EP1231003B1 - Process for preparing an article of soft magnetic composite material - Google Patents

Process for preparing an article of soft magnetic composite material Download PDF

Info

Publication number
EP1231003B1
EP1231003B1 EP02001397A EP02001397A EP1231003B1 EP 1231003 B1 EP1231003 B1 EP 1231003B1 EP 02001397 A EP02001397 A EP 02001397A EP 02001397 A EP02001397 A EP 02001397A EP 1231003 B1 EP1231003 B1 EP 1231003B1
Authority
EP
European Patent Office
Prior art keywords
mpa
volume
mixture
process according
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02001397A
Other languages
German (de)
French (fr)
Other versions
EP1231003A3 (en
EP1231003A2 (en
Inventor
Hans-Peter Koch
Jochen Winkler
Andreas Harzer
Wolfgang Ballerstedt
Torsten Bober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1231003A2 publication Critical patent/EP1231003A2/en
Publication of EP1231003A3 publication Critical patent/EP1231003A3/en
Application granted granted Critical
Publication of EP1231003B1 publication Critical patent/EP1231003B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing a molded part from a soft magnetic composite material, in particular for use as a magnetic core for a common rail injector, according to the preamble of the independent claims.
  • thermoplastic resin mixed iron powder which are particularly suitable for the production of magnetic cores. Specifically, there is provided to first treat an iron powder with phosphoric acid, then to mix this iron powder with a thermoplastic resin, to press this mixture at a temperature below the glass transition temperature or the melting point of the thermoplastic resin, to heat the pressed product to the thermoplastic Harden resin, and optionally to carry out a tempering of the resulting component to a temperature above the curing temperature of the thermoplastic resin.
  • thermoplastic material polyetherimide which is known under the trade name Ultem®, as well as oligomers, as described in WO 95/33589 and sold under the trade names Orgasol 3501 and Orgasol 2001 by Elf Atochem, France.
  • EP 0 765 199 B1 intended to mix the iron powder with a pressing aid or a lubricant, which may be a metal stearate, a wax, a paraffin, a natural or synthetic fat derivative or an amide-type oligomer.
  • a pressing aid or a lubricant which may be a metal stearate, a wax, a paraffin, a natural or synthetic fat derivative or an amide-type oligomer.
  • lubricants or pressing aids are the products Kenolube® from the company Höganäs AB, Sweden, H-wax® from the company solder AG, Germany, and Promold® from the company Morton International, Cincinnatti, USA, containing the iron powder in a proportion of preferably 0.2 to 0.8 weight percent are mixed.
  • the object of the present invention was to provide a method by means of which a molded part made of a soft magnetic composite material which can be used in particular as a magnetic core for common rail injectors can be produced from a powder mixture containing an iron powder with improved mechanical and magnetic properties compared with the prior art.
  • the inventive method have over the prior art has the advantage that the molded parts or magnetic cores for common rail injectors usual magnetic cores made of soft magnetic composites, for example, with mixtures of pure iron powder with polyamide binder, pure iron powder with polyphenylene sulfide binder or pure iron powder have been prepared with polyethylene binder, especially in terms of mechanical strength, density, saturation polarization, magnetic permeability, electrical resistivity, surface hardness and flexural strength are superior.
  • the molded parts according to the invention in the form of magnetic cores to polyphenylene sulfide-bonded composite magnetic cores increased by at least 0.2 g / cm 3 density of more than 7.3 g / cm 3 , and they also have a significantly improved surface hardness and statistical flexural strength, which manifests itself in particular in the critical area of the pole faces in an improved edge crushing strength under continuous load. In addition, they are much less prone to material eruptions and it also penetrates less diesel fuel in the workpiece structure.
  • the molded parts according to the invention in the form of magnetic cores show a magnetic force of typically 95 N to 103 N, while corresponding molded parts made of polyphenylene sulfide-bonded composite only reach about 80 N.
  • the molded parts according to the invention when used as a magnetic core in common-rail injectors compared with previously customary magnetic cores a significantly higher Switching dynamics, in particular a reduced by about 20 microseconds on-time, reduced energy requirements, by about 50% higher mechanical strength, better mechanical workability and greater insensitivity to manufacturing fluctuations in the production on.
  • the gas atmosphere during annealing is a gas mixture with an oxygen content of 2 vol% to 7 vol%, wherein a mixture of air and nitrogen or a mixture of air and a noble gas, the proportion of air between 40 vol% and 10% by volume, in particular 10% by volume to 30% by volume, is particularly easy and inexpensive to produce.
  • a mechanical processing for example a careful grinding, is carried out, which compensates for differences in pole height and a leveling of pole faces, and by which the magnetic force of the moldings used, for example, as a magnetic core can be further increased to over 100 N.
  • a further improvement in the magnetic and mechanical properties of the molded parts obtained, in particular in terms of their density, is achieved when the annealing of the pressed moldings is carried out in a two-stage process, after pressing the starting mixture, the molding initially annealed at a relatively low temperature, thereafter pressed again in a die tool or by hot plan forming, and finally annealed again at a higher temperature.
  • the molded parts made of a soft magnetic composite material produced by the method according to the invention are preferably an oxide-bonded material, i.
  • one of the starting mixture for example, added metal stearate decomposes to form a metal oxide, so that form by the presence of oxygen at grain boundaries iron oxide bridges that effectively improve the microstructure, are in the moldings according to the invention over those of polymer-bonded soft magnetic composites also contain at least almost no organic components.
  • the moldings produced according to the invention in addition to their higher density and a lower porosity, which leads to a significantly improved thermo-mechanical long-term stability, especially against hot diesel fuel.
  • the pure iron powder used is a high-purity iron powder with phosphated surface, the, as in EP 0 765 199 B1 described as lubricant a pressing aid selected from the group of metal stearates, waxes, paraffins, natural or synthetic fat derivatives or amide-type oligomers is added.
  • a pressing aid selected from the group of metal stearates, waxes, paraffins, natural or synthetic fat derivatives or amide-type oligomers is added.
  • the pure iron powder is used together with the known under the trade name Kenolube® pressing aids Höganäs AB, Sweden.
  • the pressing aid Kenolube® which contains essentially an amide wax and zinc stearate, in a proportion of 0.4 wt.% To 0.7 wt.%, Preferably 0.5 wt.% To 0.6 wt %, added to the pure iron powder and mixed with this to the starting mixture.
  • the starting mixture is then pressed in a conventional die preferably at room temperature at a pressure between 600 MPa to 900 MPa, in particular 700 MPa to 800 MPa, for example in the form of a magnetic core for common rail injectors.
  • the molding obtained is at temperatures between 380 ° C to 450 ° C, in particular at about 425 ° C, over a period of 10 min to 120 min, in particular 30 min to 60 min, in a nitrogen-air mixture or a noble gas-air mixture tempered, wherein the proportion of air between 50 vol% and 5 vol%, in particular 10 vol.% To 30 vol.%, For example, 20 vol.%.
  • This is the added Pressing aids partly decomposed and partly converted into a binding oxide.
  • an inert gas with oxygen for example a nitrogen-oxygen mixture or an argon-oxygen mixture, which has an oxygen content between 1% by volume and 10% by volume, in particular 2% by volume to 7% by volume, contains.
  • the moldings obtained after annealing are preferably subjected to a final mechanical surface treatment, for example a grinding.
  • a final mechanical surface treatment for example a grinding.
  • This first annealing step may be carried out in air or an inert gas atmosphere such as a noble gas atmosphere or a nitrogen atmosphere. However, it is preferably carried out, analogously to the tempering in the first embodiment, in a gas mixture of an inert gas and oxygen, the proportion of oxygen in the gas mixture being between 10% by volume and 1 volt.
  • the gas atmosphere in this embodiment again a mixture of air and nitrogen, wherein the proportion of air between 50 vol% and 5% by volume, in particular 10% by volume to 30% by volume, for example 20% by volume.
  • this post-forming can also be done by hot plan forming in a suitable die tool at elevated temperature, as for example in DE 100 05 551.6 is described.
  • the moldings obtained after annealing are then preferably subjected to a final mechanical surface treatment, for example a grinding, analogously to the first exemplary embodiment.
  • a saturation polarization of more than 1.7 Tesla and a maximum permeability of about 500 at a specific electrical resistance of about 10 ⁇ m is achieved.
  • the density of the molded parts obtained is at least 7.30 g / cm 3 , whereby an increase in density to about 7.5 g / cm 3 can be achieved by additional post-forming in a die tool or the additional H exertplanformen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Formteils aus einem weichmagnetischen Verbundwerkstoff, insbesondere zur Verwendung als Magnetkern für einen Common-Rail-Injektor, nach der Gattung der unabhängigen Ansprüche.The invention relates to a method for producing a molded part from a soft magnetic composite material, in particular for use as a magnetic core for a common rail injector, according to the preamble of the independent claims.

Stand der TechnikState of the art

Aus EP 0 765 199 B1 sind mit einem thermoplastischen Harz vermischte Eisenpulver bekannt, die sich insbesondere zur Herstellung von Magnetkernen eignen. Im Einzelnen ist dort vorgesehen, zunächst ein Eisenpulver mit Phosphorsäure zu behandeln, dieses Eisenpulver dann mit einem thermoplastischen Harz zu vermischen, diese Mischung bei einer Temperatur unterhalb der Glasumwandlungstemperatur oder des Schmelzpunktes des thermoplastischen Harzes zu verpressen, das gepresste Produkt zu erhitzen, um das thermoplastische Harz auszuhärten, und gegebenenfalls ein Tempern der erhaltenen Komponente bis zu einer Temperatur oberhalb der Aushärtungstemperatur des thermoplastischen Harzes vorzunehmen.Out EP 0 765 199 B1 are mixed with a thermoplastic resin mixed iron powder, which are particularly suitable for the production of magnetic cores. Specifically, there is provided to first treat an iron powder with phosphoric acid, then to mix this iron powder with a thermoplastic resin, to press this mixture at a temperature below the glass transition temperature or the melting point of the thermoplastic resin, to heat the pressed product to the thermoplastic Harden resin, and optionally to carry out a tempering of the resulting component to a temperature above the curing temperature of the thermoplastic resin.

Weiter ist daraus bekannt, dem thermoplastischen Material Polyetherimid, das unter dem Handelsnamen Ultem® bekannt ist, sowie Oligomere, wie sie in WO 95/33589 beschrieben und unter den Handelsnamen Orgasol 3501 und Orgasol 2001 von Elf Atochem, Frankreich, vertrieben werden, zuzusetzen.It is also known from the thermoplastic material polyetherimide, which is known under the trade name Ultem®, as well as oligomers, as described in WO 95/33589 and sold under the trade names Orgasol 3501 and Orgasol 2001 by Elf Atochem, France.

Darüber hinaus ist in EP 0 765 199 B1 vorgesehen, das Eisenpulver mit einem Presshilfsmittel bzw. einem Gleitmittel zu vermischen, das ein Metall-Stearat, ein Wachs, ein Paraffin, ein natürliches oder synthetisches Fettderivat oder ein Oligomer vom Amid-Typ sein kann. Konkret sind als Gleitmittel bzw. Presshilfsmittel die Produkte Kenolube® von der Firma Höganäs AB, Schweden, H-wax® von der Firma Höchst AG, Deutschland, und Promold® von der Firma Morton International, Cincinatti, USA, beschrieben, die mit dem Eisenpulver in einem Anteil von vorzugsweise 0,2 bis 0,8 Gewichtsprozent vermischt werden.In addition, in EP 0 765 199 B1 intended to mix the iron powder with a pressing aid or a lubricant, which may be a metal stearate, a wax, a paraffin, a natural or synthetic fat derivative or an amide-type oligomer. Specifically described as lubricants or pressing aids are the products Kenolube® from the company Höganäs AB, Sweden, H-wax® from the company Höchst AG, Germany, and Promold® from the company Morton International, Cincinnatti, USA, containing the iron powder in a proportion of preferably 0.2 to 0.8 weight percent are mixed.

Schließlich ist aus EP 0 765 199 B1 bekannt, diese Ausgangsmischung bei einem Druck zwischen 400 und 1800 MPa zu pressen, und danach an Luft bei Temperaturen zwischen 100°C und 600°C, vorzugsweise 200°C bis 500°C, zu tempern.Finally is off EP 0 765 199 B1 known to press this starting mixture at a pressure between 400 and 1800 MPa, and then in air at temperatures between 100 ° C and 600 ° C, preferably 200 ° C to 500 ° C, to anneal.

Ein gemäß EP 0 765 199 B1 hergestellter, pulverförmiger weichmagnetischer Werkstoff wird unter dem Handelsnamen Somaloy™ 500 von der Firma Höganäs AB, Schweden, vertrieben und ist in der Firmenzeitschrift SOMALOY™500, SMC 97-1, Seiten 1-11, Höganäs AB, Schweden, näher charakterisiert.One according to EP 0 765 199 B1 powdered soft magnetic material produced under the trade name Somaloy ™ 500 by the company Höganäs AB, Sweden, and is more closely characterized in the company magazine SOMALOY ™ 500, SMC 97-1, pages 1-11, Höganäs AB, Sweden.

Weiter werden derartige weichmagnetische Verbundwerkstoffe auch in Jan Tengzelius, "Weichmagnetische Verbundwerkstoffe für Elektromotoren", Tagungsband Hagener Symposium, 1.12.2000, Seiten 211 bis 227, beschrieben.Furthermore, such soft magnetic composites are also described in Jan Tengzelius, "Soft Magnetic Composites for Electric Motors", Proceedings Hagen Symposium, 1.12.2000, pages 211 to 227 described.

In der Schrift JP-A-2000/232014 wird eine aus mindestens zwei Stufen bestehende Wärmebehandlung beim Sintern beschrieben. Dort wird beschrieben, bei bestimmten Temperaturintervallen bestimmte Konzentrationen von Gasgemischen zu verwenden. Es sind aber immer mehrere Verfahrensschritte notwendig. Ein Einzelschritt wird nicht erwähnt. Auch wird nicht auf die Zeitdauer eingegangen.In Scripture JP-A-2000/232014 describes a heat treatment at least two stages during sintering. There it is described to use certain concentrations of gas mixtures at certain temperature intervals. But there are always several steps necessary. A single step is not mentioned. Also, the time period is not discussed.

Aufgabe der vorliegenden Erfindung war die Bereitstellung eines Verfahrens, mit dem aus einer Pulvermischung mit einem Eisenpulver ein insbesondere als Magnetkern für Common-Rail-Injektoren einsetzbares Formteil aus einem weichmagnetischen Verbundwerkstoff mit gegenüber dem Stand der Technik verbesserten mechanischen und magnetischen Eigenschaften herstellbar ist.The object of the present invention was to provide a method by means of which a molded part made of a soft magnetic composite material which can be used in particular as a magnetic core for common rail injectors can be produced from a powder mixture containing an iron powder with improved mechanical and magnetic properties compared with the prior art.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäßen Verfahren haben gegenüber dem Stand der Technik den Vorteil, dass die danach hergestellten Formteile bzw. Magnetkerne für Common-Rail-Injektoren üblichen Magnetkernen aus weichmagnetischen Verbundwerkstoffen, die beispielsweise mit Mischungen von Reineisenpulver mit Polyamid-Binder, Reineisenpulver mit Polyphenylensulfid-Binder oder Reineisenpulver mit Polyethylen-Binder hergestellt worden sind, insbesondere hinsichtlich der mechanischen Festigkeit, der Dichte, der Sättigungspolarisation, der magnetischen Permeabilität, des spezifischen elektrischen Widerstandes, der Oberflächenhärte und der Biegefestigkeit überlegen sind.The inventive method have over the prior art has the advantage that the molded parts or magnetic cores for common rail injectors usual magnetic cores made of soft magnetic composites, for example, with mixtures of pure iron powder with polyamide binder, pure iron powder with polyphenylene sulfide binder or pure iron powder have been prepared with polyethylene binder, especially in terms of mechanical strength, density, saturation polarization, magnetic permeability, electrical resistivity, surface hardness and flexural strength are superior.

Beispielsweise weisen die erfindungsgemäß hergestellten Formteile in Form von Magnetkernen gegenüber Magnetkernen aus Polyphenylensulfid-gebundenem Verbundwerkstoff eine um mindestens 0,2 g/cm3 erhöhte Dichte von mehr als 7,3 g/cm3 auf, und sie besitzen auch eine deutlich verbesserte Oberflächenhärte und statistische Biegefestigkeit, was sich insbesondere im kritischen Bereich der Polflächen in einer verbesserten Kantenbruchfestigkeit bei Dauerbelastung äußert. Daneben neigen sie deutlich weniger zu Materialausbrüchen und es dringt auch weniger Diesel-Kraftstoff in das Werkstückgefüge ein. Überdies zeigen die erfindungsgemäß hergestellten Formteile in Form von Magnetkernen eine Magnetkraft von typischerweise 95 N bis 103 N, während entsprechende Formteile aus Polyphenylensulfid-gebundenem Verbundwerkstoff lediglich ca. 80 N erreichen.For example, the molded parts according to the invention in the form of magnetic cores to polyphenylene sulfide-bonded composite magnetic cores increased by at least 0.2 g / cm 3 density of more than 7.3 g / cm 3 , and they also have a significantly improved surface hardness and statistical flexural strength, which manifests itself in particular in the critical area of the pole faces in an improved edge crushing strength under continuous load. In addition, they are much less prone to material eruptions and it also penetrates less diesel fuel in the workpiece structure. Moreover, the molded parts according to the invention in the form of magnetic cores show a magnetic force of typically 95 N to 103 N, while corresponding molded parts made of polyphenylene sulfide-bonded composite only reach about 80 N.

Weiter weisen die erfindungsgemäß hergestellten Formteile beim Einsatz als Magnetkern in Common-Rail-Injektoren gegenüber bisher üblichen Magnetkernen eine deutlich höhere Schaltdynamik, insbesondere eine um ca. 20 µs verringerte Einschaltzeit, einen verringerten Energiebedarf, eine um ca. 50% höhere mechanische Festigkeit, eine bessere mechanische Bearbeitbarkeit und eine höhere Unempfindlichkeit gegenüber Fertigungsschwankungen bei der Herstellung auf.Next, the molded parts according to the invention when used as a magnetic core in common-rail injectors compared with previously customary magnetic cores a significantly higher Switching dynamics, in particular a reduced by about 20 microseconds on-time, reduced energy requirements, by about 50% higher mechanical strength, better mechanical workability and greater insensitivity to manufacturing fluctuations in the production on.

Zudem sind sie durch Einsatz eines preiswerteren Rohstoffes und den Wegfall eines bisher erforderlichen Warmpressens, was auch zu geringerem Werkzeugverschleiß führt, billiger herstellbar.In addition, they are cheaper to produce by using a cheaper raw material and the elimination of a previously required hot pressing, which also leads to less tool wear.

So hat sich herausgestellt, dass in der Gasatmosphäre beim Tempern insbesondere in Kombination mit Temperaturen zwischen 380°C bis 450°C eine gewisse Mindestmenge an Sauerstoff sehr vorteilhaft ist, um eine ausreichende Oxidbildung zwischen den Eisenpulverteilchen bzw. an deren Oberfläche zu gewährleisten, dass andererseits aber eine gegenüber dem Stand der Technik deutlich verringerte Menge des in der eingesetzten Gasatmosphäre enthaltenen Sauerstoffes zu deutlich verbesserten magnetischen Eigenschaften, beispielsweise einer höheren Magnetkraft, der danach erhaltenen Formteile führt.Thus, it has been found that in the gas atmosphere during annealing, especially in combination with temperatures between 380 ° C to 450 ° C, a certain minimum amount of oxygen is very advantageous to ensure sufficient oxide formation between the iron powder or on the surface, on the other hand but compared to the prior art significantly reduced amount of oxygen contained in the gas atmosphere used to significantly improved magnetic properties, such as a higher magnetic force, the resulting molded parts leads.

Insbesondere ist vorteilhaft, wenn die Gasatmosphäre beim Tempern ein Gasgemisch mit einem Sauerstoffanteil von 2 Vol% bis 7 Vol% ist, wobei eine Mischung von Luft und Stickstoff oder eine Mischung von Luft und einem Edelgas, wobei der Anteil der Luft zwischen 40 Vol% und 10 Vol%, insbesondere 10 Vol% bis 30 Vol%, beträgt, besonders einfach und preiswert herstellbar ist.In particular, it is advantageous if the gas atmosphere during annealing is a gas mixture with an oxygen content of 2 vol% to 7 vol%, wherein a mixture of air and nitrogen or a mixture of air and a noble gas, the proportion of air between 40 vol% and 10% by volume, in particular 10% by volume to 30% by volume, is particularly easy and inexpensive to produce.

Darüber hinaus ist vorteilhaft, wenn nach dem Tempern der erhaltenen Formteile in Form von Magnetkernen eine mechanische Bearbeitung, beispielsweise ein vorsichtiges Schleifen, vorgenommen wird, das einem Ausgleich von Polhöhendifferenzen und einer Einebnung von Polflächen dient, und durch das die Magnetkraft der beispielsweise als Magnetkern eingesetzten Formteile weiter auf über 100 N gesteigert werden kann.Moreover, it is advantageous if, after the tempering of the resulting molded parts in the form of magnetic cores, a mechanical processing, for example a careful grinding, is carried out, which compensates for differences in pole height and a leveling of pole faces, and by which the magnetic force of the moldings used, for example, as a magnetic core can be further increased to over 100 N.

Eine weitere Verbesserung der magnetischen und mechanischen Eigenschaften der erhaltenen Formteile, insbesondere hinsichtlich ihrer Dichte, wird erreicht, wenn das Tempern der gepressten Formteile in einem zweistufigen Prozess ausgeführt wird, wobei nach dem Verpressen der Ausgangsmischung das Formteil zunächst bei einer relativ niedrigen Temperatur getempert, danach in einem Matrizenwerkzeug oder durch Heißplanformen erneut verpresst, und schließlich bei einer höheren Temperatur erneut getempert wird.A further improvement in the magnetic and mechanical properties of the molded parts obtained, in particular in terms of their density, is achieved when the annealing of the pressed moldings is carried out in a two-stage process, after pressing the starting mixture, the molding initially annealed at a relatively low temperature, thereafter pressed again in a die tool or by hot plan forming, and finally annealed again at a higher temperature.

Da es sich bei den nach den erfindungsgemäßen Verfahren hergestellten Formteilen aus einem weichmagnetischen Verbundwerkstoff bevorzugt um einen oxidgebundenen Werkstoff handelt, d.h. bei dem Temperprozeß zersetzt sich ein der Ausgangsmischung beispielsweise zugesetztes Metall-Stearat zu einem Metalloxid, so dass sich durch die Anwesenheit von Sauerstoff an Korngrenzen Eisenoxidbrücken bilden, die den Gefügezusammenhalt wirksam verbessern, sind in den erfindungsgemäß hergestellten Formteilen gegenüber solchen aus Polymer-gebundenen weichmagnetischen Verbundwerkstoffen auch zumindest nahezu keine organischen Anteile mehr enthalten. Somit weisen die erfindungsgemäß hergestellten Formteile neben ihrer höheren Dichte auch eine geringere Porosität auf, was zu einer deutlich verbesserten thermomechanischen Langzeitstabilität, insbesondere gegenüber heißem DieselKraftstoff führt.Since the molded parts made of a soft magnetic composite material produced by the method according to the invention are preferably an oxide-bonded material, i. In the annealing process, one of the starting mixture, for example, added metal stearate decomposes to form a metal oxide, so that form by the presence of oxygen at grain boundaries iron oxide bridges that effectively improve the microstructure, are in the moldings according to the invention over those of polymer-bonded soft magnetic composites also contain at least almost no organic components. Thus, the moldings produced according to the invention, in addition to their higher density and a lower porosity, which leads to a significantly improved thermo-mechanical long-term stability, especially against hot diesel fuel.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.Advantageous developments of the invention will become apparent from the measures mentioned in the dependent claims.

Ausführungsbeispieleembodiments

Bei einem ersten Ausführungsbeispiel wird zur Erläuterung des Hintergrundes von einer Ausgangsmischung mit einem Reineisenpulver und einem Presshilfsmittel ausgegangen, wie sie von der Firma Höganäs, Schweden, unter dem Handelsnamen Somaloy 500 vertrieben wird. In a first embodiment, to explain the background of a starting mixture with a pure iron powder and a pressing aid is assumed, as sold by the company Höganäs, Sweden, under the trade name Somaloy 500.

Im Einzelnen ist das dabei eingesetzte Reineisenpulver ein hochreines Eisenpulver mit phosphatierter Oberfläche, dem, wie in EP 0 765 199 B1 beschrieben, als Gleitmittel ein Presshilfmittel, ausgewählt aus der Gruppe der MetallStearate, der Wachse, der Paraffine, der natürlichen oder synthetischen Fettderivate oder der Oligomere vom Amid-Typ zugesetzt ist.
Bevorzugt wird das Reineisenpulver zusammen mit dem unter dem Handelsnamen Kenolube® bekannten Presshilfsmittel der Firma Höganäs AB, Schweden, eingesetzt. Dazu wird das Presshilfsmittel Kenolube®, das im Wesentlichen ein Amid-Wachs und Zink-Stearat enthält, in einem Anteil von 0,4 Gew.% bis 0,7 Gew.%, vorzugsweise 0,5 Gew.% bis 0,6 Gew.%, dem Reineisenpulver zugesetzt und mit diesem zu der Ausgangsmischung vermischt. Anschließend wird die Ausgangsmischung dann in einem üblichen Matrizenwerkzeug bevorzugt bei Raumtemperatur bei einem Druck zwischen 600 MPa bis 900 MPa, insbesondere 700 MPa bis 800 MPa, beispielsweise in Form eines Magnetkerns für Common-Rail-Injektoren verpresst.
Specifically, the pure iron powder used is a high-purity iron powder with phosphated surface, the, as in EP 0 765 199 B1 described as lubricant a pressing aid selected from the group of metal stearates, waxes, paraffins, natural or synthetic fat derivatives or amide-type oligomers is added.
Preferably, the pure iron powder is used together with the known under the trade name Kenolube® pressing aids Höganäs AB, Sweden. For this purpose, the pressing aid Kenolube®, which contains essentially an amide wax and zinc stearate, in a proportion of 0.4 wt.% To 0.7 wt.%, Preferably 0.5 wt.% To 0.6 wt %, added to the pure iron powder and mixed with this to the starting mixture. Subsequently, the starting mixture is then pressed in a conventional die preferably at room temperature at a pressure between 600 MPa to 900 MPa, in particular 700 MPa to 800 MPa, for example in the form of a magnetic core for common rail injectors.

Nach dem Verpressen wird das erhaltene Formteil bei Temperaturen zwischen 380°C bis 450°C, insbesondere bei ca. 425°C, über eine Zeitdauer von 10 min bis 120 min, insbesondere 30 min bis 60 min, in einem Stickstoff-Luft-Gemisch oder einem Edelgas-Luft-Gemisch getempert, wobei der Anteil der Luft zwischen 50 Vol% und 5 Vol%, insbesondere 10 Vol.% bis 30 Vol.%, beispielsweise 20 vol.%, beträgt. Dabei wird das zugesetzte Presshilfsmittel teils zersetzt und teils in ein bindendes Oxid umgewandelt. Alternativ kann auch eine Mischung von einem Inertgas mit Sauerstoff, beispielsweise ein Stickstoff-Sauerstoff-Gemisch oder ein Argon-Sauerstoff - Gemisch, eingesetzt werden, das eine Sauerstoffanteil zwischen 1 Vol% und 10 Vol%, insbesondere 2 Vol% bis 7 Vol%, enthält.After pressing, the molding obtained is at temperatures between 380 ° C to 450 ° C, in particular at about 425 ° C, over a period of 10 min to 120 min, in particular 30 min to 60 min, in a nitrogen-air mixture or a noble gas-air mixture tempered, wherein the proportion of air between 50 vol% and 5 vol%, in particular 10 vol.% To 30 vol.%, For example, 20 vol.%. This is the added Pressing aids partly decomposed and partly converted into a binding oxide. Alternatively, it is also possible to use a mixture of an inert gas with oxygen, for example a nitrogen-oxygen mixture or an argon-oxygen mixture, which has an oxygen content between 1% by volume and 10% by volume, in particular 2% by volume to 7% by volume, contains.

Die nach dem Tempern erhaltenen Formteile werden bevorzugt einer abschließenden mechanischen Oberflächenbearbeitung, beispielsweise einem Schleifen, unterzogen. Dies führt zu verbesserten mechanischen Eigenschaften und einer verbesserten Langzeitstabilität der erhaltenen Formteile. Zudem wird durch das nachträgliche Schleifen erreicht, dass die gemessene Magnetkraft an solchen Magnetkernen in der Regel um ca. 5% bis 10% steigt.The moldings obtained after annealing are preferably subjected to a final mechanical surface treatment, for example a grinding. This leads to improved mechanical properties and improved long-term stability of the resulting molded parts. In addition, it is achieved by the subsequent grinding that the measured magnetic force on such magnetic cores usually increases by about 5% to 10%.

In einem zweiten Ausführungsbeispiel wird die Erfindung erläutert, wobei abweichend von dem vorstehend erläuterten Ausführungsbeispiel nach dem Verpressen der Ausgangsmischung zu dem Formteil zunächst ein erster Temperschritt bei einer Temperatur von 150°C bis 400°C, insbesondere bei Temperaturen zwischen 230°C und 310°C, vorgenommen wird. In a second embodiment, the invention will be explained, wherein, unlike the above-described embodiment, after pressing the starting mixture to the molding initially a first annealing step at a temperature of 150 ° C to 400 ° C, in particular at temperatures between 230 ° C and 310 ° C, is made.

Dieser erste Temperschritt kann an Luft oder einer Inertgasatmosphäre wie einer Edelgasatmosphäre oder einer Stickstoffatmosphäre erfolgen. Bevorzugt erfolgt er jedoch, analog dem Tempern im ersten Ausführungsbeispiel, in einem Gasgemisch aus einem Inertgas und Sauerstoff, wobei der Anteil des Sauerstoffes in dem Gasgemisch zwischen 10 Vol% und 1 Volt beträgt.This first annealing step may be carried out in air or an inert gas atmosphere such as a noble gas atmosphere or a nitrogen atmosphere. However, it is preferably carried out, analogously to the tempering in the first embodiment, in a gas mixture of an inert gas and oxygen, the proportion of oxygen in the gas mixture being between 10% by volume and 1 volt.

Besonders bevorzugt ist die Gasatmosphäre in diesem Ausführungsbeispiel erneut eine Mischung von Luft und Stickstoff, wobei der Anteil der Luft zwischen 50 Vol% und 5 Vol%, insbesondere 10 Vol.% bis 30 Vol.%, beispielsweise 20 Vol.%, beträgt.Particularly preferably, the gas atmosphere in this embodiment again a mixture of air and nitrogen, wherein the proportion of air between 50 vol% and 5% by volume, in particular 10% by volume to 30% by volume, for example 20% by volume.

Nach dem ersten Temperschritt wird dann zur Nachformung des verpressten, getemperten Formteils ein weiteres Verpressen bei einem Druck zwischen 600 MPa bis 900 MPa, insbesondere 700 MPa bis 800 MPa, bei Raumtemperatur vorgenommen.After the first annealing step, further compression is then carried out at room temperature for reshaping the pressed, annealed shaped part at a pressure between 600 MPa and 900 MPa, in particular 700 MPa and 800 MPa.

Alternativ kann diese Nachformung auch durch Heißplanformen in einem geeigneten Matrizenwerkzeug unter erhöhter Temperatur erfolgen, wie dies beispielsweise in DE 100 05 551.6 beschrieben ist.Alternatively, this post-forming can also be done by hot plan forming in a suitable die tool at elevated temperature, as for example in DE 100 05 551.6 is described.

Nach der erläuterten Nachformung erfolgt ein erneutes, zweites Tempern des erhaltenen Formteils, das analog dem ersten Ausführungsbeispiel bei Temperaturen zwischen 380°C bis 450°C, insbesondere 425°C, über eine Zeitdauer von 10 min bis 120 min, insbesondere 30 min bis 60 min, in einem Stickstoff-Luft-Gemisch oder einem Edelgas-Luft-Gemisch erfolgt, wobei der Anteil der Luft zwischen 50 Vol% und 5 Vol%, insbesondere 10 Vol.% bis 30 Vol.%, beispielsweise 20 Vol.%, beträgt.After the illustrated post-forming takes place a renewed, second annealing of the resulting molded part, analogous to the first embodiment at temperatures between 380 ° C to 450 ° C, in particular 425 ° C, over a period of 10 min to 120 min, especially 30 min to 60 min, in a nitrogen-air mixture or a noble gas-air mixture, wherein the proportion of air between 50% by volume and 5% by volume, in particular 10% by volume to 30% by volume, for example 20% by volume ,

Die nach dem Tempern erhaltenen Formteile werden bevorzugt dann analog dem ersten Ausführungsbeispiel einer abschließenden mechanischen Oberflächenbearbeitung, beispielsweise einem Schleifen, unterzogen.The moldings obtained after annealing are then preferably subjected to a final mechanical surface treatment, for example a grinding, analogously to the first exemplary embodiment.

Im Einzelnen weist ein Formteil aus einem weichmagnetischer Verbundwerkstoff aus dem phosphatierten Reineisenpulver Somaloy 500 mit 0,6% Massenanteilen Kenolube gemäß den vorstehenden Ausführungsbeispielen eine statistische Biegefestigkeit von mindestens 25 N/mm2, ermittelt an Prüfstäben nach ISO 3327, und eine Oberflächenhärte HB 2,5/31,25 von mindestens 70 auf.Specifically, a molding made of a soft magnetic composite material of the phosphatized pure iron powder Somaloy 500 with 0.6% by weight of Kenolube according to the above embodiments, a statistical bending strength of at least 25 N / mm 2 , determined on test bars according to ISO 3327, and a surface hardness HB 2, 5 / 31.25 of at least 70 on.

Weiter wird an Ringen mit einem Außendurchmesser von 40 mm, einem Innendurchmesser von 30 mm und einer Höhe von 5 mm eine magnetische Polarisation J100 von mindestens 1,4 Tesla bei 100 A/cm, eine Sättigungspolarisation Js von mindestens 1,5 Tesla bei 500 Ampere/cm, eine Koerzitivfeldstärke HcB von maximal 3,0 Ampere/cm, eine Maximalpermeabilität µmax. von mindestens 450 und einem Gesamtverlust νH + νW bei 1 Tesla und 50 Hz von max. 8 W/kg gemessen. In der Regel wird sogar eine Sättigungspolarisation von mehr als 1,7 Tesla und eine Maximalpermeabilität von ca. 500 bei einem spezifischen elektrischen Widerstand von ca. 10 µΩm erreicht.Further, on rings having an outer diameter of 40 mm, an inner diameter of 30 mm and a height of 5 mm, a magnetic polarization J 100 of at least 1.4 Tesla at 100 A / cm, a saturation polarization J s of at least 1.5 Tesla at 500 amperes / cm, a coercive force H cB of at most 3.0 amps / cm, a maximum permeability μ max . of at least 450 and a total loss ν H + ν W at 1 Tesla and 50 Hz of max. 8 W / kg measured. In general, even a saturation polarization of more than 1.7 Tesla and a maximum permeability of about 500 at a specific electrical resistance of about 10 μΩm is achieved.

Die Dichte der erhaltenen Formteile beträgt mindestens 7,30 g/cm3, wobei durch das zusätzliche Nachformen in einem Matrizenwerkzeug bzw. das zusätzliche Heißplanformen eine Erhöhung der Dichte auf bis ca. 7,5 g/cm3 erreicht werden kann.The density of the molded parts obtained is at least 7.30 g / cm 3 , whereby an increase in density to about 7.5 g / cm 3 can be achieved by additional post-forming in a die tool or the additional Heißplanformen.

Claims (7)

  1. Process for producing a moulding from a soft-magnetic composite material, having the following process steps: a) providing a starting mixture comprising an iron powder and a pressing aid, b) pressing the starting mixture to form a moulding, and c) heat treatment of the moulding, wherein the heat treatment is effected in a mixture of an inert gas and oxygen, wherein the oxygen content of the gas mixture is between 10% by volume and 1% by volume and the heat treatment is effected at temperatures of between 380°C and 450°C, in particular at 425°C, over a time period of from 10 min to 120 min, in particular of from 30 min to 60 min,
    characterized
    in that, after process step b), the pressed mouldings are firstly heat-treated at a temperature of from 150°C to 400°C, in particular of from 230°C to 310°C, are then post-formed, and are subsequently heat-treated again in accordance with process step c).
  2. Process according to Claim 1, characterized in that, in step c), the oxygen content is between 7% by volume and 2% by volume, and in this case the gas mixture is, in particular, a mixture of air and nitrogen, or air and a noble gas.
  3. Process according to Claim 1, characterized in that the pressing is effected at room temperature and at a pressure of between 600 MPa and 900 MPa, in particular of between 700 MPa and 800 MPa.
  4. Process according to one of the preceding claims, characterized in that a starting mixture which contains phosphatized pure iron powder and a pressing aid selected from the group consisting of metal stearates, waxes, paraffins, natural or synthetic fatty derivatives and oligomers of the amide type, in particular Kenolube®, is employed.
  5. Process according to one of the preceding claims, characterized in that, after process step b) and before the heat treatment in accordance with process step c), the pressed mouldings are heat-treated in air, an inert gas atmosphere or a gas mixture of an inert gas and oxygen, wherein the oxygen content of the gas mixture is between 10% by volume and 1% by volume.
  6. Process according to Claim 1 or 5, characterized in that post-forming is effected by carrying out further pressing at a pressure of between 600 MPa and 900 MPa, in particular of between 700 MPa and 800 MPa, or by carrying out hot plane forming.
  7. Process according to one of the preceding claims, characterized in that the heat treatment in accordance with process step c) is followed by at least regions of the surface of the mouldings being machined, in particular ground.
EP02001397A 2001-02-10 2002-01-19 Process for preparing an article of soft magnetic composite material Expired - Lifetime EP1231003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10106172A DE10106172A1 (en) 2001-02-10 2001-02-10 Process for producing a molded part from a soft magnetic composite material
DE10106172 2001-02-10

Publications (3)

Publication Number Publication Date
EP1231003A2 EP1231003A2 (en) 2002-08-14
EP1231003A3 EP1231003A3 (en) 2005-07-20
EP1231003B1 true EP1231003B1 (en) 2009-02-25

Family

ID=7673570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02001397A Expired - Lifetime EP1231003B1 (en) 2001-02-10 2002-01-19 Process for preparing an article of soft magnetic composite material

Country Status (3)

Country Link
US (1) US7175794B2 (en)
EP (1) EP1231003B1 (en)
DE (2) DE10106172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489379B2 (en) * 2020-09-21 2022-11-01 Evr Motors Ltd Electric machine with SMC stator core
RU2810561C1 (en) * 2023-07-11 2023-12-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Magnetic soft composite material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203168D0 (en) * 2002-10-25 2002-10-25 Hoeganaes Ab Heat treatment of iron-based components
JP4134111B2 (en) * 2005-07-01 2008-08-13 三菱製鋼株式会社 Method for producing insulating soft magnetic metal powder compact
DE102008059565A1 (en) * 2008-10-17 2010-04-22 Continental Teves Ag & Co. Ohg Magnetic coil for actuating electromagnetic valve, has coil wire with electrical contact that projects at coil carrier, where carrier with wire is held in yoke body, which is made of ferritic powder i.e. carbon powder, in defined grain size
GB2494217B (en) * 2012-01-19 2014-10-08 Libertine Fpe Ltd A linear electrical machine with a piston and axially segmented cylinder
KR20150011852A (en) * 2012-04-23 2015-02-02 아이다 엔지니어링, 엘티디. Device for high-density molding and method for high-density molding of mixed powder
DE102012211053A1 (en) 2012-06-27 2014-01-02 Robert Bosch Gmbh Soft magnetic component and method for producing such
KR101540150B1 (en) * 2013-05-27 2015-07-28 삼성전기주식회사 Switched reluctance motor
CN104923792A (en) * 2015-07-07 2015-09-23 北京科汇粉末冶金厂 Electromagnetic part and manufacturing method thereof
AT521006B1 (en) * 2018-01-24 2021-08-15 Miba Sinter Austria Gmbh Process for manufacturing a component with soft magnetic properties
CN110947956B (en) * 2019-11-21 2021-05-14 山东精创磁电产业技术研究院有限公司 Forming process of high-strength and high-permeability soft magnetic composite material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830092A1 (en) * 1988-09-03 1990-03-15 Hoechst Ag METHOD FOR THE PRODUCTION OF A HIGH-TEMPERATURE SUPERCONDUCTOR AND MOLDED BODY THEREOF
JPH02141526A (en) * 1988-11-24 1990-05-30 Ngk Insulators Ltd Atmosphere control system
DE4118988A1 (en) * 1991-06-08 1992-12-10 Hoechst Ag SOLID BODIES CONTACTED WITH METALLIC LADDERS FROM CERAMIC HIGH TEMPERATURE SUPER LADDER MATERIAL AND METHOD FOR THEIR PRODUCTION
US5268140A (en) * 1991-10-03 1993-12-07 Hoeganaes Corporation Thermoplastic coated iron powder components and methods of making same
DE4228519B4 (en) * 1992-08-27 2006-04-27 Vacuumschmelze Gmbh Process for the production of plastic-bonded anisotropic permanent magnet moldings
SE9401922D0 (en) * 1994-06-02 1994-06-02 Hoeganaes Ab Lubricant for metal powder compositions, metal powder composition containing th lubricant, method for making sintered products using the lubricant, and the use of same
SE9402497D0 (en) * 1994-07-18 1994-07-18 Hoeganaes Ab Iron powder components containing thermoplastic resin and methods of making the same
DE69713700T2 (en) * 1996-03-18 2003-01-02 Seiko Epson Corp METHOD FOR THE PRODUCTION OF RARE EARTH MAGNET
JPH1083911A (en) * 1996-09-06 1998-03-31 Tokin Corp Composite magnetic material and electromagnetic interference inhibition body using that
US6102980A (en) * 1997-03-31 2000-08-15 Tdk Corporation Dust core, ferromagnetic powder composition therefor, and method of making
DE19735271C2 (en) * 1997-08-14 2000-05-04 Bosch Gmbh Robert Soft magnetic, mouldable composite material and process for its production
JP2000049008A (en) * 1998-07-29 2000-02-18 Tdk Corp Ferromagnetic powder for dust core dust core, and its manufacture
US6174453B1 (en) * 1998-10-02 2001-01-16 Tdk Corporation High-density ferrite member and ferrite beads composition therefor
DE19945592A1 (en) * 1999-09-23 2001-04-12 Bosch Gmbh Robert Soft magnetic material and process for its production
DE19960991C1 (en) * 1999-12-17 2001-03-22 Clariant Gmbh Molded composition used in the production of ceramic and powder metallurgy molded parts by compressing contains sintered powder and metallocene-polyolefin wax

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489379B2 (en) * 2020-09-21 2022-11-01 Evr Motors Ltd Electric machine with SMC stator core
RU2810561C1 (en) * 2023-07-11 2023-12-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Magnetic soft composite material

Also Published As

Publication number Publication date
US7175794B2 (en) 2007-02-13
US20020135089A1 (en) 2002-09-26
DE50213306D1 (en) 2009-04-09
EP1231003A3 (en) 2005-07-20
EP1231003A2 (en) 2002-08-14
DE10106172A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
EP1514282B1 (en) Soft magnetic powder composite material, method for the production thereof and use of the same
DE69821278T2 (en) Magnetic core and manufacturing process
EP1231003B1 (en) Process for preparing an article of soft magnetic composite material
DE10314564B4 (en) Soft magnetic powder material, soft magnetic green compact and manufacturing method for a soft magnetic green compact
DE10207133B4 (en) Powdered magnetic core and production thereof
EP1393330A1 (en) Inductive component and method for producing the same
EP0097737A1 (en) Powder metallurgy process for producing parts having high strength and hardness from Si-Mn or Si-Mn-C alloyed steel
DE10155898A1 (en) Inductive component and method for its production
DE2625214A1 (en) Process for the production of sintered molded bodies
DE2631781A1 (en) PERMANENT MAGNET AND METHOD OF MANUFACTURING THE SAME
CN105665715A (en) Iron-silicon series magnetically soft alloy prepared through powder metallurgy process and method
DE102015212192A1 (en) A method for producing an alloy for an R-T-B-rare earth-based sintered magnet and a method for producing an R-T-B-rare earth-based sintered magnet
DE2625213A1 (en) Process for the production of sintered molded bodies
EP0800882A2 (en) Process for preparing granulate and articles from hard metal or cermet material
EP2582477B1 (en) Structural component made of an iron-based sinter-alloy having reduced metal adhesion and method for its production
EP1475450B1 (en) High strength soft magnetic Iron-Cobalt-Vanadium alloy.
DE2613255A1 (en) HIGH STRENGTH IRON-MOLYBDAEN-NICKEL BASE ALLOY WITH ADDED PHOSPHORUS
EP1131831B1 (en) Method for producing a weakly magnetic composite material from a mouldable material
EP0217807B1 (en) Sintering method
EP0679727A2 (en) Method for producing a copper-nickel-silicon alloy and use of the same
DE102012211053A1 (en) Soft magnetic component and method for producing such
EP2376245A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
DE3043321A1 (en) SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF
DE758112C (en) Process for the production of permanent magnets by sintering
EP0338401B1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 22C 33/02 B

Ipc: 7B 22F 3/12 A

Ipc: 7H 01F 41/02 B

Ipc: 7H 01F 1/24 B

Ipc: 7C 21D 8/12 B

17P Request for examination filed

Effective date: 20060120

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070201

17Q First examination report despatched

Effective date: 20070201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50213306

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140123

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150119

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190326

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213306

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801