EP1241733B1 - Antenne PIFA avec fentes - Google Patents

Antenne PIFA avec fentes Download PDF

Info

Publication number
EP1241733B1
EP1241733B1 EP02290493A EP02290493A EP1241733B1 EP 1241733 B1 EP1241733 B1 EP 1241733B1 EP 02290493 A EP02290493 A EP 02290493A EP 02290493 A EP02290493 A EP 02290493A EP 1241733 B1 EP1241733 B1 EP 1241733B1
Authority
EP
European Patent Office
Prior art keywords
slots
antenna
patch
antenna according
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290493A
Other languages
German (de)
English (en)
Other versions
EP1241733A1 (fr
Inventor
Marc Edimo
Charles Ngounou Kouam
Christophe Grangeat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP1241733A1 publication Critical patent/EP1241733A1/fr
Application granted granted Critical
Publication of EP1241733B1 publication Critical patent/EP1241733B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the invention relates to antennas made according to the technique of pellets.
  • Such an antenna is typically used in a spectral domain including radio frequencies and microwave frequencies and more particularly in the GSM, DCS, PCS and UMTS bands.
  • antennas have a resonance frequency band. In transmission, when the antennas are excited in this frequency band by a power line, they maintain stationary electromagnetic waves. These standing waves are then coupled to electromagnetic waves radiated in space. In reception, the waves take the same forms but make the path in the opposite direction.
  • Various antennas of this type are known in the state of the art.
  • microstrips on a plane as an antenna for transmitting signals.
  • Conductive pads are disposed on the upper face of a dielectric substrate and a conductive layer is placed on the underside of the substrate. This conductive layer then serves as a ground plane.
  • the substrate typically has a rectangular planar shape and constant thickness.
  • a multi-band antenna is also described in the document FR-A-2,772,518 .
  • This antenna comprises a flat patch disposed on the upper surface of a dielectric substrate.
  • a ground layer is disposed on the lower surface of the dielectric substrate.
  • This antenna is of the quarter-wave type because a short-circuit conductor disposed on a wafer of the dielectric substrate connects the wafer to the ground layer.
  • This antenna has connection conductors for transmitting signals between the antenna and a signal processing device.
  • This antenna has three pellets placed on the upper surface of a substrate Styrofoam (trademark).
  • a ground layer is placed on the lower surface of the dielectric substrate.
  • a first pad for the low band is joined to a second pad for the high band.
  • These two pellets thus form a first bi-bonde element having a zigzag shape and comprising a feed.
  • This dual band element has a short circuit in the form of a junction with the ground layer.
  • a third pellet is positioned next to the second pellet to obtain a double resonance in the high bung, with an enlarged bandwidth.
  • the third pellet has a short circuit in the form of a junction with the ground.
  • the document US-A-4,766,440 describes an antenna having two half-wave resonances.
  • This antenna comprises a rectangular pellet, in which the resonance paths are established respectively in the width and the length of the pellet.
  • a U-shaped slit is formed in the pellet and does not reach the edges of this pellet.
  • the chip is connected to a coupling device provided with impedance transformation means. This impedance transformation makes it possible to adapt the coupling device to the different resonance frequencies used.
  • the document US-A-4 771291 describes an antenna having a pellet. This pellet has punctual short-circuits and straight slots formed in the pellet and not reaching the edges of this pellet.
  • Requirement WO 0036700 A discloses an antenna having a conductive patch with two sinuous slots, a ground, a supply link, a short circuit link connecting the patch to ground.
  • Double Bond Cavity-Bocked Quarter-wave patch antenna describes an antenna with quarter-wave resonances.
  • a first resonance is defined by the dimensions and characteristics of the pellet and the substrate.
  • a second resonance is obtained by using an adaptation system.
  • antennas have disadvantages. They require, on the one hand, large flat tablets that are incompatible with the small dimensions of the housings of mobile communication devices. In addition, these antennas require the mounting of capacitive loads to expand the bandwidth which increases the cost and complexity of the antenna. In addition, these antennas have a reduced plug width, especially in the frequency bung dedicated to UMTS.
  • These antennas are more expensive and have a low transmission or reception efficiency. These antennas also do not allow to easily adjust the resonant frequencies and the bung widths of these frequencies.
  • the invention thus relates to an antenna comprising a conductive pad having two sinuous slots, a ground, a short-circuit connection, connecting the pellet to the ground, a supply link connected to the pellet, the antenna having a diagram of radiation comprising a primary resonance band including frequencies between 1950 MHz and 2100 MHz and a width greater than 20%, the radiation pattern having a secondary resonance band including frequencies between 890 MHz and 950 MHz and a width greater than 10%, the chip containing a polygonal shape, the slots opening on the same edge of the chip, characterized in that the short-circuit connection is connected to the chip by the edge on which the slots open or by an adjacent edge.
  • the supply link is connected to the pellet by the edge on which the slots open or by an adjacent edge.
  • the supply and the short-circuit connection are arranged on either side of at least one of the slots.
  • a slot has a contour of length different from the length of the contour of the other slot.
  • the invention also relates to an antenna in which the difference in length between the contour of the slots is between 5 and 30%.
  • the mass is a conductive surface parallel to the surface of the pellet.
  • the distance between the slots is between 5 and 15mm.
  • the pellet is formed of a metal sheet.
  • the slots have substantially the same shape and the same orientation.
  • the slots have substantially the same shape and an opposite orientation.
  • the invention also relates to a radio communication apparatus comprising an antenna according to the invention.
  • the invention provides an antenna in which there are two sinuous slots coupled on a conductive pad.
  • the antenna has a radiation pattern with a resonance band of width greater than 20%. This resonance band typically covers several bungs of transmission frequencies, for example DCS, PCS and UMTS.
  • the following antenna will be described in its transmitter operation, in which it transforms an electric current into an electromagnetic field. It will be clear to one skilled in the art that the operation of the receiver antenna is similar, an electromagnetic field being transformed into electric current by the antenna.
  • the cut-off frequencies at -6 dB are determined on the measurement curve of the reflection coefficient of the antenna.
  • the resonance frequency range is determined by subtracting the cutoff frequency lower than the upper cutoff frequency.
  • the center frequency of the resonance band is then determined. This frequency is the median frequency between the cutoff frequencies.
  • the percent width of the resonance frequency band is the ratio of the resonant frequency range to the center frequency of the band, multiplied by 100.
  • the figure 1 presents a perspective view of an antenna according to one embodiment of the invention.
  • the antenna 1 has a conductive pad 2, in which a first slot 3 and a second slot 4 are made.
  • the conductive pad has a supply connection 5 and a short-circuit connection 6 connected to a ground 7.
  • a substrate 8 is interposed between the pad and the ground 7.
  • the supply link 5 is connected to a generating device and signal processing 9, which sends a signal in the form of electric current.
  • the pellet has a polygonal shape.
  • the tablet shown has a rectangular shape, but the invention is of course not limited to this type of shape.
  • the antenna of this embodiment has a resonance frequency band which will be called secondary thereafter. It also has a resonance frequency band that will be called primary and will be detailed later in the description.
  • the secondary resonance band is obtained by coupling the slots 3 and 4.
  • the slots 3 and 4 open on the same edge 25 of the pellet. As represented in figure 2 , the slots delimit a median portion 10, a first end or shank 11 and a second end or shank 12 in the pellet. These three parts are connected by an edge 26 of the pellet.
  • the chip 2 is supplied by the power supply link 5.
  • the power supply link 5 is disposed on the first end 11, on the edge 25 on which open the slots 3 and 4.
  • the short-circuit connection 6 is disposed on the second end 12, on the edge 25.
  • the supply of the chip generates a first current electrical power from the power supply 5, bypassing the slot 3 and returning through the middle portion 10 to the edge 25.
  • the electric current generates an electromagnetic coupling.
  • This electromagnetic coupling excites the slot 4.
  • a second electric current is then generated.
  • This second electric current starts from the short-circuit connection 6, bypasses the slot 4 and returns through the middle part 10 towards the edge 25.
  • the first and second electric currents thus add up in the middle part 10.
  • the electric currents generate a strong electromagnetic radiation at the zones 21, 22 and 23, represented in dashed line at the figure 2 .
  • the radiation has two resonant frequencies, respectively defined by the dimensions of the slots 3 and 4.
  • the wavelength of the electromagnetic field corresponding to the resonance of each slot is defined by the length of the contour of this slot.
  • These resonances are of the quarter-wave type, since the short-circuit connection 6 between the chip 2 and the mass 7 imposes an electric field node.
  • the length of the electrical path is of the order of ⁇ / 4, ⁇ being the wavelength in air or vacuum.
  • the conductive pad being short-circuited via the short-circuit connection 6, the antenna dimensions can thus be reduced for a given resonant frequency.
  • the short-circuit link 6 preferably has an impedance sufficiently low to impose this electric field node.
  • the secondary frequency band is thus formed of two strongly coupled resonances generated respectively by the first and second slots.
  • the resonant frequencies are not superimposed and are close enough to generate an enlarged resonant frequency band.
  • the difference in length of the contours is preferably between 5 and 30%.
  • the resonance frequencies are thus distinct so as not to be superimposed and close enough to widen the resonance frequency band.
  • Suitable dimensions of the chip and the contour of the slots make it possible to generate a secondary frequency band including the GSM band and / or the E-GSM band and more particularly the frequencies between 890 and 950 MHz.
  • the band thus formed has a width greater than 10%. In addition, the efficiency in this band is greater than 70%.
  • the speed of propagation of electric currents is close to the speed of light.
  • the flow of currents appears approximately as if the pellet was fed by the supply link 5 and by the short-circuit connection 6.
  • the path of the electric currents is similar to the path in a structure which would present two isolated pellets but enough close to each other and each having a slot and a feed link.
  • the primary resonant frequency band also uses the coupling of the slots 3 and 4.
  • An electric current is generated and passes through the first end 11 of the supply link to the edge 26. This electric current generates an induced current which flows through the mid-portion from the edge 25 to the edge 26. The latter electric current also generates an induced current which flows through the second end from the short-circuit link to the edge 26.
  • the electric currents focus on the edge 26 and generate a strong electromagnetic radiation in the zone 24 shown in dashed lines at the figure 2 .
  • the radiation thus has at least two resonant frequencies, defined mainly by the dimensions of the pellet.
  • the length of the pellet is here the determining parameter of the wavelength of the resonant frequencies. These resonances are also of the quarter-wave type because of the short-circuit connection 6 between the chip 2 and the ground 7.
  • the length of the electrical path is of the order of ⁇ / 4.
  • the primary frequency band is thus formed of at least two coupled resonances. These resonances are also influenced by the geometry and the length of the slot outline.
  • the resonant frequencies in this band are higher than in the secondary band because the path of the electric current is lower here.
  • the resonant frequencies are not superimposed and are close enough to generate an enlarged resonant frequency band.
  • the band thus formed has a width greater than 20%. In addition, the efficiency in this band is greater than 70%.
  • the short-circuit link 6 and the power supply link 5 are preferably arranged on the same edge of the conductive pad. In this case, the coupling of the resonance modes is improved. An enlarged bandwidth is then obtained.
  • the supply and short-circuit connections are preferably arranged on the edge or on an adjacent edge, as shown in FIG. figure 3 .
  • the short-circuit link is thus preferably placed in zone 27.
  • the feed link is preferably placed in zone 28.
  • the orientation of the contour of the slots can of course be opposite to that shown, with a similar position the short-circuit connection and the power connection.
  • the resonant frequencies as well as the adaptation levels can be modified.
  • the links 5 and 6 are placed in suitably selected locations.
  • the power link and / or the short-circuit link on the edges of the chip. For example, by arranging the feed link on one edge of the wafer, the level of adaptation is improved. A decreased reflection coefficient is then obtained, more particularly in the primary resonant frequency band.
  • the supply link and the short circuit link are preferably located on either side of one of the slots. By means of both sides, a line drawn between the supply and the short-circuit connection passes through a slot.
  • these slots have a sinuous shape, deviating from the right segment, to present a contour of increased length.
  • a sinuous contour allows to deform the path of the electric current.
  • the figure 4 shows examples of shapes of sinuous slots adapted.
  • the shape of the slots can for example be close to a V, a U, an arc of a circle or a rectangle not closing.
  • the slots preferably have a contour of similar shape.
  • the figure 5 shows a particular shape of sinuous slot to significantly reduce the size of the pellet and antenna.
  • This slot is composed of straight segments spirally wound. This type of slot makes it possible to reduce by 20% the dimensions of the antenna with respect to a V-shaped slot antenna.
  • the relative orientation of the contours of the slots makes it possible to modify the characteristics of the antenna.
  • the slots have contours of the same orientation as shown in FIGS. Figures 1 to 3 the width of the coupling frequency band is increased.
  • the same orientation of the contours makes it possible to add the electric current in the median portion 10. This electric current is greater and then generates an increased induced current around the slot 4. This results in increased amplitude and bandwidth radiation. expanded.
  • the contours of the slots have opposite orientations, the emitted radiation has a better symmetry at the expense of the bandwidth and the radiation amplitude.
  • the distance between the slots is preferably greater than 5mm.
  • distance between the slots is meant the distance between two respective points of each slot, the closest.
  • the broadening of the resonance frequency band is particularly sensitive for the primary resonant frequency band.
  • the mass 7 in the form of a metal plate.
  • Such a mass makes it possible to limit the radiation power intercepted by the user of the device.
  • the mass 7 and the conductive pad 2 are separated by a substrate 8.
  • the substrate 8 is preferably of constant thickness.
  • a substrate thickness is preferably chosen which allows the frequencies to be tuned and the bandwidths to be widened. By increasing the thickness of the substrate, the resonance frequency bands can be expanded.
  • the thickness of the substrate 8 is limited by the dimensions of the radiocommunication apparatus.
  • a substrate 8 is preferably used, one edge of which is at the same level or set back from an edge of the conductive pad 2. The mounting of the Antenna is thus simplified. To improve the gain, it is also desirable to produce such a substrate with a material whose relative permittivity is close to that of air, preferably less than 2. It will also be preferable to choose a material having a very low dissipation factor.
  • the substrate 8 made of polymethacrylimide foam or a laminate based on a fluoro-polymer such as PTFE. Such a foam also provides good mechanical strength.
  • the supply link 5 is coupled to a transmitter or a signal processor 9 by a connecting line 14.
  • This connection can be made for example by means of a coaxial cable.
  • the inner conductor of the coaxial cable can be used to connect the chip to the treatment member.
  • the outer conductor of the coaxial cable connects the mass 7 to the treatment member.
  • the feed link 5 it is useful for the feed link 5 to be formed of a tongue extending from the chip and extending to form the connecting line. It is possible to make the power connection in the form of a tab formed in the conductive pad.
  • a processing unit is operable to work at predetermined working frequencies close to the useful resonant frequencies of the antenna, for example working frequencies in passbands centered on the resonant frequencies. It is possible to use a composite processing member, which comprises a plurality of elements, each of these elements being permanently tuned to the working frequencies. It is also possible to use a processing element having a tunable element on the different working frequencies.
  • the input impedance presented by the antenna is equal to the output impedance of the transmitter or the signal processing device 9.
  • this impedance is set at 50 ohms to obtain minimal losses.
  • the link 6 is preferably formed of a conductive tab extending on a wafer of the substrate 8. In this case it is also possible to make the short-circuit connection in the form of a protruding tab of the conductive pad.
  • the conductive pad may also have a tab at the short circuit portion of the chip.
  • a protruding tab is provided on one edge of the short-circuit part.
  • This tongue is preferably in alignment with the conductive pad. The deflection of this tab makes it possible to modify the resonant frequencies of the antenna.
  • This tab also makes it possible to widen the resonance bandwidths of the antenna.
  • This tongue can have a length of 10mm for a width of 6mm. This tongue is preferably located on one of the ends or tails of the pellet.
  • the Figures 6 and 7 represent an antenna according to the invention.
  • the pellet has a thickness of 100 ⁇ m and is made of copper.
  • the power link is a 1mm wide tab.
  • the short circuit link is a 3mm wide tongue.
  • the slot has a width of 1mm.
  • the substrate is a polymethacrylimide foam having a relief of 1 mm on 3 of its faces.
  • the mass is a PCB of 44mm by 110mm.
  • the figure 8 represents a spectrum of the reflection frequencies at the input, measured on the antenna of the Figures 6 and 7 .
  • a low reflection of the antenna at a given frequency corresponds to a resonance of the antenna.
  • Two frequencies are complementary to form an extended secondary resonant frequency band B1 between 1020 MHz and 1260 MHz.
  • the center frequency is 1145 MHz; The bandwidth is thus 21% for this band.
  • Resonance frequencies are also complementary to form an expanded primary resonant frequency band B2 between 2005MHz and 2740MHz.
  • the center frequency is 2350MHz.
  • the width of this band is approximately 30%.
  • the frequency bands are easily adapted to cover GSM, DCS, PCS and UMTS.
  • the placement of the antenna in the casing of a mobile phone generally lowers the center frequency of the resonant frequency bands, maintaining a constant percentage bandwidth.
  • the frequency bands are just shifted.
  • the presence of a battery, earpiece, microphone, electronic components, or the media card also changes the value of the center frequency of a resonance frequency band.
  • frequency bands B1 and B2 respectively including the bands E-GSM and DCS-PCS-UMTS respectively.
  • the E-GSM band has a width of 8.7%.
  • the band from DCS to UMTS has a width of 25%. The characteristics of the antenna are thus amply sufficient to cover these bands.
  • the invention also relates to a radio communication apparatus comprising an antenna as described above.
  • the antenna may be disposed within a protective housing of the apparatus.
  • Such a manufacturing method comprises a step of cutting two sinuous slots in a metal sheet.
  • this method comprises a step of cutting a short-circuit tab.
  • the method comprises a step of cutting a supply link.
  • the method comprises a step of cutting an electrical connection over part of the width of the metal sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Description

  • L'invention porte sur les antennes réalisées selon la technique des pastilles. Une telle antenne est typiquement utilisée dans un domaine spectral incluant les radiofréquences et les hyperfréquences et plus particulièrement dans les bandes GSM, DCS, PCS et UMTS.
  • La plupart des antennes comportent une bande de fréquence de résonance. En émission, lorsque les antennes sont excitées dans cette bande de fréquence par une ligne d'alimentation, elles entretiennent des ondes électromagnétiques stationnaires. Ces ondes stationnaires sont ensuite couplées à des ondes électromagnétiques rayonnées dans l'espace. En réception, les ondes prennent les mêmes formes mais effectuent le trajet en sens inverse. Différentes antennes de ce type sont connues dans l'état de la technique.
  • Il est connu d'utiliser des microrubans sur un plan comme antenne pour transmettre des signaux. On dispose des pastilles conductrices sur la face supérieure d'un substrat diélectrique et on place une couche conductrice sur la face inférieure du substrat. Cette couche conductrice sert alors de plan de masse électrique. Le substrat a typiquement une forme plane rectangulaire et d'épaisseur constante.
  • Une antenne multi-bandes est également décrite dans le document FR-A-2 772 518 . Cette antenne comporte une pastille plate disposée sur la surface supérieure d'un substrat diélectrique. Une couche de masse est disposée sur la surface inférieure du substrat diélectrique. Cette antenne est du type quart d'onde car un conducteur de court-circuit, disposé sur une tranche du substrat diélectrique, relie la pastille à la couche de masse. Cette antenne présente des conducteurs de raccordement permettant la transmission de signaux entre l'antenne et un dispositif de traitement de signal.
  • Une publication présentée à la conférence de Davos AP 2000 par Ollikainen, Kivekäs, Toropainen et Vainikainen, fait état d'une antenne multi-bandes. Cette antenne comporte trois pastilles placées sur la surface supérieure d'un substrat en Styrofoam (marque déposée). Une couche de masse est placée sur la surface inférieure du substrat diélectrique. Une première pastille destinée à la bande basse est jointe à une deuxième pastille destinée à la bande haute. Ces deux pastilles forment ainsi un premier élément bi-bonde oyant une forme en zigzag et comportant une alimentation. Cet élément bi-bande comporte un court-circuit sous forme d'une jonction avec la couche de masse. Une troisième pastille est positionnée à côté de la deuxième pastille pour obtenir une double résonance dans la bonde haute, avec une bande passante élargie. La troisième pastille comporte un court-circuit sous forme de jonction avec la masse.
  • Le document Novel meandered planar inverted F-antenna for triple frequency operation publié dans Microwave and optical technology letters page 58, volume 27 N°1 du 5 octobre 2000, décrit une antenne muti-bandes. Cette antenne présente trois pastilles placées dans un même plan qu'une masse, suivant un motif "en méandres". Ces trois pastilles comportent une unique alimentation.
  • Le document US-A- 4 766 440 décrit une antenne présentant deux résonances demi-onde. Cette antenne comprend une pastille rectangulaire, dans laquelle les trajets de résonance s'établissent respectivement dans la largeur et la longueur de la pastille. Une fente en forme de U est ménagée dans la pastille et n'atteint pas les bords de cette pastille. La pastille est reliée à un dispositif de couplage, muni de moyens de transformation d'impédance. Cette transformation d'impédance permet d'adapter le dispositif de couplage aux différentes fréquences de résonance utilisées.
  • Le document US-A-4 771291 décrit une antenne présentant une pastille. Cette pastille présente des courts-circuits ponctuels et des fentes droites ménagées dans la pastille et n'atteignant pas les bords de cette pastille.
  • La demande PCT au nom du demandeur, non publiée à la date de dépôt de la présente demande et présentant le numéro de dépôt FR001586 , décrit une antenne présentant une pastille conductrice avec une masse, une liaison d'alimentation, une liaison de court-circuit reliant la pastille à la masse et une fente sinueuse réalisée dans la pastille conductrice.
  • La demande WO 0036700 A décrit une antenne présentant une pastille conductrice avec deux fentes sinueuses, une masse, une liaison d'alimentation, une liaison de court-circuit reliant la pastille à la masse.
  • Le document IEEE Antennas and propagation society international symposium digest, Newprt Beach, June 18-23 1995, pages 2124-2127 Boarg et al "Dual Bond Cavity-Bocked Quarter-wave patch antenna" décrit une antenne présentant des résonances du type quart d'onde. Une première résonance est définie par les dimensions et les caractéristiques de la pastille et du substrat. Une deuxième résonance est obtenue par utilisation d'un système d'adaptation.
  • Ces antennes présentent des inconvénients. Elles nécessitent d'une part des pastilles plates de grandes dimensions, incompatibles avec les dimensions réduites des boîtiers d'appareils de communication mobiles. D'outre part, ces antennes nécessitent le montage de charges capacitives pour élargir la bande passante ce qui accroît le coût et la complexité de l'antenne. En outre, ces antennes présentent une largeur de bonde réduite, notamment dans la bonde de fréquence dédiée à l'UMTS.
  • Ces antennes sont de plus coûteuses et présentent un faible rendement d'émission ou de réception. Ces antennes ne permettent pas non plus d'ajuster aisément les fréquences de résonance et les largeurs de bonde de ces fréquences.
  • II existe donc un besoin pour une antenne qui résolve ces différents problèmes.
  • L'invention concerne ainsi une antenne comprenant une pastille conductrice présentant deux fentes sinueuses, une masse, une liaison de court-circuit, reliant la pastille à la masse, une liaison d'alimentation reliée à la pastille,l'antenne présentant un diagramme de rayonnement comportant une bande de résonance primaire incluant les fréquences entre 1950MHz et 2100MHz et de largeur supérieure à 20%, le diagramme de rayonnement présentant une bande de résonance secondaire incluant les fréquences entre 890MHz et 950MHz et de largeur supérieure à 10%, la pastille présentant une forme polygonale, les fentes débouchant sur un même bord de la pastille,caractérisée en ce que, la liaison de court-circuit est reliée à la pastille par le bord sur lequel débouchent les fentes ou par un bord adjacent.
  • Selon une variante, la liaison d'alimentation est reliée à la pastille par le bord sur lequel débouchent les fentes ou par un bord adjacent.
  • Selon une autre variante, la liaison d'alimentation et la liaison de court-circuit sont disposées de part et d'autre d'au moins une des fentes.
  • Selon encore une variante, une fente présente un contour de longueur différente de la longueur du contour de l'autre fente.
  • L'invention concerne également une antenne dons laquelle la différence de longueur entre le contour des fentes est comprise entre 5 et 30%.
  • Selon une variante, la masse est une surface conductrice parallèle à la surface de la pastille.
  • Selon encore une variante, la distance entre les fentes est comprise entre 5 et 15mm.
  • Selon encore une autre variante, la pastille est formée d'un feuillet métallique.
  • Selon une autre variante, les fentes ont sensiblement la même forme et la même orientation.
  • Selon encore une variante, les fentes ont sensiblement la même forme et une orientation opposée.
  • L'invention concerne également un appareil de radiocommunication comprenant une antenne selon l'invention.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes de réalisation de l'invention, donnée à titre d'exemple et en référence aux dessins annexés qui montrent :
    • figure 1, une vue en perspective d'une antenne selon un premier mode de réalisation de l'invention;
    • figure 2, une vue de dessus d'une variante d'antenne;
    • figure 3, une vue de dessus des dispositions possibles des liaisons de court-circuit et d'alimentation;
    • figure 4, une représentation schématique de motifs de fentes;
    • figure 5, une représentation schématique d'un motif de fente préférentiel;
    • figure 6, une vue de dessus d'un exemple d'antenne détaillé;
    • figure 7, une vue de côté de l'antenne de la figure 6;
    • figure 8, un diagramme de spectre des fréquences de réflexion de l'antenne des figures 6 et 7.
  • L'invention propose une antenne dans laquelle on dispose deux fentes sinueuses couplées sur une pastille conductrice. L'antenne présente un diagramme de rayonnement avec une bande de résonance de largeur supérieure à 20%. Cette bande de résonance couvre typiquement plusieurs bondes de fréquences de transmission, par exemple le DCS, le PCS et l'UMTS.
  • L'antenne qui suit va être décrite dans son fonctionnement en émetteur, dans lequel elle transforme un courant électrique en champ électromagnétique. Il apparaîtra clairement à l'homme de métier que le fonctionnement de l'antenne en récepteur est similaire, un champ électromagnétique étant transformé en courant électrique par l'antenne.
  • Dans la description qui suit, pour déterminer la largeur en pourcentage d'une bande de fréquence de résonance, on détermine les fréquences de coupure à - 6dB sur la courbe de mesure du coefficient de réflexion de l'antenne. On détermine la plage de fréquence de résonance en soustrayant la fréquence de coupure inférieure à la fréquence de coupure supérieure. On détermine ensuite la fréquence centrale de la bande de résonance. Cette fréquence est la fréquence médiane entre les fréquences de coupure. La largeur en pourcentage de la bande de fréquence de résonance est le rapport entre la plage de fréquence de résonance et la fréquence centrale de la bande, multiplié par 100.
  • La figure 1 présente une vue en perspective d'une antenne selon un mode de réalisation de l'invention. L'antenne 1 présente une pastille conductrice 2, dans laquelle une première fente 3 et une deuxième fente 4 sont réalisées. La pastille conductrice présente une liaison d'alimentation 5 et une liaison de court-circuit 6 reliée à une masse 7. Un substrat 8 est interposé entre la pastille et la masse 7. La liaison d'alimentation 5 est reliée à un dispositif de génération et de traitement de signaux 9, qui envoie un signal sous forme de courant électrique.
  • La pastille présente une forme polygonale. La pastille représentée a une forme rectangulaire mais l'invention n'est bien entendu pas limitée à ce type de forme.
  • L'antenne de ce mode de réalisation présente une bande de fréquence de résonance que l'on nommera secondaire par la suite. Elle présente également une bande de fréquence de résonance que l'on nommera primaire et qui sera détaillée plus loin dans la description. La bande de résonance secondaire est obtenue par couplage des fentes 3 et 4. Les fentes 3 et 4 débouchent sur un même bord 25 de la pastille. Comme représenté à la figure 2, les fentes délimitent une partie médiane 10, une première extrémité ou queue 11 et une deuxième extrémité ou queue 12 dans la pastille. Ces trois parties sont reliées par un bord 26 de la pastille. La pastille 2 est alimentée par la liaison d'alimentation 5. La liaison d'alimentation 5 est disposée sur la première extrémité 11, sur le bord 25 sur lequel débouchent les fentes 3 et 4. La liaison de court-circuit 6 est disposée sur la deuxième extrémité 12, sur le bord 25. L'alimentation de la pastille génère un premier courant électrique partant de la liaison d'alimentation 5, contournant la fente 3 et revenant par la partie médiane 10 vers le bord 25. En passant par la partie médiane 10, le courant électrique génère un couplage électromagnétique. Ce couplage électromagnétique excite la fente 4. Un deuxième courant électrique est alors généré. Ce deuxième courant électrique part de la liaison de court-circuit 6, contourne la fente 4 et revient par la partie médiane 10 vers le bord 25. Les premier et deuxième courant électriques s'ajoutent donc dans la partie médiane 10.
  • Les courants électriques génèrent un fort rayonnement électromagnétique au niveau des zones 21, 22 et 23, représentées en trait mixte à la figure 2. Le rayonnement présente deux fréquences de résonance, définies respectivement par les dimensions des fentes 3 et 4. La longueur d'onde du champ électromagnétique correspondant à la résonance de chaque fente est définie par la longueur du contour de cette fente. Ces résonances sont de type quart d'onde, car la liaison de court-circuit 6 entre la pastille 2 et la masse 7 impose un noeud de champ électrique. Ainsi, la longueur du chemin électrique est de l'ordre de λ/4, λ étant la longueur d'onde dans l'air ou le vide. La pastille conductrice étant court-circuitée par l'intermédiaire de la liaison de court-circuit 6, les dimensions de l'antenne peuvent ainsi être réduites pour une fréquence de résonance donnée. La liaison de court-circuit 6 présente de préférence une impédance suffisamment basse pour imposer ce noeud de champ électrique.
  • La bande de fréquence secondaire est ainsi formée de deux résonances fortement couplées, générées respectivement par les première et deuxième fentes. Les fréquences de résonance ne sont pas superposées et sont suffisamment proches pour générer une bande de fréquence de résonance élargie. Il est pour cela souhaitable que les fentes présentent un contour de longueur légèrement différente l'une de l'autre. La différence de longueur des contours est de préférence comprise entre 5 et 30%. Les fréquences de résonance sont ainsi distinctes pour ne pas être superposées et suffisamment proches pour élargir la bande de fréquence de résonance. Des dimensions appropriées de la pastille et du contour des fentes permettent de générer une bande de fréquence secondaire incluant la bande GSM et/ou la bande E-GSM et plus particulièrement les fréquences entre 890 et 950 MHz. La bande ainsi formée présente une largeur supérieure à 10%. De plus, l'efficacité dans cette bande est supérieure à 70%.
  • La vitesse de propagation des courants électriques est proche de la vitesse de la lumière. Ainsi, la circulation des courants apparaît approximativement comme si la pastille était alimentée par la liaison d'alimentation 5 et par la liaison de court-circuit 6. Le trajet des courants électriques est similaire au trajet dans une structure qui présenterait deux pastilles isolées mais assez proches l'une de l'autre et présentant chacune une fente et une liaison d'alimentation.
  • La bande de fréquence de résonance primaire utilise également le couplage des fentes 3 et 4. Un courant électrique est généré et traverse la première extrémité 11 de la liaison d'alimentation jusqu'au bord 26. Ce courant électrique génère un courant induit qui traverse la partie médiane depuis le bord 25 jusqu'au bord 26. Ce dernier courant électrique génère également un courant induit qui traverse la deuxième extrémité depuis la liaison de court-circuit jusqu'au bord 26.
  • Les courants électriques se concentrent sur le bord 26 et génèrent un fort rayonnement électromagnétique dans la zone 24 représentée en pointillés à la figure 2. Le rayonnement présente ainsi au moins deux fréquences de résonance, définies principalement par les dimensions de la pastille. La longueur de la pastille est ici le paramètre déterminant de la longueur d'onde des fréquences de résonance. Ces résonances sont également de type quart d'onde du fait de la liaison de court-circuit 6 entre la pastille 2 et la masse 7. Ainsi, la longueur du chemin électrique est de l'ordre de λ/4.
  • La bande de fréquence primaire est ainsi formée d'au moins deux résonances couplées. Ces résonances sont également influencées par la géométrie et la longueur du contour des fentes. Les fréquences de résonance dans cette bande sont plus élevées que dans la bande secondaire car le trajet du courant électrique est ici inférieur. Les fréquences de résonance ne sont pas superposées et sont suffisamment proches pour générer une bande de fréquence de résonance élargie. Il est également souhaitable pour cette bande de fréquence que les fentes présentent un contour de longueur légèrement différente l'une de l'autre. Des dimensions appropriées de la pastille et du contour des fentes permettent de générer une bande de fréquence primaire incluant la bande UMTS et la bande PCS, et plus particulièrement les fréquences entre 1950 et 2100MHz. La bande ainsi formée présente une largeur supérieure à 20%. De plus, l'efficacité dans cette bande est supérieure à 70%.
  • La liaison de court-circuit 6 et la liaison d'alimentation 5 sont de préférence disposées sur un même bord de la pastille conductrice. Dans ce cas, le couplage des modes de résonance est amélioré. On obtient alors une largeur de bande de élargie. De manière générale la liaison d'alimentation et la liaison de court-circuit sont de préférence disposées sur le bord 25 ou sur un bord adjacent, comme cela est représenté à la figure 3. La liaison de court-circuit est ainsi de préférence placée dans la zone 27. La liaison d'alimentation est de préférence placée dans la zone 28. L'orientation du contour des fentes peut bien entendu être opposée à celle représentée, avec une position similaire de la liaison de court-circuit et de la liaison d'alimentation.
  • En modifiant la position relative de la liaison d'alimentation par rapport à la liaison de court-circuit, on peut modifier les fréquences de résonance ainsi que les niveaux d'adaptation. Pour cela, on place les liaisons 5 et 6 en des emplacements choisis de manière adéquate. Pour améliorer le gain et faciliter la fabrication de l'antenne, il est également préférable de disposer la liaison d'alimentation et/ou la liaison de court-circuit sur les bords de la pastille. En disposant par exemple la liaison d'alimentation sur un bord de la pastille, on améliore le niveau d'adaptation. On obtient alors un coefficient de réflexion diminué, plus particulièrement dans la bande de fréquence de résonance primaire.
  • La liaison d'alimentation et la liaison de court-circuit sont de préférence situées de part et d'autre d'une des fentes. On entend par de part et d'autre, qu'une ligne tracée entre la liaison d'alimentation et la liaison de court-circuit traverse une fente.
  • Selon une variante, on peut également coupler les fréquences de résonances des fentes pour accroître l'amplitude du champ électromagnétique émis. On utilise pour cela des fentes présentant une longueur de contour extrêmement proche.
  • Par ailleurs, ces fentes présentent une forme sinueuse, s'écartant du segment de droite, afin de présenter un contour de longueur accrue. Un contour sinueux permet de déformer le trajet du courant électrique. La figure 4 montre des exemples de forme de fentes sinueuses adaptées. La forme des fentes peut par exemple être proche d'un V, d'un U, d'un arc de cercle ou d'un rectangle ne se refermant pas. Ainsi, pour une longueur de contour de fente donnée, on pourra utiliser des fentes occupant une place moindre dans la pastille conductrice. Les dimensions de l'antenne peuvent ainsi être réduites. Les fentes présentent de préférence un contour de forme similaire.
  • Il est préférable d'utiliser des fentes de formes sinueuses composées de segments droits. Ce type de forme facilite la fabrication du fait de la simplicité de leur contour. Le réglage des fréquences de l'antenne est également facilité.
  • La figure 5 montre une forme particulière de fente sinueuse permettant de réduire sensiblement les dimensions de la pastille et de l'antenne. Cette fente est composée de segments droits enroulés en spirale. Ce type de fente permet de réduire d'environ 20% les dimensions de l'antenne par rapport à une antenne à fente en forme de V.
  • L'orientation relative des contours des fentes permet de modifier les caractéristiques de l'antenne. Ainsi, lorsque les fentes présentent des contours de même orientation comme représenté aux figures 1 à 3, la largeur de la bande de fréquence de couplage est accrue. Une même orientation des contours permet d'additionner le courant électrique dans la partie médiane 10. Ce courant électrique est plus important et génère alors un courant induit accru autour de la fente 4. On obtient alors un rayonnement d'amplitude accrue et à bande passante élargie. Lorsque les contours des fentes présentent des orientations opposées, le rayonnement émis présente une meilleure symétrie au détriment de la bande passante et de l'amplitude de rayonnement.
  • En modifiant la distance entre les fentes, on modifie le couplage entre celles-ci. Ainsi, en augmentant la distance entre les fentes on réduit le couplage mais on augmente la largeur des bandes passantes. La distance entre les fentes est de préférence supérieure à 5mm. Par distance entre les fentes on entend la distance entre deux points respectifs de chaque fente, les plus rapprochés. L'élargissement de la bande de fréquence de résonance est particulièrement sensible pour la bande de fréquence de résonance primaire. Lorsqu'on augmente la distance entre les fentes au-delà de 15 mm, les fréquences de résonance deviennent distinctes et non couplées, et ne forment plus une bande de résonance.
  • Il est possible de réaliser la masse 7 sous forme de plaque métallique. Il est dans ce cas souhaitable d'utiliser une masse 7 formée d'une surface conductrice plane, parallèle à la pastille conductrice 2. Une telle masse permet de limiter la puissance de rayonnement interceptée par l'utilisateur du dispositif. Dans le mode de réalisation présenté à la figure 1, la masse 7 et la pastille conductrice 2 sont séparées par un substrat 8.
  • Le substrat 8 est de préférence d'épaisseur constante. On choisit de préférence une épaisseur de substrat qui permet d'accorder les fréquences et d'élargir les bandes passantes. En augmentant l'épaisseur du substrat, on peut élargir les bandes de fréquences de résonance. L'épaisseur du substrat 8 est limitée par les dimensions de l'appareil de radiocommunication. De façon à permettre l'utilisation d'une languette de retour de masse par exemple, on utilise de préférence un substrat 8 dont un bord est au même niveau ou en retrait par rapport à un bord de la pastille conductrice 2. Le montage de l'antenne est ainsi simplifié. Pour améliorer le gain, il est également souhaitable de réaliser un tel substrat avec un matériau dont la permittivité relative est proche de celle de l'air, de préférence inférieure à 2. On choisira également de préférence un matériau présentant un très faible facteur de dissipation et plus particulièrement un facteur de dissipation inférieur à 10-3. Il est ainsi possible de réaliser le substrat 8 en mousse polyméthacrylimide ou un stratifié à base de fluoro-polymère tel que le PTFE. Une telle mousse fournit en outre une bonne tenue mécanique.
  • La liaison d'alimentation 5 est couplée à un émetteur ou un organe de traitement du signal 9 par une ligne de raccordement 14. On peut effectuer ce raccordement par exemple à l'aide d'un câble coaxial. Dans ce cas on peut utiliser par exemple le conducteur intérieur du câble coaxial pour relier la pastille à l'organe de traitement. Le conducteur extérieur du câble coaxial relie dans ce cas la masse 7 à l'organe de traitement. De façon à éviter des réflexions parasites des signaux entre la liaison d'alimentation et l'émetteur par exemple, il est préférable d'avoir une impédance uniforme le long de la ligne de raccordement. Pour cela, il est utile que la liaison d'alimentation 5 soit formée d'une languette partant de la pastille et se prolongeant pour former la ligne de raccordement. Il est possible de réaliser la liaison d'alimentation sous forme d'une languette réalisée dans la pastille conductrice.
  • On utilise de préférence un organe de traitement apte à fonctionner à des fréquences de travail prédéterminées proches des fréquences de résonance utiles de l'antenne, par exemples des fréquences de travail comprises dans des bandes passantes centrées sur les fréquences de résonance. On peut utiliser un organe de traitement composite, qui comporte plusieurs éléments, chacun de ces éléments étant accordé de façon permanente sur les fréquences de travail. On peut également utiliser un organe de traitement présentant un élément accordable sur les différentes fréquences de travail.
  • Par ailleurs, pour avoir un gain optimal, c'est à dire un rapport entre la puissance du signal rayonné par l'antenne et la puissance du signal émis par l'émetteur, il est souhaitable que l'impédance d'entrée présentée par l'antenne soit égale à l'impédance de sortie de l'émetteur ou du dispositif de traitement du signal 9. De préférence, cette impédance est fixée à 50 ohms pour obtenir des pertes minimales.
  • La liaison 6 est de préférence formée d'une languette conductrice s'étendant sur une tranche du substrat 8. Il est dans ce cas également possible de réaliser la liaison de court-circuit sous forme d'une languette saillante de la pastille conductrice.
  • En outre, la pastille conductrice peut également présenter une languette au niveau de la partie de court-circuit de la pastille. On dispose pour cela une languette en saillie sur un bord de la partie de court-circuit. Cette languette est de préférence dans l'alignement de la pastille conductrice. Le fléchissement de cette languette permet de modifier les fréquences de résonance de l'antenne Cette languette permet également d'élargir les bandes passantes de résonance de l'antenne. Cette languette peut présenter une longueur de 10mm pour une largeur de 6mm. Cette languette est de préférence située sur une des extrémités ou queues de la pastille.
  • Les figures 6 et 7 représentent une antenne selon l'invention. Cette antenne présente les dimensions suivantes:
    a=35mm b=42mm c=10mm d=3mm
    e=3,5mm f=3,6mm g=5,4mm h=7mm
    i=23,2mm j=3mm k=8,6mm l=10,6mm
    m=26,5mm n=3mm o=6mm.
  • La pastille présente une épaisseur de 100µm et est réalisée en cuivre.
  • La liaison d'alimentation est une languette d'une largeur de 1mm. La liaison de court-circuit est une languette d'une largeur de 3mm. La fente a une largeur de 1mm. Le substrat est une mousse polyméthacrylimide présentant une dépouille de 1mm sur 3 de ses faces. La masse est un PCB de 44mm par 110mm.
  • La figure 8 représente un spectre des fréquences de réflexion en entrée, mesuré sur l'antenne des figures 6 et 7. Une faible réflexion de l'antenne à une fréquence donnée correspond à une résonance de l'antenne. Deux fréquences sont complémentaires pour former une bande de fréquence de résonance secondaire élargie B1 entre 1020MHz et 1260MHz. La fréquence centrale vaut 1145 MHz; La largeur de bande vaut ainsi 21% pour cette bande. Des fréquences de résonance sont également complémentaires pour former une bande de fréquence de résonance primaire élargie B2 entre 2005MHz et 2740MHz. La fréquence centrale vaut 2350MHz. La largeur de cette bande vaut approximativement 30%. En utilisant des réglages appropriés de l'antenne décrits précédemment, on adapte aisément les bandes de fréquences pour couvrir le GSM, le DCS, le PCS et l'UMTS. Le placement de l'antenne dans le boîtier d'un téléphone portable rabaisse en général la fréquence centrale des bandes de fréquences de résonance, en conservant une largeur de bande en pourcentage constante. Les bandes de fréquence sont ainsi juste décalées. La présence d'une batterie, d'un écouteur, d'un micro, de composants électroniques ou de la carte support modifie également la valeur de la fréquence centrale d'une bande de fréquence de résonance. Ainsi, en plaçant cette antenne dans le boîtier d'un téléphone standard, on obtient des bandes de fréquences B1 et B2 incluant respectivement les bandes E-GSM et DCS-PCS-UMTS respectivement. La bande E-GSM présente une largeur de 8,7%. La bande allant du DCS à l'UMTS présente une largeur de 25%. Les caractéristiques de l'antenne sont ainsi amplement suffisantes pour couvrir ces bandes.
  • L'invention concerne par ailleurs un appareil de radiocommunication comprenant une antenne telle que décrite précédemment. L'antenne peut être disposée à l'intérieur d'un boîtier de protection de l'appareil.
  • Nous considérons maintenant un procédé de fabrication d'une antenne, qui ne fait pas partie de l'invention. Un tel procédé de fabrication comprend une étape de découpe de deux fentes sinueuses dans un feuillet métallique.
  • Selon une variante, ce procédé comprend une étape de découpe d'une languette de court-circuit. Selon une autre variante, le procédé comprend une étape de découpe d'une liaison d'alimentation. Selon encore une autre variante, le procédé comprend une étape de découpe d'une liaison électrique sur une partie de la largeur du feuillet métallique.
  • Bien entendu, la présente invention n'est pas limitée aux exemples et modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.
  • Ainsi, même si on a décrit jusqu'alors une pastille conductrice plane, il est également possible d'utiliser une pastille conductrice incurvée pour épouser la forme d'un boîtier de téléphone mobile par exemple. On peut également utiliser une pastille conductrice de forme différente du rectangle présenté. Il est encore possible de replier les languettes d'alimentation et de court-circuit le cas échéant.

Claims (11)

  1. Antenne (1) comprenant :
    - une pastille conductrice (2) présentant deux fentes sinueuses;
    - une masse (7);
    - une liaison de court-circuit (6), reliant la pastille à la masse;
    - une liaison d'alimentation (5) reliée à la pastille; l'antenne présentant un diagramme de rayonnement comportant une bande de résonance primaire incluant les fréquences entre 1950MHz et 2100MHz et de largeur supérieure à 20% et une bonde de résonance secondaire incluant les fréquences entre 890MHz et 950MHz et de largeur supérieure à 10%,
    ladite pastille présentant une forme polygonale,
    lesdites fentes débouchant sur un même bord de la pastille,
    caractérisée en ce que la liaison de court-circuit est reliée à ladite pastille par le bord sur lequel débouchent lesdites fentes ou par un bord adjacent.
  2. L'antenne de la revendication 1, caractérisée en ce que la liaison d'alimentation est reliée à la pastille par le bord sur lequel débouchent les fentes ou par un bord adjacent.
  3. L'antenne des revendications 1 et 2, caractérisée en ce que la liaison d'alimentation et la liaison de court-circuit sont disposées de part et d'autre d'au moins une des fentes.
  4. L'antenne de l'une des revendications précédentes, caractérisée en ce qu'une fente présente un contour de longueur différente de la longueur du contour de l'autre fente.
  5. L'antenne de la revendication 4, caractérisée en ce que la différence de longueur entre le contour des fentes est comprise entre 5 et 30%.
  6. L'antenne de l'une des revendications précédentes, caractérisée en ce que la masse est une surface conductrice parallèle à la surface de la pastille.
  7. L'antenne de l'une des revendications précédentes, caractérisée en ce que la distance entre les fentes est comprise entre 5 et 15mm.
  8. L'antenne de l'une des revendications précédentes, caractérisée en ce que la pastille est formée d'un feuillet métallique.
  9. L'antenne de l'une des revendications précédentes, caractérisé en ce que les fentes ont sensiblement la même forme et la même orientation.
  10. L'antenne de l'une des revendications 1 à 8, caractérisée en ce que les fentes ont sensiblement la même forme et une orientation opposée.
  11. Appareil de radiocommunication comprenant une antenne selon l'une des revendications précédentes.
EP02290493A 2001-03-15 2002-02-28 Antenne PIFA avec fentes Expired - Lifetime EP1241733B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0103529 2001-03-15
FR0103529A FR2822301B1 (fr) 2001-03-15 2001-03-15 Antenne a bande elargie pour appareils mobiles

Publications (2)

Publication Number Publication Date
EP1241733A1 EP1241733A1 (fr) 2002-09-18
EP1241733B1 true EP1241733B1 (fr) 2008-08-06

Family

ID=8861163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290493A Expired - Lifetime EP1241733B1 (fr) 2001-03-15 2002-02-28 Antenne PIFA avec fentes

Country Status (7)

Country Link
US (1) US6798382B2 (fr)
EP (1) EP1241733B1 (fr)
JP (1) JP2002314326A (fr)
CN (1) CN100388560C (fr)
AT (1) ATE403951T1 (fr)
DE (1) DE60228010D1 (fr)
FR (1) FR2822301B1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991528B2 (en) * 2000-02-17 2006-01-31 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US6466170B2 (en) * 2001-03-28 2002-10-15 Motorola, Inc. Internal multi-band antennas for mobile communications
CA2381043C (fr) 2001-04-12 2005-08-23 Research In Motion Limited Antenne a elements multiples
FI115343B (fi) * 2001-10-22 2005-04-15 Filtronic Lk Oy Sisäinen monikaista-antenni
EP1552581B1 (fr) * 2002-06-21 2007-12-26 Research In Motion Limited Antenne a elements multiples a coupleur parasite
EP1522122A1 (fr) 2002-07-15 2005-04-13 Fractus S.A. Antenne a alimentation par encoches
CN100495816C (zh) * 2002-11-08 2009-06-03 圣韵无线技术公司 在平面倒f型天线(pifa)设计中槽的最佳利用
US7183982B2 (en) 2002-11-08 2007-02-27 Centurion Wireless Technologies, Inc. Optimum Utilization of slot gap in PIFA design
DE60226909D1 (en) 2002-11-28 2008-07-10 Research In Motion Ltd Ren
EP2320517A1 (fr) * 2002-11-28 2011-05-11 Research In Motion Limited Antenne multi-bandes à pastille du type microruban comprenant des fentes
EP1576695B1 (fr) * 2002-12-06 2008-06-11 Research In Motion Limited Antenne a bandes multiples et a structure de fentes partagee
AU2003303769A1 (en) * 2003-01-24 2004-08-13 Borja Borau, Carmen Broadside high-directivity microstrip patch antennas
JP2004266573A (ja) * 2003-02-28 2004-09-24 Nissei Electric Co Ltd 多周波アンテナ素子及び多周波アンテナ
EP1478047B1 (fr) * 2003-05-14 2007-10-03 Research In Motion Limited Antenne multi-bandes à pastille du type microruban comprenant des fentes
DE60319965T2 (de) 2003-06-12 2009-04-30 Research In Motion Ltd., Waterloo Mehrelement-Antenne mit parasitärem Antennenelement
CA2435900C (fr) * 2003-07-24 2008-10-21 Research In Motion Limited Coussinet conducteur flottant permettant la stabilisation du rendement d'antenne et la reduction du bruit
JP2005303721A (ja) * 2004-04-13 2005-10-27 Sharp Corp アンテナ及びそれを用いた携帯無線機
CA2505433A1 (fr) * 2004-04-27 2005-10-27 Intelwaves Technologies Ltd. Configuration et element de systeme d'antenne reseau a commande de phase hybride discrete
US7369089B2 (en) * 2004-05-13 2008-05-06 Research In Motion Limited Antenna with multiple-band patch and slot structures
US7372411B2 (en) * 2004-06-28 2008-05-13 Nokia Corporation Antenna arrangement and method for making the same
TWM284084U (en) * 2004-12-28 2005-12-21 Shiu Juo Gang Antenna structure
US8600521B2 (en) * 2005-01-27 2013-12-03 Cyberonics, Inc. Implantable medical device having multiple electrode/sensor capability and stimulation based on sensed intrinsic activity
JP2007159031A (ja) 2005-12-08 2007-06-21 Alps Electric Co Ltd パッチアンテナ
US9130267B2 (en) 2007-03-30 2015-09-08 Fractus, S.A. Wireless device including a multiband antenna system
GB2453160B (en) * 2007-09-28 2009-09-30 Motorola Inc Radio frequency antenna
CN101777699A (zh) * 2009-01-09 2010-07-14 智易科技股份有限公司 单频天线和天线模块
KR20130084124A (ko) * 2012-01-16 2013-07-24 삼성전자주식회사 통신장치
US9300050B2 (en) 2013-02-22 2016-03-29 Bang & Olufsen A/S Multiband RF antenna
FR3030909B1 (fr) * 2014-12-19 2018-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP3091610B1 (fr) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Système d'antenne et module d'antenne à réduction d'interférences entre des motifs rayonnants
CN105182194A (zh) * 2015-08-25 2015-12-23 胡达凯 一种高准确率的变电站局部放电信号检测系统
CN110600872B (zh) * 2016-01-30 2023-09-12 华为技术有限公司 一种贴片天线单元及天线
CN107623187A (zh) * 2016-07-14 2018-01-23 上海诺基亚贝尔股份有限公司 微带天线、天线阵列和微带天线制造方法
CN110268580B (zh) * 2017-07-17 2022-01-07 惠普发展公司,有限责任合伙企业 开槽贴片天线
CN110011056A (zh) * 2019-05-16 2019-07-12 南京信息工程大学 紧耦合缝隙宽带天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511295C2 (sv) * 1997-04-30 1999-09-06 Moteco Ab Antenn för radiokommunikationsapparat
FR2772518B1 (fr) * 1997-12-11 2000-01-07 Alsthom Cge Alcatel Antenne a court-circuit realisee selon la technique des microrubans et dispositif incluant cette antenne
FR2778272B1 (fr) * 1998-04-30 2000-09-08 Alsthom Cge Alcatel Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
US6343208B1 (en) * 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
FI105421B (fi) * 1999-01-05 2000-08-15 Filtronic Lk Oy Tasomainen kahden taajuuden antenni ja tasoantennilla varustettu radiolaite
FI112982B (fi) * 1999-08-25 2004-02-13 Filtronic Lk Oy Tasoantennirakenne
FI114254B (fi) * 2000-02-24 2004-09-15 Filtronic Lk Oy Tasoantennirakenne
FI113216B (fi) * 2000-10-27 2004-03-15 Filtronic Lk Oy Kaksitoiminen antennirakenne ja radiolaite
GB0101667D0 (en) * 2001-01-23 2001-03-07 Koninkl Philips Electronics Nv Antenna arrangement
US6466170B2 (en) * 2001-03-28 2002-10-15 Motorola, Inc. Internal multi-band antennas for mobile communications
US6407715B1 (en) * 2001-05-04 2002-06-18 Acer Communications And Multimedia Inc. Dual frequency band antenna with folded structure and related method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20030011521A1 (en) 2003-01-16
CN1375890A (zh) 2002-10-23
US6798382B2 (en) 2004-09-28
ATE403951T1 (de) 2008-08-15
JP2002314326A (ja) 2002-10-25
DE60228010D1 (de) 2008-09-18
EP1241733A1 (fr) 2002-09-18
FR2822301A1 (fr) 2002-09-20
FR2822301B1 (fr) 2004-06-04
CN100388560C (zh) 2008-05-14

Similar Documents

Publication Publication Date Title
EP1241733B1 (fr) Antenne PIFA avec fentes
EP1407512B1 (fr) Antenne
EP1172885B1 (fr) Antenne à couche conductrice et dispositif de transmission bi-bande incluant cette antenne.
EP1225654A1 (fr) Antenne multi-bandes pour appareils mobiles
EP1145378B1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
EP0954055B1 (fr) Antenne bifréquence pour la radiocommunication réalisée selon la technique des microrubans
EP1038333B1 (fr) Antenne a plaque
FR2860927A1 (fr) Antenne interne de faible volume
FR2826185A1 (fr) Antenne fil-plaque multifrequences
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
FR2772517A1 (fr) Antenne multifrequence realisee selon la technique des microrubans et dispositif incluant cette antenne
EP1402596A1 (fr) Antenne compacte multibande
EP1225655B1 (fr) Antenne planaire et dispositif de transmission bi-bande incluant cette antenne
FR2870643A1 (fr) Antenne polarisee circulairement et antenne redresseuse utilisant cette antenne
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP0642189B1 (fr) Antenne pour appareil radio portatif
EP1518296B1 (fr) Antenne plane multibande
FR2664749A1 (fr) Antenne microonde.
EP2879234B1 (fr) Appareil électronique avec antenne radio repliée dans un boîtier
FR2906937A1 (fr) Decouplage des reseaux d'elements rayonnants d'une antenne
EP1548877B1 (fr) Antenne à surface(s) rayonnante(s) plane(s) multibande et téléphone portable comportant une telle antenne
FR2778499A1 (fr) Antenne a plaque
FR2825518A1 (fr) Antenne a plaque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030318

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60228010

Country of ref document: DE

Date of ref document: 20080918

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090507

BERE Be: lapsed

Owner name: ALCATEL LUCENT

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080806

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521