EP1236675B1 - Flaschenzapfeinrichtung - Google Patents

Flaschenzapfeinrichtung Download PDF

Info

Publication number
EP1236675B1
EP1236675B1 EP01204648A EP01204648A EP1236675B1 EP 1236675 B1 EP1236675 B1 EP 1236675B1 EP 01204648 A EP01204648 A EP 01204648A EP 01204648 A EP01204648 A EP 01204648A EP 1236675 B1 EP1236675 B1 EP 1236675B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
bottle
air
liquid
dispenser according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01204648A
Other languages
English (en)
French (fr)
Other versions
EP1236675A1 (de
Inventor
Robert Tansley
Hugh Connell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebac Ltd
Original Assignee
Ebac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebac Ltd filed Critical Ebac Ltd
Priority claimed from EP00311025A external-priority patent/EP1118582B1/de
Publication of EP1236675A1 publication Critical patent/EP1236675A1/de
Application granted granted Critical
Publication of EP1236675B1 publication Critical patent/EP1236675B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • B67D1/1202Flow control, e.g. for controlling total amount or mixture ratio of liquids to be dispensed
    • B67D1/1234Flow control, e.g. for controlling total amount or mixture ratio of liquids to be dispensed to determine the total amount
    • B67D1/1243Flow control, e.g. for controlling total amount or mixture ratio of liquids to be dispensed to determine the total amount comprising flow or pressure sensors, e.g. for controlling pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/0003Apparatus or devices for dispensing beverages on draught the beverage being a single liquid
    • B67D1/0009Apparatus or devices for dispensing beverages on draught the beverage being a single liquid the beverage being stored in an intermediate container connected to a supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/04Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
    • B67D1/0412Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container
    • B67D1/0425Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container comprising an air pump system
    • B67D1/0431Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container comprising an air pump system power-operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0857Cooling arrangements
    • B67D1/0869Cooling arrangements using solid state elements, e.g. Peltier cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • B67D1/1202Flow control, e.g. for controlling total amount or mixture ratio of liquids to be dispensed
    • B67D1/1204Flow control, e.g. for controlling total amount or mixture ratio of liquids to be dispensed for ratio control purposes
    • B67D1/1222Pressure gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • B67D1/1277Flow control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/0801Details of beverage containers, e.g. casks, kegs
    • B67D2001/0822Pressurised rigid containers, e.g. kegs, figals
    • B67D2001/0824Pressurised rigid containers, e.g. kegs, figals with dip tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00002Purifying means
    • B67D2210/00005Filters
    • B67D2210/00007Filters for gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D2210/00Indexing scheme relating to aspects and details of apparatus or devices for dispensing beverages on draught or for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D2210/00028Constructional details
    • B67D2210/00099Temperature control

Definitions

  • This invention relates to bottled liquid dispensers.
  • EP 0 581 491 A describes a water dispenser having a vertically elongate housing which supports an inverted bottle.
  • a feed tube projects upwardly into the neck of the bottle through which liquid discharges under gravity into a reservoir in the form of a flexible bag.
  • the feed tube is incorporated in unit which can be removed together with the bag and relaced during a maintenance operation.
  • US 2 929 535 proposes a bottled liquid dispenser in which liquid is supplied from a bottle to a discharge outlet via a reservoir, wherein the dispenser includes means for holding the bottle, a bottle connector for releasable sealing engagement with a neck formed at the top of the bottle, the bottle connector being provided with an air inlet for supplying air to an upper region of the bottle, a dip tube for removing liquid from a lower region of the bottle, and a transfer tube for supplying liquid to the reservoir, thermal means for controlling the temperature of liquid in the reservoir, and an outlet tube for conducting liquid from the reservoir to a discharge outlet.
  • the present invention seeks to provide a new and inventive form of bottled liquid dispenser which is smaller and more compact than known dispensers of the kind described in EP 0 581 491 A.
  • US-A-2 929 535 discloses a bottled liquid dispenser according to the preamble of claim 1, in which liquid is supplied from a bottle to a discharge outlet via a reservoir, wherein the dispenser includes:
  • the present invention provides a bottled liquid dispenser in which the reservoir is pre-formed of plastics material, the thermal means includes a heat-conducting holder which embraces and snugly receives the reservoir with a minimal intervening gap, and said thermal means includes thermoelectric means for controlling the temperature of liquid in the reservoir, the arrangement being such that, for hygiene purposes, the reservoir and the bottle connector can be removed together with associated tubes and replaced with clean components.
  • the replaceable components can be changed at intervals.
  • the bottled liquid dispenser includes an air pump means arranged to supply pressurised air to the bottle to cause movement of liquid from the bottle to said reservoir, and a pressure sensor responsive to the pressure of air supplied to the bottle to limit the rise in air pressure produced by said air pump means.
  • the arrangement also has the following advantages:
  • the pressure sensor is preferably arranged to switch off the air pump means when the sensed air pressure exceeds a predetermined level.
  • the air inlet is preferably connected to a releasable coupling which incorporates an air filter whereby the air filter is replaced with the bottle connector and reservoir.
  • the bottle connector preferably incorporates a rotatable connection, which prevents kinking of the tubes.
  • the holder preferably only embraces part of the reservoir.
  • the thermoelectric means acts to cool the liquid in the reservoir
  • the thermoelectric means preferably only embraces an upper part of the reservoir.
  • the bottom portion of the reservoir is preferably stepped inwardly relative to the upper part.
  • thermoelectric means may include a peltier element.
  • the holder is preferably provided with a plurality of heat-conducting fins for improved efficiency.
  • the thermoelectric means is preferably disposed between the fins and the holder.
  • the holder is preferably provided with a fan or other means for creating an air flow over said fins.
  • the bottled water dispenser shown in the drawings is suitable for use on a kitchen work surface or the like.
  • the dispenser comprises a moulded plastics housing 1 having a base 2 and side walls 3.
  • a lid 4 is connected to the side walls by a single hinge 5 at the rear of the housing.
  • the base 2 projects from the wall 3, best seen in Fig. 2, to form a platform 6 for supporting a water bottle (not shown), which may be a 5 litre capacity bottle of the kind which can be purchased from supermarkets and other retail outlets.
  • the lid 4 projects over the platform 6 to cover the neck of the bottle.
  • the wall 3 is formed with a recess 7 for receiving a drinking vessel, which is normally held by hand during filling.
  • a water outlet, indicated generally at 8, is located at the top of the recess for dispensing water into the drinking vessel under the control of a valve which is operated by a lever 9.
  • the bottom of the recess is formed by the base 2, which may be slightly concave and may also be provided with drainage apertures 10 to collect any small spillages of water.
  • a bottle connector 12 is coupled to the neck of the water bottle B .
  • the connector 12 incorporates a flexible dip tube 13 which is connected to a transfer tube 14 leading to the upper part of a reservoir 15.
  • the reservoir is provided with an external cooling device 16 for cooling liquid in the reservoir.
  • the draw tube is connected to an outlet tube 19 for transferring cooled liquid to the discharge valve 8. It will be noted that the draw tube 17 has an auxiliary outlet opening 21 at the top of the reservoir, of smaller diameter than the main opening 18.
  • the bottle B and reservoir 15 are located alongside each other at substantially the same level.
  • An air pump 22 supplies atmospheric air via an air filter 23 and air tube 24, through the connector 12 into the top of the bottle B . This pressurises the bottle so that when the discharge valve 8 is opened water flows from the bottle B into the reservoir 15 displacing cooled water from the reservoir through the openings 18 and 21.
  • the pump 22 is provided with a pressure sensitive switch 122 which shuts off the pump when the pressure at the pump outlet rises above a predetermined level.
  • the cutoff pressure is set to ensure that there is sufficient pressure in the system to dispense a useable quantity of liquid when the valve 8 is opened. Normally the pump will start as soon as the pressure drops, thereby ensuring a continuous discharge of cooled water at an acceptable rate.
  • the dispenser is also useful for cooling fizzy soft drinks since the carbonation is maintained by the pressurisation of the bottle.
  • the auxiliary outlet port 21 allows air to purge from the reservoir 15 as the reservoir fills with liquid for the first time. Furthermore, when all the water has been removed from the bottle B and air therefore starts to enter the reservoir, air will start to discharge from the reservoir as soon as the port 21 is uncovered. The reservoir therefore remains filled with water so that when the bottle is replaced with a full bottle, delivery recommences almost immediately.
  • Bottled water should be supplied free from bacteria and impurities. In order to maintain a high level of hygiene all of the components which come into contact with the water can be periodically replaced with a new set of clean components.
  • Fig. 4 shows the replaceable parts of the dispenser in more detail. Components which correspond to those of Fig. 3 are referenced similarly.
  • the air filter 23 is housed within a twist-lock connector 25 for releasable connection with the air pump 22.
  • the bottle connector 12 incorporates a moulded cap 26 to which the tubes 24, 13 and 14 are coupled.
  • the cap has an angled through-connector 27 to which the dip tube 13 and transfer tube 14 are coupled while the air tube 24 is pushed onto a tubular spigot 28.
  • the cap 26 is held onto the neck of the bottle by a screw-threaded flanged ring 29, with a sealing ring 30 interposed between the cap and the rim of the bottle.
  • the ring 29 thus allows the cap 26 to be connected with the bottle without twisting the tubes which are connected to the cap.
  • the cap 26 and/or the ring 29 can be changed, if required, for use with different kinds of bottle.
  • the dip tube 13 and the transfer tube 14 are formed of corrugated-wall plastic to allow them to be easily stretched and flexed during bottle replacement without being longer than necessary. The volume of water which they hold is thus kept to a minimum.
  • a tip moulding 31, also shown in Fig. 5, prevents the dip tube 13 from being obstructed by contact with the bottle B .
  • the moulding has a generally cylindrical portion 32 which is a press-fit into the end of the dip tube 13 and is provided with an external flange 33.
  • the flange carries an arcuate projection 34 which prevents the entry hole 35 from being obstructed.
  • the reservoir 15 is moulded of polythene or a similar semi-rigid thermoplastic and is vertically elongate, being of square or rectangular cross section.
  • the bottom portion 36 of the reservoir is stepped inwardly for ease of insertion into the cooling device 16.
  • the tubes 14, 17 and 19 are connected to the reservoir via coupling spigots 37 formed on a screw-threaded plug 38.
  • a flow spreader 39 shown also in Fig. 6 is inserted into the water inlet spigot of the plug 38.
  • the spreader has a cruciform section 40 which is inserted into the spigot and which carries an external end plate 41.
  • the cooling device includes a heat-conducting metal sleeve 42 which snugly receives the upper part of the reservoir 15, being shaped such that there is a minimal air gap between the reservoir and the sleeve.
  • the sleeve 42 is formed with an integral vertically extending T-section head 43, which is coupled to the cold side of a thermostatically controlled peltier cooling unit 44.
  • the opposite hot side of the peltier unit is thermally coupled with a heatsink plate 45 having an array of closely spaced parallel vertical cooling fins 46 projecting away from the reservoir.
  • a fan 47 is mounted on the fins adjacent to the air vent 11 to force air between them.
  • the peltier unit 44 removes heat from the water in the reservoir, which is dissipated into the atmosphere. Since warmer water will tend to move to the top of the reservoir by convention currents, cooling of the reservoir is very efficient.
  • Fig. 3 shows the auxiliary outlet port 21 as a hole in the draw tube 17 it is preferably formed in the plug moulding 38.
  • the outlet port may comprise an axial groove 48 which extends along the external surface of the spigot 37' on which the draw tube 17 is received.
  • the groove also extends for a short distance 49 along the top wall 50 of the plug, beyond the wall of the draw tube, so that air and water can pass from the highest part of the reservoir into the draw tube 17 via the groove sections 49 and 48. This arrangement ensures complete purging of air from the reservoir.
  • the temperature of the dispensed water can be instantly controlled by means of a mixer valve 51.
  • the mixer valve is connected in the tube 19 and receives water at ambient temperature through a bypass tube 52 from the bottle B through transfer tube 14.
  • the user can vary the relative proportions of cooled and ambient water issuing from the discharge valve 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Devices For Dispensing Beverages (AREA)

Claims (10)

  1. Flaschenzapfeinrichtung, in der Flüssigkeit aus einer Flasche (B) über ein Reservoir zu einem Ausgabeauslass (8) (15) zugeführt wird, wobei die Zapfeinrichtung aufweist:
    Mittel (6) zum Tragen der Flasche,
    einen Flaschenverbinder (12) zur lösbaren, dichten Verbindung mit einem Hals, der oben an der Flasche gebildet ist, wobei der Flaschenverbinder mit einem Lufteinlass (24) zum Zufuhren von Luft zu einer oberen Region der Flasche, einem Tauchrohr (13) zum Entnehmen von Flüssigkeit aus einer niedrigeren Region der Flasche und mit einem Übertragungsrohr (14) zur Zufuhr von Flüssigkeit zu dem Reservoir versehen ist,
    Thermoeinrichtungen (42, 44), die das Reservoir (15) entnehmbar aufnehmen, um die Temperatur der Flüssigkeit in dem Reservoir zu steuern, und
    ein Auslassrohr (19) zum Leiten von Flüssigkeit aus dem Reservoir zu dem Ausgabeauslass,
    wobei das Reservoir (15) mit einem Verschluss (38) versehen ist, der einen Flüssigkeitseinlass zur Verbindung mit dem Übertragungsrohr (14) und ein Saugrohr (17) zur Verbindung mit dem Auslassrohr (19) und mit einem Flüssigkeitsauslass (18) hat, der benachbart zu dem Boden des Reservoirs angeordnet ist,
    dadurch gekennzeichnet, dass
    das Reservoir (15) aus Kunststoffmaterial vorgeformt ist, dass die Thermoeinrichtungen einen wärmeleitfähigen Halter (42) aufweisen, der das Reservoir umfasst und es mit einer minimalen dazwischenliegenden Lücke passend aufnimmt, und dass die Thermoeinrichtungen thermoelektrische Einrichtungen (44) zum Steuern der Temperatur der Flüssigkeit in dem Reservoir enthalten, wobei die Anordnung so ist, dass, aus Hygienegründen, das Reservoir und der Flaschenverbinder (12) zusammen mit den zugehörigen Rohren (13, 14) entnommen werden können und durch saubere Komponenten ersetzt werden können.
  2. Flaschenzapfeinrichtung nach Anspruch 1, mit einer Luftpumpeinrichtung (22), die dazu ausgelegt ist, der Flasche (B) Druckluft zuzuführen, um eine Bewegung der Flüssigkeit aus der Flasche in das Reservoir (15) zu bewirken.
  3. Flaschenzapfeinrichtung nach Anspruch 2, mit einem Drucksensor (122), der auf den der Flasche (B) zugeführten Druck reagiert, um den Anstieg des Luftdrucks, der durch die Luftpumeinrichtung (22) erzeugt wird, zu begrenzen.
  4. Flaschenzapfeinrichtung nach Anspruch 3, bei der der Drucksensor (122) dazu ausgelegt ist, die Luftpumpeinrichtungen (22) auszuschalten, wenn der erfasste Luftdruck ein vorgegebenes Niveau überschreitet.
  5. Flaschenzapfeinrichtung nach einem der vorhergehenden Ansprüche, bei der der Lufteinlass (24) mit einer lösbaren Kupplung verbunden ist, die einen Luftfilter (23) enthält, wodurch der Luftfilter mit dem Flaschenverbinder (12) ersetzt wird.
  6. Flaschenzapfeinrichtung nach einem der vorhergehenden Ansprüche, bei dem der Flaschenverbinder (12) eine Kappe (26) enthält, mit der der Lufteinlass (24), das Tauchrohr (13) und das Übertragungsrohr (14) verbunden sind, wobei die Kappe mit dem Hals der Flasche durch einen Ring (29) verbunden ist, der relativ zu der Kappe drehbar ist.
  7. Flaschenzapfeinrichtung nach einem der vorhergehenden Ansprüche, bei der die thermoelektrischen Einrichtungen (44) dazu wirken, die Flüssigkeit in dem Reservoir zu kühlen, und bei der der Halter (42) nur einen oberen Teil des Reservoirs umfasst.
  8. Flaschenzapfeinrichtung nach einem der vorhergehenden Ansprüche, bei der der Halter (42) mit einer Mehrzahl von wärmeleitfähigen Rippen (46) versehen ist, und die thermoelektrischen Einrichtungen (44) zwischen den Rippen und dem Halter angeordnet sind.
  9. Flaschenzapfeinrichtung nach Anspruch 8, bei der der Halter (42) mit einer Einrichtung (47) versehen ist, um einen Luftstrom über die Rippen (46) zu erzeugen.
  10. Flaschenzapfeinrichtung nach einem der vorhergehenden Ansprüche, bei der der Bodenbereich (36) des Reservoirs (15) relativ zu dem oberen Teil des Reservoirs nach innen versetzt ist.
EP01204648A 1999-12-16 2000-12-11 Flaschenzapfeinrichtung Expired - Lifetime EP1236675B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB9929742.6A GB9929742D0 (en) 1999-12-16 1999-12-16 Bottled liquid dispensers
GB9929742 1999-12-16
GB0005836 2000-03-13
GB0005836A GB2358624A (en) 1999-12-16 2000-03-13 A bottled liquid dispenser
EP00311025A EP1118582B1 (de) 1999-12-16 2000-12-11 Flaschenzapfeinrichtung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00311025A Division EP1118582B1 (de) 1999-12-16 2000-12-11 Flaschenzapfeinrichtung

Publications (2)

Publication Number Publication Date
EP1236675A1 EP1236675A1 (de) 2002-09-04
EP1236675B1 true EP1236675B1 (de) 2005-07-06

Family

ID=10866435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01204648A Expired - Lifetime EP1236675B1 (de) 1999-12-16 2000-12-11 Flaschenzapfeinrichtung

Country Status (3)

Country Link
EP (1) EP1236675B1 (de)
GB (2) GB9929742D0 (de)
ZA (1) ZA200007534B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871015B2 (en) * 2001-12-21 2005-03-22 Nestec S.A. Compartmentalized dispensing device and method for dispensing a flowable product therefrom
US10723609B1 (en) 2016-09-16 2020-07-28 Designetics, Inc. Portable bottle filling station

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1460209A (en) * 1921-11-07 1923-06-26 Mohn John Beverage-dispensing apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB101265A (en) * 1916-04-27 1916-08-31 Harry Chester Lyons Improvements in or relating to Liquid Dispensing Apparatus.
GB342216A (en) * 1929-04-16 1931-01-29 British Thomson Houston Co Ltd Improvements in compression refrigerating apparatus particularly applicable to watercoolers
US2160501A (en) * 1936-04-01 1939-05-30 Edward G Hedges Method of filling liquid dispensing systems
US2929535A (en) * 1957-10-08 1960-03-22 United Refrigerator Company Dispenser for beverages
GB1143742A (en) * 1966-03-02 1969-02-26 Allen Electronics Inc Liquid dispensing unit
US4030634A (en) * 1976-03-16 1977-06-21 Osborn David R Bottled water transfer device
US4518104A (en) * 1983-01-14 1985-05-21 Gerlach Industries Wine dispensing apparatus and method
US4836414A (en) * 1986-05-02 1989-06-06 The Coca-Cola Company Premix dispensing system
GB9215276D0 (en) 1992-07-17 1992-09-02 Ebac Ltd Liquid dispensers
GB2268925B (en) * 1992-07-23 1995-11-29 Kwong Kan Ng Beverage dispensers
US5390826A (en) * 1994-02-28 1995-02-21 Ebtech, Inc. Bottled water station with removable reservoir and manifolded support platform
US5495725A (en) * 1994-11-25 1996-03-05 Middlemiss; William Water transfer assembly for water cooler
US5833096A (en) * 1995-08-31 1998-11-10 Dasan C&I Co. Ltd. Water dispenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1460209A (en) * 1921-11-07 1923-06-26 Mohn John Beverage-dispensing apparatus

Also Published As

Publication number Publication date
GB2358624A (en) 2001-08-01
GB0005836D0 (en) 2000-05-03
EP1236675A1 (de) 2002-09-04
GB9929742D0 (en) 2000-02-09
ZA200007534B (en) 2001-06-19

Similar Documents

Publication Publication Date Title
EP1118582B1 (de) Flaschenzapfeinrichtung
KR100291642B1 (ko) 제거가능한저장기를갖춘물분배대
US4456149A (en) Water dispensing system
US4958747A (en) Bottled water dispenser
EP0535211B1 (de) Gerät zum spenden von flaschenwasser mit einem herausnehmbaren reservoir
CA1145303A (en) Post-mix beverage dispensing system syrup package, valving system and carbonator therefor
US4921135A (en) Pressurized beverage container dispensing system
EP0581491B1 (de) Flüssigkeitsspender
US11390513B2 (en) Apparatus for dispensing a liquid from a liquid storage container
US6827243B1 (en) Portable liquid dispensing kit
US6370883B1 (en) Device for the thermal control of liquids contained in vessels
US5184476A (en) Counter-height water dispenser
US5439145A (en) Apparatus for dispensing liquid from an inverted container
EP1236675B1 (de) Flaschenzapfeinrichtung
EP1100721B1 (de) Vorrichtung zum Abgeben von Flüssigkeit aus nebeneinander angeordneten Behältern
CA2901688A1 (en) Fluid dispenser
KR0181656B1 (ko) 냉각음료 공급장치
US11820642B2 (en) System for dispensing liquid from inverted container
EP2025641A1 (de) Flüssigkeitsabgabevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011214

AC Divisional application: reference to earlier application

Ref document number: 1118582

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): BE DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1118582

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60021202

Country of ref document: DE

Date of ref document: 20050811

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2246288

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

BERE Be: lapsed

Owner name: *EBAC LTD

Effective date: 20081231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231