EP1224386A2 - Mount for connecting automotive fan motor to housing - Google Patents

Mount for connecting automotive fan motor to housing

Info

Publication number
EP1224386A2
EP1224386A2 EP00992020A EP00992020A EP1224386A2 EP 1224386 A2 EP1224386 A2 EP 1224386A2 EP 00992020 A EP00992020 A EP 00992020A EP 00992020 A EP00992020 A EP 00992020A EP 1224386 A2 EP1224386 A2 EP 1224386A2
Authority
EP
European Patent Office
Prior art keywords
motor
assembly
mount
fan
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00992020A
Other languages
German (de)
French (fr)
Other versions
EP1224386A4 (en
EP1224386B1 (en
Inventor
William M. Stevens
William Murray Black
Stephen Nicholls
Markus Liedel
Thomas Helming
Peter Bruder
Hugo Hermann
Britt Weingand
Klaus Weickenmeier
Jens Ulrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Robert Bosch LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Robert Bosch LLC filed Critical Robert Bosch GmbH
Publication of EP1224386A2 publication Critical patent/EP1224386A2/en
Publication of EP1224386A4 publication Critical patent/EP1224386A4/en
Application granted granted Critical
Publication of EP1224386B1 publication Critical patent/EP1224386B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • F04D29/646Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/50Details mounting fans to heat-exchangers

Definitions

  • This invention concerns attaching drive motors to engine cooling fan systems.
  • Such systems include a fan attached to a motor which is in turn attached to the motor mount of a fan housing which holds it in place and positions the motor/fan assembly to operate with a heat exchanger.
  • the attachment of the motor to the motor mounting structure is subject to a number of considerations.
  • the attachment For servicing, the attachment should be capable of easy assembly and disassembly, e.g. with hand tools. It must also undergo many hours of exposure to vibration and temperature cycling without developing looseness or rattling between the motor and motor mounting structure. Additionally, the attachment should function despite manufacturing variances inherent in mass- produced parts.
  • the motor includes multiple connector elements (such as tabs) , which are integral with the motor.
  • the motor mount is integral with at least a portion of the fan housing, and the mount includes multiple recesses which are sized and shaped to receive and engage the connector elements of the motor by combined axial and rotational movement of the motor relative to the motor mount.
  • the connector elements are radially- extending tabs, and the motor-moun ing recesses of the housing are sized, shaped and positioned to receive the tabs as a bayonet mount.
  • the connector elements of the motor may include screw threads which cooperate with the motor- mounting recesses to form a screw mount.
  • the motor-mount also includes radially elastic supports which cradle the motor so as to exert a radial force on the motor.
  • the motor is rotatable and axially moveable relative to the radially elastic supports, for ease of assembly.
  • Another feature of the invention may include multiple rigid elements (e.g. rigid ribs) positioned to limit the radial travel of the motor.
  • the rigid elements (or at least one of them) may be different from or integral with the radially elastic supports.
  • the radially elastic support includes, at least in part, surfaces which extend in a generally circumferential direction from a rigid rib and contact the external surface of the motor at a position slightly inward of the innermost rib portion, forming an interference fit.
  • the fan housing generally includes members (e.g. stators or arms) which extend generally radially inward and support the motor-mount .
  • the housing includes a structure which surrounds the fan, controls air recirculation, and supports the radially extending members that in turn support the motor mounts. It is also common for the housing to include an air guide structure to guide the airflow between a heat exchanger and the fan.
  • the motor mount and/or the radial mount supports, and/or the structure extending around the fan and/or the air-guide structure are injection-molded plastic, most typically as a single part.
  • the connector elements of the motor are typically metal.
  • the connector elements may be integral with the motor flux ring, the motor case, or end-cover.
  • the connectors e.g., tabs
  • the connectors may be of different dimensions with the motor mount recesses sized and shaped to key the orientation of the motor as it is inserted into the motor mount.
  • Another way to orient the motor is to use tabs and motor-mount recesses which are spaced unevenly around the circumference of the motor.
  • One or more resilient latches on the motor mount can prevent the motor from rotating after it is rotated into position.
  • the connector elements and the motor mount recesses are shaped to permit insertion by rotation in the direction of torque that the operating fan exerts on the motor.
  • the motor mount recesses may be sized and shaped to permit the motor to slide into the motor mount as the motor is mounted from the front (i.e. the fan side of the motor mount) .
  • the motor-mount structure may include a heat or splash shield.
  • the motor mount recesses may be sized and shaped to permit the motor to be mounted from the rear.
  • the motor mount will generally include an opening through which the front of the motor will project when the motor is in position.
  • the invention also features methods of assembling the above described motor/fan assembly by sliding the motor axially into the mount and twisting it to secure the integral motor connectors in the motor mount .
  • Another aspect of the invention features an assembly in which the motor-mount comprises at least one resilient latch which deflects upon axial insertion of the motor and, after insertion, moves to a position in which the latch limits motor travel .
  • the motor includes at least one feature which cooperates with the latch. In effect, a spring lock serves to lock the motor in position.
  • radially elastic supports which cradle the motor and exert a radial force on the motor, the motor being axially moveable relative to the elastic supports; b) multiple rigid elements (e.g. ribs) positioned to limit the radial travel of the motor, the rigid members in some cases being integral with the radially elastic supports; c) the use of a single injection molded plastic part for the various parts of the housing (motor mount, generally radial supports for the mount, a fan-surrounding shroud and/or air guide structure) .
  • the motor feature that cooperates with the latch may be a) the edge of, or a tab integral with, the motor's flux ring; b) the edge of, or one or more tabs formed integrally with, the motor case; c) (where the motor includes an end cover which wraps around the edge of the motor case) the edge of the end cover; d) one or more tabs formed integrally with a motor end cover; and/or e) one or more holes in the motor case.
  • These motor feature (s) may be configured to prevent rotation of the motor case. If the motor is mounted from the front, the motor- mounting structure may include a splash and heat shield. When the motor is mounted from the rear, the front portion of the motor may extend through an opening in the motor-mount structure .
  • the motor is inserted into the motor-mounting structure until it contacts axial stops. At this point, an axial latch has engaged a feature on the motor, completing the axial retention.
  • the bayonet mount, screw mount or the axially snapping arrangement provides ease of assembly.
  • Cradling features may be needed to provide rigidity, durability, and robustness that satisfy manufacturing tolerances.
  • the flexible regions of these cradling features are sized to have an interference fit with the motor body over a range of manufacturing tolerances. They serve to maintain a tight fit between the motor and motor mounting structure over the range of dimensional variance inherent in production of both. Their flexibility also allows insertion of the motor with limited force, allowing manual assembly and disassembly for service.
  • the stiff regions of these cradling features are sized to allow a small clearance between the motor and motor mounting structure over the range of dimensional variance.
  • the inner surfaces of the cradling features may need to have draft for easy injection molding.
  • the motor mounting structure can be designed so that the cradling features rotate during insertion of the motor, so that the contacting surfaces become substantially parallel with the external contour of the motor. This rotation occurs circumferential twisting of pliable portions (e.g., the profile) of the motor mounting structure.
  • the features described above can be inverted, especially where the motor is fitted with molded plastic components.
  • latches and flexible and rigid guiding features can be located on the motor assembly, wheras tabs, holes and other features to cooperate with said latches and guiding surfaces can be located on the motor mounting structure.
  • Fig. 1 is a partial cross-sectional, elevational view of an assembled cooling fan, drive motor, and fan housing
  • Fig. 2 is a section of the fan hub, drive motor, and motor mount .
  • Fig. 3 is a perspective view of the motor and motor mount .
  • Fig. 4 is a perspective view of the motor mount with motor removed.
  • Fig. 5 is a partial cross-sectional, elevational view of the fan, drive motor, and motor mount showing radially elastic supports extending forward of the bayonet features.
  • Fig. 6 is a partial elevational view showing a screw- mount interface between connector elements and motor mounting structure .
  • Fig. 7 is an elevational view of a motor with connector elements integral with the motor casing, and positioned at the rear of the motor.
  • Fig. 8 is an elevational view of a motor with connector elements integral with end cover, and positioned at the rear of the motor .
  • Fig. 9 is a frontal view of a motor with connector elements of varying sizes and shapes.
  • Fig. 10 is a frontal view of a motor with connector elements spaced unevenly around the circumference of the motor.
  • Figs. 11, 12, 13 and 14 are partial cross-sectional, elevational views of a motor and motor mount showing axial snap- fit features.
  • Fig. 15 is a partial cross-sectional, elevational view of a front-loaded motor and motor mount showing axial snap-fit features and integral heat and splash shield.
  • Fig. 16 is a partial cross-sectional view of a motor and motor mount showing some axial snap-fit features integrated with the motor instead of the motor mounting structure .
  • Fig. 17 is a partial cross-sectional, elevational view of a motor mount showing cradling features with draft.
  • Fig. 18 is a partial cross-sectional, elevational view of a motor mount showing cradling features with draft and an installed motor.
  • cooling fan drive motor 10 has a shaft 11 driving a cooling fan 15.
  • the fan drive motor 10 is mounted within a motor mounting structure 2 which is connected by way of stators or arms 20 to a housing 21.
  • the housing serves to position the fan/motor assembly with respect to a heat exchanger 22, as well as to conduct air between the heat exchanger and the fan.
  • Fig. 2 motor mounting structure 2 and motor 10 are shown in more detail.
  • One or more connector elements (or tabs) 1 extend radially from the motor case. These tabs can also be seen in pre-assembled position, in Fig. 3.
  • the tabs can be formed from one of the components of the motor case. For example, they are part of the motor's flux ring in Figs. 1-3.
  • Fig. 2 shows how tabs 1 are captured in recesses containing both forward axial surfaces 3 and rearward axial surfaces 4. Radial surfaces 5 center the motor within the mounting ring.
  • Fig. 4 identifies the components of resilient structures 6 which cradle the cylindrical surface of the motor. These cradling structures have regions 7 which are flexible with respect to the motor mounting structure 2. There are also regions 8 which are rigid with respect to the motor mounting structure 2. These cradling features 6,7,8 can be seen in Figs. 2 and 3 as well .
  • the flexible regions 7 are manufactured so that they are at a radius from axis which is smaller than the outside radius of the motor in the areas where the two parts mate. These regions must then bend outward when the motor is inserted in the motor mounting structure. This interference fit persists throughout the range of manufacturing tolerances of both the plastic motor mounting structure and the mating areas on the motor .
  • the rigid regions 8 are manufactured so that they are at a radius from axis which is larger than the outside radius of the motor in the mating areas. This creates a clearance fit which persists throughout most or all of the range of allowable manufacturing tolerances for both the motor and cradling feature regions .
  • a circum erential latch 9 can be seen in Figs . 3 and 4. This latch engages the tabs 1 after they are rotated against the stops in the recesses described above. This latch deflects in the radial direction. Alternative latch designs could deflect in the axial direction.
  • FIG. 5 Another preferred embodiment is shown in Fig. 5, where the cradling features 6 extend in the opposite axial direction than in Figs. 1-4.
  • the axial and radial retaining surfaces on the motor mounting structure, 3,4,5, may be formed differently due to considerations necessary to the molding of the motor mounting structure.
  • the elements described of the configurations shown in Figs. 1-4 generally apply to the configuration in Fig. 5, and the elements described in the above two embodiments can be adapted to a number of design variables such as the insertion direction of the motor, the relative axial positions of the cradling feature and the twist-lock features, and the axial direction in which the cradling features extend from the structure of the motor mounting structure.
  • tabs 1 are inclined. They mate with inclined surfaces 4 in the recesses on the motor mount to form a screw mount. This allows for an assembly which is both rigid and tight in the axial direction.
  • radial tabs 1 on the motor are formed as part of the main housing of the motor.
  • tabs are formed from the end cover. Both schemes can be contrasted with Fig. 2, where tabs are formed from the motor flux ring.
  • the locking recesses are replaced by axial retention elements 31, 32 and latches 33.
  • the latches engage the flux ring 40 of motor 10, rather than radial tabs.
  • Some axial retention elements 32 are elastic, so that they maintain a tight fit over the range of manufacturing variation.
  • Others 31 are a rigid. These are designed to have a clearance fit. The rigid elements 31 are added to the design if the elastic element 32 would not provide enough strength and durability. This depends mainly on the weight of the motor as compared to the desired insertion force to engage the latch 33.
  • the latches 33 cooperate with holes in the motor case.
  • latches cooperate with the edge of the case or end cover.
  • latches cooperate with tabs formed in the flux ring. Such tabs can also be formed from the motor case or end covers, as illustrated in bayonet attachments already described.
  • FIG. 15 Another embodiment is shown in Fig. 15.
  • the motor inserts from the front, allowing for the motor mounting structure to form a heat and splash shield 40, protecting the back plate of the motor from radiated heat and salt spray.
  • the rigid cradling features 8 are ribs designed to contact the folded-over back plate of the motor.
  • the flexible cradling features 7 are shown on the opposite side of the section.
  • the locking recesses are replaced by axial retention elements 31, 32 and latches 33. In this case, the latches engage the folded-over back plate rather than radial tabs.
  • Some axial retention elements 32 are elastic, so that they maintain a tight fit over the range of manufacturing variation.
  • Others 31 are rigid. These are designed to have a looser fit than the elastic elements 32.
  • retention elements 32 and latches 33 are located on the motor.
  • a single injection molded part comprises the end cover and/or brush holder as well as one or more retention elements and latches. In this case, the latches engage the motor mount 2.
  • Some axial retention elements 32 can be elastic, so that they maintain a tight fit over the range of manufacturing variation.
  • cradling features 6 are arranged at an angle. This provides draft for easy injection molding.
  • the motor mounting structure 2 provides a pliable profile connecting the cradling features.
  • the angled surfaces also improve the process of assembly of motor within the motor mounting structure by providing initial positioning and controllable insertion forces.
  • Fig. 18 shows the motor mount from Fig. 17 with installed motor.
  • the cradling features are rotated parallel to the external contour of the motor.
  • the pliable profile connecting these features is twisted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The motor (10) of an automotive cooling fan system is attached to a housing (21) by either bayonet mount, screw mount, or axial-snap features on both motor (10) and housing (21), as well as a cradle structure (6) on the housing (21).

Description

MOUNT FOR CONNECTING AUTOMOTIVE FAN MOTOR TO HOUSING
Background of the Invention This invention concerns attaching drive motors to engine cooling fan systems.
Such systems include a fan attached to a motor which is in turn attached to the motor mount of a fan housing which holds it in place and positions the motor/fan assembly to operate with a heat exchanger. The attachment of the motor to the motor mounting structure is subject to a number of considerations.
For servicing, the attachment should be capable of easy assembly and disassembly, e.g. with hand tools. It must also undergo many hours of exposure to vibration and temperature cycling without developing looseness or rattling between the motor and motor mounting structure. Additionally, the attachment should function despite manufacturing variances inherent in mass- produced parts.
Many existing attachment systems use metal fasteners such as screws, studs, nuts, and rivets in order to satisfy these requirements. These fasteners add cost to the product and increase part count. In a market where demands on quality are increasing, they may also introduce additional failure modes, some of which are difficult to detect. Measures typically are taken to insure that parts are not shipped with fasteners which are missing, incorrectly selected, or incorrectly tightened. Finally, these fasteners must be supplied with replacement parts, to insure the integrity of repairs.
Summary of the Invention We have discovered a motor mount assembly -- particularly for vehicular engine-cooling fan motors -- which allows a motor to be mounted into and retained by a motor mounting structure without additional fasteners which can withstand the rigorous requirements to which vehicular motor mounting systems are subjected.
One aspect of the invention features an assembly in which the motor includes multiple connector elements (such as tabs) , which are integral with the motor. The motor mount is integral with at least a portion of the fan housing, and the mount includes multiple recesses which are sized and shaped to receive and engage the connector elements of the motor by combined axial and rotational movement of the motor relative to the motor mount. In some cases, the connector elements are radially- extending tabs, and the motor-moun ing recesses of the housing are sized, shaped and positioned to receive the tabs as a bayonet mount. Alternatively, the connector elements of the motor may include screw threads which cooperate with the motor- mounting recesses to form a screw mount. Preferably, the motor-mount also includes radially elastic supports which cradle the motor so as to exert a radial force on the motor. The motor is rotatable and axially moveable relative to the radially elastic supports, for ease of assembly. Another feature of the invention may include multiple rigid elements (e.g. rigid ribs) positioned to limit the radial travel of the motor. The rigid elements (or at least one of them) may be different from or integral with the radially elastic supports. In one embodiment where they are integral with the radially elastic supports, the radially elastic support includes, at least in part, surfaces which extend in a generally circumferential direction from a rigid rib and contact the external surface of the motor at a position slightly inward of the innermost rib portion, forming an interference fit.
The fan housing generally includes members (e.g. stators or arms) which extend generally radially inward and support the motor-mount . Often the housing includes a structure which surrounds the fan, controls air recirculation, and supports the radially extending members that in turn support the motor mounts. It is also common for the housing to include an air guide structure to guide the airflow between a heat exchanger and the fan. Typically, the motor mount and/or the radial mount supports, and/or the structure extending around the fan and/or the air-guide structure are injection-molded plastic, most typically as a single part. The connector elements of the motor are typically metal.
The connector elements may be integral with the motor flux ring, the motor case, or end-cover. The connectors (e.g., tabs) may be of different dimensions with the motor mount recesses sized and shaped to key the orientation of the motor as it is inserted into the motor mount. Another way to orient the motor is to use tabs and motor-mount recesses which are spaced unevenly around the circumference of the motor.
One or more resilient latches on the motor mount can prevent the motor from rotating after it is rotated into position. Preferably, the connector elements and the motor mount recesses are shaped to permit insertion by rotation in the direction of torque that the operating fan exerts on the motor.
The motor mount recesses may be sized and shaped to permit the motor to slide into the motor mount as the motor is mounted from the front (i.e. the fan side of the motor mount) . In this case, the motor-mount structure may include a heat or splash shield. Alternatively, the motor mount recesses may be sized and shaped to permit the motor to be mounted from the rear. In this case, the motor mount will generally include an opening through which the front of the motor will project when the motor is in position.
The invention also features methods of assembling the above described motor/fan assembly by sliding the motor axially into the mount and twisting it to secure the integral motor connectors in the motor mount . Another aspect of the invention features an assembly in which the motor-mount comprises at least one resilient latch which deflects upon axial insertion of the motor and, after insertion, moves to a position in which the latch limits motor travel . The motor includes at least one feature which cooperates with the latch. In effect, a spring lock serves to lock the motor in position.
Many of the preferred features described above may also be used on this second aspect of the invention: a) radially elastic supports which cradle the motor and exert a radial force on the motor, the motor being axially moveable relative to the elastic supports; b) multiple rigid elements (e.g. ribs) positioned to limit the radial travel of the motor, the rigid members in some cases being integral with the radially elastic supports; c) the use of a single injection molded plastic part for the various parts of the housing (motor mount, generally radial supports for the mount, a fan-surrounding shroud and/or air guide structure) .
Preferably, the motor feature that cooperates with the latch may be a) the edge of, or a tab integral with, the motor's flux ring; b) the edge of, or one or more tabs formed integrally with, the motor case; c) (where the motor includes an end cover which wraps around the edge of the motor case) the edge of the end cover; d) one or more tabs formed integrally with a motor end cover; and/or e) one or more holes in the motor case. These motor feature (s) may be configured to prevent rotation of the motor case. If the motor is mounted from the front, the motor- mounting structure may include a splash and heat shield. When the motor is mounted from the rear, the front portion of the motor may extend through an opening in the motor-mount structure .
To assemble the above-described second embodiment, the motor is inserted into the motor-mounting structure until it contacts axial stops. At this point, an axial latch has engaged a feature on the motor, completing the axial retention.
The bayonet mount, screw mount or the axially snapping arrangement provides ease of assembly. Cradling features may be needed to provide rigidity, durability, and robustness that satisfy manufacturing tolerances. For example, the flexible regions of these cradling features are sized to have an interference fit with the motor body over a range of manufacturing tolerances. They serve to maintain a tight fit between the motor and motor mounting structure over the range of dimensional variance inherent in production of both. Their flexibility also allows insertion of the motor with limited force, allowing manual assembly and disassembly for service. The stiff regions of these cradling features are sized to allow a small clearance between the motor and motor mounting structure over the range of dimensional variance. While they do not maintain a tight contact with the motor, they serve to limit movement of the motor within the motor mounting structure when the assembly is exposed to shock and vibration. This in turn limits strain on, and erosion of, the flexible regions of the cradling and the recesses in the motor mount described above. The above-mentioned elasticity can alternately be accomplished through flexibility in the mounting structure rather than flexibility in specific cradling features.
The inner surfaces of the cradling features may need to have draft for easy injection molding. The motor mounting structure can be designed so that the cradling features rotate during insertion of the motor, so that the contacting surfaces become substantially parallel with the external contour of the motor. This rotation occurs circumferential twisting of pliable portions (e.g., the profile) of the motor mounting structure. The features described above can be inverted, especially where the motor is fitted with molded plastic components. In this case, latches and flexible and rigid guiding features can be located on the motor assembly, wheras tabs, holes and other features to cooperate with said latches and guiding surfaces can be located on the motor mounting structure.
Brief Description of the Drawings Fig. 1 is a partial cross-sectional, elevational view of an assembled cooling fan, drive motor, and fan housing Fig. 2 is a section of the fan hub, drive motor, and motor mount .
Fig. 3 is a perspective view of the motor and motor mount .
Fig. 4 is a perspective view of the motor mount with motor removed.
Fig. 5 is a partial cross-sectional, elevational view of the fan, drive motor, and motor mount showing radially elastic supports extending forward of the bayonet features.
Fig. 6 is a partial elevational view showing a screw- mount interface between connector elements and motor mounting structure . Fig. 7 is an elevational view of a motor with connector elements integral with the motor casing, and positioned at the rear of the motor.
Fig. 8 is an elevational view of a motor with connector elements integral with end cover, and positioned at the rear of the motor .
Fig. 9 is a frontal view of a motor with connector elements of varying sizes and shapes.
Fig. 10 is a frontal view of a motor with connector elements spaced unevenly around the circumference of the motor. Figs. 11, 12, 13 and 14 are partial cross-sectional, elevational views of a motor and motor mount showing axial snap- fit features.
Fig. 15 is a partial cross-sectional, elevational view of a front-loaded motor and motor mount showing axial snap-fit features and integral heat and splash shield.
Fig. 16 is a partial cross-sectional view of a motor and motor mount showing some axial snap-fit features integrated with the motor instead of the motor mounting structure . Fig. 17 is a partial cross-sectional, elevational view of a motor mount showing cradling features with draft.
Fig. 18 is a partial cross-sectional, elevational view of a motor mount showing cradling features with draft and an installed motor.
Description of the Preferred Embodiments In Fig. 1 cooling fan drive motor 10 has a shaft 11 driving a cooling fan 15. The fan drive motor 10 is mounted within a motor mounting structure 2 which is connected by way of stators or arms 20 to a housing 21. The housing serves to position the fan/motor assembly with respect to a heat exchanger 22, as well as to conduct air between the heat exchanger and the fan.
In Fig. 2 motor mounting structure 2 and motor 10 are shown in more detail. One or more connector elements (or tabs) 1 extend radially from the motor case. These tabs can also be seen in pre-assembled position, in Fig. 3. The tabs can be formed from one of the components of the motor case. For example, they are part of the motor's flux ring in Figs. 1-3.
Fig. 2 shows how tabs 1 are captured in recesses containing both forward axial surfaces 3 and rearward axial surfaces 4. Radial surfaces 5 center the motor within the mounting ring.
Fig. 4 identifies the components of resilient structures 6 which cradle the cylindrical surface of the motor. These cradling structures have regions 7 which are flexible with respect to the motor mounting structure 2. There are also regions 8 which are rigid with respect to the motor mounting structure 2. These cradling features 6,7,8 can be seen in Figs. 2 and 3 as well .
In Fig. 4, the flexible regions 7 are manufactured so that they are at a radius from axis which is smaller than the outside radius of the motor in the areas where the two parts mate. These regions must then bend outward when the motor is inserted in the motor mounting structure. This interference fit persists throughout the range of manufacturing tolerances of both the plastic motor mounting structure and the mating areas on the motor .
The rigid regions 8 are manufactured so that they are at a radius from axis which is larger than the outside radius of the motor in the mating areas. This creates a clearance fit which persists throughout most or all of the range of allowable manufacturing tolerances for both the motor and cradling feature regions .
A circum erential latch 9 can be seen in Figs . 3 and 4. This latch engages the tabs 1 after they are rotated against the stops in the recesses described above. This latch deflects in the radial direction. Alternative latch designs could deflect in the axial direction.
Another preferred embodiment is shown in Fig. 5, where the cradling features 6 extend in the opposite axial direction than in Figs. 1-4. The axial and radial retaining surfaces on the motor mounting structure, 3,4,5, may be formed differently due to considerations necessary to the molding of the motor mounting structure. However, the elements described of the configurations shown in Figs. 1-4 generally apply to the configuration in Fig. 5, and the elements described in the above two embodiments can be adapted to a number of design variables such as the insertion direction of the motor, the relative axial positions of the cradling feature and the twist-lock features, and the axial direction in which the cradling features extend from the structure of the motor mounting structure.
In Fig. 6, tabs 1 are inclined. They mate with inclined surfaces 4 in the recesses on the motor mount to form a screw mount. This allows for an assembly which is both rigid and tight in the axial direction.
In Fig. 7 radial tabs 1 on the motor are formed as part of the main housing of the motor. In Fig. 8, tabs are formed from the end cover. Both schemes can be contrasted with Fig. 2, where tabs are formed from the motor flux ring.
In Fig. 11, the locking recesses are replaced by axial retention elements 31, 32 and latches 33. In this case, the latches engage the flux ring 40 of motor 10, rather than radial tabs. Some axial retention elements 32 are elastic, so that they maintain a tight fit over the range of manufacturing variation. Others 31 are a rigid. These are designed to have a clearance fit. The rigid elements 31 are added to the design if the elastic element 32 would not provide enough strength and durability. This depends mainly on the weight of the motor as compared to the desired insertion force to engage the latch 33. In Fig. 12, the latches 33 cooperate with holes in the motor case. In Fig. 13, latches cooperate with the edge of the case or end cover. In Fig.. 14, latches cooperate with tabs formed in the flux ring. Such tabs can also be formed from the motor case or end covers, as illustrated in bayonet attachments already described. Another embodiment is shown in Fig. 15. The motor inserts from the front, allowing for the motor mounting structure to form a heat and splash shield 40, protecting the back plate of the motor from radiated heat and salt spray. The rigid cradling features 8 are ribs designed to contact the folded-over back plate of the motor. The flexible cradling features 7 are shown on the opposite side of the section. As with the embodiments of Figs. 11-14, the locking recesses are replaced by axial retention elements 31, 32 and latches 33. In this case, the latches engage the folded-over back plate rather than radial tabs. Some axial retention elements 32 are elastic, so that they maintain a tight fit over the range of manufacturing variation. Others 31 are rigid. These are designed to have a looser fit than the elastic elements 32.
In Fig. 16, retention elements 32 and latches 33 are located on the motor. A single injection molded part comprises the end cover and/or brush holder as well as one or more retention elements and latches. In this case, the latches engage the motor mount 2. Some axial retention elements 32 can be elastic, so that they maintain a tight fit over the range of manufacturing variation.
In Fig. 17, cradling features 6 are arranged at an angle. This provides draft for easy injection molding. The motor mounting structure 2 provides a pliable profile connecting the cradling features. The angled surfaces also improve the process of assembly of motor within the motor mounting structure by providing initial positioning and controllable insertion forces. Fig. 18 shows the motor mount from Fig. 17 with installed motor. The cradling features are rotated parallel to the external contour of the motor. The pliable profile connecting these features is twisted.
Other embodiments are within the following claims.
What is claimed is:

Claims

1. An automotive engine-cooling fan assembly comprising: a) a fan; b) a motor which drives the fan; and c) a housing comprising a motor mount to which the motor is mounted; wherein, the motor comprises multiple connector elements which are integral with the motor, and the motor mount comprises multiple recesses which are sized and shaped to receive and engage the connector elements of the motor by combined axial and rotational movement of the motor relative to the motor mount.
2. The assembly of claim 1 in which, the motor has an external casing; the connector elements of the motor comprise tabs extending generally radially beyond the motor casing; and the motor-mounting recesses are sized, shaped and positioned to receive the connector elements as a bayonet mount.
3. The assembly of claim 1 in which the connector elements of the motor comprise screw threads, and the screw threads cooperate with the motor-mounting recesses to form a screw mount .
4. The assembly of claim 1 in which the motor mount further comprises radially elastic supports, which cradle the motor so as to exert a radial force on the motor, the motor being rotatable and axially moveable relative to the radially elastic supports.
5. The assembly of claim 1 or claim 4 in which the motor mount further comprises multiple rigid elements positioned to limit the radial travel of the motor.
6. The assembly of claim 4 in which the motor mount further comprises multiple rigid elements positioned to limit the radial travel of the motor and in which at least one of the rigid elements is integral with at least one of the radially elastic supports.
7. The assembly of claim 6 in which the rigid element is a rigid rib and at least part of the radially elastic support comprises surfaces, which extend in a generally circumferential direction from the rib and contact the surface of the motor with an interference fit.
8. The assembly of claim 1 in which the motor connector element is metal, and the motor mount is plastic.
9. The assembly of claim 1 in which the housing comprises members which extend generally radially inward and support the motor mount .
10. The assembly of claim 9 in which the housing further comprises a shroud structure which extends around the fan and supports the radial members.
11. The assembly of claim 10 in which the housing further comprises an air guide structure which guides the airflow between a heat exchanger and the fan.
12. The assembly of claim 9 in which the motor mount and the radial members are a single injection-molded plastic part.
13. The assembly of claim 10 in which the motor mount, the radial members and the shroud structure which extends around the fan are a single injection-molded plastic part.
14. The assembly of claim 11 in which the motor mount, the radial members, the shroud structure which extends around the fan, and the air guide structure are a single injection- molded plastic part.
15. The assembly of claim 1 in which the motor comprises a flux ring and the connector elements are integral with the flux ring.
16. The assembly of claim 1 in which the motor comprises an external casing and the connector elements are integral with the external casing.
17. The assembly of claim 1 in which the motor comprises an end cover, and the connector elements are integral with said end cover .
18. The assembly of claim 2 in which there are at least two tabs of different dimensions and the motor-mount recesses are sized and shaped to key the orientation of the motor as the motor is inserted into the motor mount.
19. The assembly of claim 2 in which the tabs are spaced unevenly around the circumference of the motor and the motor- mount recesses are positioned to key the orientation of the motor as inserted into the motor mount .
20. The assembly of claim 1 in which the motor mounting further comprises a resilient latch that prevents the motor from rotating after it is rotated into position.
21. The assembly of claim 1 in which the fan in operation rotates and exerts a torque on the motor, and the connector elements and the motor-mount recesses are shaped to permit insertion by rotation in the direction of said torque.
22. The assembly of claim 1 in which the motor-mount recesses are sized and shaped to permit the motor to slide into the motor mount as the motor is mounted from the front.
23. The assembly of claim 22 in which the motor mount further comprises a shield.
24. The assembly of claim 1 in which the motor-mount recesses are sized and shaped to permit the motor to be mounted from the rear.
25. The assembly of claim 24 in which the motor mount comprises an opening in its center and the front of the motor extends through the opening when in its final position.
26. An automotive engine-cooling fan assembly comprising: a) a fan b) a motor which drives said fan, and c) a housing comprising a motor mount to which said motor is attached, wherein said motor mount comprises at least one latch which is resilient so as to permit deflection upon axial insertion of the motor and, after insertion, to move to a position in which the latch limits motor movement out of position, and said motor comprising at least one feature which cooperates with said latch.
27. An automotive engine-cooling fan assembly comprising : a) a fan b) a motor which drives said fan, and c) a housing comprising a motor mount to which said motor is attached, wherein said motor comprises at least one latch which is resilient so as to permit deflection upon axial insertion of the motor and, after insertion, to move to a position in which the latch limits motor movement out of position, and said motor mount comprising at least one feature which cooperates with said latch.
28. The assembly of claim 26 or 27 in which the motor mount further comprises radially elastic supports which cradle the motor so as to exert a radial force on the motor, the motor being axially moveable relative to the elastic supports.
29. The assembly of claim 28 in which the assembly further comprises multiple rigid elements positioned to limit the radial travel of the motor.
30. The assembly of claim 29 in which at least one of the rigid elements is integral with at least one of the radially elastic supports.
31. The assembly of claim 28 in which the cradling elements, prior to assembly, are angled with respect to the motor casing and fixed to a pliable portion of the motor mount, which twists circumferentially upon assembly, whereupon the cradling elements become generally parallel to said motor casing.
32. The assembly of claim 26 in which the motor feature is metal, and the latch is plastic.
33. The assembly of claim 26 in which the motor feature is plastic and the latch is plastic.
34. The assembly of claim 27, in which the latch on the motor is plastic and the motor mount is plastic.
35. The assembly of claim 30 in which the rigid element is a rigid rib and the radially elastic support comprises surfaces which extend in a generally circumferential direction from the rib and contact the surface of the motor with an interference fit.
36. The assembly of claim 26 or 27 m which the motor mount further comprises axially elastic supports which exert an axial force on the motor.
37. The assembly of claim 27 m which the motor further comprises axially elastic supports which exert an axial force on the motor mount .
38. The assembly of claim 26 or 27 m which the housing comprises members which extend generally radially inward and support the motor mount .
39. The assembly of claim 38 in which the housing further comprises a shroud structure which extends around the fan and supports the radial members.
40. The assembly of claim 39 m which the housing further comprises an air guide structure which guides the airflow between a heat exchanger and the fan.
41. The assembly of claim 38 m which the motor mount and the radial members are a single injection-molded plastic part .
42. The assembly of claim 39 m which the motor mounting, the radial members and the structure which extends around the fan are a single infection-molded plastic part
43. The assembly of claim 40 m which the motor mount, the radial members, the structure which extends around the fan, and the air guide structure are a single injection-molded plastic part
44 The assembly of claim 26 m which the motor comprises a flux ring and the motor feature cooperating with said latch is the edge of said flux ring.
45. The assembly of claim 26 in which the motor feature cooperating with said latch is the edge of the motor.
46. The assembly of claim 26 in which the motor comprises a flux ring and the motor feature cooperating with said latch is a radial tab formed integral to said flux ring.
47. The assembly of claim 26 in which the motor comprises an external casing and at least one tab is formed integrally with the casing and the motor feature cooperating with said latch is said tab.
48. The assembly of claim 26 in which the motor comprises an external casing and an end cover and said end cover wraps around the edge of the casing and the motor features cooperating with said latch is the edge of said end shield.
49. The assembly of claim 26 in which the motor comprises an end cover and at least one tab is formed integrally with the end cover and the motor features cooperating with said latch is said tab.
50. The assembly of claim 26 in which the motor comprises an external casing and the casing is penetrated by at least one hole and the motor feature cooperating with said latch is said hole.
51. The assembly of claim 26 in which the motor feature is configured to prevent rotation of the motor case.
52. The assembly of claim 27 in which the motor mount feature is configured to prevent rotation of the motor case.
53. The assembly of claim 26 or 27 in which the motor is mounted from the front .
54. The assembly of claim 53 in which the motor mounting further comprises a shield.
55. The assembly of claim 26 or 27 in which the motor is mounted from the rear
56. The assembly of claim 55 in which the front portion of the motor extends through an opening in the motor mount .
57. A method of assembling the assembly claim 26 or 27, by sliding the motor axially to engage the motor with the motor mount
58. A method of assembling the assembly of claim 1 by sliding the motor axially to engage the motor with the motor mount
59. The method of claim 57 in which no fastening parts that are separate from the motor and housing are used.
60. The method of claim 58 in which no fastening parts that are separate from the motor and housing are used.
61. The method of claim 58 in which the motor and the motor mount comprise matching threads, and the motor is screwed into the housing.
62. The method of claim 58 in which the motor first is moved axially and then is twisted to engage the motor mount.
EP00992020A 1999-10-29 2000-10-27 Mount for connecting automotive fan motor to housing Expired - Lifetime EP1224386B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16237699P 1999-10-29 1999-10-29
US162376P 1999-10-29
PCT/US2000/041695 WO2001033053A2 (en) 1999-10-29 2000-10-27 Housing mount for connecting automotive fan motor

Publications (3)

Publication Number Publication Date
EP1224386A2 true EP1224386A2 (en) 2002-07-24
EP1224386A4 EP1224386A4 (en) 2003-03-05
EP1224386B1 EP1224386B1 (en) 2005-06-15

Family

ID=22585365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00992020A Expired - Lifetime EP1224386B1 (en) 1999-10-29 2000-10-27 Mount for connecting automotive fan motor to housing

Country Status (8)

Country Link
EP (1) EP1224386B1 (en)
KR (1) KR100868711B1 (en)
CN (1) CN1230609C (en)
AU (1) AU3791001A (en)
BR (1) BR0015140B1 (en)
DE (1) DE60020866T2 (en)
ES (1) ES2242658T3 (en)
WO (1) WO2001033053A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720064B2 (en) 2006-10-06 2014-05-13 Robert Bosch Gmbh Cooling fan and method for producing a cooling fan

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827547B2 (en) * 2003-01-29 2004-12-07 Borgwarner Inc. Engine cooling fan having improved airflow characteristics
DE102004005028A1 (en) * 2004-01-30 2005-09-01 Behr Gmbh & Co. Kg Mounting arrangement, drive device, fan cowl and heat exchanger assembly
US7175398B2 (en) * 2004-05-12 2007-02-13 Delphi Technologies, Inc. Integrally molded sound housing for blower motor
FR2890008B1 (en) * 2005-08-31 2007-10-05 Valeo Systemes Thermiques FAST ASSEMBLY FAN ASSEMBLY, ESPECIALLY FOR MOTOR VEHICLES
GB2430468B (en) * 2006-06-01 2007-08-29 Vent Axia Ltd Improvements in or relating to a heat recovery unit
DE102009003271A1 (en) * 2009-05-20 2010-11-25 Robert Bosch Gmbh Fan-shaft connection for a cooling fan of a motor vehicle, and method for mounting a fan-shaft connection
DE202010010913U1 (en) * 2010-07-31 2011-11-03 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Shroud
DE102011105451A1 (en) 2011-06-22 2012-12-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Fan of a motor vehicle
EP2969685B1 (en) 2013-03-14 2021-08-04 Allison Transmission, Inc. Stator sleeve with integrated cooling for hybrid/electric drive motor
FR3062108B1 (en) * 2017-01-23 2021-01-01 Valeo Systemes Thermiques MOTOR MOUNT FOR MOTOR VEHICLE PULSER
DE102017101249B4 (en) 2017-01-24 2022-04-28 Denso Automotive Deutschland Gmbh Holder housing for a blower motor and air conditioning system with such a holder housing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219021A2 (en) * 1985-10-12 1987-04-22 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG Heat exchanger, particularly a cooler for motor vehicles
US5117656A (en) * 1990-04-23 1992-06-02 General Electric Company Outdoor unit for a central system for conditioning air, assembly for use with a housing of such unit, and method of assembling a blower motor to a cover for such unit
FR2699961A1 (en) * 1992-12-24 1994-07-01 Behr Gmbh & Co Cooling unit of an internal combustion engine, in particular of motor vehicles.
US5341871A (en) * 1993-06-21 1994-08-30 General Motors Corporation Engine cooling fan assembly with snap-on retainers
US5522457A (en) * 1994-06-22 1996-06-04 Behr Gmbh & Co. Heat exchanger, particularly radiator for internal combustion engines of commercial vehicles
US5573383A (en) * 1994-03-16 1996-11-12 Nippondenso Co., Ltd. Blower assembly including casing housing a fan and a motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499388A (en) * 1967-06-13 1970-03-10 Hale Fire Pump Co Centrifugal pump
US4685513A (en) * 1981-11-24 1987-08-11 General Motors Corporation Engine cooling fan and fan shrouding arrangement
US4979584A (en) * 1989-05-25 1990-12-25 Siemens-Bendix Automotive Electronics Limited Automotive vehicle engine bay ventilation
US6106228A (en) * 1996-09-06 2000-08-22 Siemens Electric Limited Fan shroud air door assembly
US6155335A (en) * 1999-04-26 2000-12-05 Delphi Technologies, Inc. Vehicle fan shroud and component cooling module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219021A2 (en) * 1985-10-12 1987-04-22 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG Heat exchanger, particularly a cooler for motor vehicles
US5117656A (en) * 1990-04-23 1992-06-02 General Electric Company Outdoor unit for a central system for conditioning air, assembly for use with a housing of such unit, and method of assembling a blower motor to a cover for such unit
FR2699961A1 (en) * 1992-12-24 1994-07-01 Behr Gmbh & Co Cooling unit of an internal combustion engine, in particular of motor vehicles.
US5341871A (en) * 1993-06-21 1994-08-30 General Motors Corporation Engine cooling fan assembly with snap-on retainers
US5573383A (en) * 1994-03-16 1996-11-12 Nippondenso Co., Ltd. Blower assembly including casing housing a fan and a motor
US5522457A (en) * 1994-06-22 1996-06-04 Behr Gmbh & Co. Heat exchanger, particularly radiator for internal combustion engines of commercial vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0133053A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720064B2 (en) 2006-10-06 2014-05-13 Robert Bosch Gmbh Cooling fan and method for producing a cooling fan

Also Published As

Publication number Publication date
CN1230609C (en) 2005-12-07
EP1224386A4 (en) 2003-03-05
EP1224386B1 (en) 2005-06-15
ES2242658T3 (en) 2005-11-16
WO2001033053A2 (en) 2001-05-10
BR0015140A (en) 2002-09-17
AU3791001A (en) 2001-05-14
CN1390278A (en) 2003-01-08
KR20020081209A (en) 2002-10-26
KR100868711B1 (en) 2008-11-13
BR0015140B1 (en) 2008-11-18
DE60020866D1 (en) 2005-07-21
DE60020866T2 (en) 2006-05-04
WO2001033053A3 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
US6755157B1 (en) Mount for connecting automotive fan motor to housing
EP1224386B1 (en) Mount for connecting automotive fan motor to housing
KR100590156B1 (en) Arrangement for fixing a tubular element on a structural element of a motor vehicle body
US6527516B2 (en) Device for fixing a fan-blade assembly onto a motor shaft
JP2008026329A (en) Device for measuring rotation motion of wheel supporting section
US6509661B1 (en) Motor and actuator
EP0963013B1 (en) Bumper mounted cord set
JP7432674B2 (en) blower device
US8303244B2 (en) Engine-mounted fan shroud and seal
US6955335B2 (en) Throttle device with cover for internal elements
CN117083450A (en) Assembly comprising a motor vehicle fluid regulating unit
JP7568852B2 (en) Fluid pump device for automobiles having a mounting device for the fluid pump device
CN214837926U (en) Transmission mechanism and bearing transmission structure
US20240011504A1 (en) Ventilation device for a motor vehicle cooling module
JP4968531B2 (en) Electromagnetic clutch
GB2299158A (en) Method and apparatus for securing a fan motor and heat exchanger to a structure
CN113007224A (en) Transmission mechanism and bearing transmission structure
JP2001342998A (en) Air blower for automobile
CN218966631U (en) Gear error-proofing mechanism for air outlet, vehicle-mounted air conditioner and vehicle
JP2006010000A (en) Fastening structure
KR200153774Y1 (en) Fan and shroud assembly
CN215723731U (en) Motor support, motor element, air supply device and air conditioner
CN218489515U (en) Ventilation system for vehicle seat
JP4151411B2 (en) Fan motor mounting structure
CN118475774A (en) Fan for reducing high frequency noise and ensuring productivity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020801

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 20030120

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 04D 29/64 B

Ipc: 7F 01P 1/00 A

17Q First examination report despatched

Effective date: 20040112

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60020866

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2242658

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60020866

Country of ref document: DE

Effective date: 20130225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 60020866

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 60020866

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60020866

Country of ref document: DE

Effective date: 20140501

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151215

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161025

Year of fee payment: 17

Ref country code: GB

Payment date: 20161025

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161025

Year of fee payment: 17

Ref country code: IT

Payment date: 20161025

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60020866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171027

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171028