EP1234480B1 - Apparatus and method for mitigating impairments due to the central auditory nervous system binaural phase-time asynchrony - Google Patents
Apparatus and method for mitigating impairments due to the central auditory nervous system binaural phase-time asynchrony Download PDFInfo
- Publication number
- EP1234480B1 EP1234480B1 EP00968722A EP00968722A EP1234480B1 EP 1234480 B1 EP1234480 B1 EP 1234480B1 EP 00968722 A EP00968722 A EP 00968722A EP 00968722 A EP00968722 A EP 00968722A EP 1234480 B1 EP1234480 B1 EP 1234480B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phase
- bptd
- clause
- ear
- phase shift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 25
- 230000006735 deficit Effects 0.000 title description 10
- 210000000653 nervous system Anatomy 0.000 title description 10
- 230000000116 mitigating effect Effects 0.000 title 1
- 230000010363 phase shift Effects 0.000 claims abstract description 69
- 230000001934 delay Effects 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims description 20
- 230000003111 delayed effect Effects 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 10
- 230000005236 sound signal Effects 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 7
- 230000004048 modification Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 4
- 238000012074 hearing test Methods 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims 1
- 210000005069 ears Anatomy 0.000 abstract description 35
- 230000001575 pathological effect Effects 0.000 abstract description 12
- 238000012360 testing method Methods 0.000 description 84
- 230000006870 function Effects 0.000 description 23
- 230000005021 gait Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- 238000012937 correction Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 230000004927 fusion Effects 0.000 description 10
- 230000004064 dysfunction Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 8
- 210000000133 brain stem Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000000613 ear canal Anatomy 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000002146 bilateral effect Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 208000030979 Language Development disease Diseases 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 208000016354 hearing loss disease Diseases 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 208000014644 Brain disease Diseases 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000002350 accommodative effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 230000010370 hearing loss Effects 0.000 description 2
- 231100000888 hearing loss Toxicity 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003447 ipsilateral effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 238000012956 testing procedure Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 241000258957 Asteroidea Species 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 241000252229 Carassius auratus Species 0.000 description 1
- 208000015068 Central auditory processing disease Diseases 0.000 description 1
- 241001137256 Cyanocitta cristata Species 0.000 description 1
- 206010012559 Developmental delay Diseases 0.000 description 1
- 241000282327 Felis silvestris Species 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 244000035744 Hura crepitans Species 0.000 description 1
- 241000361919 Metaphire sieboldi Species 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241000270934 Rana catesbeiana Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000004979 auditory behavior Effects 0.000 description 1
- 210000003984 auditory pathway Anatomy 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000005770 birds nest Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 210000003952 cochlear nucleus Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 210000000877 corpus callosum Anatomy 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000115 debilitative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 235000019692 hotdogs Nutrition 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 201000003723 learning disability Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 231100000878 neurological injury Toxicity 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
- 230000001720 vestibular Effects 0.000 description 1
- 230000004382 visual function Effects 0.000 description 1
- 235000005765 wild carrot Nutrition 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/04—Time compression or expansion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/55—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
- H04R25/552—Binaural
Definitions
- the present invention relates to apparatus and methods for diagnosing, quantifying, and correcting for human central auditory nervous system (CANS) impairment, and in particular binaural phase time delay asynchrony.
- CANS central auditory nervous system
- a binaural phase time delay is defined herein as a synchronization disruption (delay) in phase and time of the auditory input signals to the two ears.
- Two types of BPTDs have been defined by the investigators: pathological BPTDs which are "built-in" to a person's CANS, as is the case with a person with neurological injury or disease process, and clinical BPTDs which are induced in a person's CANS using an external device, to compensate for a pathological phase time delay.
- a BPTD is a combination of a phase shift and a time delay.
- a specific phase shift results in a specific time delay.
- a 180° phase shift results in a 0.5 ms time delay.
- one specific time delay would result in several different frequency-dependent phase shifts. Note that a time delay can be much larger than the maximum phase shift for a given frequency.
- binaural interaction of the CANS requires the two ears to integrate dichotic signals separated in time, frequency, and/or intensity.
- the brain stem is crucial for binaural interaction of acoustic stimuli.
- Stillman (1980) has emphasized that precise timing of excitatory and inhibitory inputs to each cell along the auditory pathway is critical if each cell is to respond in an appropriate manner.
- Oertel (1997) has also studied the effects of timing in the cochlear nuclei.
- the superior olivary complex is an important relay station of the ascending tract of the CANS and is critical for binaural listening capabilities. It is this cross correlation behavior of the two ears that afford the selective listening capability in noisy environments, and the ability to spatially localize sound sources.
- a pathological BPTD has been observed between the two ears which is in some cases is quite large (15-20 msec).
- the pathological BPTD not only decreases speech intelligibility in complex listening environments, but also (somewhat surprisingly) degrades motor (gross, fine, oral) and visual performance.
- a clinically-induced BPTD designed to compensate for the pathological BPTD in the subject, significantly improves the speech intelligibility, gross and oral motor function the subject.
- the processing of information by the central auditory nervous system is impaired and affects comprehension and recall of auditory information.
- the central auditory nervous system typically receives auditory information from both ears and integrates the input received, even though the acoustic signals received by the ears may be somewhat separated in time, frequency, and/or intensity.
- Such binaural integration by the central auditory nervous system may be substantially provided in the brain stem. Further, it has been observed that the precise timing of excitory and inhibitory inputs to cells of the central auditory nervous system can affect these cells' behavior to respond appropriately.
- auditory signals from both ears must have a relatively synchronized arrive time for certain binaural cells to be activated in the superior olivary complex.
- a delayed (e.g. millisecond) response from one ear can impair the integration of binaural response. This is not reflected in the function of the inner ear.
- an individual with a peripheral hearing loss may also have CANS dysfunction or a mechanical effect that creates a disruption of the synchrony between the two ears.
- Behavioral and physiological (auditory brainstem response, middle latency response, cortical evoked potentials and mismatched negativity) methods have been employed to measure time parameters of the central auditory nervous system. Previous studies, however, have only analyzed the relationship of timing differences with respect to various pathologies (e.g. a latency in response has occurred). In particular, the development of tests quantifying the changes in auditory input between a subject's ears has been solely used as a diagnostic procedure for identifying a central auditory processing dysfunction. Since the anatomy of the brain stem indicates links between binaural signal processing and integration and motor control, it is not surprising that disorders of the central auditory nervous system often affect other functions such as sensory perception, integration, fine and gross motor, oral motor and visual processing.
- the ideal overall relative time delay portion of the BPTD for the subject is measured by separating the high and low frequencies of a variety of words, and time shifting one of the two components relative to the other. The subject's comprehension of the words will be highest or best at that subject's ideal relative time delay. Time delays can also be measured by inducing a preselected time delay of monosyllabic or bisyllabic words in one ear relative to the other ear in the presence of multitalker babble.
- a phase analysis test measures the appropriate binaural phase shift at a variety of frequencies by assessing the subject's ability to discriminate pure tones from narrow band noise centered in frequency around the target tone.
- the BPTD device can be used as a diagnostic tool in this situation.
- the BPTD device is capable of interfacing with standard audiometers to generate two types of stereo signals.
- One is the target signal that is comprised of a pure tone presented to both ears with a relative phase difference of q degrees between the target tone channels.
- the narrowband noise signal is also processed by the BPTD device on a stereo basis to generate a relative phase difference of f degrees between the two narrowband noise channels.
- the BPTD device then mixes these two types of signals together by performing a weighted summation operation and the output can then be presented to the subject.
- the weighting value on the summation processes is used to vary the signal-to-noise power ratio between the target signal and the noise. Since the resulting output signal is a combination of these two signal types we call it the S q N f output signal.
- the BPTD device can implement a variety of combinations of q and f parameters for research, diagnostic, and accommodative purposes.
- threshold results from a specific S q N q at various frequencies represent the baseline condition. Normative threshold measures for each target frequency and phase value tested will be used to determine atypical phase results for various frequencies.
- the optimal phase value for a given operating frequency for accommodative purposes is the one in which the tone is heard at the lowest hearing threshold value.
- An operator interface allows the BPTD device to be used to systematically collect the optimal phase values over the range of test frequencies.
- the PAT test also includes the synthesis of all of the phase information to form a phase correction filter as illustrated in Figure 9.
- the BPTD device also has the capability of implementing the phase correction filter in real-time. With the correction filter in place, a speech stimulus can be used to repeat the phase analysis paradigm described above. However, since speech is a frequency rich stimulus, the narrowband noise is replaced with noise that has a broader frequency profile, such as broad-band or white noise. As before, a procedure for determining the minimum hearing threshold for when the target speech signal is heard above the broad-band noise signal is implemented. Comparisons can then be made to the situation where the correction filter is not in place and performance improvements can be verified.
- phase correction filter can be compared or combined with optimal time delay parameters (such as those obtained from the Delayed Binaural Fusion Test).
- optimal time delay parameters such as those obtained from the Delayed Binaural Fusion Test.
- the BPTD device is capable of implementing this hearing threshold approach to investigate and diagnose time delay parameters such as those considered for the Delayed Binaural Fusion Test.
- An electronic device is used for diagnosing and measuring the phase and time portion of BPTD, and verifying the best overall relative time delay for the subject.
- An operator controls the relative time delay and phase delay applied to the subject's ears via an operator interface.
- the test set up considers one frequency (tone) at a time and applies the selected phase shift (and/or time delay) to whatever frequency is applied.
- the operator interface may include a keypad to enter control signals, and a display to show which control signal is being applied. Control signals set the amount of phase shift to be applied.
- the relative time delay shifter applies the overall relative time delay, and the phase shifter applies the phase shift.
- a real time, active, digital signal processing electronic device is used for correcting BPTD, once it has been measured in the testing phase.
- Equivalent analog devices could also be used, but digital devices are more practical. In general, only one of the devices will be used, since sound is typically delayed to the same ear at every frequency.
- the signal is amplified by a preamp, and is digitized in an analog to digital converter (ADC).
- a digital signal processor DSP
- DSP digital signal processor
- a digital to analog converter DAC
- the BPTD applied by the DSP is programmed according to the overall relative time shift and the phase shift versus frequency profile obtained in the testing phase.
- the BPTD profile is unique for each subject.
- the DSP could be reprogrammable, via a control signal, so it could be optimized for the wearer in actual use. Note that other hearing aid processing (compression or the like) may also be incorporated into the DSP if desired. Amplitude changes may also be implemented.
- the BPTD profile used may change with the kind of background noise detected by the device, or the type of activity the subject is performing.
- a physical filter may alternatively be used for correcting BPTD.
- a physical device in the ear can delay the sound in the ear, and can delay different frequencies differently, as an electronic device does.
- the passive earplug induces a BPTD to sound entering the ear by altering the propagation time of the acoustic waves.
- the primary method of delaying an acoustic signal in this manner is through the use of ducting, through which the signal propagates.
- the velocity of propagation of sound in air is approximately 331 meters per second, and the length of the ducting in the ear canal is about 10 cm (ducting along an eyeglass frame can be longer).
- the time delay applied by a passive device in the ear canal is on the order of 30 us, corresponding to a phase shift of about p/3 at 5000Hz.
- This time delay may be increased by about a factor of two by using a fluid rather than air in the ducting.
- the frequency response of the earplug may also be tuned by using acoustical filter elements.
- Standard elements include chambers, Helmholtz resonators, and dampers.
- other acoustic elements such as horns, collectors, domes, trumpets, and resonators may be used.
- Figure 1 is a flow diagram 100 showing a set of diagnostic procedures for diagnosing and quantifying pathological binaural phase time delay (BPTD) in subjects.
- the tests may be performed in any order, but the order shown is the most logical, for reasons described below.
- the test routine begins with step 102.
- a series of conventional hearing tests 104 on the subject first, in order to determine whether other hearing problems or central auditory processing problems exist. These tests are shown in more detail in figure 2.
- a series of pure tone phase analysis tests 108 are performed to determine the optimal clinical phase shift at a variety of sound frequencies.
- the subject's ability to identify a tone out of noise centered around the tone and the resultant threshold is assessed at a variety of relative phase shifts between ears, and at a variety of frequencies, and a profile of the subject's phase shift frequency profile is generated.
- the frequency profile will be used to complement a phase correction filter. With this filter in place, speech stimuli can be used as a target in a similar fashion with broad band noise.
- step 112 the results for the subject are compiled in a database. If the pathological BPTD for the subject is significant, this database is used to design an electronic filter (see Figure 6) or a physical filter (see Figure 7) to apply compensating clinical BPTD to the subjects ears.
- FIG. 2 is a flow diagram showing conventional tests 104 in more detail.
- the conventional tests start at step 202.
- these tests include a pure tone evaluation 204 to evaluate hearing loss at various frequencies.
- a central auditory processing evaluation 206 is performed, and various electro-physiological assessments 208 are performed.
- Other assessments 210 may be added.
- the conventional tests end at step 212.
- Central auditory processing evaluation 206 may include (but is not limited to) such tests as: Willeford central auditory test battery; Dichotic digits test; Ipsilateral/ contralateral competing messages; Synthetic sentence identification with contralateral competing messages; Masking level differences; Auditory duration patterns; Speech-in-noise; Pediatric speech intelligibility test; segment altered CVCs; pitch patterns; dichotic chords; compressed speech, with and without reverberation.
- tests as: Willeford central auditory test battery; Dichotic digits test; Ipsilateral/ contralateral competing messages; Synthetic sentence identification with contralateral competing messages; Masking level differences; Auditory duration patterns; Speech-in-noise; Pediatric speech intelligibility test; segment altered CVCs; pitch patterns; dichotic chords; compressed speech, with and without reverberation.
- Electro-physiological assessments include such tests as: ABR; Middle latencies; Late latencies; P300; Mismatched Negativity. Binaural interaction components will also be calculated. Since electrophysiological measurements use various latency classifications or markers, this information may yield added information to the diagnosis and quantification of auditory asynchronies.
- FIG 3 is a flow diagram showing the pure tone phase analysis test 108, according to the present invention.
- a device such as that shown in Figure 5 may be used in this test.
- This test assesses the subject's ability to discriminate pure tones from narrow band noise centered around the tone.
- the pure tone and the noise are presented to each ear at a different phase (giving a relative phase shift or clinical BPTD). Thresholds are obtained for each tone at varying phase shifts.
- a relative phase shift is selected, and the amplitude of the tone is increased until the subject can pick it out of the noise.
- the optimal phase shift is the phase shift that produces the smallest amplitude hearing threshold.
- the test starts at step 302. Narrow band noise and pure tones are applied to both ears in step 304.
- frequencies are stepped through, for example from 500 Hz to 12000 Hz.
- phase shifts of the pure tone between the two ears are stepped through for each frequency, for example 30, 60, 90, 120, and 180 degrees. These two loops can be exchanged if desired.
- Step 312 tests the subject's threshold for the pure tone at that frequency and phase shift, and stores the result, for example in a table.
- Step 314 determines the optimal relative phase shift between ears at each tested frequency, by determining at which phase shift the tone was heard best (at the lowest amplitude) over the background noise, for each frequency, compared to normal phase shift function.
- the phase analysis test ends at step 320. This test procedure is also used with speech stimuli as the target signal using a phase correction filter and broad band noise.
- Figure 4 is a flow diagram showing delayed binaural fusion test 112. This test measures the subject's ability to comprehend words (preferably bisyllabic) at various time delays between the two ears. Thus, it provides information regarding timing differences between the two ears and adds information beyond the phase analysis test. Examples of the tests done are given below.
- High Low Frequency Lags Test 404 tests comprehension of a series of bisyllabic words separated into two frequency components (e.g. a high frequency component from 1900-2100 Hz and a low frequency component from 500-770 Hz) presented at a variety of relative time delays to the ears.
- the purpose of step 404 is to determine whether a significant impairment due to CANS binaural phase-time asynchrony exists for the subject. For a person without this type of impairment, the change in relative time delays does not significantly effect comprehension - the CANS can account for the changes. In addition, the best comprehension occurs for the case of no relative time delay, as would be expected.
- step 408 determines the optimal time delay for the subject.
- Each word is presented to both ears, the high frequency portion of the word going to one ear and the low frequency portion of the word going to the other ear.
- the relative time delay between the ears is changed for each word, and a variety of words are used at each relative time delay.
- the words are generally bisyllabic, familiar to most people, and the emphasis is placed on both syllables equally (e.g. woodwork, bedroom, inkwell). For example, a series of 120 words may be used, divided among the selected relative time delays.
- Other speech stimuli can be used along with other novel ways to split or partition out speech segments.
- a computer program for sequentially selecting the words and setting the relative time delay for each word makes this process much easier.
- the program may also provide a score sheet for entering whether each word was correctly identified, and computing the correct averages at each phase shift.
- Steps 404 and 408 zero in on the ideal clinical relative time delay, because it is difficult for a subject with CANS-BPTD impairment to understand a word if the high and low frequency components are not correctly time shifted relative to each other, or when they are lagged while being embedded in noise or speech-babble.
- auditory discrimination improves with an induced time delay in one ear for individuals with a CANS disfunction.
- Other speech modifications using a lag paradigm may be used for identifying and quantifying asynchronies.
- the described tests are scored by computing the percentage of correct responses given by the subject at each relative time delay, and each step refines the results of the previous step.
- a software program for sequentially selecting the words and setting the relative phase shift for each word makes this process much easier.
- the program also provides a score sheet display for entering whether each word was correctly identified, and computes the correct averages at each phase shift when the test is completed.
- the phase shifts tested may be selected in view of the ideal overall clinical phase shift that was computed at the end of the pure tone or speech phase test of Figure 3, in order to make this test more efficient.
- High-low frequency lags test 404 tests comprehension of a series of words at (for example) relative time delays of 5, 10, 15, and 20 msec to the left and right ears. The best comprehension level might be achieved at, for example, 5 msec time delay to the right ear.
- Incremental DBFT test 408 then tests comprehension of a series of words at relative time delays of 2.5, 5, and 7.5 msec (assuming a 5 msec delay gave the best results in step 404). The best comprehension level might be achieved at, for example, 7.5 msec time delay.
- Those skilled in the art will appreciate that further fine tuning can be accomplished with smaller relative time delays using the BPTD diagnostic device, if desired.
- Zero delay word lists test 410 then verifies the results from steps 404 and 408 by testing comprehension at the selected relative time delay, using a device such as that shown in Figure 5.
- Step 412 stores the optimal time delay selected by the previous steps.
- the test ends at 414.
- a correction device such as that shown in Figure 6 may now be designed, by combining the results of the Phase Analysis Test shown in Figure 3 and the DBFT test shown in Figure 4.
- Figure 5 is a block diagram of an electronic device 500 for diagnosing and measuring the phase and time portions of BPTD, and for verifying the best overall relative time delay for the subject (see Figure 4, step 408).
- An operator controls the relative time delay and phase delay applied to the subject's ears via an operator interface 502.
- the test setup shown in this figure tests one frequency (tone) at a time and applies the selected phase shift to whatever frequency is applied.
- the steps of the phase shift test are shown in Figure 3.
- Operator interface 502 may include, e.g. a keypad to enter control signals, and a display to show which control signal is being applied.
- Control signals 504 set the amount of relative time delay and phase shift to be applied by digital signal processor 510.
- Sound 506 is digitized via channels 507 and 508 (or only one microphone may be used).
- Relative time delay shifter 512 applies the overall relative time delay per control signals 504, and phase shifter 514 applies the phase shift.
- the output of block 510 is delivered to the left ear 522 of the subject 520 via signal 516, to the right ear 524 of the subject via signal 518.
- Figure 6 is a block diagram of real time, active, digital signal processing electronic device 600 for correcting BPTD, once it has been measured. Equivalent analog devices could also be used, but digital devices are more practical.
- the signal is amplified in preamp 604, and is digitized in analog to digital converter (ADC) 606.
- Digital signal processor (DSP) 608 operates much as test device 500 in Figure 5 operated, applying a time delay and a phase shift profile (see Figure 7).
- Digital to analog converter (DAC) 610 converts the processed signal back to an analog signal, amplifier 612 filters and amplifies the signal, and microphone 614 turns the signal into an audio signal to be delivered to the ear of the subject.
- the BPTD applied by DSP 608 is programmed according to the BPTD versus frequency profile obtained in the testing phase. It is unique for every subject. As an option, the DSP could be reprogrammable, via control signal 616, so it could be optimized for the wearer in actual use. Note that other hearing aid processing (compression or the like) may also be incorporated into the DSP if desired.
- BPTD's produce a very noticeable auditory effect in the presence of noise regardless of whether the subject has CAP difficulties or not.
- target signal speech stimuli
- BPTD's have the potential for enhancing hearing aid performance
- the BPTD profile used may change with the kind of background noise detected by the device.
- a different BPTD profile may be used when the wearer is in a noisy environment, for example, or for different actions, as when the wearer is walking rather than sitting and writing.
- FIG. 7 is a more detailed block diagram of DSP 608 of Figure 6.
- BPTD control block 702 controls the overall time delay and the phase shift profile applied to the sound signal.
- TD correction block 704 applies the overall time delay.
- BP correction block 706 applies a phase shift profile to the sound signal. See Figure 9 for an example of a phase shift profile.
- FIG 8 is a flow diagram showing the process accomplished by the DSP of Figure 6.
- the audio input signal is applied in step 802.
- the overall time delay is applied.
- the phase profile is applied.
- other processing is accomplished, if desired (compression or the like).
- the corrected output signal is output in step 810.
- Figure 9 is a diagram showing an example of the phase shift profile correction accomplished in BP block 706 of DSP 608 of Figure 7.
- Dotted line 902 indicates linear phase
- solid line 904 indicates the phase profile after the phase corrections.
- q 1 , q 2 , and q 3 indicate phase shifts at specific frequencies f1, f2, and f3 respectively. Note that a different phase shift is applied at each frequency, and that positive and negative phase shifts may be applied.
- the overall time delay applied by block 704 means that, overall, the time delay plus the phase shift will be positive.
- Figure 10 is a cutaway side view of a physical filter (a passive earplug) for correcting BPTD.
- a physical device in the ear can delay the sound in the ear, and can delay different frequencies differently, as electronic device 600 (in Figure 6) does.
- a physical device is capable of much smaller time shifts, and the control at different frequencies is far less precise. Since the physical device is much cheaper and does not require batteries, it is the preferred device is some cases, for example when a small phase shift or delay is required, and the phase shift required doesn't vary much at various frequencies.
- the physical filter is also smaller and more convenient.
- Passive earplug 1000 induces a BPTD to sound entering the ear by altering the propagation time of the acoustic waves.
- the primary method of delaying an acoustic signal in this manner is through the use of ducting 1002, through which the signal propagates.
- the velocity of propagation of sound in air is approximately 331 meters per second, and the length of the ducting in the ear canal is about 10 cm (ducting along an eyeglass frame can be longer).
- the time delay applied by a passive device in the ear canal is on the order of 30 us, corresponding to a phase shift of about p/3 at 5000Hz.
- This time delay may be increased by about a factor of two by using a fluid rather than air in ducting 1002.
- the velocity of sound in iodine is around 108m/s.
- the frequency response of earplug 1000 may also be tuned to some degree by using acoustical filter elements 1004 (limited by space available).
- Standard elements include chambers, Helmholtz resonators, and dampers.
- other acoustic elements such as horns, collectors, domes, trumpets, and resonator may be used.
- a direct analog may be made to an electrical BPTD system such as that shown in Figure 6, with Helmholtz resonators and expansion chambers used to create filter characteristics.
- the number of cavities relates to the order of filter that can be designed.
- phase time delay provided by passive element 1000 is dependent on the length of the auditory ducting 1002 within the plug, the diameters and locations of the cavities (side branch chambers 1008 or expansion chambers 1006) and the working fluid in the ducting.
- Clinical results indicative of the efficacy of the present invention are provided hereinafter.
- representative results will be provided for the diagnostic effectiveness of the delayed binaural fusion test (DBFT) and for the efficacy of binaural phase-time delay (BPTD) compensating devices as clinically demonstrated by subjects having BPTD impairments, wherein the compensating device substantially alleviated the debilitating effects of such BPTD generated impairments.
- DBFT delayed binaural fusion test
- BPTD binaural phase-time delay
- CAP central auditory processing
- This battery included the Competing Sentences, Filtered Speech, and Binaural Fusion Tests of the Willeford Central Auditory Test battery (Willeford, 1977), the Ipsilateral/Contralateral Competing Sentence Test (IC/CST) (Willeford 1985a, 1985b, Willeford et al ., 1985; Willeford et al ., 1994), Synthetic Sentence Identification-Ipsilateral Competing Messages (SSI-ICM) (Jerger et al ., 1974, 1975; Speaks et al ., 1965), Dichotic Digits (Musiek, 1983; Musiek et al ., 1979; Musiek et al ., 1979) and Masking Level Differences (MLD) (Noffsinger et al ., 1972; Olsen et al ., 1976). Using one-way ANOVAs, test performance showed significant differences
- the low-pass and high-pass frequency filtered format one version of the DBFT (404), and shown in Table 1, was used to quantify inherent BPTDs between ears.
- Statistically significant differences in speech recognition performance between normals and atypicals in the DBFT study of 115 subjects were observed.
- Significant differences in percent performance were also evidenced in all conditions for both ears except for a left ear lag at a 15msec delay. The reason for this decrease in function for both normal and atypical groups at a 15msec lag deserves further study.
- filters are designed for wearing binaurally to reduce damaging noise while maintaining speech. It is not an intentional effect of the filter to produce a time delay in the acoustic signal.
- the inventors recognized that monaural use of such a filter was a passive filter approach to inducing a BPTD.
- the modifications to the filter to change the length of the filter were done on custom trial-and-error basis.
- the filter, with the resultant notched frequency configuration at 2000-3000 Hz, when worn monaurally, has the effect of a BPTD.
- the proposed passive device would be designed specifically for inducing a BPTD, and could be designed to induce the a predetermined BPTD obtained from the testing procedure described above.
- the BPTD could be limited to a particular frequency range (depending on PAT results) for specific amplitudes within the limitations of the capabilities of passive filtering elements. This would provide the ability to control the induced BPTD for individual fitting based on the diagnostic results.
- the current art does not offer flexibility with size of BPTDs at specific frequencies for optimal auditory and human performance enhancement.
- Figure 13 shows speech recognition performance in noise for 22 individuals with CANS dysfunction. Five different conditions are shown in the figure.
- condition 4 introduces a BPTD.
- Conditions 2 and 3 result in unilateral noise reduction and condition 5 results in bilateral high frequency noise reduction. All differences are statistically significant (p ⁇ 0.05), except for the three conditions, which included the left ear muffed, and no plugs, bilateral plugging and no plugging, and left ear muffed and bilateral plugging. Of particular interest is the significant improvement in speech recognition with an induced BPTD ("unilat plug"), P ⁇ 0.0001. Noise reduction without a BPTD (unilateral muff or bilateral earplugs) does not result in enhanced speech recognition.
- Figure 14 shows speech recognition ability in noise results for 12 individuals without CANS dysfunction. Five different conditions are shown in the figure.
- the "no plug” results are significantly (p ⁇ 0.01) greater than any of the other conditions. These results demonstrate the importance of synchronous binaural processing of auditory input for enhanced speech discrimination in noise for individuals with a normal CANS. Furthermore, these results indicate that unilateral noise reduction (conditions 2 and 3) or introducing a BPTD (conditions 4 and 5) do not enhance speech discrimination in noise for individuals with normal CANS function. Note that speech discrimination results for the atypical group under condition 1 ("no plug”) are significantly lower than those for the normal group under condition 1 ("no plug”). Note also that under condition 4 ("unilat plug”), the atypical group performs at approximately the same level as the normal group does under condition 1 ("no plug”).
- Ten normal CANS subjects and 10 atypical CANS subjects were selected for various human performance testing using the prototype BPTD electronic device.
- the mean age of the 10 normal subjects was 31 years with an age range of 21-43 years. In this group, five individuals were male and five were female. In the atypical CANS group, the mean age was 29.1 years with an age range of 15 to 47 years. Seven females and 3 males were included in this group. All subjects in the two groups passed the initial subject selection criteria. The ten subjects that were included in the atypical CANS group failed at least one test in either ear in the CAP test battery. Further, to provide for a balancing of BPTDs for the normal group, subjects for the atypical group were selected when they showed maximum improvement for the DBFT with a 2.5-7.5 msec BPTD to either the right or left ear.
- Another version of the DBFT (406) was developed to include time-lagged bisyllabic stimuli that were presented in 2.5 msec increments (the previous DBFT used 5 msec increments).
- This version included thirty bisyllabic words per list (4 lists) that were lagged in time between ears of 0 msec, 2.5 msec, 5 msec, and 7.5 msec and recorded in a CD format with an 8-talker babble (s/n ratio of +2 dB) embedded in the background and presented binaurally. These words were presented under earphones at 40 dB sensation level relative to pure tone averages for both ears.
- the lag ear was determined by results from the DBFT 5 msec version (404).
- the highest speech recognition percent score for bisyllabic words was determined to be the "optimal" msec setting for the BPTD device for atypical CANS subjects.
- the optimal condition for normal CANS subjects was randomized at 2.5 msec, 5 msec, and 7.5 msec. Statistical analysis showed that these word lists were equivalent.
- the 5 auditory conditions used in the preliminary studies were as follows: (1) natural condition which was unoccluded with 8-talker babble presented at 40 dB HL, (2) quiet which consisted of an unoccluded condition with 8-talker babble presented at 25 dB HL, (3) optimal condition using the BPTD electronic device in the presence of 40 dB HL 8-talker babble; (4) 0 msec condition using the BPTD electronic device with 40 dB HL 8-talker babble, and (5) opposite BPTD (same setting but in opposite ear) from the optimal setting (e.g., if "optimal” was a 5 msec lag to the right ear, then "opposite” is a 5 msec lag to the left ear). Not all tests examined condition 5.
- Percent improvement in speech recognition ability using the BPTD device was assessed using four thirty-bisyllabic word lists that were recorded on a CD at 0 msec (408). Auditory stimuli were presented in the sound field from a front facing speaker two meters from the individual. Test stimuli were presented at 45 dB sensation level (re: sound field speech reception threshold) in the presence of an 8-talker babble recorded at a +2 s/n ratio. Both stimuli were presented from the front speaker in a double-walled sound proof room.
- Gait studies were performed in a controlled uniform sound environment -- a semi-anechoic chamber. Reverberation times were long enough (or amplitudes sufficiently low) that the room was taken as representative of the sound field in an open or large room with high damping.
- the ambient sound level in the chamber was 45 dB SPL (Metrosonics dosimeter, Model dB307, Class Type 2A, Rochester, NY). Sound sources were then introduced into the chamber under controlled amplitude and directionality. This is a highly controlled sound field relative to all previous gait studies in the literature.
- Speakers were placed in the anechoic chamber at 0( (far left), 45(, 90( (center), 135(, and 180( (far right) locations in a clockwise direction relative to the direction of travel.
- the five sound sources were randomly presented to create the general localized sound condition (LS).
- Two additional cases were run in the chamber without speaker input: walking with and without earmuffs (Peltor, Model H6AN) created the general reduced sound level condition (RS).
- RS general reduced sound level condition
- the center speaker was used for the BPTD device study.
- the speaker output (i.e., sound source) was a tape-recorded eight-person multi-talker babble presented at a sound level that was within three dB of a 56 dB SPL in the chamber calibrated gait area.
- all materials used in the chamber were monochromatic (i.e., either gray or black) and the room lighting was reduced to approximately 0.9 footcandles (equivalent to a moderately lighted parking lot).
- a calibrated three-dimensional video gait analysis (Peak MotusTM, Englewood, Colorado) was completed with three camera views. The three cameras recorded each subject walking straight ahead within the calibrated area at a comfortable pace for two strides. The subject repeated each condition until three to five gait cycles were recorded between consecutive heel strikes of the same foot.
- retro-reflective markers were mounted on the skin using 3MTM hypoallergenic double-sided tape. On the head, two markers were placed on a spandex swim cap pointing upward directly above the ears. Body markers were placed on the vertebra prominens (C7 vertebra), shoulders, elbows, wrists, greater trochanters, knees, and ankles.
- the kinematic data were divided by the subject's height in meters.
- the following gait parameters will be presented: walking speed (% height/sec), stride width (%height), and center of mass position (COM) (% height).
- the relative COM (COM Del) was the difference of the lateral COM position from the origin between the first heel strike and the time of measurement.
- the Root Mean Square Error (RMSE) method was used to calculate the mean lateral deviation from a straight-line path of the COM.
- BPTD Planar Biharmonic Deformation
- Figures 16, 17, and 18 show the walking speed, stride width and RMSE results for the atypical and normal groups under the different BPTD device conditions.
- the data graphically presents the differences in these parameters between the three BPTD device conditions.
- the first bar in Figure 16 shows the average of the differences in walking speed for each of the atypical subjects between the "optimal” and "0msec” conditions. It is evident that atypical group's gait is significantly improved (i.e., they walk faster) under both the "optimal" and "opposite" BPTDs, compared to the absence of a BPTD (O msec), while the BPTD settings have little effect on the normal subjects' gait.
- the decrease in stride width and RMSE is seen as an improvement in gait as the decreases tended to bring the values of these parameters for the atypicals closer to the values for the normals. While the gait of the normal subjects was impacted very little by the device, as compared to the atypical group, the graphs indicate a trend that the "optimal" and "opposite" BPTDs actually degrade the normal subjects' gait. This trend supports the notion that while an induced BPTD in a normal CANS system is disruptive, it can be accommodated.
- Acoustic measures of diadochokinetic rate or maximum repetition rate for non-speech material includes: duration in msec of 5 correct syllable sequences out of 7 consecutive utterances. This measure was used as an assessment of articulatory speed; however, because only correct syllable productions were counted, it probably more accurately reflected articulatory efficiency. Syllable and pause durations were also measured as were irregularities or variances among successive syllable and pause durations within each condition.
- Results of performance of these tasks under auditory conditions in normal and atypical subjects revealed statistically significant differences in articulatory efficiency, syllable duration and variances in syllable and pause duration when comparing those persons with normal and atypical CANS function (p ⁇ .05 for each). This suggested that while all subjects were considered normal speakers, differences in abilities to make rapid alternating movements differ in persons with atypical versus normal CANS function.
- perceptual measures were taken of the number of dysfluencies and reading speed in words per second.
- Perceptual dysfluency types included: part and whole word repetitions, phrase repetitions/restarts, prolongations, phonatory disruptions, interjections, blocks, and pauses. This system of dysfluency classification was modified from Kent, 1994.
- Reading speed as measured by words per second in an 85-word oral reading sample revealed statistically significant differences when comparing those persons with normal and atypical CANS function (p ⁇ .05). It should also be noted that although statistically significant differences were not observed in pairwise comparisons across auditory conditions for the subjects with atypical CANS function, the fastest reading rate condition for this group was their optimal or accommodated condition.
Landscapes
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- Physics & Mathematics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Stereophonic System (AREA)
- Prostheses (AREA)
- Instructional Devices (AREA)
- Stereophonic Arrangements (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
Description
- The present invention relates to apparatus and methods for diagnosing, quantifying, and correcting for human central auditory nervous system (CANS) impairment, and in particular binaural phase time delay asynchrony.
- Preliminary studies indicate an important connection between the binaural synchronization of the central auditory nervous system (CANS) and gross, fine and oral motor function. A binaural phase time delay (BPTD) is defined herein as a synchronization disruption (delay) in phase and time of the auditory input signals to the two ears. Two types of BPTDs have been defined by the investigators: pathological BPTDs which are "built-in" to a person's CANS, as is the case with a person with neurological injury or disease process, and clinical BPTDs which are induced in a person's CANS using an external device, to compensate for a pathological phase time delay.
- A BPTD is a combination of a phase shift and a time delay. For pure tones, a specific phase shift results in a specific time delay. For example, at 1000 Hz a 180° phase shift results in a 0.5 ms time delay. However for speech and other multi-frequency sounds, one specific time delay would result in several different frequency-dependent phase shifts. Note that a time delay can be much larger than the maximum phase shift for a given frequency.
- Operationally, binaural interaction of the CANS requires the two ears to integrate dichotic signals separated in time, frequency, and/or intensity. The brain stem is crucial for binaural interaction of acoustic stimuli. Stillman (1980) has emphasized that precise timing of excitatory and inhibitory inputs to each cell along the auditory pathway is critical if each cell is to respond in an appropriate manner. Oertel (1997) has also studied the effects of timing in the cochlear nuclei. The superior olivary complex is an important relay station of the ascending tract of the CANS and is critical for binaural listening capabilities. It is this cross correlation behavior of the two ears that afford the selective listening capability in noisy environments, and the ability to spatially localize sound sources. However, it has been shown that signals from the two ears must have synchronized arrival times for binaural cells to be activated in the superior olivary complex. A delayed signal from one ear negates a binaural response. There is evidence that the synchronization of auditory stimuli is important above the superior olivary complex, at the levels of the brainstem and cerebral cortex.
- In individuals (adults and children) with an impaired CANS, a pathological BPTD has been observed between the two ears which is in some cases is quite large (15-20 msec). The pathological BPTD not only decreases speech intelligibility in complex listening environments, but also (somewhat surprisingly) degrades motor (gross, fine, oral) and visual performance. Furthermore, a clinically-induced BPTD, designed to compensate for the pathological BPTD in the subject, significantly improves the speech intelligibility, gross and oral motor function the subject.
- It is well known that head injury frequently results in generalized trauma to the brainstem and to higher cortical mechanisms which include the central auditory nervous system, resulting in central auditory processing function abnormalities. Other conditions such as sensory integration problems, speech and language delays, hearing impairment, learning disabilities, multiple sclerosis, Parkinson's Disease, autism, stuttering, developmental delays, central auditory processing disorders, psychological disorders, and neurological disorders have been associated with CANS dysfunction. Individuals with central auditory processing problems often demonstrate difficulty comprehending and remembering auditory information. In addition, these individuals have particular difficulty attending to auditory information in the presence of auditory distractions.
- In some traumatic brain injuries and other debilitative neurological brain disorders, the processing of information by the central auditory nervous system is impaired and affects comprehension and recall of auditory information. Operationally, the central auditory nervous system typically receives auditory information from both ears and integrates the input received, even though the acoustic signals received by the ears may be somewhat separated in time, frequency, and/or intensity. Such binaural integration by the central auditory nervous system may be substantially provided in the brain stem. Further, it has been observed that the precise timing of excitory and inhibitory inputs to cells of the central auditory nervous system can affect these cells' behavior to respond appropriately. In particular, it has been shown that auditory signals from both ears must have a relatively synchronized arrive time for certain binaural cells to be activated in the superior olivary complex. Thus, a delayed (e.g. millisecond) response from one ear can impair the integration of binaural response. This is not reflected in the function of the inner ear. However, an individual with a peripheral hearing loss may also have CANS dysfunction or a mechanical effect that creates a disruption of the synchrony between the two ears.
- Behavioral and physiological (auditory brainstem response, middle latency response, cortical evoked potentials and mismatched negativity) methods have been employed to measure time parameters of the central auditory nervous system. Previous studies, however, have only analyzed the relationship of timing differences with respect to various pathologies (e.g. a latency in response has occurred). In particular, the development of tests quantifying the changes in auditory input between a subject's ears has been solely used as a diagnostic procedure for identifying a central auditory processing dysfunction. Since the anatomy of the brain stem indicates links between binaural signal processing and integration and motor control, it is not surprising that disorders of the central auditory nervous system often affect other functions such as sensory perception, integration, fine and gross motor, oral motor and visual processing. Accordingly, it would be useful to provide procedures and a diagnostic device that more accurately identify and quantify binaural processing disorders and the relationship of such disorders to other neurologically-based abnormalities. Further, it would also be useful to have a device that subjects manifesting binaural dysfunction-derived disorders can utilize to enhance day-to-day activities so that there may be enhanced speech understanding and recognition, concentration, gross motor movements (e.g. walking), fine motor movements (e.g. writing), oral-motor movement (e.g. speaking) or visual function.
- The following references are relevant to the present invention:
- U.S. Patent 5,434,924 to Jampolsky; "Two New Methods for Assessment of Central Auditory Function in Cases of Brain Disease," Matzker, Annals Of Otology, Rhinology, & Laryngology 68, 1185-1196, 1959; "Auditory and Vestibular Aberrations in Multiple Sclerosis," Noffsinger et al, Acta Otolaryngologica, 303 (Suppl.), 1-63, 1972; "Assessing Central Auditory Behavior in Children," Willeford, Central Auditory Disfunction, 43-72, 1977; and Westone style # 47 Soft PVC Custom Molded Ear Plug with Quiet Tech Int. Filter.
- A need remains in the art for apparatus and methods for diagnosing, quantifying, and correcting for binaural phase-time delay asynchrony.
- It is an object of the present invention to provide apparatus and methods for diagnosing, quantifying, and correcting for binaural phase-time delay asynchrony.
- The ideal overall relative time delay portion of the BPTD for the subject is measured by separating the high and low frequencies of a variety of words, and time shifting one of the two components relative to the other. The subject's comprehension of the words will be highest or best at that subject's ideal relative time delay. Time delays can also be measured by inducing a preselected time delay of monosyllabic or bisyllabic words in one ear relative to the other ear in the presence of multitalker babble.
- A phase analysis test (PAT) measures the appropriate binaural phase shift at a variety of frequencies by assessing the subject's ability to discriminate pure tones from narrow band noise centered in frequency around the target tone. The BPTD device can be used as a diagnostic tool in this situation. The BPTD device is capable of interfacing with standard audiometers to generate two types of stereo signals. One is the target signal that is comprised of a pure tone presented to both ears with a relative phase difference of q degrees between the target tone channels. The narrowband noise signal is also processed by the BPTD device on a stereo basis to generate a relative phase difference of f degrees between the two narrowband noise channels. The BPTD device then mixes these two types of signals together by performing a weighted summation operation and the output can then be presented to the subject. The weighting value on the summation processes is used to vary the signal-to-noise power ratio between the target signal and the noise. Since the resulting output signal is a combination of these two signal types we call it the SqNf output signal. The BPTD device can implement a variety of combinations of q and f parameters for research, diagnostic, and accommodative purposes. The PAT test is produced by generating SqNq (q = f) output signals over a range of tone frequency and phase (q) values. For each frequency and phase combination the amplitude of the target tone is varied in a procedure to establish the minimum target strength level needed to hear the target signal in the presence of narrowband noise. For diagnostic purposes, threshold results from a specific SqNq at various frequencies represent the baseline condition. Normative threshold measures for each target frequency and phase value tested will be used to determine atypical phase results for various frequencies.
- The optimal phase value for a given operating frequency for accommodative purposes is the one in which the tone is heard at the lowest hearing threshold value. An operator interface allows the BPTD device to be used to systematically collect the optimal phase values over the range of test frequencies.
- The PAT test also includes the synthesis of all of the phase information to form a phase correction filter as illustrated in Figure 9. The BPTD device also has the capability of implementing the phase correction filter in real-time. With the correction filter in place, a speech stimulus can be used to repeat the phase analysis paradigm described above. However, since speech is a frequency rich stimulus, the narrowband noise is replaced with noise that has a broader frequency profile, such as broad-band or white noise. As before, a procedure for determining the minimum hearing threshold for when the target speech signal is heard above the broad-band noise signal is implemented. Comparisons can then be made to the situation where the correction filter is not in place and performance improvements can be verified. It should also be noted that the phase correction filter can be compared or combined with optimal time delay parameters (such as those obtained from the Delayed Binaural Fusion Test). Furthermore, the BPTD device is capable of implementing this hearing threshold approach to investigate and diagnose time delay parameters such as those considered for the Delayed Binaural Fusion Test.
- An electronic device is used for diagnosing and measuring the phase and time portion of BPTD, and verifying the best overall relative time delay for the subject. An operator controls the relative time delay and phase delay applied to the subject's ears via an operator interface. The test set up considers one frequency (tone) at a time and applies the selected phase shift (and/or time delay) to whatever frequency is applied. The operator interface may include a keypad to enter control signals, and a display to show which control signal is being applied. Control signals set the amount of phase shift to be applied. The relative time delay shifter applies the overall relative time delay, and the phase shifter applies the phase shift.
- A real time, active, digital signal processing electronic device is used for correcting BPTD, once it has been measured in the testing phase. Equivalent analog devices could also be used, but digital devices are more practical. In general, only one of the devices will be used, since sound is typically delayed to the same ear at every frequency.
- Sound enters a microphone, which turns it into an analog electrical signal representing the sound. The signal is amplified by a preamp, and is digitized in an analog to digital converter (ADC). A digital signal processor (DSP) operates much as the test device operated, applying an overall relative time delay and a phase shift profile. A digital to analog converter (DAC) converts the processed signal back to an analog signal, an amplifier filters and amplifies the signal, and a microphone turns the signal into an audio signal to be delivered to the ear of the subject.
- The BPTD applied by the DSP is programmed according to the overall relative time shift and the phase shift versus frequency profile obtained in the testing phase. The BPTD profile is unique for each subject. The DSP could be reprogrammable, via a control signal, so it could be optimized for the wearer in actual use. Note that other hearing aid processing (compression or the like) may also be incorporated into the DSP if desired. Amplitude changes may also be implemented. In addition, the BPTD profile used may change with the kind of background noise detected by the device, or the type of activity the subject is performing.
- A physical filter (a passive earplug) may alternatively be used for correcting BPTD. A physical device in the ear can delay the sound in the ear, and can delay different frequencies differently, as an electronic device does. The passive earplug induces a BPTD to sound entering the ear by altering the propagation time of the acoustic waves. The primary method of delaying an acoustic signal in this manner is through the use of ducting, through which the signal propagates. The velocity of propagation of sound in air is approximately 331 meters per second, and the length of the ducting in the ear canal is about 10 cm (ducting along an eyeglass frame can be longer). Thus the time delay applied by a passive device in the ear canal is on the order of 30 us, corresponding to a phase shift of about p/3 at 5000Hz. This time delay may be increased by about a factor of two by using a fluid rather than air in the ducting. In addition to the overall delay created by ducting, the frequency response of the earplug may also be tuned by using acoustical filter elements. Standard elements include chambers, Helmholtz resonators, and dampers. In addition, other acoustic elements such as horns, collectors, domes, trumpets, and resonators may be used.
-
- Figure 1 is a flow diagram showing a set of diagnostic procedures for diagnosing and quantifying pathological binaural phase time delay (BPTD) in subjects.
- Figure 2 is a flow diagram showing the conventional tests performed in Figure 1, in more detail.
- Figure 3 is a flow diagram showing the phase analysis tests performed in Figure 1, in more detail.
- Figure 4 is a flow diagram showing the delayed binaural fusion tests performed in Figure 1, in more detail.
- Figure 5 is a block diagram of an electronic device for diagnosing and measuring BPTD.
- Figure 6 is a block diagram of an electronic device for correcting BPTD.
- Figure 7 is a more detailed block diagram of the digital signal processor (DSP) of Figure 6.
- Figure 8 is a flow diagram showing the process accomplished by the DSP of Figure 6.
- Figure 9 is a diagram showing an example of the correction accomplished in the BP block of the DSP of Figure 7.
- Figure 10 is a cutaway side view of a physical filter for correcting BPTD.
- Figures 11-19 are charts illustrating test results for an embodiment of the present invention.
-
- Figure 1 is a flow diagram 100 showing a set of diagnostic procedures for diagnosing and quantifying pathological binaural phase time delay (BPTD) in subjects. The tests may be performed in any order, but the order shown is the most logical, for reasons described below.
- The test routine begins with
step 102. In general it will be desirable to perform a series of conventional hearing tests 104 on the subject first, in order to determine whether other hearing problems or central auditory processing problems exist. These tests are shown in more detail in figure 2. Next, a series of pure tone phase analysis tests 108 are performed to determine the optimal clinical phase shift at a variety of sound frequencies. The subject's ability to identify a tone out of noise centered around the tone and the resultant threshold is assessed at a variety of relative phase shifts between ears, and at a variety of frequencies, and a profile of the subject's phase shift frequency profile is generated. The frequency profile will be used to complement a phase correction filter. With this filter in place, speech stimuli can be used as a target in a similar fashion with broad band noise. These tests are shown in more detail in Figure 3. - Finally, a series of delayed binaural fusion tests are performed. These tests assess comprehension of words at a variety of relative time delays between ears, and at a variety of frequencies. Again the results of this test are used to develop the subject's time delay versus frequency profile. This test is matched up to the pure phase test to complete the BPTD profile. This test also allows for testing of relative shifts greater than one wavelength, which cannot be done with tones. Figure 5 shows an embodiment of an electronic device that assists in performing the tests of Figures 3 and 4.
- In
step 112, the results for the subject are compiled in a database. If the pathological BPTD for the subject is significant, this database is used to design an electronic filter (see Figure 6) or a physical filter (see Figure 7) to apply compensating clinical BPTD to the subjects ears. - Figure 2 is a flow diagram showing
conventional tests 104 in more detail. The conventional tests start atstep 202. In general these tests include apure tone evaluation 204 to evaluate hearing loss at various frequencies. A centralauditory processing evaluation 206 is performed, and various electro-physiological assessments 208 are performed.Other assessments 210 may be added. The conventional tests end atstep 212. - Central
auditory processing evaluation 206 may include (but is not limited to) such tests as: Willeford central auditory test battery; Dichotic digits test; Ipsilateral/ contralateral competing messages; Synthetic sentence identification with contralateral competing messages; Masking level differences; Auditory duration patterns; Speech-in-noise; Pediatric speech intelligibility test; segment altered CVCs; pitch patterns; dichotic chords; compressed speech, with and without reverberation. - Electro-physiological assessments include such tests as: ABR; Middle latencies; Late latencies; P300; Mismatched Negativity. Binaural interaction components will also be calculated. Since electrophysiological measurements use various latency classifications or markers, this information may yield added information to the diagnosis and quantification of auditory asynchronies.
- Figure 3 is a flow diagram showing the pure tone
phase analysis test 108, according to the present invention. A device such as that shown in Figure 5 may be used in this test. This test assesses the subject's ability to discriminate pure tones from narrow band noise centered around the tone. The pure tone and the noise are presented to each ear at a different phase (giving a relative phase shift or clinical BPTD). Thresholds are obtained for each tone at varying phase shifts. In the preferred embodiment, a relative phase shift is selected, and the amplitude of the tone is increased until the subject can pick it out of the noise. The optimal phase shift is the phase shift that produces the smallest amplitude hearing threshold. - The test starts at
step 302. Narrow band noise and pure tones are applied to both ears instep 304. Inouter loop 310, frequencies are stepped through, for example from 500 Hz to 12000 Hz. In inner loop 311 phase shifts of the pure tone between the two ears are stepped through for each frequency, for example 30, 60, 90, 120, and 180 degrees. These two loops can be exchanged if desired. - Step 312 tests the subject's threshold for the pure tone at that frequency and phase shift, and stores the result, for example in a table. Step 314 determines the optimal relative phase shift between ears at each tested frequency, by determining at which phase shift the tone was heard best (at the lowest amplitude) over the background noise, for each frequency, compared to normal phase shift function. Thus a clinical phase shift versus frequency profile has been developed to compensate for the phase portion of the subject's pathological BPTD. The phase analysis test ends at
step 320. This test procedure is also used with speech stimuli as the target signal using a phase correction filter and broad band noise. - Figure 4 is a flow diagram showing delayed
binaural fusion test 112. This test measures the subject's ability to comprehend words (preferably bisyllabic) at various time delays between the two ears. Thus, it provides information regarding timing differences between the two ears and adds information beyond the phase analysis test. Examples of the tests done are given below. - The test starts at
step 402. High Low Frequency LagsTest 404 tests comprehension of a series of bisyllabic words separated into two frequency components (e.g. a high frequency component from 1900-2100 Hz and a low frequency component from 500-770 Hz) presented at a variety of relative time delays to the ears. The purpose ofstep 404 is to determine whether a significant impairment due to CANS binaural phase-time asynchrony exists for the subject. For a person without this type of impairment, the change in relative time delays does not significantly effect comprehension - the CANS can account for the changes. In addition, the best comprehension occurs for the case of no relative time delay, as would be expected. For a person with significant impairment due to CANS binaural phase-time asynchrony, however, different relative time delays result in very different levels of comprehension, and the best comprehension occurs at a relative time delay other than zero. If the results ofstep 404 indicate that a CANS-BPTD impairment exists,step 408 determines the optimal time delay for the subject. - Each word is presented to both ears, the high frequency portion of the word going to one ear and the low frequency portion of the word going to the other ear. The relative time delay between the ears is changed for each word, and a variety of words are used at each relative time delay. The words are generally bisyllabic, familiar to most people, and the emphasis is placed on both syllables equally (e.g. woodwork, bedroom, inkwell). For example, a series of 120 words may be used, divided among the selected relative time delays. Other speech stimuli can be used along with other novel ways to split or partition out speech segments. A computer program for sequentially selecting the words and setting the relative time delay for each word makes this process much easier. The program may also provide a score sheet for entering whether each word was correctly identified, and computing the correct averages at each phase shift.
-
Steps - The described tests are scored by computing the percentage of correct responses given by the subject at each relative time delay, and each step refines the results of the previous step. A software program for sequentially selecting the words and setting the relative phase shift for each word makes this process much easier. The program also provides a score sheet display for entering whether each word was correctly identified, and computes the correct averages at each phase shift when the test is completed. The phase shifts tested may be selected in view of the ideal overall clinical phase shift that was computed at the end of the pure tone or speech phase test of Figure 3, in order to make this test more efficient.
- High-low frequency lags test 404 tests comprehension of a series of words at (for example) relative time delays of 5, 10, 15, and 20 msec to the left and right ears. The best comprehension level might be achieved at, for example, 5 msec time delay to the right ear.
Incremental DBFT test 408 then tests comprehension of a series of words at relative time delays of 2.5, 5, and 7.5 msec (assuming a 5 msec delay gave the best results in step 404). The best comprehension level might be achieved at, for example, 7.5 msec time delay. Those skilled in the art will appreciate that further fine tuning can be accomplished with smaller relative time delays using the BPTD diagnostic device, if desired. - Zero delay word lists
test 410 then verifies the results fromsteps - Step 412 stores the optimal time delay selected by the previous steps. The test ends at 414. A correction device such as that shown in Figure 6 may now be designed, by combining the results of the Phase Analysis Test shown in Figure 3 and the DBFT test shown in Figure 4.
- Figure 5 is a block diagram of an
electronic device 500 for diagnosing and measuring the phase and time portions of BPTD, and for verifying the best overall relative time delay for the subject (see Figure 4, step 408). An operator controls the relative time delay and phase delay applied to the subject's ears via anoperator interface 502. The test setup shown in this figure tests one frequency (tone) at a time and applies the selected phase shift to whatever frequency is applied. The steps of the phase shift test are shown in Figure 3. -
Operator interface 502 may include, e.g. a keypad to enter control signals, and a display to show which control signal is being applied. Control signals 504 set the amount of relative time delay and phase shift to be applied bydigital signal processor 510.Sound 506 is digitized viachannels 507 and 508 (or only one microphone may be used). Relativetime delay shifter 512 applies the overall relative time delay per control signals 504, andphase shifter 514 applies the phase shift. The output ofblock 510 is delivered to theleft ear 522 of the subject 520 viasignal 516, to theright ear 524 of the subject viasignal 518. - Figure 6 is a block diagram of real time, active, digital signal processing electronic device 600 for correcting BPTD, once it has been measured. Equivalent analog devices could also be used, but digital devices are more practical.
- Sound enters
microphone 602, which turns it into an analog electrical signal representing the sound. The signal is amplified inpreamp 604, and is digitized in analog to digital converter (ADC) 606. Digital signal processor (DSP) 608 operates much astest device 500 in Figure 5 operated, applying a time delay and a phase shift profile (see Figure 7). Digital to analog converter (DAC) 610 converts the processed signal back to an analog signal,amplifier 612 filters and amplifies the signal, andmicrophone 614 turns the signal into an audio signal to be delivered to the ear of the subject. - The BPTD applied by
DSP 608 is programmed according to the BPTD versus frequency profile obtained in the testing phase. It is unique for every subject. As an option, the DSP could be reprogrammable, viacontrol signal 616, so it could be optimized for the wearer in actual use. Note that other hearing aid processing (compression or the like) may also be incorporated into the DSP if desired. - Furthermore, we have observed that BPTD's produce a very noticeable auditory effect in the presence of noise regardless of whether the subject has CAP difficulties or not. The fact that the implementation of BPTD parameter changes produce differences in target signal (speech stimuli) perceived loudness in the presence of masking noise indicates that BPTD's have the potential for enhancing hearing aid performance
- In addition, the BPTD profile used may change with the kind of background noise detected by the device. A different BPTD profile may be used when the wearer is in a noisy environment, for example, or for different actions, as when the wearer is walking rather than sitting and writing.
- Figure 7 is a more detailed block diagram of
DSP 608 of Figure 6. BPTD control block 702 (viacontrol signal 616, if used) controls the overall time delay and the phase shift profile applied to the sound signal.TD correction block 704 applies the overall time delay.BP correction block 706 applies a phase shift profile to the sound signal. See Figure 9 for an example of a phase shift profile. - Figure 8 is a flow diagram showing the process accomplished by the DSP of Figure 6. The audio input signal is applied in
step 802. Instep 804, the overall time delay is applied. Instep 806, the phase profile is applied. Instep 808 other processing is accomplished, if desired (compression or the like). The corrected output signal is output instep 810. - Figure 9 is a diagram showing an example of the phase shift profile correction accomplished in BP block 706 of
DSP 608 of Figure 7. Dotted line 902 indicates linear phase, and solid line 904 indicates the phase profile after the phase corrections. q1, q2, and q3 indicate phase shifts at specific frequencies f1, f2, and f3 respectively. Note that a different phase shift is applied at each frequency, and that positive and negative phase shifts may be applied. Of course, the overall time delay applied byblock 704 means that, overall, the time delay plus the phase shift will be positive. - Figure 10 is a cutaway side view of a physical filter (a passive earplug) for correcting BPTD. A physical device in the ear can delay the sound in the ear, and can delay different frequencies differently, as electronic device 600 (in Figure 6) does. However, a physical device is capable of much smaller time shifts, and the control at different frequencies is far less precise. Since the physical device is much cheaper and does not require batteries, it is the preferred device is some cases, for example when a small phase shift or delay is required, and the phase shift required doesn't vary much at various frequencies. The physical filter is also smaller and more convenient.
- Passive earplug 1000 induces a BPTD to sound entering the ear by altering the propagation time of the acoustic waves. The primary method of delaying an acoustic signal in this manner is through the use of
ducting 1002, through which the signal propagates. The velocity of propagation of sound in air is approximately 331 meters per second, and the length of the ducting in the ear canal is about 10 cm (ducting along an eyeglass frame can be longer). Thus the time delay applied by a passive device in the ear canal is on the order of 30 us, corresponding to a phase shift of about p/3 at 5000Hz. This time delay may be increased by about a factor of two by using a fluid rather than air inducting 1002. For example, the velocity of sound in iodine is around 108m/s. - In addition to the overall delay created by ducting 1002, the frequency response of earplug 1000 may also be tuned to some degree by using acoustical filter elements 1004 (limited by space available). Standard elements include chambers, Helmholtz resonators, and dampers. In addition, other acoustic elements such as horns, collectors, domes, trumpets, and resonator may be used.
- A direct analog may be made to an electrical BPTD system such as that shown in Figure 6, with Helmholtz resonators and expansion chambers used to create filter characteristics. The number of cavities relates to the order of filter that can be designed.
- In general, the phase time delay provided by passive element 1000 is dependent on the length of the
auditory ducting 1002 within the plug, the diameters and locations of the cavities (side branch chambers 1008 or expansion chambers 1006) and the working fluid in the ducting. - While the exemplary preferred embodiments of the present invention are described herein with particularity, those skilled in the art will appreciate various changes, additions, and applications other than those specifically mentioned.
-
Delayed Binaural Fusion Test Table of Words List 1 List 2 List 3 List 4 List 5 List 6 woodwork redbird doorbell sunset highway dishcloth chalkboard desktop racetrack bookmark doormat handbell shortcake playground treetop meatball grandson padlock baseball icecream wildcat headlight toothbrush northwest scarecrow lighthouse downtown shipwreck hardware hardhat hatrack armchair whitewash bullfrog flagpole mushroom housework corncob windmill handshake hairbrush eardrop railroad highchair tshirt pancake airplane football duckpond schoolbell bedspread bedroom inkwell drugstore nightfall workshop bluejay iceberg keyhole toolbox stairway drawbridge daybreak birdnest hottub teabag beanbag goldfish driftwood dirtbike mousetrap lightbulb horseshoe lefthand sidewalk farewell birdhouse sandbox farmhouse shirttail billboard bathtub pinwheel cowboy starfish snowball greyhound toothpick earthworm yardstick doghouse eyebrow oatmeal daylight iceskate eardrum cookbook birthday snowman schoolboy bustop rainbow offshore blackboard stringbeam shoelace thumbtack treehouse swingset shortcut forehead dollhouse hothouse carwash hotdog timeout cardboard lifeboat jailhouse footstool Delayed Binaural Fusion Test Time Delay Sequencing Table Condition List 1 List 2 List 3 List 4 List 5 List 6 Lagging Channel 1 0 5 10 15 20 25 Low Freq. 2 25 0 5 10 15 20 Low Freq. 3 20 25 0 5 10 15 Low Freq. 4 15 20 25 0 5 10 Low Freq. 5 10 15 20 25 0 5 Low Freq. 6 5 10 15 20 25 0 Low Freq. 7 0 5 10 15 20 25 Low Freq. 8 25 0 5 10 15 20 Low Freq. 9 20 25 0 5 10 15 Low Freq. 10 15 20 25 0 5 10 Low Freq. 11 10 15 20 25 0 5 Low Freq. 12 5 10 15 20 25 0 Low Freq. - Clinical results indicative of the efficacy of the present invention are provided hereinafter. In particular, representative results will be provided for the diagnostic effectiveness of the delayed binaural fusion test (DBFT) and for the efficacy of binaural phase-time delay (BPTD) compensating devices as clinically demonstrated by subjects having BPTD impairments, wherein the compensating device substantially alleviated the debilitating effects of such BPTD generated impairments.
- The results of the preliminary studies presented below demonstrate the understanding of the significance and feasibility of the patent. In brief, the inventor's research documents that subjects with normal CANS function demonstrate optimal BPTDs at 0 msec. In other words, their auditory systems function optimally when acoustic stimuli have a matched-timed onset to the two ears. In contrast, these preliminary studies clearly demonstrated that subjects with CANS dysfunction show that matched-timed onset of acoustic signals (i.e., a 0 BPTD) do not result in optimal auditory function. In fact, optimal auditory function can only be obtained when a BPTD is induced between the two ears. The degree of the BPTD is quantified by DBFT results that are specific to each individual. The following descriptions of these preliminary studies will clarify what is meant by a BPTD and how a BPTD is induced.
- The first study assessed the effects of BPTDs on auditory performance for individuals with both normal and atypical CANS function using the DBFT in a high-pass and low-pass frequency filtered format (404). This investigation concentrated on ascertaining the percentage change in auditory discrimination ability of bisyllabic words presented in a binaural interaction format at various msec lag times. A total of 115 subjects from 12 to 58 years of age were included in this study. Forty subjects were included in the normal CANS function group and 75 in the atypical CANS function group. The mean age for the normal CANS group was 25.74 with a range of 12 to 56. The mean age for the atypical CANS group was 20.3 years with an age range of 12 to 58 years. Selection for each group was determined by the results obtained on the central auditory processing (CAP) test battery. This battery included the Competing Sentences, Filtered Speech, and Binaural Fusion Tests of the Willeford Central Auditory Test battery (Willeford, 1977), the Ipsilateral/Contralateral Competing Sentence Test (IC/CST) (Willeford 1985a, 1985b, Willeford et al., 1985; Willeford et al., 1994), Synthetic Sentence Identification-Ipsilateral Competing Messages (SSI-ICM) (Jerger et al., 1974, 1975; Speaks et al., 1965), Dichotic Digits (Musiek, 1983; Musiek et al., 1979; Musiek et al., 1979) and Masking Level Differences (MLD) (Noffsinger et al., 1972; Olsen et al., 1976). Using one-way ANOVAs, test performance showed significant differences between the two groups as defined by performance on this test battery. A former study by Burleigh (1996) clearly showed significant differences between normal CANS function and atypical CANS function groups when using this test battery and agreed with these findings
- The low-pass and high-pass frequency filtered format, one version of the DBFT (404), and shown in Table 1, was used to quantify inherent BPTDs between ears. Statistically significant differences in speech recognition performance between normals and atypicals in the DBFT study of 115 subjects were observed. Significant differences in percent performance were also evidenced in all conditions for both ears except for a left ear lag at a 15msec delay. The reason for this decrease in function for both normal and atypical groups at a 15msec lag deserves further study. One can speculate that interaural timing for the left ear may reflect transfer of information at the level of the corpus callosum.
- Further analysis showed that 78.67% of the atypical group showed a 20% or better increase in speech discrimination ability in noise with induced or compensating BPTDs as compared to the 0msec-lag condition. For those with normal CANS function, only 35% showed 20% or better improvement with the implementation of various lag times as compared to 0msec lag. Figure 11 shows the percent of individuals who improved 20% or better for speech discrimination ability for both groups as compared to each subject's 0msec score.
- Statistically significant differences in auditory discrimination performance between normals and atypicals at 5msec lag intervals are shown in Figure 12. As demonstrated in this figure, significant differences in subjects who improved at least 20% from 0 msec were observed between groups for auditory conditions of 5 msec through 25 msec lags as compared to a baseline of 0 msec (absence of a time lag).
- Initial clinical exploration of BPTDs involved the use of commercially available noise reduction filters that were originally designed for occupational safety. The specific earplug that has been used for this study is designed to attenuate damaging sounds while maintaining the amplitude of conversational frequencies in order to perform routine tasks while wearing the earplug. It is primarily used for industrial purposes. The earplug that was used for this portion of the clinical study is made of polyvinylchloride in a half shell earmold. This standard filtered earplug was modified to get the following clinical data. Due to the non-specific design of this earplug, only a single time delay was possible that was altered slightly by modifications to the length of the ear mold portion of the plug. The current art regarding diagnostics, as described earlier in this document, requires more flexibility with design and materials to accomplish closer control of and variations of the BPTDs. In particular it is evident that greater control of BPTDs at targeted frequencies is needed based on the diagnostic results. In particular, to utilize the commercially available earplug, we had to shorten the canal length in order to reduce the attenuation of the earplug while still providing a significant time delay from the filter elements. By shortening the length of the ear canal we could use the hard surface of the external auditory meatus itself for frequency filtering. Optimally, to achieve better performance with frequency filtering, a harder material should be used in the canal portion of the earplug. Further, to accommodate variations in phase differences between individuals with CANS dysfunction, different frequencies will be altered using acoustic filter elements within the canal and by altering the acoustic impedance of the materials surrounding the filter elements.
- Commercially available filters are designed for wearing binaurally to reduce damaging noise while maintaining speech. It is not an intentional effect of the filter to produce a time delay in the acoustic signal. However, the inventors recognized that monaural use of such a filter was a passive filter approach to inducing a BPTD. The modifications to the filter to change the length of the filter were done on custom trial-and-error basis. The filter, with the resultant notched frequency configuration at 2000-3000 Hz, when worn monaurally, has the effect of a BPTD. The proposed passive device would be designed specifically for inducing a BPTD, and could be designed to induce the a predetermined BPTD obtained from the testing procedure described above. In addition, the BPTD could be limited to a particular frequency range (depending on PAT results) for specific amplitudes within the limitations of the capabilities of passive filtering elements. This would provide the ability to control the induced BPTD for individual fitting based on the diagnostic results. However, as mentioned earlier, the current art does not offer flexibility with size of BPTDs at specific frequencies for optimal auditory and human performance enhancement.
- In order to understand the time delay in a plug, it is necessary to use a model that includes the complex response characteristics of the ducts. This is similar to the familiar insertion loss calculations that are performed in normal design; however, instead of only considering the magnitude of the response; the phase angle is also included. The model design however can include significant simplifications due to the long wavelength of the sound relative to the diameter of the ear plug duct.
- Note that unilateral muffing does not result in a BPTD due to the gradual attenuation across all frequencies (i.e., no selective notch). With the muffs, from 250 Hz to 6000 Hz there is a 5-10 dB attenuation per octave.
- Speech recognition scores were obtained in the sound field with the subject seated 3 feet from a front facing speaker. Monosyllabic words were presented at 40 dB SL re: sound field speech reception threshold in the presence of broad band noise (s/n= +5) presented from a back speaker.
- Figure 13 shows speech recognition performance in noise for 22 individuals with CANS dysfunction. Five different conditions are shown in the figure.
- 1."no plug": nothing in either ear
- 2."RE muffed": hearing protection muff (noise reduction rating 25 dB - ANSI S12.6) worn over right ear
- 3."LE muffed": hearing protection muff (noise reduction rating 25 dB ― ANSI S12.6) worn over left ear
- 4."unilat plug": standard filtered earplug worn in one ear only.
- 5."bilat plug": standard filtered earplugs worn in both ears.
-
- Of these five conditions, only condition 4 introduces a BPTD.
Conditions - Figure 14 shows speech recognition ability in noise results for 12 individuals without CANS dysfunction. Five different conditions are shown in the figure.
- 1."no plug": nothing in either ear
- 2."RE muffed": hearing protection muff (noise reduction rating 25 dB - ANSI S12.6) worn over right ear
- 3."LE muffed": hearing protection muff (noise reduction rating 25 dB - ANSI S12.6) worn over left ear
- 4."RE plug": standard earplug worn in right ear only.
- 5."LE plug": standard earplug worn in left ear only.
-
- The "no plug" results are significantly (p < 0.01) greater than any of the other conditions. These results demonstrate the importance of synchronous binaural processing of auditory input for enhanced speech discrimination in noise for individuals with a normal CANS. Furthermore, these results indicate that unilateral noise reduction (
conditions 2 and 3) or introducing a BPTD (conditions 4 and 5) do not enhance speech discrimination in noise for individuals with normal CANS function.
Note that speech discrimination results for the atypical group under condition 1 ("no plug") are significantly lower than those for the normal group under condition 1 ("no plug"). Note also that under condition 4 ("unilat plug"), the atypical group performs at approximately the same level as the normal group does under condition 1 ("no plug"). - Ten normal CANS subjects and 10 atypical CANS subjects were selected for various human performance testing using the prototype BPTD electronic device. The mean age of the 10 normal subjects was 31 years with an age range of 21-43 years. In this group, five individuals were male and five were female. In the atypical CANS group, the mean age was 29.1 years with an age range of 15 to 47 years. Seven females and 3 males were included in this group. All subjects in the two groups passed the initial subject selection criteria. The ten subjects that were included in the atypical CANS group failed at least one test in either ear in the CAP test battery. Further, to provide for a balancing of BPTDs for the normal group, subjects for the atypical group were selected when they showed maximum improvement for the DBFT with a 2.5-7.5 msec BPTD to either the right or left ear.
- Another version of the DBFT (406) was developed to include time-lagged bisyllabic stimuli that were presented in 2.5 msec increments (the previous DBFT used 5 msec increments). This version included thirty bisyllabic words per list (4 lists) that were lagged in time between ears of 0 msec, 2.5 msec, 5 msec, and 7.5 msec and recorded in a CD format with an 8-talker babble (s/n ratio of +2 dB) embedded in the background and presented binaurally. These words were presented under earphones at 40 dB sensation level relative to pure tone averages for both ears. The lag ear was determined by results from the DBFT 5 msec version (404). The highest speech recognition percent score for bisyllabic words was determined to be the "optimal" msec setting for the BPTD device for atypical CANS subjects. The optimal condition for normal CANS subjects was randomized at 2.5 msec, 5 msec, and 7.5 msec. Statistical analysis showed that these word lists were equivalent.
- The 5 auditory conditions used in the preliminary studies were as follows: (1) natural condition which was unoccluded with 8-talker babble presented at 40 dB HL, (2) quiet which consisted of an unoccluded condition with 8-talker babble presented at 25 dB HL, (3) optimal condition using the BPTD electronic device in the presence of 40 dB HL 8-talker babble; (4) 0 msec condition using the BPTD electronic device with 40 dB HL 8-talker babble, and (5) opposite BPTD (same setting but in opposite ear) from the optimal setting (e.g., if "optimal" was a 5 msec lag to the right ear, then "opposite" is a 5 msec lag to the left ear). Not all tests examined condition 5.
- Percent improvement in speech recognition ability using the BPTD device was assessed using four thirty-bisyllabic word lists that were recorded on a CD at 0 msec (408). Auditory stimuli were presented in the sound field from a front facing speaker two meters from the individual. Test stimuli were presented at 45 dB sensation level (re: sound field speech reception threshold) in the presence of an 8-talker babble recorded at a +2 s/n ratio. Both stimuli were presented from the front speaker in a double-walled sound proof room.
- Results (see Figure 15) under these conditions showed a type effect across conditions (p=0.0039). There was also a condition effect (p=0.0474). The atypical group showed the greatest percent improvement for speech recognition ability with the BPTD device set at their "optimal" lag time.
- Gait studies were performed in a controlled uniform sound environment -- a semi-anechoic chamber. Reverberation times were long enough (or amplitudes sufficiently low) that the room was taken as representative of the sound field in an open or large room with high damping. The ambient sound level in the chamber was 45 dB SPL (Metrosonics dosimeter, Model dB307, Class Type 2A, Rochester, NY). Sound sources were then introduced into the chamber under controlled amplitude and directionality. This is a highly controlled sound field relative to all previous gait studies in the literature.
- Speakers were placed in the anechoic chamber at 0( (far left), 45(, 90( (center), 135(, and 180( (far right) locations in a clockwise direction relative to the direction of travel. The five sound sources were randomly presented to create the general localized sound condition (LS). Two additional cases were run in the chamber without speaker input: walking with and without earmuffs (Peltor, Model H6AN) created the general reduced sound level condition (RS). For the BPTD device study, the center speaker was used.
- The speaker output (i.e., sound source) was a tape-recorded eight-person multi-talker babble presented at a sound level that was within three dB of a 56 dB SPL in the chamber calibrated gait area. To reduce the influence of visual stimuli, all materials used in the chamber were monochromatic (i.e., either gray or black) and the room lighting was reduced to approximately 0.9 footcandles (equivalent to a moderately lighted parking lot).
- A calibrated three-dimensional video gait analysis (Peak Motus™, Englewood, Colorado) was completed with three camera views. The three cameras recorded each subject walking straight ahead within the calibrated area at a comfortable pace for two strides. The subject repeated each condition until three to five gait cycles were recorded between consecutive heel strikes of the same foot. As part of the motion analysis system, retro-reflective markers were mounted on the skin using 3M™ hypoallergenic double-sided tape. On the head, two markers were placed on a spandex swim cap pointing upward directly above the ears. Body markers were placed on the vertebra prominens (C7 vertebra), shoulders, elbows, wrists, greater trochanters, knees, and ankles.
- To normalize the gait data for subject stature, the kinematic data were divided by the subject's height in meters. The following gait parameters will be presented: walking speed (% height/sec), stride width (%height), and center of mass position (COM) (% height). The relative COM (COM Del) was the difference of the lateral COM position from the origin between the first heel strike and the time of measurement. The Root Mean Square Error (RMSE) method was used to calculate the mean lateral deviation from a straight-line path of the COM.
- A study was performed assessing gait while using the electronic device set at an optimal BPTD (Burleigh et al., 1999). Optimal BPTD was determined by the DBFT results, (i.e., if a subject had the highest DBFT score with a 5msec delay to the right ear, a right 5msec delay was the "optimal" setting). The BPTD device was used with 6 normal and 6 atypical subjects in three different conditions: "optimal," "0 msec," and "opposite" as described above.
- Figures 16, 17, and 18 show the walking speed, stride width and RMSE results for the atypical and normal groups under the different BPTD device conditions. The data graphically presents the differences in these parameters between the three BPTD device conditions. For example, the first bar in Figure 16 shows the average of the differences in walking speed for each of the atypical subjects between the "optimal" and "0msec" conditions.
It is evident that atypical group's gait is significantly improved (i.e., they walk faster) under both the "optimal" and "opposite" BPTDs, compared to the absence of a BPTD (O msec), while the BPTD settings have little effect on the normal subjects' gait. The differences between the atypical and normal groups in the walking speed figure are not quite statistically significant (p=0.074 for "optimal-0" and p=0.064 for "opposite-0"). Given the relatively small number of subjects in this study, and large variation in gait parameters, this was not surprising. However, the trends are quite strong and with a larger number of well-matched (on gender and age) subjects, significant differences are expected. - The results for stride width (Figure 17) and Root Mean Square Error (RMSE) (Figure 18) are similar, showing an improvement in gait (decrease in stride width and RMSE) for the atypicals under both the "optimal" and "opposite" conditions, and little effect on the gait of the normals. The differences between the atypicals and normals for stride width were not statistically significant for the "optimal-0" case (p=0.1042), but were for the "opposite-0" case (p=0.0422). For RMSE (Figure 18) the differences between the atypicals and normals were not significant (p=0.1552 and p=0.1012, respectively for "optimal-0" and "opposite-0").
- The decrease in stride width and RMSE is seen as an improvement in gait as the decreases tended to bring the values of these parameters for the atypicals closer to the values for the normals. While the gait of the normal subjects was impacted very little by the device, as compared to the atypical group, the graphs indicate a trend that the "optimal" and "opposite" BPTDs actually degrade the normal subjects' gait. This trend supports the notion that while an induced BPTD in a normal CANS system is disruptive, it can be accommodated.
- It was surprising that the "optimal" and "opposite" settings both seem to enhance gait in the atypical group. Perhaps this is evidence that while BPTDs impact gait, the effect is different from the impact of BPTDs on other aspects of human performance, such as speech discrimination.
- Interestingly, most changes in individual atypical subjects' gait under the different BPTD device conditions were significant. For example, most atypical subjects walked significantly faster under the BPTD device "optimal" setting when compared to their walking speed under the "0 msec" setting, using multiple trials under each condition as the multiple measures.
- Acoustic measures of diadochokinetic rate or maximum repetition rate for non-speech material includes: duration in msec of 5 correct syllable sequences out of 7 consecutive utterances. This measure was used as an assessment of articulatory speed; however, because only correct syllable productions were counted, it probably more accurately reflected articulatory efficiency. Syllable and pause durations were also measured as were irregularities or variances among successive syllable and pause durations within each condition.
- Results of performance of these tasks under auditory conditions in normal and atypical subjects revealed statistically significant differences in articulatory efficiency, syllable duration and variances in syllable and pause duration when comparing those persons with normal and atypical CANS function (p < .05 for each). This suggested that while all subjects were considered normal speakers, differences in abilities to make rapid alternating movements differ in persons with atypical versus normal CANS function.
- There was also a statistically significant difference in articulatory efficiency and intersyllabic pause durations among experimental auditory conditions for both groups
(p < .05). Durations for completions of 5 accurate syllable sequences and intersyllabic pauses were shorter under the optimal or accommodating auditory condition compared to conditions of 0 msec delay or reduced noise. These findings suggest that not only do auditory conditions impact the performance of rapidly alternating nonspeech movements, but that specific adjustments in binaural timing between ears may improve performance over conditions where no differences are introduced. - In oral reading of an 85-word paragraph, perceptual measures were taken of the number of dysfluencies and reading speed in words per second. Perceptual dysfluency types included: part and whole word repetitions, phrase repetitions/restarts, prolongations, phonatory disruptions, interjections, blocks, and pauses. This system of dysfluency classification was modified from Kent, 1994.
- A review of number of dysfluencies in oral reading provided the most convincing evidence of benefits of accommodating BPTDs. While there were statistically significant differences in the total number of dysfluencies between normal and atypical experimental groups (p < .05), for this parameter there was also a statistically significant condition-type interaction (p < .05) suggesting that the differences in performance in favor of the normal subjects was a function of the auditory condition. Specifically, as can be seen in Figure 19, not only do the persons without CANS dysfunction show a flatter profile of performance across auditory conditions when compared with those with CANS deficits, those with atypical CANS function make the fewest errors, performing very close to normal at their optimal or accommodated auditory condition. In fact, statistically significant differences are apparent between normals and atypicals under natural and 0 msec conditions but are not at the accommodating condition. Further, the performance of atypicals in pairwise condition comparisons, reveals statistically fewer dysfluency errors made under optimal or accommodating auditory condition when compared against each: 0 msec, natural and reduced noise conditions.
- Reading speed as measured by words per second in an 85-word oral reading sample revealed statistically significant differences when comparing those persons with normal and atypical CANS function (p < .05). It should also be noted that although statistically significant differences were not observed in pairwise comparisons across auditory conditions for the subjects with atypical CANS function, the fastest reading rate condition for this group was their optimal or accommodated condition.
THE COMMERCIALLY AVAILABLE STANDARD PASSIVE EARPLUGS USED IN THIS STUDY IS NOT AN EMBODIMENT OF THE INVENTION (see paragraph below) BUT ILLUSTRATES VARIOUS FEATURES OF THE METHOD UTILIZED AND DESCRIBED HEREIN. - The foregoing discussion of the invention has been presented for purposes of illustration and description. Further, the description is not intended to limit the invention to the form disclosed herein. Consequently, variation and modification commensurate with the above teachings, within the skill and knowledge of the relevant art, are within the scope of the present claims. The embodiment described hereinabove is further intended to explain the best mode presently known of practicing the invention and to enable others skilled in the art to utilize the invention as such, or in other embodiments, and with the various modifications required by their particular application or uses of the invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
- In the following clauses, preferred embodiments of the invention are described:
Claims (22)
- Apparatus for compensating for a measured binaural phase time delay profile (BPTD) of an individual comprising:means (704) for delaying sound signals to an ear of the individual according to the BPTD; andmeans (706) for applying different phase shifts at different frequencies according to the BPTD.
- The apparatus of clause 1, wherein the means for delaying comprises a passive earplug (1000) having ducting (1002) which delays propagation of sound relative to air.
- The apparatus of clause 2, wherein the means for applying phase shifts comprises at least one acoustical filter element (1004) within the ear plug.
- The apparatus of clause 2, wherein the duct is fluid filled.
- The apparatus of clause 1, wherein the means for delaying and the means for applying phase shifts are implemented as an electronic hearing aid (600).
- The apparatus of clause 5, wherein the hearing aid is a digital hearing aid and includes an analog to digital converter (ADC) (606), a digital signal processor (DSP) (608),and a digital to analog converter (DAC) (6 1 0), the DSP implementing the means for delaying and the means for applying phase shifts.
- The apparatus of clause 6, wherein the means for implementing phase shift profile comprises a FIR filter (806).
- The apparatus of clause 6, wherein the DSP implements other audio signal processing (808) as well as the means for delaying and the means for applying phase shifts.
- The apparatus of clause 8, wherein the other audio processing implemented includes noise reduction.
- The apparatus of clause 8, wherein the other audio processing implemented includes applying amplitude changes to the sound signals.
- The apparatus of clause 1, further including means (616) for modifying the means for applying phase shifts according to environmental conditions.
- Apparatus for developing a binaural phase time delay profile (BPTD) of an individual comprising:means (112) for determining an overall relative delay for the individual; andmeans (108) for determining a phase shift profile for the individual.
- The apparatus of clause 12, wherein the means for determining the overall relative delay includes: means for separating spoken words into high frequency and low frequency bands; means for delaying one of the bands relative to the other band; means for presenting the delayed band to one ear and the undelayed band to the other ear; means for measuring the individual's comprehension of the words at a variety of delays; and means for determining the overall phase delay at which comprehension is optimal.
- The apparatus of clause 12 wherein the means for determining a phase shift profile includes: means for providing a pure tone; means for dividing the pure tone into two channels; means for applying a phase shift to one of the channels; means for presenting the phase shifted channel to one ear, and the non-phase shifted channel to the other ear; means for varying the amplitude and the frequency of the tone; means for finding a threshold (lowest amplitude at which the tone is heard) for various frequency tones at various phase shifts; and means for assigning an optimal phase shift at the various frequency tones according to the lowest amplitude at which each tone is heard.
- The apparatus of clause 12, wherein the means for determining an overall relative delay and the means for determining a phase shift profile are implemented as an electronic device (500) including: means (512) for varying overall relative delay; means (514) for varying phase shift profile; and means for assessing the individual (520) at various overall relative delays and phase shift profiles to determine an optimal overall relative delay and an optimal phase shift profile.
- The apparatus of clause 12, further including means for determining an amplitude modification profile for the individual.
- A method for developing a binaural phase time delay profile (BPTD) of an individual comprising the steps of:determining an overall relative delay for the individual; anddetermining a phase shift profile for the individual.
- The method of clause 17, wherein the step of determining the overall phase delay includes: separating spoken words into high frequency and low frequency bands; delaying one of the bands relative to the other band; presenting the delayed band to one ear and the undelayed band to the other ear; measuring the individual's comprehension of the words at a variety of delays; and determining the overall phase delay at which comprehension is optimal.
- The method of clause 17 wherein the step of determining a phase shift profile includes: providing a pure tone; dividing the pure tone into two channels; applying a phase shift to one of the channels; presenting the phase shifted channel to one ear, and the non-phase shifted channel to the other ear; varying the amplitude and the frequency of the tone; finding a threshold (lowest amplitude at which the tone is heard) for various frequency tones at various phase shifts; and assigning an optimal phase shift at the various frequency tones according to the lowest amplitude at which each tone is heard.
- The method of clause 17, further including the step of performing conventional hearing tests on the individual.
- The method of compensating for a measured binaural phase time delay profile (BPTD) of an individual comprising the steps of: delaying sound signals to an ear of the individual according to the BPTD ; and applying different phase shifts at different frequencies according to the BPTD.
- The method of clause 21, further including the step of applying amplitude modifications at different frequencies.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15777599P | 1999-10-05 | 1999-10-05 | |
US157775P | 1999-10-05 | ||
PCT/US2000/027460 WO2001026420A2 (en) | 1999-10-05 | 2000-10-05 | Apparatus and method for mitigating hearing impairments |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1234480A2 EP1234480A2 (en) | 2002-08-28 |
EP1234480B1 true EP1234480B1 (en) | 2004-01-07 |
Family
ID=22565233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00968722A Expired - Lifetime EP1234480B1 (en) | 1999-10-05 | 2000-10-05 | Apparatus and method for mitigating impairments due to the central auditory nervous system binaural phase-time asynchrony |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1234480B1 (en) |
AT (1) | ATE257637T1 (en) |
AU (1) | AU7859500A (en) |
CA (2) | CA2386653C (en) |
DE (1) | DE60007659D1 (en) |
WO (1) | WO2001026420A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7120258B1 (en) | 1999-10-05 | 2006-10-10 | Able Planet, Inc. | Apparatus and methods for mitigating impairments due to central auditory nervous system binaural phase-time asynchrony |
EP1316240B1 (en) * | 2000-07-14 | 2005-11-09 | GN ReSound as | A synchronised binaural hearing system |
DK2227042T3 (en) * | 2005-05-03 | 2012-03-19 | Oticon As | System and method for sharing network resources between hearing aids |
WO2015023751A1 (en) * | 2013-08-13 | 2015-02-19 | The Children's Hospital Philadelphia | Device for language processing enhancement in autism |
CN113823314B (en) * | 2021-08-12 | 2022-10-28 | 北京荣耀终端有限公司 | Voice processing method and electronic equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4556069A (en) * | 1983-03-15 | 1985-12-03 | Energy Optics, Inc. | Method and apparatus for measuring differential auditory system |
WO1988009105A1 (en) * | 1987-05-11 | 1988-11-17 | Arthur Jampolsky | Paradoxical hearing aid |
CA2235067C (en) * | 1995-12-20 | 2004-11-23 | Decibel Instruments, Inc. | Spatialization for hearing evaluation |
EP0915639A1 (en) * | 1999-01-05 | 1999-05-12 | Phonak Ag | Method for binaural adjusting of hearing aids |
-
2000
- 2000-10-05 CA CA2386653A patent/CA2386653C/en not_active Expired - Fee Related
- 2000-10-05 CA CA2661798A patent/CA2661798C/en not_active Expired - Fee Related
- 2000-10-05 DE DE60007659T patent/DE60007659D1/en not_active Expired - Lifetime
- 2000-10-05 EP EP00968722A patent/EP1234480B1/en not_active Expired - Lifetime
- 2000-10-05 AT AT00968722T patent/ATE257637T1/en not_active IP Right Cessation
- 2000-10-05 AU AU78595/00A patent/AU7859500A/en not_active Abandoned
- 2000-10-05 WO PCT/US2000/027460 patent/WO2001026420A2/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
AU7859500A (en) | 2001-05-10 |
DE60007659D1 (en) | 2004-02-12 |
CA2386653A1 (en) | 2001-04-12 |
CA2661798C (en) | 2013-12-10 |
ATE257637T1 (en) | 2004-01-15 |
EP1234480A2 (en) | 2002-08-28 |
CA2386653C (en) | 2010-03-23 |
WO2001026420A2 (en) | 2001-04-12 |
WO2001026420A3 (en) | 2002-01-31 |
CA2661798A1 (en) | 2001-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7929711B2 (en) | Apparatus and methods for mitigating impairments due to central auditory nervous system binaural phase-time asynchrony | |
Warren | Auditory perception: A new synthesis | |
Henry et al. | Bone conduction: Anatomy, physiology, and communication | |
Gengel | Temporal effects in frequency discrimination by hearing‐impaired listeners | |
Thielemeir et al. | Audiological results in children with a cochlear implant | |
Zhang | Psychoacoustics | |
Weisenberger et al. | The role of tactile aids in providing information about acoustic stimuli | |
EP1234480B1 (en) | Apparatus and method for mitigating impairments due to the central auditory nervous system binaural phase-time asynchrony | |
Ifukube | Sound-based assistive technology | |
Weisenberger et al. | Comparison of two single-channel vibrotactile aids for the hearing-impaired | |
Maltby | A Dictionary of Audiology | |
Boothroyd | Selection of hearing aids for children | |
Maggu et al. | Effect of temporal pattern training on specific central auditory processes | |
Schlauch | Loudness | |
Smith et al. | Consonant enhancement effects on speech recognition of hearing-impaired children | |
MARY | The effects of increasing consonant/vowel intensity ratio on speech loudness | |
Byrne | Influence of ear canal occlusion and air-conduction feedback on speech production in noise | |
Slade et al. | Entraining alpha oscillations to facilitate auditory working memory: A TMS-EEG study | |
MANGAN | Auditory Processes | |
Bustamante et al. | Wideband compression and spectral sharpening for hearing‐impaired listeners | |
Ashokumar | The role of orofacial somatosensory inputs in speech perception and production in individuals with hearing-impairment | |
Robinson | The effect of talker age and gender on speech perception of pediatric hearing aid users | |
Kim et al. | Low frequency perception of rhythm and intonation speech patterns by normal hearing adults | |
Thome et al. | Tactile Auditory Sensory Substitution | |
Ceha | Investigation into the Enhancement of Voice Perception |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020503 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RTI1 | Title (correction) |
Free format text: APPARATUS AND METHOD FOR MITIGATING IMPAIRMENTS DUE TO THE CENTRAL AUDITORY NERVOUS SYSTEM BINAURAL PHASE-TIME ASYNCHRONY |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SYNCPHASE LABS, LLC |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABLE PLANET, INC. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040107 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040107 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60007659 Country of ref document: DE Date of ref document: 20040212 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040418 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041005 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041008 |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130925 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141005 |