-cylinder internal combustion engine.
    DE102016117342B4 (en) Device for detecting a misfire
    DE112010000984B4 (en) Torque estimation system for an internal combustion engine
    DE10006341C2 (en) Control system for an internal combustion engine
    DE102008054690A1 (en) Injection amount calibrating method for injection system of internal-combustion engine of motor vehicle, involves providing physical variable determined from speed signal of internal-combustion engine for combustion characteristics
    EP0763725A2 (en) Procedure for determining the difference between the non-uniform cylinder torques in an internal combustion engine and application of the procedure
    DE102005016809A1 (en) Method and device for controlling the fuel metering in at least one combustion chamber of an internal combustion engine
    EP1703110A1 (en) Method for optimising the calibration of an internal combustion engine
    DE102008054215A1 (en) Method for trimming determination, particularly signal evaluation by Fourier analysis for synchronizing cylinders in internal-combustion engine, involves measuring signal by operating cycle of internal-combustion engine
    DE3403260C2 (en)
    EP3729042A1 (en) Method for operating a test stand
    EP3729041B1 (en) Method for operating a test stand
    DE102011077698B4 (en) Method and device for controlling the smooth running of an internal combustion engine
    DE4405340B4 (en) Method and device for adjusting the speed of a drive unit of a vehicle in idle
    EP2748449A1 (en) Method for operating an internal combustion engine
    DE102016204269B3 (en) Method for equalizing torque outputs of at least two cylinders of an internal combustion engine
    EP3026245B1 (en) Method for controlling a combustion machine
    EP1574835B1 (en) Method and controlling device for speed signal conditioning
    WO2012104122A1 (en) Method and device for modeling a torque efficiency of an internal combustion engine for fuel multi-injection in a combustion cycle
    DE102014108593A1 (en) Reduced torque fluctuation for engines with active fuel management
    EP2080885A2 (en) Method and device for monitoring a motor control unit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020619

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50100412

    Country of ref document: DE

    Date of ref document: 20030828

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031017

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040426

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20051024

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20051110

    Year of fee payment: 5

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20061102

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20101119

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101123

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111102

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50100412

    Country of ref document: DE

    Effective date: 20120601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120601