EP1228101B1 - Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof - Google Patents

Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof Download PDF

Info

Publication number
EP1228101B1
EP1228101B1 EP00958529A EP00958529A EP1228101B1 EP 1228101 B1 EP1228101 B1 EP 1228101B1 EP 00958529 A EP00958529 A EP 00958529A EP 00958529 A EP00958529 A EP 00958529A EP 1228101 B1 EP1228101 B1 EP 1228101B1
Authority
EP
European Patent Office
Prior art keywords
range
weight
reactor
polyethylene
molding composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00958529A
Other languages
German (de)
French (fr)
Other versions
EP1228101A1 (en
Inventor
Joachim Berthold
Ludwig Böhm
Johannes-Friedrich Enderle
Reinhard Schubbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7923276&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1228101(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basell Polyolefine GmbH filed Critical Basell Polyolefine GmbH
Publication of EP1228101A1 publication Critical patent/EP1228101A1/en
Application granted granted Critical
Publication of EP1228101B1 publication Critical patent/EP1228101B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst

Definitions

  • the present invention relates to a polyethylene molding compound with multimodal Molar mass distribution and a process for producing this molding composition in The presence of a catalytic system consisting of a Ziegler catalyst and a cocatalyst over a multi-stage from successive liquid phase polymerizations existing reaction sequence and from the molding material by blow molding extrusion manufactured hollow body.
  • a catalytic system consisting of a Ziegler catalyst and a cocatalyst over a multi-stage from successive liquid phase polymerizations existing reaction sequence and from the molding material by blow molding extrusion manufactured hollow body.
  • Polyethylene is widely used for the production of molded parts and containers used because it is a material with low weight, which nevertheless a particularly high mechanical strength, high corrosion resistance against moisture and water in combination with atmospheric oxygen and absolutely has reliable long-term durability and because polyethylene is a good one Chemical resistance and especially light for bottles, canisters and fuel tanks can be processed in motor vehicles.
  • EP-A-603,935 already describes a molding compound based on polyethylene, which has a bimodal molecular weight distribution and can also be used for Production of pipes is suitable.
  • a raw material with an even broader molecular weight distribution is in the US PS 5,338,589 and is produced using a highly active catalyst, which is known from WO 91/18934 and in which the magnesium alcoholate as gel suspension is used. It was surprisingly found that the Use of this material in molded parts, especially in pipes, a simultaneous Improvement of the opposing usually in semi-crystalline thermoplastics Properties of rigidity and tendency to creep on the one hand and resistance to stress cracking and toughness on the other hand.
  • the known bimodal products are particularly characterized by good ones Processability with an outstanding stress crack-stiffness relation out.
  • This combination of properties is of particular importance in manufacturing of hollow bodies such as bottles, canisters and fuel containers Plastic motor vehicles.
  • plastic hollow bodies has the highest possible swell rate Plastic melt necessary because of the swell rate in blow mold extrusion is directly responsible for the fact that the wall thickness control, the Training of the weld seam and the weldability during production in the company optimally set.
  • the object of the present invention was to develop a polyethylene Molding compound with which an even better one compared to all known materials Ratio of rigidity to stress cracking resistance can be realized and the also has a high swelling rate of their melt, which is used in the production of Hollow bodies using the blow molding extrusion process are not only optimal Wall thickness control allows an excellent at the same time Weld seam formation and wall thickness distribution enabled.
  • a molding compound of the type mentioned at the beginning whose characteristic features can be seen in the fact that they contain 30 to 60% by weight of a low molecular weight ethylene homopolymer A, 65 to 30 wt .-% of a high molecular weight Copolymer B from ethylene and another olefin with 4 to 10 carbon atoms and 1 to 30% by weight of an ultra high molecular weight ethylene homo- or copolymer C contains, where all percentages are based on the total weight of the Molding compound.
  • the invention also relates to a method for producing this molding compound in cascaded suspension polymerization and hollow body from this molding compound excellent mechanical strength properties.
  • the polyethylene molding composition according to the invention has a density at a temperature of 23 ° C in the range of ⁇ 0.940 g / cm 3 and a wide trimodal molecular weight distribution.
  • the high molecular weight copolymer B contains small amounts of up to 5% by weight of further olefin monomer units with 4 to 10 carbon atoms. Examples of such comonomers are 1-butene, 1-pentene, 1-hexene, 1 octene or 4-methylpentene-1.
  • the ultra-high molecular weight ethylene homo- or copolymer C can optionally also contain an amount of 0 to 10% by weight of one or more of the above-mentioned comonomers.
  • the molding composition according to the invention also has a melt flow index according to ISO 1133, expressed as MFI 190/5 , in the range from 0.01 to 10 dg / min and a viscosity number VZ tot , measured according to ISO / R 1191 in decalin at a temperature of 135 ° C. in the range from 190 to 700 cm 3 / g, preferably from 250 to 500 cm 3 / g.
  • the trimodality can be used as a measure of the location of the focal points of the three Single molar mass distributions using the viscosity numbers VZ according to ISO / R 1191 of the polymers formed in the successive polymerization stages to be discribed.
  • the following ranges are those in the individual Polymers formed to take into account reaction stages:
  • the viscosity number VZ 1 measured on the polymer after the first polymerization stage is identical to the viscosity number VZ A of the low molecular weight polyethylene A and, according to the invention, is in the range from 40 to 180 cm 3 / g.
  • the value calculated for VZ B is normally in the range from 150 to 800 cm 3 / g.
  • the value calculated for VZ C is in the range from 900 to 3000 cm 3 / g.
  • the polyethylene is in suspension or by polymerization of the monomers Temperatures in the range of 20 to 120 ° C, a pressure in the range of 2 to 60 bar and in the presence of a highly active Ziegler catalyst obtained from a Transition metal compound and an organoaluminum compound is composed.
  • the polymerization has three stages, i.e. in three in a row switched stages performed, the molecular weight in each case with the aid of metered Hydrogen is regulated.
  • the required for the cascaded driving style described above Long-term activity of the polymerization catalyst is due to a special developed Ziegler catalyst guaranteed.
  • a measure of the suitability of this The catalyst is its extremely high hydrogen responsiveness and its one long period of 1 to 8 h consistently high activity.
  • Specific examples of such a suitable catalyst are those in EP-A-0 532 551, EP-A-0 068 257 and EP-A-0 401 776 listed reaction products of magnesium alcoholates with transition metal compounds of titanium, zirconium or vanadium and an organometallic compound of a metal of groups I, II or III of Periodic table of the elements.
  • the polyethylene molding composition according to the invention can in addition to the polyethylene contain other additives.
  • additives are, for example, heat stabilizers, Antioxidants, UV absorbers, light stabilizers, metal deactivators, Peroxide-destroying compounds, basic costabilizers in amounts from 0 to 10 % By weight, preferably 0 to 5% by weight, but also fillers, reinforcing agents, Plasticizers, lubricants.
  • the molding composition according to the invention is particularly suitable for the production of Hollow bodies such as fuel canisters, chemical-resistant containers, canisters, barrels and bottles by first adding the polyethylene molding compound in an extruder Temperatures in the range of 200 to 250 ° C plasticized and then through a nozzle pressed into a blow mold and cooled there.
  • Conventional single-screw extruders can be used for processing into hollow bodies with a smooth feed zone as well as a high-performance extruder with a fine groove Cylinder and effective feed are used.
  • the decompression screws have a discharge zone, in which temperature differences in the melt are compensated for and in the relaxation stresses caused by shear are reduced should.
  • the polymerization of ethylene was in one continuous process in three reactors connected in series.
  • the first reactor became a Ziegler catalyst, sufficient suspending agent, ethylene and Hydrogen fed.
  • the amount of ethylene and hydrogen became so set that one volume part of hydrogen accounted for nine volume parts of ethylene.
  • the catalyst was a Ziegler catalyst as used in Example 2 of WO 91/18934 is described there, the catalyst component a with the operation number 2.2, and that together with a cocatalyst from an organometallic Compound of a metal of group I, II or III of the periodic table of the Elements is added.
  • the polymerization in the first reactor was carried out at a temperature of 76 ° C and a pressure of 0.78 MPa over a period of 3.3 h at a Hydrogen content in the gas space from 67 to 68 vol .-% carried out.
  • the suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 5 parts by volume in the gas space and the amount of C 4 comonomer had been increased to 5 parts by volume.
  • the amount of hydrogen was reduced by means of an intermediate H 2 relaxation.
  • the polymerization in the second reactor was at a temperature of 84 ° C and a pressure of 0.5 MPa over a period of 54 minutes.
  • the suspension from the second reactor was transferred into the third reactor via a further H 2 intermediate relaxation, with which the amount of hydrogen in the gas space of the third reactor is adjusted to 5 5% by volume.
  • the polymerization in the third reactor was carried out at a temperature of 47 ° C and a pressure of ⁇ 0.23 MPa over a period of 30 min.
  • the polymer suspension leaving the third reactor was removed after the Suspending agent and drying the granulation fed.
  • Example 1 was reproduced with the following changes: The polymerization in the first reactor was carried out at a temperature of 82 ° C. and a pressure of 0.89 MPa over a period of 2.6 hours with a hydrogen content of 68% by volume in the gas space of the reactor.
  • the suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 10 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 0.7 parts by volume in the gas space of the reactor.
  • the amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.
  • the polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.37 MPa over a period of 66 minutes.
  • the suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 0.6% by volume and that of C 4 comonomer to 0.8% by volume.
  • the polymerization in the third reactor was carried out at a temperature of 80 ° C and a pressure of 0.15 MPa over a period of 36 minutes.
  • Example 2 was reproduced with the following changes: The polymerization in the first reactor was carried out at a temperature of 80 ° C. and a pressure of 0.74 MPa over a period of 2.1 hours with a hydrogen content of 65% by volume in the gas space of the reactor.
  • the suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 4.1 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.1 parts by volume in the gas space of the reactor.
  • the amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.
  • the polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.24 MPa over a period of 54 minutes.
  • the suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 1.1% by volume and that of C 4 comonomer to 0.8% by volume.
  • the polymerization in the third reactor was carried out at a temperature of 60 ° C and a pressure of 0.12 MPa over a period of 30 minutes.
  • Example 3 was reproduced with the following changes: The polymerization in the first reactor was carried out at a temperature of 80 ° C. and a pressure of 0.82 MPa over a period of 2.2 hours with a hydrogen content of 74% by volume in the gas space of the reactor.
  • the suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 4.0 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.3 parts by volume in the gas space of the reactor.
  • the amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.
  • the polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.20 MPa over a period of 54 minutes.
  • the suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 1.0% by volume and that of C 4 comonomer to 1.0% by volume.
  • the polymerization in the third reactor was carried out at a temperature of 60 ° C and a pressure of 0.08 MPa over a period of 30 minutes.
  • Example 1 was reproduced, with the difference that after the second Reaction stage the polymerization was stopped.
  • the polymerization in the first reactor was carried out at a temperature of 84 ° C and a pressure of 0.90 MPa over a period of 4.2 h at one Hydrogen content in the gas space of the reactor of 76 vol .-% carried out.
  • the suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 3.0 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.9 parts by volume in the gas space of the reactor.
  • the amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.
  • the polymerization in the second reactor was at a temperature of 83 ° C and a pressure of 0.21 MPa over a period of 80 minutes.
  • the molding composition according to the comparative example is too thin Weld seam forms, which also has a V-notch, which is a weak point represents that can burst under pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The invention relates to a polyethylene moulding compound having a multimodal molecular weight distribution which has an overall density of >=0.940 g/cm<3 >and an MFI190/5 in the range from 0.01 to 10 dg/min. The moulding compound according to the invention comprises an amount of from 30 to 60% by weight of low-molecular-weight ethylene homopolymer A which has a viscosity number VNA in the range from 40 to 150 cm<3>/g, an amount of from 30 to 65% by weight of high-molecular-weight copolymer B comprising ethylene and a further olefin having from 4 to 10 carbon atoms which has a viscosity number VNB in the range from 150 to 800 cm<3>/g, and an amount of from 1 to 30% by weight of ultrahigh-molecular-weight ethylene homopolymer C which has a viscosity number VNC in the range from 900 to 3000 cm<3>/g.The invention also relates to a method for the production of the moulding compound in a three-step process, and to the use thereof for the production of hollow articles.

Description

Die vorliegende Erfindung betrifft eine Polyethylen Formmasse mit multimodaler Molmassenverteilung und ein Verfahren zur Herstellung dieser Formmasse in Gegenwart eines katalytischen Systems aus Ziegler Katalysator und Cokatalysator über eine mehrstufige aus aufeinanderfolgenden Flüssigphasenpolymerisationen bestehenden Reaktionsabfolge und aus der Formmasse durch Blasformextrusion hergestellte Hohlkörper.The present invention relates to a polyethylene molding compound with multimodal Molar mass distribution and a process for producing this molding composition in The presence of a catalytic system consisting of a Ziegler catalyst and a cocatalyst over a multi-stage from successive liquid phase polymerizations existing reaction sequence and from the molding material by blow molding extrusion manufactured hollow body.

Polyethylen wird in großem Umfang zur Herstellung von Formteilen und Behältnissen verwendet, weil er ein Werkstoff mit geringem Eigengewicht ist, der trotzdem eine besonders hohe mechanische Festigkeit, hohe Korrosionsbeständigkeit gegenüber Feuchtigkeit und Wasser in Kombination mit Luftsauerstoff und absolut zuverlässige Langzeitbeständigkeit besitzt, und weil Polyethylen eine gute chemische Beständigkeit aufweist und insbesondere leicht für Flaschen, Kanister und Treibstoffbehälter in Kraftfahrzeugen verarbeitet werden kann.Polyethylene is widely used for the production of molded parts and containers used because it is a material with low weight, which nevertheless a particularly high mechanical strength, high corrosion resistance against moisture and water in combination with atmospheric oxygen and absolutely has reliable long-term durability and because polyethylene is a good one Chemical resistance and especially light for bottles, canisters and fuel tanks can be processed in motor vehicles.

Die EP-A-603,935 beschreibt bereits eine Formmasse auf Basis von Polyethylen, die eine bimodale Molmassenverteilung besitzt und die sich unter anderem auch zur Herstellung von Rohren eignet.EP-A-603,935 already describes a molding compound based on polyethylene, which has a bimodal molecular weight distribution and can also be used for Production of pipes is suitable.

Ein Rohstoff mit einer noch weiter verbreiterten Molmassenverteilung ist in der US-PS 5,338,589 beschrieben und wird mit einem hochaktiven Katalysator hergestellt, der aus der WO 91/18934 bekannt ist und bei dem das Magnesiumalkoholat als gelförmige Suspension eingesetzt wird. Überraschend wurde gefunden, daß der Einsatz dieses Werkstoffes in Formteilen, insbesondere in Rohren, eine gleichzeitige Verbesserung der in teilkristallinen Thermoplasten üblicherweise gegenläufigen Eigenschaften Steifigkeit und Kriechneigung einerseits und Spannungsrissbeständigkeit und Zähigkeit andererseits ermöglicht. A raw material with an even broader molecular weight distribution is in the US PS 5,338,589 and is produced using a highly active catalyst, which is known from WO 91/18934 and in which the magnesium alcoholate as gel suspension is used. It was surprisingly found that the Use of this material in molded parts, especially in pipes, a simultaneous Improvement of the opposing usually in semi-crystalline thermoplastics Properties of rigidity and tendency to creep on the one hand and resistance to stress cracking and toughness on the other hand.

Die bekannten bimodalen Produkte zeichnen sich insbesondere durch eine gute Verarbeitbarkeit bei gleichzeitig herausragender Spannungsriss-Steifigkeitsrelation aus. Diese Eigenschaftskombination ist von besonderer Bedeutung bei der Herstellung von Hohlkörpern wie Flaschen, Kanister und Treibstoffbehälter in Kraftfahrzeugen aus Kunststoff. Neben dieser Eigenschaftskombination ist aber für die Herstellung von Hohlkörpern aus Kunststoff eine möglichst hohe Schwellrate der Kunststoffschmelze notwendig, weil die Schwellrate bei der Blasformextrusion unmittelbar dafür verantwortlich ist, dass sich die Wanddickensteuerung, die Ausbildung der Schweißnaht und die Verschweißbarkeit bei der Fertigung im Betrieb optimal einstellen lassen.The known bimodal products are particularly characterized by good ones Processability with an outstanding stress crack-stiffness relation out. This combination of properties is of particular importance in manufacturing of hollow bodies such as bottles, canisters and fuel containers Plastic motor vehicles. In addition to this combination of properties is for the production of plastic hollow bodies has the highest possible swell rate Plastic melt necessary because of the swell rate in blow mold extrusion is directly responsible for the fact that the wall thickness control, the Training of the weld seam and the weldability during production in the company optimally set.

Es ist bekannt, dass sich Kunststoffe mit hohen Schwellraten mit sogenannten Phillips-Katalysatoren, das sind Polymerisationskatalysatoren auf Basis von Chromverbindungen, gut erzeugen lassen. Die so hergestellten Kunststoffe besitzen aber eine ungünstige Spannungsriss-Steifigkeitsrelation im Vergleich zu den bekannten Kunststoffen mit bimodaler Molmassenverteilung.It is known that plastics with high swell rates with so-called Phillips catalysts are polymerization catalysts based on Chromium compounds, let it produce well. The plastics produced in this way have but an unfavorable stress crack-stiffness relation compared to the known plastics with bimodal molar mass distribution.

Aus der EP-A-0 797 599 ist ein Verfahren bekannt, das in aufeinanderfolgenden Gasphasen- und Flüssigphasenpolymerisationen sogar ein Polyethylen mit einer trimodalen Molmassenverteilung liefert. Dieses Polyethylen eignet sich zwar schon sehr gut zur Herstellung von Hohlkörpern in Blasformextrusionsanlagen, es ist jedoch in seinem Verarbeitungsverhalten noch verbesserungswürdig, wegen der noch zu niedrigen Schwellrate der Kunststoffschmelze.A method is known from EP-A-0 797 599 which is carried out in successive steps Gas phase and liquid phase polymerizations even a polyethylene with a trimodal molecular weight distribution provides. This polyethylene is already suitable it is very good for the production of hollow bodies in blow molding extrusion lines however, in its processing behavior still in need of improvement, because of still too low swelling rate of the plastic melt.

Aufgabe der vorliegenden Erfindung war die Entwicklung einer Polyethylen Formmasse, mit der sich gegenüber allen bekannten Werkstoffen ein noch besseres Verhältnis von Steifigkeit zu Spannungsrissfestigkeit realisieren lässt und die außerdem eine hohe Schwellrate ihrer Schmelze besitzt, die bei der Herstellung von Hohikörpern nach dem Blasformextrusionsverfahren nicht nur eine optimale Wanddickensteuerung zulässt sondern gleichzeitig auch eine hervorragende Schweißnahtausbildung und Wanddickenverteilung ermöglicht.The object of the present invention was to develop a polyethylene Molding compound with which an even better one compared to all known materials Ratio of rigidity to stress cracking resistance can be realized and the also has a high swelling rate of their melt, which is used in the production of Hollow bodies using the blow molding extrusion process are not only optimal Wall thickness control allows an excellent at the same time Weld seam formation and wall thickness distribution enabled.

Gelöst wird diese Aufgabe durch eine Formmasse der eingangs genannten Gattung, deren Kennzeichenmerkmale darin zu sehen sind, dass sie 30 bis 60 Gew.-% eines niedermolekularen Ethylenhomopolymers A, 65 bis 30 Gew.-% eines hochmolekularen Copolymers B aus Ethylen und einem anderen Olefin mit 4 bis 10 C-Atomen und 1 bis 30 Gew.-% eines ultrahochmolekularen Ethylenhomo- oder -copolymers C enthält, wobei alle Prozentangaben bezogen sind auf das Gesamtgewicht der Formmasse.This problem is solved by a molding compound of the type mentioned at the beginning, whose characteristic features can be seen in the fact that they contain 30 to 60% by weight of a low molecular weight ethylene homopolymer A, 65 to 30 wt .-% of a high molecular weight Copolymer B from ethylene and another olefin with 4 to 10 carbon atoms and 1 to 30% by weight of an ultra high molecular weight ethylene homo- or copolymer C contains, where all percentages are based on the total weight of the Molding compound.

Die Erfindung betrifft femer auch ein Verfahren zur Herstellung dieser Formmasse in kaskadierter Suspensionspolymerisation und Hohlkörper aus dieser Formmasse mit ganz hervorragenden mechanischen Festigkeitseigenschaften.The invention also relates to a method for producing this molding compound in cascaded suspension polymerization and hollow body from this molding compound excellent mechanical strength properties.

Die erfindungsgemäße Polyethylen Formmasse besitzt eine Dichte bei einer Temperatur von 23 °C im Bereich von ≥ 0,940 g/cm3 und eine breite trimodale Molmassenverteilung. Das hochmolekulare Copolymer B enthält geringe Anteile von bis zu 5 Gew.-% an weiteren Olefinmonomereinheiten mit 4 bis 10 C-Atomen. Beispiele für solche Comonomere sind 1-Buten, 1-Penten, 1-Hexen, 1 Octen oder 4-Methylpenten-1. Das ultrahochmolekulare Ethylenhomo- oder -copolymer C kann gegebenenfalls auch eine Menge von 0 bis 10 Gew.-% an einem oder mehreren der vorstehend genannten Comonomeren enthalten.The polyethylene molding composition according to the invention has a density at a temperature of 23 ° C in the range of ≥ 0.940 g / cm 3 and a wide trimodal molecular weight distribution. The high molecular weight copolymer B contains small amounts of up to 5% by weight of further olefin monomer units with 4 to 10 carbon atoms. Examples of such comonomers are 1-butene, 1-pentene, 1-hexene, 1 octene or 4-methylpentene-1. The ultra-high molecular weight ethylene homo- or copolymer C can optionally also contain an amount of 0 to 10% by weight of one or more of the above-mentioned comonomers.

Die erfindungsgemäße Formmasse besitzt ferner einen Schmelzflussindex gemäß ISO 1133, ausgedrückt als MFI190/5, im Bereich von 0,01 bis 10 dg/min und eine Viskositätszahl VZges, gemessen nach ISO/R 1191 in Dekalin bei einer Temperatur von 135 °C im Bereich von 190 bis 700 cm3/g, vorzugsweise von 250 bis 500 cm3/g.The molding composition according to the invention also has a melt flow index according to ISO 1133, expressed as MFI 190/5 , in the range from 0.01 to 10 dg / min and a viscosity number VZ tot , measured according to ISO / R 1191 in decalin at a temperature of 135 ° C. in the range from 190 to 700 cm 3 / g, preferably from 250 to 500 cm 3 / g.

Die Trimodalität kann als Maß für die Lage der Schwerpunkte der drei Einzelmolmassenverteilungen mit Hilfe der Viskositätszahlen VZ nach ISO/R 1191 der in den aufeinanderfolgenden Polymerisationsstufen gebildeten Polymeren beschrieben werden. Hierbei sind folgende Bandbreiten der in den einzelnen Reaktionsstufen gebildeten Polymeren zu berücksichtigen:The trimodality can be used as a measure of the location of the focal points of the three Single molar mass distributions using the viscosity numbers VZ according to ISO / R 1191 of the polymers formed in the successive polymerization stages to be discribed. The following ranges are those in the individual Polymers formed to take into account reaction stages:

Die an dem Polymer nach der ersten Polymerisationsstufe gemessene Viskositätszahl VZ1 ist identisch mit der Viskositätszahl VZA des niedermolekularen Polyethylens A und liegt erfindungsgemäß im Bereich von 40 bis 180 cm3/g.The viscosity number VZ 1 measured on the polymer after the first polymerization stage is identical to the viscosity number VZ A of the low molecular weight polyethylene A and, according to the invention, is in the range from 40 to 180 cm 3 / g.

VZB des in der zweiten Polymerisationsstufe gebildeten höhermolekularen Polyethylens B läßt sich nach der folgenden mathematischen Formel berechnen: VZB = VZ2 - w1 · VZ1 1 - w 1 wobei w1 für den Gewichtsanteil des in der ersten Stufe gebildeten niedermolekularen Polyethylens steht, gemessen in Gew.-%, bezogen auf das Gesamtgewicht des in den beiden ersten Stufen gebildeten Polyethylens mit bimodaler Molmassenverteilung, und VZ2 für die Viskositätszahl, die an dem Polymer nach der zweiten Polymerisationsstufe gemessen wird. Der für VZB errechnete Wert liegt normalerweise im Bereich von 150 bis 800 cm3/g.VZ B of the higher molecular weight polyethylene B formed in the second polymerization stage can be calculated using the following mathematical formula: VZ B = VZ 2 - w 1 · VZ 1 1 - w 1 where w 1 stands for the proportion by weight of the low molecular weight polyethylene formed in the first stage, measured in% by weight, based on the total weight of the polyethylene formed in the first two stages with a bimodal molar mass distribution, and VZ 2 for the viscosity number which is present in the polymer is measured after the second polymerization stage. The value calculated for VZ B is normally in the range from 150 to 800 cm 3 / g.

VZc für das in der dritten Polymerisationsstufe gebildete ultrahochmolekulare Homooder Copolymer C berechnet sich nach der folgenden mathematischen Formel: VZC = VZ 3 - w 2 · VZ 2 1 - w 2 wobei w2 für den Gewichtsanteil des in den beiden ersten Stufen gebildeten Polyethylens mit bimodaler Molmassenverteilung steht, gemessen in Gew.-%, bezogen auf das Gesamtgewicht des in allen drei Stufen gebildeten Polyethylens mit trimodaler Molmassenverteilung, und VZ3 für die Viskositätszahl, die an dem Polymer nach der dritten Polymerisationsstufe gemessen wird und die identisch ist mit der oben bereits erwähnten VZges. Der für VZC errechnete Wert liegt erfindungsgemäß im Bereich von 900 bis 3000 cm3/g.VZ c for the ultra-high molecular homo or copolymer C formed in the third polymerization stage is calculated using the following mathematical formula: VZ C = VZ 3 - w 2 · VZ 2 1 - w 2 where w 2 stands for the weight fraction of the polyethylene with bimodal molar mass distribution formed in the first two stages, measured in% by weight, based on the total weight of the polyethylene with trimodal molar mass distribution formed in all three stages, and VZ 3 for the viscosity number the polymer is measured after the third polymerization stage and which is identical to the VZ total mentioned above. According to the invention, the value calculated for VZ C is in the range from 900 to 3000 cm 3 / g.

Das Polyethylen wird durch Polymerisation der Monomeren in Suspension oder bei Temperaturen im Bereich von 20 bis 120 °C, einem Druck im Bereich von 2 bis 60 bar und in Gegenwart eines hochaktiven Ziegler-Katalysators erhalten, der aus einer Übergangsmetallverbindung und einer aluminiumorganischen Verbindung zusammengesetzt ist. Die Polymerisation wird dreistufig, d.h. in drei hintereinander geschalteten Stufen geführt, wobei die Molmasse jeweils mit Hilfe von zudosiertem Wasserstoff geregelt wird.The polyethylene is in suspension or by polymerization of the monomers Temperatures in the range of 20 to 120 ° C, a pressure in the range of 2 to 60 bar and in the presence of a highly active Ziegler catalyst obtained from a Transition metal compound and an organoaluminum compound is composed. The polymerization has three stages, i.e. in three in a row switched stages performed, the molecular weight in each case with the aid of metered Hydrogen is regulated.

Die für die vorstehend beschriebene kaskadierte Fahrweise erforderliche Langzeitaktivität des Polymerisationskatalysators wird durch einen speziell entwickelten Ziegler Katalysator gewährleistet. Ein Maß für die Tauglichkeit dieses Katalysators ist seine extrem hohe Wasserstoffansprechbarkeit und seine über eine lange Zeitdauer von 1 bis 8 h gleichbleibend hohe Aktivität. Konkrete Beispiele für einen derart tauglichen Katalystor sind die in der EP-A-0 532 551, der EP-A-0 068 257 und der EP-A-0 401 776 aufgeführten Umsetzungsprodukte von Magnesiumalkoholaten mit Übergangsmetallverbindungen des Titans, Zirkons oder Vanadiums und einer metallorganischen Verbindung eines Metalls der Gruppen I, II oder III des Periodensystems der Elemente.The required for the cascaded driving style described above Long-term activity of the polymerization catalyst is due to a special developed Ziegler catalyst guaranteed. A measure of the suitability of this The catalyst is its extremely high hydrogen responsiveness and its one long period of 1 to 8 h consistently high activity. Specific examples of such a suitable catalyst are those in EP-A-0 532 551, EP-A-0 068 257 and EP-A-0 401 776 listed reaction products of magnesium alcoholates with transition metal compounds of titanium, zirconium or vanadium and an organometallic compound of a metal of groups I, II or III of Periodic table of the elements.

Die erfindungsgemäße Polyethylen Formmasse kann neben dem Polyethylen noch weitere Zusatzstoffe enthalten. Solche Zusatzstoffe sind beispielsweise Wärmestabilisatoren, Antioxidantien, UV-Absorber, Lichtschutzmittel, Metalldesaktivatoren, peroxidzerstörende Verbindungen, basische Costabilisatoren in Mengen von 0 bis 10 Gew.-%, vorzugsweise 0 bis 5 Gew.-%, aber auch Füllstoffe, Verstärkungsmittel, Weichmacher, Gleitmittel. Emulgatoren, Pigmente, optische Aufheller, Flammschutzmittel, Antistatika, Treibmittel oder Kombinationen von diesen in Gesamtmengen von 0 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Mischung.The polyethylene molding composition according to the invention can in addition to the polyethylene contain other additives. Such additives are, for example, heat stabilizers, Antioxidants, UV absorbers, light stabilizers, metal deactivators, Peroxide-destroying compounds, basic costabilizers in amounts from 0 to 10 % By weight, preferably 0 to 5% by weight, but also fillers, reinforcing agents, Plasticizers, lubricants. Emulsifiers, pigments, optical brighteners, flame retardants, Antistatic agents, propellants or combinations of these in total from 0 to 50% by weight, based on the total weight of the mixture.

Die erfindungsgemäße Formmasse eignet sich besonders gut zur Herstellung von Hohlkörpern wie Kraftstoffkanister, chemikalienresistente Gebinde, Kanister, Fässer und Flaschen, indem die Polyethylen Formmasse zunächst in einem Extruder bei Temperaturen im Bereich von 200 bis 250 °C plastifiziert und dann durch eine Düse in eine Blasform ausgepresst und dort abgekühlt wird.The molding composition according to the invention is particularly suitable for the production of Hollow bodies such as fuel canisters, chemical-resistant containers, canisters, barrels and bottles by first adding the polyethylene molding compound in an extruder Temperatures in the range of 200 to 250 ° C plasticized and then through a nozzle pressed into a blow mold and cooled there.

Für die Verarbeitung zu Hohlkörpern können sowohl konventionelle Einschneckenextruder mit glatter Einzugszone als auch Hochleistungsextruder mit feingenutetem Zylinder und förderwirksamem Einzug eingesetzt werden. Die Schnecken werden typischerweise als Dekompressionsschnecken ausgelegt mit einer Länge von 25 bis 30 D (D = Durchmesser). Die Dekompressionsschnecken besitzen eine Austragszone, in der Temperaturunterschiede in der Schmelze ausgeglichen werden und in der die durch Scherung entstandenen Relaxationsspannungen abgebaut werden sollen.Conventional single-screw extruders can be used for processing into hollow bodies with a smooth feed zone as well as a high-performance extruder with a fine groove Cylinder and effective feed are used. The snails are typically designed as decompression screws with a length of 25 to 30 D (D = diameter). The decompression screws have a discharge zone, in which temperature differences in the melt are compensated for and in the relaxation stresses caused by shear are reduced should.

Beispiel 1 (erfindungsgemäß):Example 1

Die Polymerisation von Ethylen wurde in einem kontinuierlichen Verfahren in drei hintereinander in Serie geschalteten Reaktoren betrieben. In den ersten Reaktor wurde ein Ziegler Katalysator, ausreichend Suspensionsmittel, Ethylen und Wasserstoff eingespeist. Die Menge an Ethylen und Wasserstoff wurde so eingestellt, dass auf neun Volumenteile Ethylen ein Volumenteil Wasserstoff entfiel.The polymerization of ethylene was in one continuous process in three reactors connected in series. In the first reactor became a Ziegler catalyst, sufficient suspending agent, ethylene and Hydrogen fed. The amount of ethylene and hydrogen became so set that one volume part of hydrogen accounted for nine volume parts of ethylene.

Der Katalysator war ein Ziegler Katalysator, wie er in Beispiel 2 der WO 91/18934 beschrieben ist, der dort die Katalysator Komponente a mit der Operations-Nummer 2.2 hatte, und der zusammen mit einem Cokatalysator aus einer metallorganischen Verbindung eines Metalls der Gruppe I, II oder III des Periodensystems der Elemente zugegeben wird.The catalyst was a Ziegler catalyst as used in Example 2 of WO 91/18934 is described there, the catalyst component a with the operation number 2.2, and that together with a cocatalyst from an organometallic Compound of a metal of group I, II or III of the periodic table of the Elements is added.

In den ersten Reaktor wurden der Katalysator mit dem Cokatalysator und Triethylamin im Verhältnis 1:10 (mol/mol) kontinuierlich zudosiert.In the first reactor, the catalyst with the cocatalyst and Triethylamine in a ratio of 1:10 (mol / mol) continuously metered in.

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 76 °C und einem Druck von 0,78 MPa über eine Zeitdauer von 3,3 h bei einem Wasserstoffgehalt im Gasraum von 67 bis 68 Vol.-% durchgeführt.The polymerization in the first reactor was carried out at a temperature of 76 ° C and a pressure of 0.78 MPa over a period of 3.3 h at a Hydrogen content in the gas space from 67 to 68 vol .-% carried out.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 5 Volumenteile im Gasraum reduziert und die Menge an C4-Comonomer auf 5 Volumenteile angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte über eine H2-Zwischenentspannung.The suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 5 parts by volume in the gas space and the amount of C 4 comonomer had been increased to 5 parts by volume. The amount of hydrogen was reduced by means of an intermediate H 2 relaxation.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 84 °C und einem Druck von 0,5 MPa über eine Zeitdauer von 54 min durchgeführt.The polymerization in the second reactor was at a temperature of 84 ° C and a pressure of 0.5 MPa over a period of 54 minutes.

Die Suspension aus dem zweiten Reaktor wurde über eine weitere H2-Zwischenentspannung, mit der die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf ≤ 5 Vol.-% eingestellt wird, in den dritten Reaktor überführt.The suspension from the second reactor was transferred into the third reactor via a further H 2 intermediate relaxation, with which the amount of hydrogen in the gas space of the third reactor is adjusted to 5 5% by volume.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 47 °C und einem Druck von ≤ 0,23 MPa über eine Zeitdauer von 30 min durchgeführt.The polymerization in the third reactor was carried out at a temperature of 47 ° C and a pressure of ≤ 0.23 MPa over a period of 30 min.

Die den dritten Reaktor verlassende Polymersuspension wurde nach Abtrennen des Suspensionsmittels und Trocknen der Granulierung zugeführt.The polymer suspension leaving the third reactor was removed after the Suspending agent and drying the granulation fed.

Die für die Polyethlen Formmasse hergestellt nach Beispiel 1 geltenden Viskositätszahlen und Mengenanteile wA, wB und wC an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den folgenden Beispielen 2 bis 4 hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.The viscosity numbers and proportions w A , w B and w C of polymer A, B and C for polymer A, B and C produced for the polyethylene molding composition, together with the corresponding data for the molding compositions prepared according to Examples 2 to 4 below, are listed in Table 1 below specified.

Beispiel 2 (erfindungsgemäß)Example 2

Beispiel 1 wurde mit folgenden Änderungen nachgestellt:
Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 82 °C und einem Druck von 0,89 MPa über eine Zeitdauer von 2,6 h bei einem Wasserstoffgehalt von 68 Vol.-% im Gasraum des Reaktors durchgeführt.
Example 1 was reproduced with the following changes:
The polymerization in the first reactor was carried out at a temperature of 82 ° C. and a pressure of 0.89 MPa over a period of 2.6 hours with a hydrogen content of 68% by volume in the gas space of the reactor.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 10 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C4-Comonomer auf 0,7 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H2-Zwischenentspannung.The suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 10 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 0.7 parts by volume in the gas space of the reactor. The amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,37 MPa über eine Zeitdauer von 66 min durchgeführt.The polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.37 MPa over a period of 66 minutes.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 0,6 Vol.-% und die an C4-Comonomer auf 0,8 Vol.-% eingestellt.The suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 0.6% by volume and that of C 4 comonomer to 0.8% by volume.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,15 MPa über eine Zeitdauer von 36 min durchgeführt.The polymerization in the third reactor was carried out at a temperature of 80 ° C and a pressure of 0.15 MPa over a period of 36 minutes.

Die für die nach Beispiel 2 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile wA, wB und wC an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben. The viscosity numbers and proportions w A , w B and w C of polymer A, B and C applicable to the polyethylene molding composition prepared according to Example 2, together with the corresponding data of the molding compositions prepared according to the other examples, are given in Table 1 listed later.

Beispiel 3 (erfindungsgemäß)Example 3

Beispiel 2 wurde mit folgenden Änderungen nachgestellt:
Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,74 MPa über eine Zeitdauer von 2,1 h bei einem Wasserstoffgehalt von 65 Vol.-% im Gasraum des Reaktors durchgeführt.
Example 2 was reproduced with the following changes:
The polymerization in the first reactor was carried out at a temperature of 80 ° C. and a pressure of 0.74 MPa over a period of 2.1 hours with a hydrogen content of 65% by volume in the gas space of the reactor.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 4,1 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C4-Comonomer auf 1,1 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H2-Zwischenentspannung.The suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 4.1 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.1 parts by volume in the gas space of the reactor. The amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,24 MPa über eine Zeitdauer von 54 min durchgeführt.The polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.24 MPa over a period of 54 minutes.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 1,1 Vol.-% und die an C4-Comonomer auf 0,8 Vol.-% eingestellt.The suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 1.1% by volume and that of C 4 comonomer to 0.8% by volume.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 60 °C und einem Druck von 0,12 MPa über eine Zeitdauer von 30 min durchgeführt.The polymerization in the third reactor was carried out at a temperature of 60 ° C and a pressure of 0.12 MPa over a period of 30 minutes.

Die für die nach Beispiel 3 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile wA, wB und wC an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben. The viscosity numbers and proportions w A , w B and w C of polymer A, B and C applicable to the polyethylene molding composition prepared according to Example 3 are given in Table 1 together with the corresponding data for the molding compositions prepared according to the other examples.

Beispiel 4 (erfindungsgemäß)Example 4

Beispiel 3 wurde mit folgenden Änderungen nachgestellt:
Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,82 MPa über eine Zeitdauer von 2,2 h bei einem Wasserstoffgehalt von 74 Vol.-% im Gasraum des Reaktors durchgeführt.
Example 3 was reproduced with the following changes:
The polymerization in the first reactor was carried out at a temperature of 80 ° C. and a pressure of 0.82 MPa over a period of 2.2 hours with a hydrogen content of 74% by volume in the gas space of the reactor.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 4,0 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C4-Comonomer auf 1,3 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H2-Zwischenentspannung.The suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 4.0 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.3 parts by volume in the gas space of the reactor. The amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,20 MPa über eine Zeitdauer von 54 min durchgeführt.The polymerization in the second reactor was at a temperature of 80 ° C and a pressure of 0.20 MPa over a period of 54 minutes.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 1,0 Vol.-% und die an C4-Comonomer auf 1,0 Vol.-% eingestellt.The suspension from the second reactor was transferred to the third reactor and the amount of hydrogen in the gas space of the third reactor was set to 1.0% by volume and that of C 4 comonomer to 1.0% by volume.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 60 °C und einem Druck von 0,08 MPa über eine Zeitdauer von 30 min durchgeführt.The polymerization in the third reactor was carried out at a temperature of 60 ° C and a pressure of 0.08 MPa over a period of 30 minutes.

Die für die nach Beispiel 2 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile wA, wB und wC an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.The viscosity numbers and proportions w A , w B and w C of polymer A, B and C applicable to the polyethylene molding composition prepared according to Example 2, together with the corresponding data of the molding compositions prepared according to the other examples, are given in Table 1 listed later.

Vergleichsbeispiel (VB):Comparative example (VB):

Beispiel 1 wurde nachgestellt, jedoch mit dem Unterschied, dass nach der zweiten Reaktionsstufe die Polymerisation abgebrochen wurde.Example 1 was reproduced, with the difference that after the second Reaction stage the polymerization was stopped.

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 84 °C und einem Druck von 0,90 MPa über eine Zeitdauer von 4,2 h bei einem Wasserstoffgehalt im Gasraum des Reaktors von 76 Vol.-% durchgeführt.The polymerization in the first reactor was carried out at a temperature of 84 ° C and a pressure of 0.90 MPa over a period of 4.2 h at one Hydrogen content in the gas space of the reactor of 76 vol .-% carried out.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 3,0 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C4-Comonomer auf 1,9 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H2-Zwischenentspannung.The suspension from the first reactor was then transferred to a second reactor in which the amount of hydrogen had been reduced to 3.0 parts by volume in the gas space of the reactor and the amount of C 4 comonomer had been increased to 1.9 parts by volume in the gas space of the reactor. The amount of hydrogen was again reduced by means of an intermediate H 2 relaxation.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 83 °C und einem Druck von 0,21 MPa über eine Zeitdauer von 80 min durchgeführt.The polymerization in the second reactor was at a temperature of 83 ° C and a pressure of 0.21 MPa over a period of 80 minutes.

Dabei entstand ein Polyethylen mit einer bimodalen Molmassenverteilung, wie es dem Stand der Technik nach der EP-A 603 935 entspricht. Beispiel 1 2 3 4 VB WA 0,35 0,45 0,55 0,55 0.52 WB 0,55 0,45 0,35 0,35 0,48 WC 0,10 0,10 0,10 0,10 0 VZ1 [m3/g] 80 80 100 60 55 MFR(2) 3,5 2,3 2,3 2,0 0,7 MFR(3) 1,2 0,7 0,55 0,56 --- MFR/5 [g/10'] 1,07 0,55 0,30 0,36 0,4 MFR/21,6 [g/10'] 17,9 11 9,5 13,8 13,4 FRR 21,6/5 17 20 31,6 36,3 33,6 VZges [cm3/g] 306 325 392 373 329 Dichte [g/cm3] 0,954 0,952 0,953 0,954 0,954 BZ 0°C [kJ/m2] 9,6 10,7 12,6 7,8 6 BKM [N/mm2] 1270 1200 1240 1280 1275 SR-Rheometer [%] 200 151 153 143 91 SRB [h] 3,7 16 54,2 54,1 39 This resulted in a polyethylene with a bimodal molar mass distribution, as it corresponds to the prior art according to EP-A 603 935. example 1 2 3 4 VB W A 0.35 0.45 0.55 0.55 00:52 W B 0.55 0.45 0.35 0.35 0.48 W C 0.10 0.10 0.10 0.10 0 VZ 1 [m 3 / g] 80 80 100 60 55 MFR (2) 3.5 2.3 2.3 2.0 0.7 MFR (3) 1.2 0.7 0.55 0.56 --- MFR / 5 [g / 10 '] 1.07 0.55 0.30 0.36 0.4 MFR / 21.6 [g / 10 '] 17.9 11 9.5 13.8 13.4 FRR 21.6 / 5 17 20 31.6 36.3 33.6 VZ tot [cm 3 / g] 306 325 392 373 329 Density [g / cm 3 ] 0,954 0,952 0.953 0,954 0,954 BZ 0 ° C [kJ / m 2 ] 9.6 10.7 12.6 7.8 6 BKM [N / mm 2 ] 1270 1200 1240 1280 1275 SR rheometer [%] 200 151 153 143 91 SRB [h] 3.7 16 54.2 54.1 39

Die Abkürzungen der physikalischen Eigenschaften in der Tabelle 1 haben die folgende Bedeutung:

  • BKM = Biegekriechmodul, gemessen nach ISO 54852-Z4 in N/mm2 als Einminutenwert,
  • SRB = Spannungsrissbeständigkeit der erfindungsgemäßen Formmasse. Sie wird nach einer internen Messmethode ermittelt. Diese Labormethode ist von M. Fleißner in Kunststoffe 77 (1987), S. 45 ff, beschrieben. Diese Publikation zeigt, dass zwischen der Bestimmung des langsamen Risswachstums im Zeitstandversuch an rundum gekerbten Probestäben und dem spröden Ast der Zeitstandsinnendruckprüfung nach ISO 1167 ein Zusammenhang besteht. Eine Verkürzung der Zeit bis zum Versagen wird durch die Verkürzung der Rissinitiierungszeit durch die Kerbe (1,6 mm/Rasierklinge) in Ethylenglykol als spannungsrissfördemdem Medium bei einer Temperatur von 80 °C und einer Zugspannung von 3,5 MPa erreicht. Die Probenherstellung erfolgt, indem drei Probekörper mit den Abmessungen 10 x 10 x 90 mm aus einer 10 mm dicken Pressplatte heraus gesägt werden. Die Probekörper werden rundum mit einer Rasierklinge in einer eigens dafür angefertigten Kerbvorrichtung (dargestellt in Abbildung 5 in der Publikation von Fleißner) in der Mitte gekerbt. Die Kerbtiefe beträgt 1,6 mm.
  • BZ = Bruchzähigkeit der erfindungsgemäßen Formmasse. Sie wird ebenfalls nach einer internen Messmethode an Probestäben mit den Abmessungen 10 x 10 x 80 mm, die aus einer 10 mm dicken Pressplatte herausgesägt wurden, bestimmt. In der bereits erwähnten Kerbvorrichtung werden sechs dieser Probestäbe mit der Rasierklinge in der Mitte gekerbt. Die Kerbtiefe beträgt 1,6 mm. Die Durchführung der Messung entspricht weitgehend der Charpy-Messprozedur nach ISO 179 bei veränderten Probekörpem und veränderter Schlaggeometrie (Widerlagerabstand). Alle Probekörper werden über eine Zeitdauer von 2 bis 3 h auf die Messtemperatur von 0 °C temperiert. Man legt dann einen Probekörper zügig auf das Widerlager eines Pendelschlagwerks gemäß ISO 179. Der Widerlagerabstand beträgt 60 mm. Der Fall des 2 J Hammers wird ausgelöst, wobei der Fallwinkel auf 160 °, die Pendellänge auf 225 mm und die Auftreffgeschwindigkeit auf 2,93 m/sec eingestellt wird. Zur Auswertung der Messung wird der Quotient aus verbrauchter Schlagenergie und Anfangsquerschnittfläche an der Kerbe aFM in mJ/mm2 berechnet. Dabei können nur Werte bei vollständigem Bruch und Schamierbruch als Grundlage für einen gemeinsamen Mittelwert dienen (siehe ISO 179).
  • SR = Schwellrate, gemessen in einem Hochdruckkapillarrheometer bei einer Scherrate von 1440 1/s in einer 2/2 Rundlochdüse mit einem konischen Einlauf (Winkel = 15 °) bei einer Temperatur von 190 °C.
The abbreviations of the physical properties in Table 1 have the following meaning:
  • BKM = bending creep modulus, measured according to ISO 54852-Z4 in N / mm 2 as a one-minute value,
  • SRB = stress crack resistance of the molding composition according to the invention. It is determined using an internal measurement method. This laboratory method is described by M. Fleißner in Kunststoffe 77 (1987), p. 45 ff. This publication shows that there is a connection between the slow crack growth in the creep test on all-round notched specimen bars and the brittle branch of the creep pressure test according to ISO 1167. A reduction in the time to failure is achieved by shortening the crack initiation time through the notch (1.6 mm / razor blade) in ethylene glycol as a stress-crack-promoting medium at a temperature of 80 ° C and a tensile stress of 3.5 MPa. The sample is produced by sawing three test specimens with the dimensions 10 x 10 x 90 mm out of a 10 mm thick press plate. The test specimens are notched in the middle with a razor blade in a specially designed notching device (shown in Figure 5 in the publication by Fleißner). The notch depth is 1.6 mm.
  • BZ = fracture toughness of the molding composition according to the invention. It is also determined using an internal measurement method on test bars with the dimensions 10 x 10 x 80 mm, which were sawn out of a 10 mm thick press plate. In the notching device already mentioned, six of these test bars are notched with the razor blade in the middle. The notch depth is 1.6 mm. Carrying out the measurement largely corresponds to the Charpy measurement procedure in accordance with ISO 179 with modified test specimens and modified impact geometry (abutment spacing). All test specimens are tempered to the measuring temperature of 0 ° C over a period of 2 to 3 h. A test specimen is then quickly placed on the abutment of a pendulum impact tester in accordance with ISO 179. The abutment distance is 60 mm. The fall of the 2 J hammer is triggered, whereby the fall angle is set to 160 °, the pendulum length to 225 mm and the impact speed to 2.93 m / sec. To evaluate the measurement, the quotient of the impact energy used and the initial cross-sectional area at the notch a FM is calculated in mJ / mm 2 . Only values with complete break and hinge break can serve as the basis for a common mean (see ISO 179).
  • SR = swell rate, measured in a high pressure capillary rheometer at a shear rate of 1440 1 / s in a 2/2 round hole nozzle with a conical inlet (angle = 15 °) at a temperature of 190 ° C.

Die Messwerte zeigen deutlich, dass die erfindungsgemäße Formmasse durchweg zu besseren Festigkeitseigenschaften führte und sich auch bei der Herstellung besser verarbeiten ließ. Für die Hohlkörper-Prüfung wurden auf Bekum BAE 3 500 ml Rundflaschen unter folgenden Bedingungen und mit folgendem Ergebnis hergestellt: Beispiel 1 2 3 4 VB 1 Grundspalt 150 150 150 150 200 Drehzahl [u/min] 17,7 17,7 17,7 17,7 -- Blaszeit [sec] 15 14,0 12,0 11,2 12 Gewicht [g] 41,4 37,4 36,0 35,6 38 Wanddicke [mm] 1,2 1,00 0,90 0,85 -- Schweißnahtdicke [mm] 2,0 2,0 1,0 1,0 (0,5) (V-Kerbe) Schmelzbruch [Note] 2 2 2 2 2 Stippen [Note] 2 2 2 3 1 Bemerkung matt matt matt matt matt The measured values clearly show that the molding composition according to the invention consistently led to better strength properties and was also easier to process during manufacture. For the hollow body test, 3 500 ml round bottles were produced on Bekum BAE under the following conditions and with the following result: example 1 2 3 4 VB 1 basic gap 150 150 150 150 200 Speed [rpm] 17.7 17.7 17.7 17.7 - Blowing time [sec] 15 14.0 12.0 11.2 12 Weight [g] 41.4 37.4 36.0 35.6 38 Wall thickness [mm] 1.2 1.00 0.90 0.85 - Weld thickness [mm] 2.0 2.0 1.0 1.0 (0.5) (V-notch) Melt fracture 2 2 2 2 2 Specks 2 2 2 3 1 comment frosted frosted frosted frosted frosted

Man sieht, dass die Formmasse nach dem Vergleichsbeispiel eine zu dünne Schweißnaht bildet, die zudem noch eine V-Kerbe aufweist, was eine Schwachstelle darstellt, die unter Druckbelastung aufplatzen kann.It can be seen that the molding composition according to the comparative example is too thin Weld seam forms, which also has a V-notch, which is a weak point represents that can burst under pressure.

Claims (4)

  1. A polyethylene molding composition with multimodal molar mass distribution, which has an overall density of ≥ 0.940 g/cm3 and has an MFI190/5 in the range from 0.01 to 10 dg/min, which comprises from 30 to 60% by weight of low-molecular-weight ethylene homopolymer A having a viscosity number VNA in the range from 40 to 150 cm3/g, from 30 to 65% by weight of high-molecular-weight copolymer B made from ethylene and from another olefin having from 4 to 10 carbon atoms and having a viscosity number VNB in the range from 150 to 800 cm3/g, and from 1 to 30% by weight of ultrahigh-molecular-weight ethylene homo- or copolymer C having a viscosity number VNC in the range from 900 to 3 000 cm3/g.
  2. The polyethylene molding composition as claimed in claim 1, which has excellent capability for processing to give blow moldings, expressed in terms of a swell index in the range from 100 to 300%.
  3. A process for preparing a polyethylene molding composition as claimed in claim 1, by carrying out the polymerization of the monomers in suspension at temperatures in the range from 20 to 120°C, at a pressure in the range from 2 to 60 bar and in the presence of a high-activity Ziegler catalyst composed of a transition metal compound and of an organoaluminum compound, which comprises conducting the polymerization in three stages, the molar mass of the polyethylene prepared in each stage being regulated with the aid of hydrogen.
  4. The use of a polyethylene molding composition as claimed in claim 1 for producing blow moldings, such as fuel tanks, canisters, drums, or bottles, where the polyethylene molding composition is first plastified in an extruder at temperatures in the range from 200 to 250°C and is then extruded through a die into a blow mold, where it is cooled.
EP00958529A 1999-09-24 2000-09-09 Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof Revoked EP1228101B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945980 1999-09-24
DE19945980A DE19945980A1 (en) 1999-09-24 1999-09-24 Polyethylene molding compound with improved ESCR stiffness ratio and swelling rate, process for its production and hollow bodies made from it
PCT/EP2000/008817 WO2001023446A1 (en) 1999-09-24 2000-09-09 Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof

Publications (2)

Publication Number Publication Date
EP1228101A1 EP1228101A1 (en) 2002-08-07
EP1228101B1 true EP1228101B1 (en) 2003-07-02

Family

ID=7923276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958529A Revoked EP1228101B1 (en) 1999-09-24 2000-09-09 Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof

Country Status (14)

Country Link
US (1) US6713561B1 (en)
EP (1) EP1228101B1 (en)
JP (1) JP2003510429A (en)
KR (1) KR100654593B1 (en)
CN (1) CN1162453C (en)
AT (1) ATE244264T1 (en)
AU (1) AU769434B2 (en)
BR (1) BR0014232B1 (en)
CA (1) CA2387708C (en)
DE (2) DE19945980A1 (en)
ES (1) ES2200919T3 (en)
RU (1) RU2249018C2 (en)
WO (1) WO2001023446A1 (en)
ZA (1) ZA200202267B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860203A1 (en) 2013-10-10 2015-04-15 Borealis AG Multistage process for producing polyethylene compositions

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9919718D0 (en) 1999-08-19 1999-10-20 Borealis As Process
US20030113496A1 (en) 2001-12-17 2003-06-19 Harris Michael G. Polyethylene melt blends for high density polyethylene applications
US6822051B2 (en) * 2002-03-29 2004-11-23 Media Plus, Inc. High density polyethylene melt blends for improved stress crack resistance in pipe
EP1357152A1 (en) * 2002-04-26 2003-10-29 Solvay Polyolefins Europe-Belgium (Société Anonyme) Polymer for fuel tanks
DE10259491A1 (en) * 2002-12-19 2004-07-01 Basell Polyolefine Gmbh Polyethylene moulding material for production of blow-moulded containers comprises low-mol. wt. ethylene homopolymer, high-mol. wt. copolymer of ethylene and 4-8C olefin, and ultrahigh-mol. wt. ethylene copolymer
CA2510063A1 (en) * 2002-12-19 2004-07-08 Basell Polyolefine Gmbh Polyethylene blow molding composition for producing small containers
DE10261066A1 (en) * 2002-12-24 2004-07-08 Basell Polyolefine Gmbh Polyethylene molding composition with multimodal molecular weight distribution, used for making blow-molded cans, contains low-molecular homo polyethylene and high- and ultrahigh-molecular co polyethylenes
ATE332938T1 (en) * 2002-12-24 2006-08-15 Basell Polyolefine Gmbh POYLETHYLENE COMPOSITION FOR PRODUCING L-RING CONTAINERS
DE10261064A1 (en) * 2002-12-24 2004-07-08 Basell Polyolefine Gmbh Polyethylene molding composition with multimodal molecular weight distribution, used for making large blow-molded L-ring containers, contains low-molecular homopolyethylene and high- and ultrahigh-molecular copolyethylenes
ATE332937T1 (en) * 2002-12-24 2006-08-15 Basell Polyolefine Gmbh POLYETHYLENE CASTING COMPOSITION FOR MAKING LARGE CONTAINERS
BR0317322A (en) * 2002-12-24 2005-11-08 Basell Polyolefine Gmbh Polyethylene molding composition, and process for the production and use thereof
US7288596B2 (en) * 2003-12-22 2007-10-30 Univation Technologies, Llc Polyethylene compositions having improved tear properties
US7379696B2 (en) * 2004-04-30 2008-05-27 Ricoh Company Limited Toner for developing electrostatic image, fixing method for fixing image formed of the toner, and image forming method and process cartridge using the toner
GB0418581D0 (en) * 2004-08-20 2004-09-22 Solvay Polymer composition
DE102004055587A1 (en) * 2004-11-18 2006-05-24 Basell Polyolefine Gmbh Polyethylene molded mass, useful for the external covering of electro cables, comprises low molecular ethylene homopolymers, high molecular copolymers of ethylene and other 4-8C olefin and of ultrahigh molecular ethylene copolymer
DE102004055588A1 (en) * 2004-11-18 2006-05-24 Basell Polyolefine Gmbh Polyethylene molded mass, useful for preparing protective coating for steel tubes, comprises low molecular ethylene homopolymers, high molecular copolymers of ethylene and other 4-8C olefin and of ultrahigh molecular ethylene copolymer
CN101061170B (en) * 2004-11-18 2011-06-15 巴塞尔聚烯烃股份有限公司 Polyethylene molding composition for external sheathing of electric cables
DE102005009916A1 (en) * 2005-03-01 2006-09-07 Basell Polyolefine Gmbh Polyethylene molding compound for producing blown films with improved mechanical properties
DE102005009895A1 (en) * 2005-03-01 2006-09-07 Basell Polyolefine Gmbh Polyethylene molding compound for producing blown films with improved mechanical properties
DE102005009896A1 (en) * 2005-03-01 2006-09-07 Basell Polyolefine Gmbh Polyethylene molding compound for producing blown films with improved mechanical properties
DE102005030941A1 (en) 2005-06-30 2007-01-11 Basell Polyolefine Gmbh Polyethylene molding compound for the production of injection-molded finished parts
DE102005040390A1 (en) 2005-08-25 2007-03-01 Basell Polyolefine Gmbh Multi-modal polyethylene moulding material for production of pipes, e.g. water pipes, comprises low-mol. wt. ethylene homopolymer, high-mol. wt. ethylene copolymer and ultrahigh-mol. wt. ethylene copolymer
WO2007036991A1 (en) * 2005-09-28 2007-04-05 Tadahiro Ohmi Atmosphere controlled joining device, joining method, and electronic device
EP1772485A1 (en) 2005-10-07 2007-04-11 Borealis Technology Oy Polyethylene composition with improved stress crack resistance/stiffness relation for blow moulding
EP1840140A1 (en) * 2006-03-30 2007-10-03 Total Petrochemicals Research Feluy Method for making a transition between polymer grades
DE602007004315D1 (en) * 2006-04-07 2010-03-04 Dow Global Technologies Inc L AND MANUFACTURING METHOD THEREFOR
US7449529B2 (en) * 2006-07-11 2008-11-11 Fina Technology, Inc. Bimodal blow molding resin and products made therefrom
US7893181B2 (en) * 2006-07-11 2011-02-22 Fina Technology, Inc. Bimodal film resin and products made therefrom
US20080051538A1 (en) * 2006-07-11 2008-02-28 Fina Technology, Inc. Bimodal pipe resin and products made therefrom
US20100076136A1 (en) * 2006-10-24 2010-03-25 Basell Polyolefine Gmbh Multimodal polyethylene molding composition for producing pipes having improved mechanical properties
KR101099205B1 (en) 2006-11-27 2011-12-27 주식회사 엘지화학 Method for preparing polyethylene resin
JP5419464B2 (en) * 2007-01-16 2014-02-19 株式会社プライムポリマー Ethylene resin composition for hollow molded body and hollow molded body comprising the same
EP1950241A1 (en) 2007-01-25 2008-07-30 Borealis Technology Oy Multimodal medium density polyethylene polymer composition
DE102007016348A1 (en) * 2007-04-03 2008-10-09 Basell Polyolefine Gmbh Polyethylene molding compound for producing hollow bodies by thermoforming and fuel tanks produced therewith
DE102007031450A1 (en) * 2007-07-05 2009-01-08 Basell Polyolefine Gmbh PE molding compound for blow molding small hollow bodies with low density
DE102007031449A1 (en) * 2007-07-05 2009-01-08 Basell Polyolefine Gmbh PE molding compound for blow molding small hollow bodies with low density
WO2009077142A1 (en) * 2007-12-18 2009-06-25 Basell Polyolefine Gmbh Pe moulding composition for producing injection-molded screw cap closures and high-strenght screw cap closure for carbonated beverages produced therewith
WO2009085922A1 (en) 2007-12-31 2009-07-09 Dow Global Technologies Inc. Ethylene-based polymer compositions, methods of making the same, and articles prepared from the same
MX2011002195A (en) * 2008-08-28 2011-06-20 Dow Global Technologies Llc Process and compositions for injections blow molding.
US9187627B2 (en) * 2008-10-23 2015-11-17 Equistar Chemicals, Lp Polyethylene having faster crystallization rate and improved environmental stress cracking resistance
RU2545063C2 (en) * 2009-06-03 2015-03-27 Базелль Полиолефине Гмбх Polyethylene composition and finished products obtained from it
EP2449024B1 (en) 2009-06-30 2013-05-01 Basell Polyolefine GmbH Polyethylene moulding composition
WO2011060954A1 (en) 2009-11-20 2011-05-26 Basell Polyolefine Gmbh Novel trimodal polyethylene for use in blow moulding
WO2012069400A1 (en) 2010-11-22 2012-05-31 Basell Polyolefine Gmbh Novel trimodal polyethylene for use in blow moulding
CN103347950B (en) 2011-01-28 2016-05-25 博里利斯股份公司 Polyethylene composition
CN103476854B (en) 2011-04-19 2016-02-10 巴塞尔聚烯烃股份有限公司 For the new polymer composition of blowing
GB2498936A (en) 2012-01-31 2013-08-07 Norner Innovation As Polyethylene with multi-modal molecular weight distribution
EP2746334B1 (en) 2012-12-19 2015-05-13 Borealis AG Polyethylene blend with improved ESCR
EP2818508A1 (en) * 2013-06-25 2014-12-31 Basell Polyolefine GmbH Polyethylene composition having high impact and stress cracking resistance
GB201313937D0 (en) 2013-08-05 2013-09-18 Ineos Europe Ag Polymerisation process
CA2951113C (en) * 2014-06-16 2023-09-19 Univation Technologies, Llc Polyethylene resins
SI3157967T1 (en) * 2014-11-13 2018-06-29 Total Research & Technology Feluy Metallocene catalyzed polyethylene resin
PT3293209T (en) * 2016-09-12 2019-11-19 Scg Chemicals Co Ltd Multimodal polyethylene thin film
EP3293210B1 (en) * 2016-09-12 2019-03-06 Thai Polyethylene Co., Ltd. Multimodal polyethylene film
HUE045763T2 (en) * 2016-09-12 2020-01-28 Thai Polyethylene Co Ltd Multimodal polyethylene screw cap
AU2017324903B2 (en) 2016-09-12 2022-01-27 Scg Chemicals Co., Ltd. Bimodal polyethylene composition and pipe comprising the same
ES2945358T3 (en) * 2016-09-12 2023-06-30 Thai Polyethylene Co Ltd Polymeric composition for container closures
PT3530675T (en) 2016-09-12 2021-07-23 Scg Chemicals Co Ltd Reactor system for multimodal polyethylene polymerization
PT3293207T (en) * 2016-09-12 2019-10-25 Scg Chemicals Co Ltd Multimodal polyethylene pipe
PL3293214T3 (en) 2016-09-12 2020-07-27 Thai Polyethylene Co., Ltd. High performances multimodal ultra high molecular weight polyethylene
EP3293206B1 (en) 2016-09-12 2019-10-23 Thai Polyethylene Co., Ltd. Multimodal polyethylene pipe
PT3293213T (en) 2016-09-12 2019-10-29 Scg Chemicals Co Ltd Multimodal polyethylene container
US9963529B1 (en) 2017-04-19 2018-05-08 Nova Chemicals (International) S.A. Multi reactor solution polymerization
US10538654B2 (en) 2017-04-19 2020-01-21 Nova Chemicals (International) S.A. Multi reactor solution polymerization, polyethylene and polyethylene film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910724B2 (en) 1979-08-24 1984-03-10 旭化成株式会社 Continuous polymerization of ethylene
DE3124223A1 (en) 1981-06-20 1982-12-30 Hoechst Ag, 6000 Frankfurt "METHOD FOR PRODUCING A POLYOLEFIN AND CATALYST THEREFOR"
JPS59196346A (en) * 1983-04-21 1984-11-07 Asahi Chem Ind Co Ltd Polyethylene resin composition
JPS6036546A (en) * 1983-08-09 1985-02-25 Asahi Chem Ind Co Ltd Polyethylene resin composition
CA1218181A (en) * 1983-04-21 1987-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene composition
JPS59227913A (en) * 1983-06-10 1984-12-21 Idemitsu Petrochem Co Ltd Production of ethylene polymer or copolymer
JPH07116251B2 (en) * 1985-03-11 1995-12-13 東ソー株式会社 Method for producing modified polyethylene
JP2712307B2 (en) * 1987-06-23 1998-02-10 東ソー株式会社 Method for producing polyethylene
DE3918646A1 (en) 1989-06-08 1990-12-13 Hoechst Ag PROCESS FOR PREPARING A POLY-L-OLEFIN
US5648309A (en) 1990-06-01 1997-07-15 Hoechst Aktiengesellschaft Process for the preparation of a poly-1-olefin
US5338589A (en) 1991-06-05 1994-08-16 Hoechst Aktiengesellschaft Polyethylene molding composition
JP2716615B2 (en) * 1991-10-25 1998-02-18 丸善ポリマー株式会社 Method for producing ethylene polymer composition
BE1006439A3 (en) 1992-12-21 1994-08-30 Solvay Societe Annonyme Method for preparing a composition of polymers of ethylene, polymer composition and use of ethylene.
FI96216C (en) 1994-12-16 1996-05-27 Borealis Polymers Oy Process for the production of polyethylene
EP0905151A1 (en) * 1997-09-27 1999-03-31 Fina Research S.A. Production of polyethylene having a broad molecular weight distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860203A1 (en) 2013-10-10 2015-04-15 Borealis AG Multistage process for producing polyethylene compositions
US9708479B2 (en) 2013-10-10 2017-07-18 Borealis Ag Multistage process for producing polyethylene compositions

Also Published As

Publication number Publication date
JP2003510429A (en) 2003-03-18
CN1162453C (en) 2004-08-18
US6713561B1 (en) 2004-03-30
KR20030004297A (en) 2003-01-14
KR100654593B1 (en) 2006-12-07
RU2249018C2 (en) 2005-03-27
CN1376170A (en) 2002-10-23
BR0014232A (en) 2002-06-04
EP1228101A1 (en) 2002-08-07
AU7001700A (en) 2001-04-30
ZA200202267B (en) 2003-11-26
DE19945980A1 (en) 2001-03-29
AU769434B2 (en) 2004-01-29
CA2387708A1 (en) 2001-04-05
CA2387708C (en) 2008-11-18
WO2001023446A1 (en) 2001-04-05
DE50002772D1 (en) 2003-08-07
ES2200919T3 (en) 2004-03-16
ATE244264T1 (en) 2003-07-15
BR0014232B1 (en) 2010-08-24

Similar Documents

Publication Publication Date Title
EP1228101B1 (en) Polyethylene moulding compound with an improved escr-stiffness relation and an improved swelling rate, a method for the production thereof and the use thereof
EP0739937B1 (en) Tube made from polyethylene having improved mechanical properties
DE60306811T2 (en) Polyethylene molding compound for the manufacture of containers by blow molding and L-ring-conrainer produced therewith
EP1320570B1 (en) Polyethylene moulding compound suitable as a pipe material with excellent processing properties
EP1192216B1 (en) Polyethylene molding material and pipe produced therewith having mechanical properties
EP0517222B1 (en) Polyethylene moulding composition
DE102007031449A1 (en) PE molding compound for blow molding small hollow bodies with low density
DE60213631T3 (en) PROPYLENE COPOLYMER WITH RANDOM COMONOMER DISTRIBUTION
EP1141118B1 (en) High mixture-quality bi-modal polyethylene blends
DE69832856T2 (en) Process for the preparation of an ethylene polymer composition
DE69714429T3 (en) PROCESS FOR PREPARING CROP-RESISTANT POLYPROPYLENE BLOCK COPOLYMERS
DE102005040390A1 (en) Multi-modal polyethylene moulding material for production of pipes, e.g. water pipes, comprises low-mol. wt. ethylene homopolymer, high-mol. wt. ethylene copolymer and ultrahigh-mol. wt. ethylene copolymer
DE102007016348A1 (en) Polyethylene molding compound for producing hollow bodies by thermoforming and fuel tanks produced therewith
DE102005009916A1 (en) Polyethylene molding compound for producing blown films with improved mechanical properties
DE102005030941A1 (en) Polyethylene molding compound for the production of injection-molded finished parts
EP0791609B2 (en) Process for the manufacture of pipes from a propylene-ethylene copolymer
DE102005009896A1 (en) Polyethylene molding compound for producing blown films with improved mechanical properties
DE102004055588A1 (en) Polyethylene molded mass, useful for preparing protective coating for steel tubes, comprises low molecular ethylene homopolymers, high molecular copolymers of ethylene and other 4-8C olefin and of ultrahigh molecular ethylene copolymer
EP1008628A1 (en) Highly impact resistant polypropylene composition comprising talc
DE2138685C3 (en) Thermoplastic molding compound
DE10259491A1 (en) Polyethylene moulding material for production of blow-moulded containers comprises low-mol. wt. ethylene homopolymer, high-mol. wt. copolymer of ethylene and 4-8C olefin, and ultrahigh-mol. wt. ethylene copolymer
DE60306810T2 (en) POLYETHYLENE FORMING FOR MANUFACTURING CONTAINERS THROUGH BLOW SHAPES AND WHOLESALE MAKES THEREFOR
EP0707040B1 (en) Polyethylene moulding compositions
DE60306814T2 (en) POLYETHYLENE FORMING FOR THE PRODUCTION OF CONTAINERS BY BLOW SHAPES AND CANISTERS MANUFACTURED THEREFOR
DE60306808T2 (en) POLYETHYLENE FORMING TO MANUFACTURE CONTAINERS THROUGH BLOW SHAPES AND SMALL-HOLLOW BASKETS MANUFACTURED THEREIN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002772

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030403857

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031018

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030702

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2200919

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THE DOW CHEMICAL COMPANY

Effective date: 20040402

Opponent name: BOREALIS TECHNOLOGY OY

Effective date: 20040401

R26 Opposition filed (corrected)

Opponent name: THE DOW CHEMICAL COMPANY

Effective date: 20040402

NLR1 Nl: opposition has been filed with the epo

Opponent name: BOREALIS TECHNOLOGY OY

Opponent name: THE DOW CHEMICAL COMPANY

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE DOW CHEMICAL COMPANY

Effective date: 20040402

Opponent name: BOREALIS TECHNOLOGY OY

Effective date: 20040401

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BASELL POLYOLEFINE GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: THE DOW CHEMICAL COMPANY

Opponent name: BOREALIS TECHNOLOGY OY

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BASELL POLYOLEFINE GMBH

Effective date: 20050720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20050927

Year of fee payment: 6

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080820

Year of fee payment: 9

Ref country code: FI

Payment date: 20080930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080929

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081009

Year of fee payment: 9

Ref country code: SE

Payment date: 20080929

Year of fee payment: 9

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

BERE Be: lapsed

Owner name: *BASELL POLYOLEFINE G.M.B.H.

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090909

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

RIC2 Information provided on ipc code assigned after grant

Ipc: C08L 23/04 20060101ALI20120209BHEP

Ipc: C08F 10/02 20060101ALI20120209BHEP

Ipc: C08L 23/06 20060101ALI20120209BHEP

Ipc: C08F 2/00 20060101AFI20120209BHEP

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130912

Year of fee payment: 14

Ref country code: ES

Payment date: 20130917

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50002772

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50002772

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130826

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130917

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130930

Year of fee payment: 14

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20131108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50002772

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 244264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131108

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC