EP1230147A2 - Method for producing nanotubes consisting of transition metal oxides - Google Patents

Method for producing nanotubes consisting of transition metal oxides

Info

Publication number
EP1230147A2
EP1230147A2 EP00967492A EP00967492A EP1230147A2 EP 1230147 A2 EP1230147 A2 EP 1230147A2 EP 00967492 A EP00967492 A EP 00967492A EP 00967492 A EP00967492 A EP 00967492A EP 1230147 A2 EP1230147 A2 EP 1230147A2
Authority
EP
European Patent Office
Prior art keywords
template
suspension
transition metal
layers
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00967492A
Other languages
German (de)
French (fr)
Inventor
Reinhard Nesper
Hans-Joachim Muhr
Markus Josef Niederberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Publication of EP1230147A2 publication Critical patent/EP1230147A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for producing nanotubes consisting of transition metal oxides using a template.
  • Applicant's WO 98/26871 discloses a method for direct chemical synthesis of nanotubes consisting of transition metal oxides.
  • a solution is made from a neutral surfactant molecule and a metal alkoxide.
  • the solution is hydrolyzed and the precipitate aged.
  • the precipitate is then heated.
  • the neutral surfactant molecule is, for example, hexadecylamine and the metal alkoxide is a Vanadiu al- koxic or molybdenum alkoxide.
  • the nanotubes produced by this process are significantly more stable to oxidation than carbon nanotubes and show clear redox activators. They are also suitable as an active material for. -Atalytic reactions. This manufacturing process enables the production of larger quantities of transition metal oxide nanotubes, but the manufacturing costs are still comparatively high.
  • the invention proposes a further and even more cost-effective method for the direct production of nanotubes consisting of transition metal oxides.
  • V 2 0 5 is particularly suitable as a precursor and can be produced many times more cost-effectively than the metal alkoxides used hitherto.
  • the invention therefore makes it possible to reduce the manufacturing costs by a multiple. As before, larger quantities can be produced, for example in the kilogram range.
  • V 2 0 5's insensitivity to water and air makes it easy to work without an inert atmosphere.
  • FIG. 2 shows an X-ray diagram of dodecylamine-containing nanotubes and produced according to the invention from V 2 Os
  • FIG. 3 shows an overview and an individual image of nanotubes produced from V 2 Os and dodecylamine
  • FIG. 4 electron diffraction patterns of nanotubes produced from V 2 Os and containing dodecylamine
  • FIG. 5 schematically shows the essential steps of the inventive method.
  • a transition metal oxide with the layer structure is reacted with a template and the layers are thus widened.
  • the templates are stored between the layers.
  • the transition metal oxide with the layer structure forms the precursor.
  • the expanded layer structure is heated.
  • the layers convert topochemically to nanotubes.
  • FIG. 5 schematically shows these process steps.
  • the transition metal oxide with the layer structure is designated by A here.
  • B schematically shows the expanded layers S, between which the template D is stored.
  • C schematically represents a nanotube, with layers S typically being arranged in a roll shape. A reduction takes place at the transition from B to C.
  • transition metal oxides with a layer structure are suitable as precursors.
  • V 2 Os has proven to be particularly suitable.
  • the template is preferably a neutral amine.
  • FIG. 1 shows the infrared spectrum of the nanotubes produced by this method.
  • FIG. 2 shows the powder diagram, which gives a layer spacing of 27.4 ⁇ .
  • FIG. 3 shows an overview of nanotubes that were produced by this method.
  • FIG. 4 shows electron diffraction reflections of such nanotubes, these reflections resulting in a " layer spacing of 21.8 ⁇ .
  • the difference in the layer spacing is due to the ultra-high vacuum conditions and the thermal stress on the material in the electron microscope.
  • the order structure of the template molecules is changed.
  • Dodecylamine can be replaced by another neutral amine or terminal diamine.
  • the ratio of vanadium oxide to template is, for example, 2: 1.
  • V 2 Os in ethanolic dodecylamine solution resulted in a brown-yellow lamellar structured composite of surfactant (amine) and vanadium (V) oxide after adding water and subsequent aging.
  • the regular layer spacing in this material is around 2.9 nm.
  • a subsequent treatment under hydrothermal conditions yielded a product of overgrown and individual nanorums with a gross composition of V0 2 , 4 [C ⁇ 2 H 2 sN] 0 , 3 .
  • the neutral template molecules are converted into ammonium cations.

Abstract

The aim of the invention is to produce nanotubes consisting of transition metal oxides by using a template. Layers of TOx are expanded by means of a template, whereby the TOx is the precursor. The expanded layers are hydrothermally converted. The layers are expanded by depositing a template. The method enables to produce the nanotubes in a much more cost-effective manner. The precursor is preferably V2o5.

Description

Verfahren zur Herstellung von aus ϋbergangsmetalloxidβn bestehenden Nanotubes Process for the production of nanotubes made of transition metal oxide
Die Erfindung betrifft ein Verfahren zur Herstellung von aus Übergangsmetalloxiden bestehenden Nanotubes unter Verwendung eines Templates.The invention relates to a method for producing nanotubes consisting of transition metal oxides using a template.
Ein solches Verfahren ist in der Publikation von SATΪSHKUMAR, B.C. ET AL: "Oxide nanotubes prepared using carbon nanotubes as templates" J. MATER. RES . (1997), 12(3), 604-606 offenbart. Nach diesem Verfahren soll es möglich sein, Nanotubes aus Si02, A1203, V205 und Mo03 herzustellen, wobei Kohlenstoffnanotubes als Template verwendet werden. Die Kohlenstoffnanotubes werden nach diesem Verfahren mit Tetraethylorthosilikat, Aluminiumisopropoxid oder Vanadiumpentoxidgel beschichtet und anschliessend in Luft erhitzt um den Kohlenstoff zu oxidieren. Diese Synthesen sind aufwendig und führen lediglich zu sehr kleinen Mengen.Such a process is described in the publication by SATΪSHKUMAR, BC ET AL: "Oxide nanotubes prepared using carbon nanotubes as templates" J. MATER. RES. (1997), 12 (3), 604-606. According to this method, it should be possible to produce nanotubes from Si0 2 , A1 2 0 3 , V 2 0 5 and Mo0 3 , carbon nanotubes being used as templates. The carbon nanotubes are coated with tetraethyl orthosilicate, aluminum isopropoxide or vanadium pentoxide gel using this process and then heated in air to oxidize the carbon. These syntheses are complex and only lead to very small amounts.
Die WO 98/26871 des Anmelders offenbart ein Verfahren für eine direkte chemische Synthese von Nanotubes, die aus Übergangsmetalloxiden 'bestehen. Bei diesem Verfahren wird eine Lösung aus einem neutralen Tensidmolekül und einem Metallalkoxid hergestellt. Die Lösung wird hydrolisiert und der Niederschlag gealtert. Anschliessend wird der Niederschlag erhitzt. Das neutrale Tensidmolekül ist beispielsweise Hexadecylamin und das Metallalkoxid ein Vanadiu al- koxic oder Molybdänalkoxid. Die nach diesem Verfahren hergestellten Nanotubes sind wesentlich oxidationsstabiler als Nanotubes aus Kohlenstoff und zeigen deutliche Redoxaktivi- täter.. Sie eignen sich unier anderem als aktives Material für .-atalytische Reaktionen. Dieses Herstellungsverfahren ermöglicht die Herstellung grösserer Mengen an Übergangsme- tallcxidnanotubes, die Herstellungskosten sind aber immer noch vergleichsweise hoch.Applicant's WO 98/26871 discloses a method for direct chemical synthesis of nanotubes consisting of transition metal oxides. In this process, a solution is made from a neutral surfactant molecule and a metal alkoxide. The solution is hydrolyzed and the precipitate aged. The precipitate is then heated. The neutral surfactant molecule is, for example, hexadecylamine and the metal alkoxide is a Vanadiu al- koxic or molybdenum alkoxide. The nanotubes produced by this process are significantly more stable to oxidation than carbon nanotubes and show clear redox activators. They are also suitable as an active material for. -Atalytic reactions. This manufacturing process enables the production of larger quantities of transition metal oxide nanotubes, but the manufacturing costs are still comparatively high.
Mit der Erfindung wird ein weiteres und noch kostengünstigeres Verfahren zur direkten Herstellung von aus Übergangs- metailoxiden bestehenden Nanotubes vorgeschlagen.The invention proposes a further and even more cost-effective method for the direct production of nanotubes consisting of transition metal oxides.
Die Aufgabe ist dadurch gelöst, dass Schichten aus einem aus TOx, wobei T ein Übergangsmetall ist, als Prekursor mit einem Templat aufgeweitet und die aufgeweiteten Schichten hydrothermal umgewandelt werden. Als Prekursor eignet sich insbesondere V205 und dieses ist um ein mehrfaches kostengünstiger herstellbar als die bisher verwendeten Metallal- koxi e . Die Erfindung ermöglicht deshalb, die Herstellungskosten um ein mehrfaches zu senken. Wie bisher können grö- ssere Mengen, beispielsweise im Kilogrammbereich hergestellt werden. Ausserdem ermöglicht die Unempfindlichkeit von V205 gegenüber Wasser und Luft ein einfaches Arbeiten ohne Inertatmosphäre.The object is achieved in that layers of TO x , where T is a transition metal, are expanded as a precursor with a template and the expanded layers are converted hydrothermally. V 2 0 5 is particularly suitable as a precursor and can be produced many times more cost-effectively than the metal alkoxides used hitherto. The invention therefore makes it possible to reduce the manufacturing costs by a multiple. As before, larger quantities can be produced, for example in the kilogram range. In addition, V 2 0 5's insensitivity to water and air makes it easy to work without an inert atmosphere.
Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the drawing. Show it:
Figur 1 ein Infrarotspekturm von erfindungsgemäss aus V205 hergestellten Nanotubes,1 shows an infrared spectrum tower of nanotubes produced according to the invention from V 2 0 5 ,
Figur 2 ein Röntgen-Diagramm von Dodecylamin - haltigen und erfindungsgemäss aus V2Os hergestellten Nanotubes, Figur 3 eine Übersichtsaufnahme und eine Einzelaufnahme von aus V2Os und Dodecylamin hergestellten Nanotubes,FIG. 2 shows an X-ray diagram of dodecylamine-containing nanotubes and produced according to the invention from V 2 Os, FIG. 3 shows an overview and an individual image of nanotubes produced from V 2 Os and dodecylamine,
Figur 4 Elektronenbeugungsmuster von aus V2Os hergestellten und Dodecylaminhaltigen Nanotubes undFIG. 4 electron diffraction patterns of nanotubes produced from V 2 Os and containing dodecylamine and
Figur 5 schematisch die wesentlichen Schritte des erfindungsgemässen Verfahrens.Figure 5 schematically shows the essential steps of the inventive method.
Ein wesentlicher Gedanke der Erfindung wird darin gesehen, dass ein Übergangsmetalloxid mit einer Schichtstruktur mit einem Templat umgesetzt und damit die Schichten aufgeweitet werden. Die Template werden hierbei zwischen den Schichten eingelagert. Das Übergangsmetalloxid mit der Schichtstruktur bildet den Prekursor. Nach einer Alterung wird die aufgeweitete Schichtstruktur erhitzt. Hierbei wandeln sich die Schichten topochemisch zu Nanotubes um. Die Figur 5 zeigt schematisch diese Verfahrensschritte. Das Übergangsmetalloxid mit der Schichtstruktur ist hier mit A bezeichnet. B zeigt schematisch die aufgeweiteten Schichten S, zwischen denen das Templat D gelagert ist. Mit C ist ein Nanotube schematisch dargestellt, wobei hier typischerweise die Schichten S rollenförmig angeordnet sind. Beim Übergang von B nach C findet eine Reduktion statt.An essential idea of the invention is seen in the fact that a transition metal oxide with a layer structure is reacted with a template and the layers are thus widened. The templates are stored between the layers. The transition metal oxide with the layer structure forms the precursor. After aging, the expanded layer structure is heated. The layers convert topochemically to nanotubes. FIG. 5 schematically shows these process steps. The transition metal oxide with the layer structure is designated by A here. B schematically shows the expanded layers S, between which the template D is stored. C schematically represents a nanotube, with layers S typically being arranged in a roll shape. A reduction takes place at the transition from B to C.
Als Prekursoren eignen sich grundsätzlich sämtliche Übergangsmetalloxide mit einer Schichtstruktur. Als besonders geeignet hat sich V2Os erwiesen. Das Templat ist vorzugsweise ein neutrales Amin.In principle, all transition metal oxides with a layer structure are suitable as precursors. V 2 Os has proven to be particularly suitable. The template is preferably a neutral amine.
Nachfolgend wird ein Bespiel einer Synthese beschrieben. Zu 815 mg (4,5 mmol) V205 wurden 830 mg (4,5 mmol) Dodecylamin gegeben und nach Zugabe von 3 ml Ethanol wurde diese Suspension eine Stunde gerührt. Anschliessend wurde die Suspension mit 15 ml destilliertem Wasser versetzt und 24 Stunden bei Raumtemperatur gealtert. Es bildete sich eine dicke, gelbe Suspension mit einem pH Wert von etwa 7. Das Gemisch wurde nun in einen Autoklaven mit einem Innenvolumen von 43 ml abgefüllt und einen Tag bei 100 °C und sieben Tage bei 180 °C geheizt. Nach dem Abkühlen wurde das schwarze Reaktionsprodukt abfiltriert, mit 50 ml Ethanol und 20 ml Ethylether gewaschen und luftgetrocknet.An example of a synthesis is described below. 830 mg (4.5 mmol) of dodecylamine were added to 815 mg (4.5 mmol) of V 2 0 5 and, after addition of 3 ml of ethanol, this suspension was stirred for one hour. Subsequently, the suspension was mixed with 15 ml of distilled water and aged for 24 hours at room temperature. One formed thick, yellow suspension with a pH of about 7. The mixture was then poured into an autoclave with an internal volume of 43 ml and heated for one day at 100 ° C. and for seven days at 180 ° C. After cooling, the black reaction product was filtered off, washed with 50 ml of ethanol and 20 ml of ethyl ether and air-dried.
Für die Elementaranalyse wurde die Probe 24 Stunden unter Vakuum in Hexan extrahiert und 24 Stunden am Feinvakuum bei 80°C getrocknet. Die Analyse ergab folgendes Resultat:For elemental analysis, the sample was extracted under vacuum in hexane for 24 hours and dried under a fine vacuum at 80 ° C. for 24 hours. The analysis gave the following result:
[C] 26,62 Gew.% [H] 5,29 Gew.% [N] 2,59 Gew.% [V] 34,8 Gew.%[C] 26.62% by weight [H] 5.29% by weight [N] 2.59% by weight [V] 34.8% by weight
Die Figur 1 zeigt das Infrarotspektrum der nach diesem Verfahren hergestellten Nanotubes. Die Figur 2 zeigt das Pulverdiagramm, das einen Schichtabstand von 27,4 Ä ergibt. Die Figur 3 zeigt eine Übersichtsaufnahme von Nanotubes, die nach diesem Verfahren hergestellt wurden. Schliesslich zeigt die Figur 4 Elektronenbeugungsreflexe solcher Nanotubes, wobei diese Reflexe einen "Schichtabstand von 21,8 Ä ergeben. Der Unterschied im Schichtabstand ist auf die Ultrahochvakuum-Bedingungen sowie die thermische Belastung des Materials im Elektronenmikroskop zurückzuführen. Dabei wird die Ordnungsstruktur der Templatemoleküle verändert.FIG. 1 shows the infrared spectrum of the nanotubes produced by this method. FIG. 2 shows the powder diagram, which gives a layer spacing of 27.4 Å. FIG. 3 shows an overview of nanotubes that were produced by this method. Finally, FIG. 4 shows electron diffraction reflections of such nanotubes, these reflections resulting in a " layer spacing of 21.8 Å. The difference in the layer spacing is due to the ultra-high vacuum conditions and the thermal stress on the material in the electron microscope. The order structure of the template molecules is changed.
Dodecylamin kann durch ein anderes neutrales Amin oder ter- minales Diamin ersetzt werden. Das Verhältnis von Vanadiumoxid zum Templat beträgt beispielsweise 2:1.Dodecylamine can be replaced by another neutral amine or terminal diamine. The ratio of vanadium oxide to template is, for example, 2: 1.
Die Umsetzung von V2Os in ethanolischer Dodecylaminlösung ergab nach Zugabe von Wasser und anschliessender Alterung ein braun-gelbes lamellar strukturiertes Komposit aus Sur- factant (Amin) und Vanadium (V)oxid. Die regelmässigen Schichtabstände in diesem Material liegen bei etwa 2,9 nm. Eine nachfolgende Behandlung unter hydrothermalen Bedingungen lieferte ein Produkt aus verwachsenen und einzelnen Nanorcnren der Bruttozusammensetzung V02,4 [Cι2H2sN] 0,3. Unter den Synthesebedincungen werden dabei die neutralen Templatemoleküle in Ammcniumkationen umgewandelt. The conversion of V 2 Os in ethanolic dodecylamine solution resulted in a brown-yellow lamellar structured composite of surfactant (amine) and vanadium (V) oxide after adding water and subsequent aging. The regular layer spacing in this material is around 2.9 nm. A subsequent treatment under hydrothermal conditions yielded a product of overgrown and individual nanorums with a gross composition of V0 2 , 4 [Cι 2 H 2 sN] 0 , 3 . Under the synthetic conditions, the neutral template molecules are converted into ammonium cations.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen von aus Übergangsmetalloxiden oestehenden Nanotubes unter Verwendung eines Templates, dadurch gekennzeichnet, dass Schichten aus T0X, wobei T ein Übergangsmetall ist, als Prekursor mit einem Templat durch Einlagerung zwischen diesen Schichten aufgeweitet und die aufgeweiteten Schichten hydrothermal umgewandelt werden.1. A method for producing nanotubes consisting of transition metal oxides using a template, characterized in that layers of T0 X , where T is a transition metal, are expanded as a precursor with a template by intercalation between these layers and the expanded layers are converted hydrothermally.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Prekursor V205 ist.2. The method according to claim 1, characterized in that the precursor is V 2 0 5 .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Templat ein Amin ist.3. The method according to claim 1 or 2, characterized in that the template is an amine.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Amin ein neutrales Amin ist.4. The method according to claim 3, characterized in that the amine is a neutral amine.
5. Verfahren nach Anspruch 3 od-er 4, dadurch gekennzeichnet, dass das Amin ein terminales primäres Amin ist,5. The method according to claim 3 or 4, characterized in that the amine is a terminal primary amine,
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Amin ein terminales Diamin ist.6. The method according to any one of claims 3 to 5, characterized in that the amine is a terminal diamine.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis von TOx zum Templat im wesentlichen 2:1 ist.7. The method according to any one of claims 1 to 6, characterized in that the ratio of TO x to the template is essentially 2: 1.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Suspension aus dem Prekursor und dem Templat gebildet wird. 8. The method according to any one of claims 1 to 7, characterized in that a suspension is formed from the precursor and the template.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Suspension mit Wasser versetzt wird.9. The method according to claim 8, characterized in that the suspension is mixed with water.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Suspension gealtert wird.10. The method according to claim 8 or 9, characterized in that the suspension is aged.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Suspension bei etwa Raumtemperatur mehrere Stunden, vorzugsweise wenigstens 24 Stunden gealtert wird.11. The method according to claim 10, characterized in that the suspension is aged at about room temperature for several hours, preferably at least 24 hours.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Suspension in einem Autoklaven erwärmt wird.12. The method according to claim 11, characterized in that the suspension is heated in an autoclave.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Suspension mehrere Tage bei etwa 180 °C oder mehr erwärmt wird.13. The method according to claim 11 or 12, characterized in that the suspension is heated for several days at about 180 ° C or more.
14. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Suspension zur hydrothermalen Umwandlung der Schichten auf wenigstens 100%C erwärmt wird und nach Verfahren 12 und 13 weiterbehandelt wird.14. The method according to any one of claims 7 to 11, characterized in that the suspension for the hydrothermal conversion of the layers is heated to at least 100% C and is further treated according to methods 12 and 13.
15. Nanotubes hergestellt nach einem der Ansprüche 1 bis 14. 15. Nanotubes produced according to one of claims 1 to 14.
EP00967492A 1999-10-27 2000-10-25 Method for producing nanotubes consisting of transition metal oxides Withdrawn EP1230147A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH195899 1999-10-27
CH195899 1999-10-27
PCT/CH2000/000570 WO2001030690A2 (en) 1999-10-27 2000-10-25 Method for producing nanotubes consisting of transition metal oxides

Publications (1)

Publication Number Publication Date
EP1230147A2 true EP1230147A2 (en) 2002-08-14

Family

ID=4222584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967492A Withdrawn EP1230147A2 (en) 1999-10-27 2000-10-25 Method for producing nanotubes consisting of transition metal oxides

Country Status (4)

Country Link
EP (1) EP1230147A2 (en)
JP (1) JP2003512284A (en)
AU (1) AU7767700A (en)
WO (1) WO2001030690A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003281674A1 (en) * 2002-07-26 2004-02-16 Eidgenossische Technische Hochschule Zurich Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method
KR100453820B1 (en) * 2002-08-12 2004-10-20 학교법인 포항공과대학교 Method for manufacturing alumina nanotube and use of the alumina nanotube for storage of H2
EP1394115B1 (en) 2002-08-24 2009-10-21 Haldor Topsoe A/S Rhenium (iv) sulphide nanotube material and method of preparation
WO2005071702A1 (en) * 2004-01-21 2005-08-04 Kyushu University, National University Corporation Electrode material for redox capacitor and process for producing the same
JP4505635B2 (en) * 2004-09-16 2010-07-21 国立大学法人 香川大学 Nanoscale material and method for producing the same
CN109775758A (en) * 2018-12-26 2019-05-21 中国电子科技集团公司第十八研究所 Preparation method of large-layer-spacing vanadium pentoxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690720A5 (en) * 1996-12-18 2000-12-29 Eidgenoess Tech Hochschule Nanotubes, use of such nanotubes as well as methods for their preparation.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0130690A3 *

Also Published As

Publication number Publication date
WO2001030690A2 (en) 2001-05-03
JP2003512284A (en) 2003-04-02
WO2001030690A3 (en) 2001-09-20
AU7767700A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
EP0317875B1 (en) Catalyst for the selective reduction of nitrogen oxides with ammonia
DE19781813B4 (en) Mesoporous molecular sieve and process for its preparation
DE69907530T2 (en) Composition containing inorganic porous material, and process for producing the same
WO1998026871A1 (en) Nanotubes, use and manufacture of same
CH645037A5 (en) METHOD FOR PRODUCING ALLOY AND NON-PRECIOUS ALLOY CATALYSTS.
DE2615352A1 (en) SUBSTANCE COMPOSITION WITH CATALYTIC METAL SUBSTANCE ON METAL OXIDE WITH PEROVSKITE CRYSTAL STRUCTURE AND ITS PRODUCTION
DE3044070A1 (en) CATALYST FOR USE IN THE HYDRO TREATMENT OF HEAVY CARBON OILS, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR THE HYDRO TREATMENT OF HEAVY CARBON OILS
DE3044071A1 (en) CATALYST FOR USE IN HYDROTREATING A HEAVY HYDROCARBON OIL, METHOD FOR THE PRODUCTION THEREOF, AND METHOD FOR USE THEREOF
DE1767202A1 (en) Method of making a catalyst
DE69721884T2 (en) Catalytic cracking compositions for producing gasoline with reduced sulfur content
DE102008026210A1 (en) Nanocrystalline copper oxide and process for its preparation
DE112011103630T5 (en) Synthesis of sodium titanate
DE2112144A1 (en) Process for the production of iron molybdate catalysts
DE3616503A1 (en) METHOD FOR PRODUCING CERAMIC MICROBALLS
EP1230147A2 (en) Method for producing nanotubes consisting of transition metal oxides
EP0010779A1 (en) Process for preparing town gas from methanol
DE2037494A1 (en) Hydrocarbon conversion catalyst and processes using this catalyst
DE2233459A1 (en) NEW CATALYSTS, THE PROCESSES FOR THEIR PRODUCTION AND THEIR USE IN THE CONVERSION OF HYDROCARBONS
DE1966418C3 (en) Process for the preparation of a fluidized bed catalyst for the production of maleic anhydride
DE112021003979T5 (en) COLORED TITANIUM DIOXIDE PARTICLES AND PROCESS FOR THEIR PRODUCTION, AND TITANIUM DIOXIDE PARTICLE MIXTURE
DE2507612A1 (en) METHOD FOR PRODUCTION OF HYDROGEN
EP3210989A1 (en) Noble metal compounds
WO2004011375A1 (en) Method for the production of transition metal oxide nanotubes and nanotubes produced according to the method
DE102020116953A1 (en) Process for the preparation of a carbon nitride of the composition C11N4
DE102011081000A1 (en) Preparing titanium dioxide particle, useful e.g. as photo catalysts, comprises producing solution of glucose, titanium(III) chloride and aqueous ammonia in water and/or solvent, heating and cooling the solution, and filtering the particle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NESPER, REINHARD

Inventor name: NIEDERBERGER, MARKUS, JOSEF

Inventor name: MUHR, HANS-JOACHIM

17Q First examination report despatched

Effective date: 20021125

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050319