EP1221069A1 - An integrated optical device for data communication - Google Patents
An integrated optical device for data communicationInfo
- Publication number
- EP1221069A1 EP1221069A1 EP00969774A EP00969774A EP1221069A1 EP 1221069 A1 EP1221069 A1 EP 1221069A1 EP 00969774 A EP00969774 A EP 00969774A EP 00969774 A EP00969774 A EP 00969774A EP 1221069 A1 EP1221069 A1 EP 1221069A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonator
- optical
- waveguides
- spaced
- apart
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/132—Integrated optical circuits characterised by the manufacturing method by deposition of thin films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
- G02B6/29343—Cascade of loop resonators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29395—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1071—Ring-lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1071—Ring-lasers
- H01S5/1075—Disk lasers with special modes, e.g. whispering gallery lasers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
- G02F1/3133—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/05—Function characteristic wavelength dependent
- G02F2203/055—Function characteristic wavelength dependent wavelength filtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1021—Coupled cavities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
- H01S5/1032—Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
Definitions
- This invention is generally in the field of optical communication techniques, and relates to an integrated optical device and a method of its manufacture.
- Optical communication serves as the enabling technology for the information age, and the essential backbone for long haul communication.
- WDM wavelength division multiplexing
- a device capable of accessing an individual information stream is fundamentally required in current and future networks. These devices can also add information streams to the optical fiber, as well as impress information on an optical stream by optical modulation.
- the basic building block for optical switching is the optical modulator/switch.
- MZI Mach-Zender Interferometer
- Fig. 1 Light input to a modulator 1 is via a single-mode waveguide.
- a beam splitter divides the light into two equal beams that travel through guides 2A and 2B. respectively.
- the effective path lengths can be varied.
- optical switching is achieved by creating a phase difference between two arms of the device (guides 2A and 2B). and controlling the optical power at the device output.
- the performance criteria for the operation of the wavelength routing elements include: the following:
- Modulation depth or contrast ratio which signifies the ratio between two ("ON” and "OFF") or more states of a switch device
- MZI-type devices In their predominant implementation, is their frequency insensitivity over a desired frequency bandwidth. As a result. MZI-type devices cannot be used directly for wavelength routing.
- the MZI has been utilized in conjunction with wavelength demultiplexers, which provide spatial separation between different optical frequencies.
- a matrix composed of at least N times (N+1) MZI is used to redirect one of the N spatially distinct wavelengths to the device output.
- the remaining frequencies are recombined using a wavelength multiplexer.
- Recenth developed integrated electro-optical devices utilize resonant rings to achieve frequency selective switching. Such a device is disclosed, for example, in WO 99/17151.
- the main components of the device are illustrated in Fig. 2.
- a resonant ring 6 couples light from one fiber 8a to another fiber 8b, when the frequency of the light passing through the fiber 8a fulfils that of the resonance condition of the ring 6.
- the ring 6 By applying an electric field or a thermal source to the ring 6, its refractive index, and consequently, its resonance condition, can be desirably adjusted. Changing the resonance condition prevents the passage of the previously coupled light and acts as a switch. Alternatively, the loss of the ring waveguide can be changed. Adding loss to the ring diminishes its operation as a resonant cavity, and light cannot be coupled from fiber to fiber.
- the optical device utilizes a structure formed by linear waveguides and ring waveguides (resonators).
- the inventors have found that the use of a ring waveguide provides for a new advantageous feature associated with the following.
- the conventional integrated optical devices typically employ a small refractive index difference between the waveguide region and the surrounding material.
- the universal quantity characterizing the behavior of the confined light is the effective refractive index of the waveguide.
- the difference between the effective refractive index of the waveguide and the index of the surrounding medium is typically smaller then 1%.
- the effective refractive index of the ring waveguide has to be large, i.e., typically greater then 20%, to accommodate tight mode confinement and small losses. In these structures, however, the effective index of the ring waveguide and the linear waveguide are similar to within 3%.
- the refractive index of the ring waveguide is at least 20% greater than the refractive index of the linear waveguide that receives an input signal.
- the present invention takes advantage of the use of several (at least two) ring resonators.
- the main idea of the present invention is based on designing an optical complex filter/resonator, wherein waveguide sections are specifically connected to ring resonators in a configuration which enables realization of optical switching, wavelength routing, lasing, wavelength sensitive amplification, optical filtering, etc.
- the device may also combine a plurality of such filters in a wavelength router module.
- the present invention utilizes the collective response of two or more closed loop resonators, which are connected to each other by two or more optical paths, for the purpose of switching or modulating a selected wavelength.
- the optical resonator according to the invention is an enclosed cavity aimed at storing optical energy.
- the present invention utilizes the inclusion of a feedback path for the optical signal.
- the loop resonator serves as a frequency selective mirror within a more complex resonator.
- the wavelength response of a structure composed of several ring resonators coupled to optical waveguides is determined by the physical and geometrical parameters of the resonators and coupling scheme.
- the present invention provides novel schemes of coupling multiple resonators to achieve predetermined active filtering and modulation characteristics. These coupling schemes are relatively easy to implement, and provide desired modulation characteristics.
- an optical resonator structure for storing optical energy comprising a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, the physical characteristics of the compound resonator being controllable to adjust the optical storage characteristics of the compound resonator.
- the predetermined frequency range is determined by physical and geometrical characteristics of the compound resonator.
- a heating means may be used to control the physical characteristics of the waveguide and/or loop-resonators.
- One of the two waveguides serves as an input and throughput waveguide, and the other serves as an output waveguide.
- An optical signal entering the input waveguide may include a plurality of light components having different wavelengths.
- an optical device comprising:
- the device may comprise additional waveguides and additional loop-resonators, forming together several such frequency selective switches, thereby providing complex optical signal switching and routing.
- a laser device where an active material with gain is embedded in at least one of the parts comprising the above-described electro-optical device.
- This multiple section laser can be controlled by applying the above-described control means to tune its lasing frequency, to q-switch or to passively/actively mode lock the laser device in order to obtain pulsed operation.
- a wavelength router system comprising at least one optical switch and at least one optical filter, wherein the switch and the filter is constructed as the above-described electro-optical device.
- an optical spectrum analyzer an OADM, and a sensor, each comprising the above combination of two linear waveguides and at least two resonator cavit ⁇ loops.
- the real time monitoring of optical networks poses challenges for spectral analysis systems, such as the need for high resolution, short spectrum acquisition time, low cost, low loss on the optical link, and small size.
- high 5 resolution implies larger size and higher cost.
- An alternative would be to use tunable filters to scan across the optical spectrum of interest.
- existing tunable filters are limited in their ability to provide the required resolution.
- a compound cavity, high Q optical ring resonator structure is utilized as a scanning filter, and is used for the analysis of i o optical spectra.
- Modern optical communications are typically based on transmitting frequency multiplexed optical signals through an optical fiber.
- the OADM is capable of adding or dropping optical channels from an optical fiber, and is an essential element in modern optical communications.
- the 15 OADM is based on a combination of tunable filters, which provide the add or drop multiplexing functions. Since OADMs have to meet stringent criteria in their filtering, each ring resonator is an optical filter, and, by combining them in parallel, high order filters are obtained.
- the resonator-cavity loops can be replaced by 20 any other implementation of a frequency-selective element that couple between the two waveguide sections.
- optical gratings can be used.
- an electro-optical device comprising:
- the present invention is used with the ring-resonators and is therefore described below with respect to this application.
- Fig. 1 is a schematic illustration of the conventional MZI structure
- Fig. 2 is a schematic illustration of the conventional resonant ring based electro-optical device
- Fig. 3 is a schematic illustration of an electro-optical device according to one embodiment of the invention.
- Fig. 4 graphically illustrates some advantageous features of the device of
- Fig. 5 graphically illustrates simulation results of the operation of the device of Fig. 2:.
- Figs. 6a to 6c schematically illustrate electro-optical devices according to three different embodiments of the invention, respectively, suitable for designing complex filter structures;
- Figs. 7a to 7c illustrate three more examples, respectively, of complex filter structures constructed according to the invention.
- FIG. 8 graphically illustrates the operational principles of the devices of Figs. 7a-7c;
- Fig. 9 schematically illustrates a block diagram of a wavelength router system utilizing the devices according to the invention
- Fig. 10 illustrates a system utilizing the optical switches and filters according to the invention, and using ASE for monitoring the status of the optical switches;
- Figs. 11A and lib illustrate main constructional features and main functional features, respectively, of a single channel Optical Add Drop Multiplexer (OADM) according to the invention
- Fig. 12 graphically illustrates the spectral response of one-, two- and three- ring filters for use in an OADM
- Fig. 13 schematically illustrates a four port add drop multiplexer
- Fig. 14 schematically illustrates the integration of switches and add drop filters for switch-able filters
- Fig. 15 illustrates the main components of a spectral analysis filter and detector according to the invention
- Fig. 16 illustrates a tap coupler and spectral analysis system utilizing the filter of Fig. 15:
- Fig. 17 illustrates a spectrum analyzer using several spectral filters of Fig.
- Figs. 18 and 19 illustrate the main principles of a sensor device according to the invention. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
- Figs. 1 and 2 illustrate conventional MZI-type and ring-resonator type structures, respectively.
- the device 10 includes a compound resonator, which, according to the present example, is composed of two ring-resonators 12A and 12B (constituting resonator-cavity loops functioning as frequency-selective elements), and two waveguides 14 and 16, wherein waveguide sections 14A and 16A connects the rings 12A and 12B to each other.
- a compound resonator which, according to the present example, is composed of two ring-resonators 12A and 12B (constituting resonator-cavity loops functioning as frequency-selective elements), and two waveguides 14 and 16, wherein waveguide sections 14A and 16A connects the rings 12A and 12B to each other.
- these waveguide sections 14A and 16A present a spacer S between optical cavities defined by two ring-resonators R.
- a heater element 18 placed on either one of the waveguide sections - the section 16A in the present example.
- the operation of the heater element 18 enables to control the refractive index and, consequently, the optical phase imparted by the waveguide spacer S.
- the change in the refractive index will induce the required phase shift to change the frequency response of the compound resonator.
- Such an active phase affecting may be achieved by applying any suitable thermo-optic, piezo-electric, electro-optic or the like effects within the spacer or ring resonator regions.
- the device 10 may be implemented as a multi-layer optical structure manufactured by a lithography technique. All the elements of the compound resonator, i.e., the ring-resonators and the waveguides, may be formed in the same optical layer. Alternatively, the compound resonator may be manufactured as a multi-layer structure, namely the waveguides may be located in a locally adjacent upper or lower layer with respect to the layer containing the ring-resonators. This facilitates the manufacture to meet the requirements for small spaces between the coupling elements (i.e.. ring and waveguide).
- optical cavities are weakly coupled to the waveguides. Direct coupling between the two resonators is not required by this scheme.
- the optical cavities is capable of supporting several resonance frequencies, which are determined by the geometrical and material details of the cavity.
- the two cavities 12A and 12B are identical, namely tuned for the same frequency range of the resonance condition.
- a change in the refractive index of one of compound resonator's elements (which is the waveguide 16 in the present example, since the heating element 18 is associated with this waveguide), will cause changes in the roundtrip phase of the entire cavity, thereby shifting the resonance condition.
- any other implementation of the frequency-selective elements (mirrors) that couple between the two waveguide sections may be employed in the compound resonator for the purposes of the present invention.
- Such a frequency-selective element may, for example, be an optical grating.
- FIG. 16 is an output waveguide, the response of the compound resonator 10 is essentially different from that of the conventional single-ring resonator shown in Fig. 2. This is illustrated in Fig. 4, showing two graphs Gi and G 2 , presenting optical power P at the output waveguide (fiber) 16 as a function of a normalized wavelength ⁇ no ⁇ corresponding, respectively, to the conventional device and device 10 constructed according to the invention. It is self evident that the filtering characteristics and out of band signal suppression of the coupled resonator 10 are much better then those of the conventional single-ring resonator.
- Fig. 5 illustrates simulation results of the operation of the device 10.
- Each of the ring-resonators (two in the present example) is comprised of a waveguide with the index or refraction ( ⁇ core ) larger than its surrounding material nciaddi g).
- the waveguide is fashioned into a closed path, called "ring".
- the input waveguide passes below the ring-resonators in a manner to allow the overlap of the two waveguide modes and allow for transferring optical power from the input waveguide to the ring-resonator.
- the output waveguide it is also placed so as to attain the coupling to the ring.
- This output waveguide may serve as the output of the selected frequency.
- this waveguide can also serve as a throughput port for optical frequencies different from that of the modulated signal.
- integrated optical elements are composed with contradictory requirements.
- waveguides are realized using a small difference between the refractive indices of the core and cladding.
- tight bends are required which imply a large difference between the refractive indices of the core and cladding.
- An important result of the current invention relates to the ability to combine the best of both worlds by using ring resonators realized in a high index core and coupled to a low index waveguide.
- the refractive index of each of the ring resonators 12A and 12B can be about 2 and would provide successful operation of the device 10.
- the refractive index of the ring waveguide should be at least 20% greater than the refractive index of the "input" waveguide 14, to realize low loss small radius ring resonators.
- the operation of the device 10 is characterized by the low loss propagation of the optical mode in the ring waveguide. This is achieved by utilizing a refractive index contrast between the waveguide and surrounding material.
- the ring may be composed of optical glass with a refractive index of about 1.6-1.9. may be made from silicon (refractive index of 3.5) or a layered-structure made of suitable materials such as used in Vertical Emitting Cavity Lasers (VECSELs). It is known that the ring itself manifests on frequencies corresponding to its resonance condition.
- the resonant frequency of the ring, fo is given by: 2 ⁇ Rn e/
- R is the ring radius measured from the center of the ring to the center region of the ring waveguide; n e f is the effective refractive index of the ring waveguide: M is an integer value; and c is the speed of light propagation in vacuum.
- the effective refractive index can be determined by various known techniques.
- the power exchange between the waveguide and the ring is denoted by k , and can be calculated by computing the overlap integral of the modes of the ring and waveguide multiplied by the interaction length.
- the optical bandwidth, ⁇ is then determined as follows:
- the individual ring-resonator actually presents a two-port device.
- the throughput function describing the ring optical amplitude characteristics is given by:
- the matrix describing one ring is given by:
- Complex structures can be obtained by multiplying the matrixes of the corresponding sections. This calculation technique is known er se, and is used in analyzing complex distributed feedback lasers.
- the device 10 can operate as a laser.
- filters are designed either as single stage coupled compound resonators, or as multiple-stage coupled compound resonators.
- Compound resonators of such filtering devices are illustrated in Figs. 6a-6c, being designated 20, 30 and 40, respectively.
- Each of these devices utilizes the compound resonator structure 10 of Fig. 3a as a frequency selective switch/modulator, in which the ring-resonators R are coupled both in the forward and back directions, thereby increasing the degrees of freedom in the design of filters.
- the matrix model is used in the synthesis and analysis of the filter/switch/modulator characteristics.
- a multi-stage coupled compound resonator 30 is composed of two pairs of rings R R 2 and R3-R 4 enclosed between waveguides j and W 2 , and an additional ring-resonator R 5 coupled to an additional waveguide W 3 .
- a multi-stage coupled compound resonator 40 (Fig. 5c) comprises two compound resonators 10, and two additional ring-resonators R5 and Re, the latter being is coupled to an output waveguide W 4 .
- the desired wavelength may be switched from the input to the output waveguide.
- Figs. 7a-7c and 8 illustrating the main constructional and operational principles of three other devices 50, 60 and 70, respectively, that are capable of operating as a switch or modulator.
- the devices 50, 60 and 70 have somewhat different design of waveguides and rings arrangement, as compared to the previously described examples, as illustrated in the figures in a self-explanatory manner using the same reference numbers for identifying those components, which are common in all examples.
- Fig. 8 shows three graphs Di, D 2 and D 3 , corresponding to simulation results of the operation of the devices 50, 60 and 70, respectively.
- Each graph presents the optical power P at the output fiber (W 3 , W 3 and W 4 , respectively) as a function of a phase shift ⁇ in the waveguide section.
- the phase shift ⁇ for very small values of the phase shift ⁇ , more then 20dB of signal extinction is obtained. This enables the size required by the waveguide sections to be to significantly reduced, since the optical phase shift is accumulated over the length of the waveguide.
- the advantages of the device according to the invention are thus self-evident.
- the device attains attractive modulation characteristics, requires very small phase shifts, and, consequently, the interaction region, as well as the switching power, can be minimized.
- the extinction ratio of the optical signal meets optical communication standards.
- Fig. 9 illustrates a block diagram of a system 100 utilizing the above-described devices to form a wavelength router.
- the system comprises three switches SWi. SW 2 and SW3, and two filter units FUj and FU 2 .
- Each of the filter units is accommodated between two locally adjacent switches, and is designed so as to, when being actuated, route a specific optical frequency.
- one of the filters is activated at a time, thereby enabling the routed wavelength to be dynamical!)' chosen.
- a plurality of switching mechanisms can be used to increase the number of drop ports. It is important to note that this technique requires a considerably lower number of switches than that of the MZI switching matrix. Indeed, for an TV-channel, -drop system, the MZI switching matrix would require at least (N+M) by N matrix, while the system according to the present invention would require N switches with an M by M matrix.
- the present invention can also be used for actively monitoring the switch performance.
- one the crucial issues in modem communication systems is the status of the on-line switches.
- a non-operative switch in either the "ON” or “OFF” position can degrade the performance of the communication network.
- Modem communication systems utilize an erbium-doped fiber to compensate for losses in the optical fiber, connectors and devices.
- the amplifier emits amplified spontaneous emission (ASE) in all optical frequencies, which are off interest.
- a ASE for monitoring the status of the optical switches.
- This concept is illustrated in Fig. 10, showing a system 200 that utilizes the components of the above-described system 100, and two photodetectors PDi and PD 2 .
- Each photodetector is placed at the output of the corresponding switch and is coupled to a control unit (monitor) CU that monitors the optical power though this switch. Since the ASE exists at all frequencies, it can be used to monitor and control the switches.
- OADM Optical Add Drop Multiplexer
- the OADM 300 is composed of two compound resonators 310 and 312, each constructed as described above, namely, including two ring-resonators accommodated between and coupled to two linear waveguides.
- each ring resonator is an optical filter, and, by combining them in parallel, high order filters are obtained.
- the drop port (filter) is implemented using a double filter pass, while the add port is obtained with a single filter.
- Fig. 12 showing graphs Gi, G 2 and G 3 corresponding to the optical spectral response of, respectively, one-, two- and three-ring filters.
- Fig. 13 illustrates a four port add drop multiplexer.
- multiple channel OADMs are obtained by cascading the structures of Figs. 11A-1 IB.
- Fig. 14 illustrates an example of the integration of switches and add drop filters for switch-able filters.
- optical switches are added to insert and extract the ring based OADM from the optical path.
- Fig. 15 illustrating the main components of a system 400 formed by a spectral analysis filter 410 and detector 412.
- the filter 410 comprises two compound resonators 410A and 410B connected in parallel through a common linear waveguide W 2 , and serves as a compound high Q optical ring resonator structure.
- the output linear waveguide W 3 of the structure is connected to the detector 412.
- the Q of the filter is determined by the coupling factor describing the amount of light that is coupled into the filter at every round trip.
- the Q factor is also determined by the optical losses in the cavity and the ring radius.
- Fig. 16 illustrates a tap coupler and spectral analysis system, generally designated 500, utilizing the above-described system 400.
- the filter 410 is connected to an optical network (link) 512 via a coupler 514, which taps a small amount of light, thereby minimizing the losses incurred in the optical link.
- Fig. 17 illustrates a spectrum analyzer 600 utilizing several spectral analysis filters - three such filters 610A, 610B and 610C in the present example, used in parallel through a common input linear waveguide Wj.
- Each filter has a different radius, as compared to the others, and therefore is capable of carrying out a different spectral analysis.
- This feature is associated with two problems that may occur when using ring resonators, namely, limited tuning range and limited free spectral range, resulting in that a different approach has to be adopted to scan across a wide spectrum.
- the sensor device 700 comprises an environmental sensitive filter 710 constructed as the above-described compound resonator, which is connected to a laser 712 and a detector 714 through its input and output waveguides Wi and W 2 , respectively.
- an environmental sensitive filter 710 constructed as the above-described compound resonator, which is connected to a laser 712 and a detector 714 through its input and output waveguides Wi and W 2 , respectively.
- Such a high Q optical filter structure is used as a sensor, which is suitable for various applications, such as a biological, mechanical, or temperature sensor. This is due to the fact that the filter characteristics depend on the external element to be measured.
- Fig. 19 shows the results of tuning the laser 712 to the edge of the filter 710.
- the environmental element changes the resonance frequency of the filter, which results in a change of the optical power at the detector.
- this device can be used to measure or monitor various physical, mechanical or biological environmental changes.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
An optical device for use in data communication technique is presented. The device comprises a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops. The resonator-cavity loops are accommodated between the two waveguides and connected to each other through sections of the waveguides in such a manner that the resonator-cavity loops and the waveguide sections create a closed loop compound resonator for storing optical energy of a predetermined frequency range. A control means is used for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
Description
An Integrated Optical Device for Data Communication
FIELD OF THE INVENTION
This invention is generally in the field of optical communication techniques, and relates to an integrated optical device and a method of its manufacture.
BACKGROUND OF THE INVENTION Optical communication serves as the enabling technology for the information age, and the essential backbone for long haul communication. As this technology progresses, there is a tremendous interest in providing optical routes in the short haul, metropolitan and access networks, as well as in local area networks and cable TV networks. In all these networks, the best of breed solution for bandwidth expansion has been the adoption of wavelength division multiplexing (WDM), which entails the aggregation of many different information carrying light streams on the same optical fiber. A device capable of accessing an individual information stream is fundamentally required in current and future networks. These devices can also add information streams to the optical fiber, as well as impress information on an optical stream by optical modulation.
The basic building block for optical switching is the optical modulator/switch. Various implementations of such a device have been developed, of which the most dominant is the Mach-Zender Interferometer (MZI), in which interference is produced between phase coherent light waves that have traveled over different path lengths. The basic construction of the MZI is schematically illustrated in Fig. 1. Light input to a modulator 1 is via a single-mode waveguide. A beam splitter divides the light into two equal beams that travel through guides 2A and 2B. respectively. By applying voltage to electrodes 4, the effective path lengths can be varied. Hence, optical switching is achieved by creating a phase difference between two arms of the device (guides 2A and 2B). and controlling the optical power at the device output.
In general, the performance criteria for the operation of the wavelength routing elements include: the following:
(1) Modulation depth or contrast ratio, which signifies the ratio between two ("ON" and "OFF") or more states of a switch device;
(2) Crosstalk, which defines the ability of the device to select a single optical channel while suppressing information from the other channels;
(3) Electric power consumption;
(4) Modulation bandwidth, which defines the speed at which the switching can be achieved; and
(5) Optical bandwidth within which the modulation is effective.
To achieve a good modulation performance with the MZI, the latter is typically designed with long interference arms. As a result, this device is not efficient in its implementation, and limits the scaling ability of complex optical circuits. Another drawback of MZI-type devices, in their predominant implementation, is their frequency insensitivity over a desired frequency bandwidth. As a result. MZI-type devices cannot be used directly for wavelength routing.
To achieve wavelength routing, the MZI has been utilized in conjunction with wavelength demultiplexers, which provide spatial separation between
different optical frequencies. To this end, a matrix composed of at least N times (N+1) MZI is used to redirect one of the N spatially distinct wavelengths to the device output. The remaining frequencies are recombined using a wavelength multiplexer. Recenth developed integrated electro-optical devices utilize resonant rings to achieve frequency selective switching. Such a device is disclosed, for example, in WO 99/17151. The main components of the device are illustrated in Fig. 2. A resonant ring 6 couples light from one fiber 8a to another fiber 8b, when the frequency of the light passing through the fiber 8a fulfils that of the resonance condition of the ring 6. By applying an electric field or a thermal source to the ring 6, its refractive index, and consequently, its resonance condition, can be desirably adjusted. Changing the resonance condition prevents the passage of the previously coupled light and acts as a switch. Alternatively, the loss of the ring waveguide can be changed. Adding loss to the ring diminishes its operation as a resonant cavity, and light cannot be coupled from fiber to fiber.
Unfortunately, the conventional resonant ring based s> stems require fabrication tolerances that are hard to implement by means of a conventional photolithography technique. This disadvantage becomes more essential in multiple-ring devices, wherein the distance between two locally adjacent rings is a critical factor for the successful operation of the device. The use of a switching mechanism providing de-tuning of a resonant ring out of resonance condition has been proposed, being disclosed for example in WO 98/53535. This solution, however, does not meet the extinction ratio and crosstalk requirements of communication systems.
SUMMARY OF THE INVENTION
There is accordingly a need in the art to improve the operation of electro-optical communication devices by providing a novel electro- optical device, such as an optical frequency dependent switch, a modulator, a laser or amplifier, an Optical Add Drop Multiplexer (OADM), a spectral analyzer, or a sensor.
The optical device according to the present invention utilizes a structure formed by linear waveguides and ring waveguides (resonators). The inventors have found that the use of a ring waveguide provides for a new advantageous feature associated with the following. The conventional integrated optical devices typically employ a small refractive index difference between the waveguide region and the surrounding material. Since optical waveguides can be implemented in complex manners, the universal quantity characterizing the behavior of the confined light is the effective refractive index of the waveguide. In the conventional devices, the difference between the effective refractive index of the waveguide and the index of the surrounding medium is typically smaller then 1%. When using ring micro resonator structures, the effective refractive index of the ring waveguide has to be large, i.e., typically greater then 20%, to accommodate tight mode confinement and small losses. In these structures, however, the effective index of the ring waveguide and the linear waveguide are similar to within 3%. In an integrated optical device according to the present invention, the refractive index of the ring waveguide is at least 20% greater than the refractive index of the linear waveguide that receives an input signal.
The present invention takes advantage of the use of several (at least two) ring resonators. The main idea of the present invention is based on designing an optical complex filter/resonator, wherein waveguide sections are specifically connected to ring resonators in a configuration which enables realization of optical switching, wavelength routing, lasing, wavelength sensitive amplification, optical filtering, etc. The device may also combine a plurality of such filters in a wavelength router module. Generally speaking, the present invention utilizes the collective response of two or more closed loop resonators, which are connected to each other by two or more optical paths, for the purpose of switching or modulating a selected wavelength.
The optical resonator according to the invention is an enclosed cavity aimed at storing optical energy. As compared to the known devices of the kind specified, which utilize a closed-loop type optical resonator, and several such resonators
cascaded in various configurations, the present invention utilizes the inclusion of a feedback path for the optical signal. In other words, in the present invention, the loop resonator serves as a frequency selective mirror within a more complex resonator. These mirrors together with connecting waveguides create closed loop cavities with superior performance and simpler fabrication, and, mainly, are favorable for inclusion of switching capabilities and active media, as compared to the conventional devices.
The wavelength response of a structure composed of several ring resonators coupled to optical waveguides is determined by the physical and geometrical parameters of the resonators and coupling scheme. The present invention provides novel schemes of coupling multiple resonators to achieve predetermined active filtering and modulation characteristics. These coupling schemes are relatively easy to implement, and provide desired modulation characteristics.
There is thus provided, according to one aspect of the present invention, an optical resonator structure for storing optical energy comprising a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, the physical characteristics of the compound resonator being controllable to adjust the optical storage characteristics of the compound resonator.
The predetermined frequency range is determined by physical and geometrical characteristics of the compound resonator. To control the physical characteristics of the waveguide and/or loop-resonators, a heating means may be used.
One of the two waveguides serves as an input and throughput waveguide, and the other serves as an output waveguide. An optical signal entering the input waveguide may include a plurality of light components having different wavelengths. By actively adjusting the response of the compound resonator, using
a heater or any other means that changes the characteristics of the waveguide sections, one of these wavelengths may be switched from the input to the output waveguide.
According to another aspect of the present invention, there is provided an optical device comprising:
(a) a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range; and
(b) a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
The device may comprise additional waveguides and additional loop-resonators, forming together several such frequency selective switches, thereby providing complex optical signal switching and routing.
According to yet another aspect of the present invention, there is provided a laser device where an active material with gain is embedded in at least one of the parts comprising the above-described electro-optical device. This multiple section laser can be controlled by applying the above-described control means to tune its lasing frequency, to q-switch or to passively/actively mode lock the laser device in order to obtain pulsed operation.
According to another aspect of the present invention, there is provided a wavelength router system comprising at least one optical switch and at least one optical filter, wherein the switch and the filter is constructed as the above-described electro-optical device.
According to yet another aspects of the present invention, there are provided the following: an optical spectrum analyzer, an OADM, and a sensor, each comprising the above combination of two linear waveguides and at least two resonator cavit\ loops.
The real time monitoring of optical networks poses challenges for spectral analysis systems, such as the need for high resolution, short spectrum acquisition time, low cost, low loss on the optical link, and small size. In standard spectrum analyzers, where the wavelength separation element is based on gratings, high 5 resolution implies larger size and higher cost. An alternative would be to use tunable filters to scan across the optical spectrum of interest. However, existing tunable filters are limited in their ability to provide the required resolution. According to the present invention, a compound cavity, high Q optical ring resonator structure is utilized as a scanning filter, and is used for the analysis of i o optical spectra.
Modern optical communications are typically based on transmitting frequency multiplexed optical signals through an optical fiber. The OADM is capable of adding or dropping optical channels from an optical fiber, and is an essential element in modern optical communications. In the present invention, the 15 OADM is based on a combination of tunable filters, which provide the add or drop multiplexing functions. Since OADMs have to meet stringent criteria in their filtering, each ring resonator is an optical filter, and, by combining them in parallel, high order filters are obtained.
In general, the resonator-cavity loops (ring-resonators) can be replaced by 20 any other implementation of a frequency-selective element that couple between the two waveguide sections. For example, optical gratings can be used.
According to yet another aspect of the present invention, there is provided an electro-optical device comprising:
- a combination of two spaced-apart waveguides and at least two 25 spaced-apart wavelength-selective elements accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart wavelength-selective elements and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range; and
- a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics. The fabrication technology of waveguides is well developed in many classes and families of materials. The relaxation of the fabrication tolerances in the present invention relates to the possibility of vertical coupling of light from the waveguides to the ring resonators. Since the vertical fabrication tolerances are much better than the horizontal tolerances, the result is a device which is simpler to manufacture. However, the details and design of the invention extend beyond such devices in which only vertical coupling exists between the waveguides and resonators. Thus, according to yet another aspect of the present invention, there is provided a method for manufacturing the above device utilizing existing lithography techniques.
More specifically, the present invention is used with the ring-resonators and is therefore described below with respect to this application.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of a non-limiting example only, with reference to the accompanying drawings, in which: Fig. 1 is a schematic illustration of the conventional MZI structure;
Fig. 2 is a schematic illustration of the conventional resonant ring based electro-optical device;
Fig. 3 is a schematic illustration of an electro-optical device according to one embodiment of the invention; Fig. 4 graphically illustrates some advantageous features of the device of
Fig. 2, as compared to the conventional devices;
Fig. 5 graphically illustrates simulation results of the operation of the device of Fig. 2:.
Figs. 6a to 6c schematically illustrate electro-optical devices according to three different embodiments of the invention, respectively, suitable for designing complex filter structures;
Figs. 7a to 7c illustrate three more examples, respectively, of complex filter structures constructed according to the invention;
Fig. 8 graphically illustrates the operational principles of the devices of Figs. 7a-7c;
Fig. 9 schematically illustrates a block diagram of a wavelength router system utilizing the devices according to the invention; Fig. 10 illustrates a system utilizing the optical switches and filters according to the invention, and using ASE for monitoring the status of the optical switches;
Figs. 11A and lib illustrate main constructional features and main functional features, respectively, of a single channel Optical Add Drop Multiplexer (OADM) according to the invention;
Fig. 12 graphically illustrates the spectral response of one-, two- and three- ring filters for use in an OADM;
Fig. 13 schematically illustrates a four port add drop multiplexer;
Fig. 14 schematically illustrates the integration of switches and add drop filters for switch-able filters;
Fig. 15 illustrates the main components of a spectral analysis filter and detector according to the invention;
Fig. 16 illustrates a tap coupler and spectral analysis system utilizing the filter of Fig. 15: Fig. 17 illustrates a spectrum analyzer using several spectral filters of Fig.
15; and
Figs. 18 and 19 illustrate the main principles of a sensor device according to the invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Figs. 1 and 2 illustrate conventional MZI-type and ring-resonator type structures, respectively.
Referring to Figs. 3a and 3b, there is illustrated an electro-optical device, generally designated 10, constructed and operated according to one embodiment of the invention. The device 10 includes a compound resonator, which, according to the present example, is composed of two ring-resonators 12A and 12B (constituting resonator-cavity loops functioning as frequency-selective elements), and two waveguides 14 and 16, wherein waveguide sections 14A and 16A connects the rings 12A and 12B to each other. As shown in Fig. 3b by way of a block-diagram, these waveguide sections 14A and 16A present a spacer S between optical cavities defined by two ring-resonators R.
Further provided in the device 10 is a heater element 18 (electrodes) placed on either one of the waveguide sections - the section 16A in the present example. The operation of the heater element 18 enables to control the refractive index and, consequently, the optical phase imparted by the waveguide spacer S. Generally speaking, the change in the refractive index will induce the required phase shift to change the frequency response of the compound resonator. Such an active phase affecting may be achieved by applying any suitable thermo-optic, piezo-electric, electro-optic or the like effects within the spacer or ring resonator regions.
The device 10 may be implemented as a multi-layer optical structure manufactured by a lithography technique. All the elements of the compound resonator, i.e., the ring-resonators and the waveguides, may be formed in the same optical layer. Alternatively, the compound resonator may be manufactured as a multi-layer structure, namely the waveguides may be located in a locally adjacent upper or lower layer with respect to the layer containing the ring-resonators. This facilitates the manufacture to meet the requirements for small spaces between the coupling elements (i.e.. ring and waveguide).
The optical cavities (ring-resonators) are weakly coupled to the waveguides. Direct coupling between the two resonators is not required by this scheme. Each of
- l i ¬
the optical cavities is capable of supporting several resonance frequencies, which are determined by the geometrical and material details of the cavity. In the present example of Figs. 3a and 3b, which is the simplest case utilizing a pair of ring-resonator cavities, the two cavities 12A and 12B are identical, namely tuned for the same frequency range of the resonance condition. A change in the refractive index of one of compound resonator's elements (which is the waveguide 16 in the present example, since the heating element 18 is associated with this waveguide), will cause changes in the roundtrip phase of the entire cavity, thereby shifting the resonance condition. As indicated above, although the ring-resonators are exemplified here, any other implementation of the frequency-selective elements (mirrors) that couple between the two waveguide sections may be employed in the compound resonator for the purposes of the present invention. Such a frequency-selective element may, for example, be an optical grating. Assuming that the waveguide 14 is an input waveguide, and the waveguide
16 is an output waveguide, the response of the compound resonator 10 is essentially different from that of the conventional single-ring resonator shown in Fig. 2. This is illustrated in Fig. 4, showing two graphs Gi and G2, presenting optical power P at the output waveguide (fiber) 16 as a function of a normalized wavelength λnoι corresponding, respectively, to the conventional device and device 10 constructed according to the invention. It is self evident that the filtering characteristics and out of band signal suppression of the coupled resonator 10 are much better then those of the conventional single-ring resonator.
Fig. 5 illustrates simulation results of the operation of the device 10. Three graphs Hi, H2 and H3 present the output power P of the device 10 as a function of normalized wavelength λn0I. for different phase shifts: φ=0, φ=π/4 and φ=π/2, respectively.
Each of the ring-resonators (two in the present example) is comprised of a waveguide with the index or refraction (ιιcore) larger than its surrounding material nciaddi g). The waveguide is fashioned into a closed path, called "ring". The input
waveguide passes below the ring-resonators in a manner to allow the overlap of the two waveguide modes and allow for transferring optical power from the input waveguide to the ring-resonator. As for the output waveguide, it is also placed so as to attain the coupling to the ring. This output waveguide may serve as the output of the selected frequency. Alternatively, when the device 10 is to be used as a modulator, this waveguide can also serve as a throughput port for optical frequencies different from that of the modulated signal.
In general, integrated optical elements are composed with contradictory requirements. For low loss and ease of coupling to the external optical fiber, waveguides are realized using a small difference between the refractive indices of the core and cladding. However, to achieve compact structures, tight bends are required which imply a large difference between the refractive indices of the core and cladding. An important result of the current invention relates to the ability to combine the best of both worlds by using ring resonators realized in a high index core and coupled to a low index waveguide. According to the present invention, if, for example, the refractive index of a surrounding medium is 1.46, and the refractive index of an "input" linear waveguide (e.g., 14) is 1.48, the refractive index of each of the ring resonators 12A and 12B can be about 2 and would provide successful operation of the device 10. Generally, the refractive index of the ring waveguide should be at least 20% greater than the refractive index of the "input" waveguide 14, to realize low loss small radius ring resonators.
The operation of the device 10 is characterized by the low loss propagation of the optical mode in the ring waveguide. This is achieved by utilizing a refractive index contrast between the waveguide and surrounding material. The ring may be composed of optical glass with a refractive index of about 1.6-1.9. may be made from silicon (refractive index of 3.5) or a layered-structure made of suitable materials such as used in Vertical Emitting Cavity Lasers (VECSELs). It is known that the ring itself manifests on frequencies corresponding to its resonance condition. The resonant frequency of the ring, fo, is given by:
2πRne/
wherein R is the ring radius measured from the center of the ring to the center region of the ring waveguide; nef is the effective refractive index of the ring waveguide: M is an integer value; and c is the speed of light propagation in vacuum. The effective refractive index can be determined by various known techniques.
One of the important parameters defining the characteristics of the entire device 10, is the coupling between the ring and the waveguide, since it determines the optical bandwidth and photon lifetime, and, consequently, the modulation efficiency. The power exchange between the waveguide and the ring is denoted by k , and can be calculated by computing the overlap integral of the modes of the ring and waveguide multiplied by the interaction length. The optical bandwidth, Δ is then determined as follows:
As seen in Fig. 3b, the individual ring-resonator actually presents a two-port device. The throughput function describing the ring optical amplitude characteristics is given by:
J x k \ - (l - k)eJωl J
while the drop function is given by:
(ω) = (4) \ - (\ - k)e 'ω'
Here, ω is the radial frequency given by: &—2f.
The matrix describing one ring is given by:
1 - D
MliιnR = \ I T (5)
D T2 - D2
Complex structures can be obtained by multiplying the matrixes of the corresponding sections. This calculation technique is known er se, and is used in analyzing complex distributed feedback lasers.
Turning back to Fig. 3a, it should be understood that, if at least one of the frequency-selective elements (ring resonators) 12A or 12B or at least one of the waveguide sections 14A or 16 A is filled with an active medium, the device 10 can operate as a laser.
As known, an optical communication system typically requires stringent switching and routing. A single resonant ring device usually cannot meet these requirements. To this end, according to the present invention, filters are designed either as single stage coupled compound resonators, or as multiple-stage coupled compound resonators. Compound resonators of such filtering devices are illustrated in Figs. 6a-6c, being designated 20, 30 and 40, respectively. Each of these devices utilizes the compound resonator structure 10 of Fig. 3a as a frequency selective switch/modulator, in which the ring-resonators R are coupled both in the forward and back directions, thereby increasing the degrees of freedom in the design of filters. It should be understood that, in all the examples, the matrix model is used in the synthesis and analysis of the filter/switch/modulator characteristics.
In the example of Fig. 6a, the entire waveguide cavity is formed by waveguides 14 and 16, and three pairs of ring-resonators Rι-R2, R3-R4 and R5-R6 enclosed therebetween. In the example of Fig. 6b, a multi-stage coupled compound resonator 30 is composed of two pairs of rings R R2 and R3-R4 enclosed between waveguides j and W2, and an additional ring-resonator R5 coupled to an additional waveguide W3. A multi-stage coupled compound resonator 40 (Fig. 5c)
comprises two compound resonators 10, and two additional ring-resonators R5 and Re, the latter being is coupled to an output waveguide W4. By appropriately adjusting the index of the waveguide in the corresponding compound resonator, the desired wavelength may be switched from the input to the output waveguide. Reference is now made to Figs. 7a-7c and 8, illustrating the main constructional and operational principles of three other devices 50, 60 and 70, respectively, that are capable of operating as a switch or modulator. The devices 50, 60 and 70 have somewhat different design of waveguides and rings arrangement, as compared to the previously described examples, as illustrated in the figures in a self-explanatory manner using the same reference numbers for identifying those components, which are common in all examples.
Fig. 8 shows three graphs Di, D2 and D3, corresponding to simulation results of the operation of the devices 50, 60 and 70, respectively. Each graph presents the optical power P at the output fiber (W3, W3 and W4, respectively) as a function of a phase shift φ in the waveguide section. As clearly seen in the figure, for very small values of the phase shift φ, more then 20dB of signal extinction is obtained. This enables the size required by the waveguide sections to be to significantly reduced, since the optical phase shift is accumulated over the length of the waveguide.
The advantages of the device according to the invention are thus self-evident. The device attains attractive modulation characteristics, requires very small phase shifts, and, consequently, the interaction region, as well as the switching power, can be minimized. The extinction ratio of the optical signal meets optical communication standards.
Fig. 9 illustrates a block diagram of a system 100 utilizing the above-described devices to form a wavelength router. The system comprises three switches SWi. SW2 and SW3, and two filter units FUj and FU2. Each of the filter units is accommodated between two locally adjacent switches, and is designed so as to, when being actuated, route a specific optical frequency. In this example, one of the filters is activated at a time, thereby enabling the routed wavelength to be dynamical!)' chosen. Obviously, a plurality of switching mechanisms can be used
to increase the number of drop ports. It is important to note that this technique requires a considerably lower number of switches than that of the MZI switching matrix. Indeed, for an TV-channel, -drop system, the MZI switching matrix would require at least (N+M) by N matrix, while the system according to the present invention would require N switches with an M by M matrix.
The present invention can also be used for actively monitoring the switch performance. As is known, one the crucial issues in modem communication systems is the status of the on-line switches. A non-operative switch in either the "ON" or "OFF" position can degrade the performance of the communication network. Modem communication systems utilize an erbium-doped fiber to compensate for losses in the optical fiber, connectors and devices. The amplifier emits amplified spontaneous emission (ASE) in all optical frequencies, which are off interest.
In the present invention, it is proposed to use an ASE for monitoring the status of the optical switches. This concept is illustrated in Fig. 10, showing a system 200 that utilizes the components of the above-described system 100, and two photodetectors PDi and PD2. Each photodetector is placed at the output of the corresponding switch and is coupled to a control unit (monitor) CU that monitors the optical power though this switch. Since the ASE exists at all frequencies, it can be used to monitor and control the switches.
The combination of two ring waveguides accommodated between and coupled to the two linear waveguides may be advantageously utilized in various optical devices. Referring to Figs. 11A and l ib, there are illustrated main constructional features and main functional features, respectively, of a single channel Optical Add Drop Multiplexer (OADM), generally designated 300.
The OADM 300 is composed of two compound resonators 310 and 312, each constructed as described above, namely, including two ring-resonators accommodated between and coupled to two linear waveguides. Here, each ring resonator is an optical filter, and, by combining them in parallel, high order filters
are obtained. The drop port (filter) is implemented using a double filter pass, while the add port is obtained with a single filter.
It should be noted that the number of rings per functional filter may differ to accommodate the specifications of a particular optical network. This concept is illustrated in Fig. 12 showing graphs Gi, G2 and G3 corresponding to the optical spectral response of, respectively, one-, two- and three-ring filters.
Fig. 13 illustrates a four port add drop multiplexer. Here, multiple channel OADMs are obtained by cascading the structures of Figs. 11A-1 IB.
Fig. 14 illustrates an example of the integration of switches and add drop filters for switch-able filters. Here, optical switches are added to insert and extract the ring based OADM from the optical path.
Reference is now made to Fig. 15 illustrating the main components of a system 400 formed by a spectral analysis filter 410 and detector 412. The filter 410 comprises two compound resonators 410A and 410B connected in parallel through a common linear waveguide W2, and serves as a compound high Q optical ring resonator structure. The output linear waveguide W3 of the structure is connected to the detector 412. The Q of the filter is determined by the coupling factor describing the amount of light that is coupled into the filter at every round trip. The Q factor is also determined by the optical losses in the cavity and the ring radius. Fig. 16 illustrates a tap coupler and spectral analysis system, generally designated 500, utilizing the above-described system 400. The filter 410 is connected to an optical network (link) 512 via a coupler 514, which taps a small amount of light, thereby minimizing the losses incurred in the optical link.
Fig. 17 illustrates a spectrum analyzer 600 utilizing several spectral analysis filters - three such filters 610A, 610B and 610C in the present example, used in parallel through a common input linear waveguide Wj. Each filter has a different radius, as compared to the others, and therefore is capable of carrying out a different spectral analysis. This feature is associated with two problems that may occur when using ring resonators, namely, limited tuning range and limited free
spectral range, resulting in that a different approach has to be adopted to scan across a wide spectrum.
Turning now to Fig. 18, there is illustrated a sensor device 700 according to the invention. The sensor device 700 comprises an environmental sensitive filter 710 constructed as the above-described compound resonator, which is connected to a laser 712 and a detector 714 through its input and output waveguides Wi and W2, respectively. Such a high Q optical filter structure is used as a sensor, which is suitable for various applications, such as a biological, mechanical, or temperature sensor. This is due to the fact that the filter characteristics depend on the external element to be measured.
Fig. 19 shows the results of tuning the laser 712 to the edge of the filter 710. Generally speaking, the environmental element changes the resonance frequency of the filter, which results in a change of the optical power at the detector. With proper calibration, this device can be used to measure or monitor various physical, mechanical or biological environmental changes.
Those skilled in the art will readily appreciate that various modifications and changes can be applied to the preferred embodiment of the present invention as herein before exemplified without departing from its scope defined in and by the appended claims. In the method claim which follow, characters which are used to designate claim steps, are provided for convenience only and do not apply any particular order of performing the steps.
Claims
1. An optical resonator structure for storing optical energy comprising a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, the physical characteristics of the compound resonator being controllable to adjust the optical storage characteristics of the compound resonator.
2. The structure according to Claim 1, wherein each of the at least two resonator cavity loops is designed like a ring waveguide.
3. The structure according to Claim 2, wherein the refractive index of each of the ring waveguides is at least 20% greater than the refractive index of the waveguide serving as an input and throughput waveguide.
4. An electro-optical device comprising the structure constructed according to
Claim 1, and a control means for controlling physical characteristics of the structure to adjust its optical storage characteristics.
5. The device according to Claim 4, wherein said control means are placed on either one of the waveguide sections.
6. The device according to Claim 4, wherein said control means are placed on either one of the resonator cavities.
7. The device according to Claim 4, wherein said control means comprises heating means.
8. The device according to Claim 4, wherein said control means comprises electro-optic means.
9. The device according to Claim 4. wherein said control means comprises piezo-optic means.
10. The device according to Claim 4, functioning as a switch.
11. The device according to Claim 4. functioning as a modulator.
12. The device according to Claim 4, wherein the resonator-cavity loops and the waveguides are arranged within same optical layer.
13. The device according to Claim 4, wherein the resonator cavity loops are arranged within same optical layer, and the waveguides are arranged in a locally adjacent layer.
14. The device according to Claim 4, and also comprising at least one additional pair of resonator-cavity loops, all the resonator cavity loops being aligned in line between the two waveguides.
15. The device according to Claim 4, and also comprising at least one structure composed of at least one additional resonator-cavity loop coupled to the compound resonator through one of said two waveguides, and an additional waveguide coupled to said at least one additional resonator-cavity loop.
16. The device according to Claim 15, comprising a plurality of said structures, forming together a plurality of frequency selective sλvitches, thereby providing complex optical signal switching and routing.
17. The device according to Claim 4, wherein said resonator-cavity loops are filled with an optically active medium providing optical gain, the device thereby operating as a laser or amplifier.
18. The device according to Claim 4, wherein said waveguide sections are filled with an optically active medium providing optical gain, the device thereby operating as a laser or amplifier.
19. The device according to Claim 11, wherein said resonator-cavity loops are filled with an optically active medium providing optical loss.
20. The device according to Claim 11, wherein said waveguide sections are filled with an optically active medium providing optical loss.
21. The device according to Claim 15. wherein each of the resonator-cavity loops is a ring-like optical fiber, the optical fibers being combined in parallel through said one of said two waveguides, the device being thereby operable as an Optical Add Drop Multiplexer.
22. The device according to Claim 15, and also comprising a detector connected to said additional waveguide, the device being thereby operable as a spectral analysis filter.
23. The device according to Claim 4, and also comprising a light source and a detector coupled to said stmcture through its input and output waveguides, respectively, the device thereby operating as an environmental sensitive filter.
24. An electro-optical device comprising:
(a) a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of said waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range; and
(b) a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
25. A laser device comprising a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, wherein at least one of said resonator-cavity loops or said waveguide sections is filled with an optically active medium providing gain.
26. A controlled laser device comprising:
- a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of said waveguides, said at least two spaced-apart resonator-cavity loops and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, wherein at least one of said waveguide sections or said closed loop resonators is filled with an optically active medium providing gain effect; and - a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
27. The device according to claim 26, wherein said control means is used to passively or actively mode locking said controlled laser.
28. The device according to claim 26, wherein said control means is used to Q-switch said controlled laser.
29. A wavelength router system comprising at least one optical switch and at least one optical filter connected to an output of said at least one optical switch, wherein each of the switch and the filter comprises a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, the resonator cavities and the waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range, a control means being provided for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
30. The system according to Claim 29, and also comprising a control unit including at least one photodetector connected to said output of the switch for monitoring the status thereof.
31. An integrated electro-optical device comprising:
- a combination of two spaced-apart waveguides and at least two spaced-apart wavelength-selective elements accommodated between the two waveguides and connected to each other through sections of the waveguides, said at least two spaced-apart wavelength-selective elements and said waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range: and
- a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics.
32. The device according to Claim 31, wherein said frequency-selective elements are gratings.
33. A method for manufacturing an electro-optical device comprising a combination of two spaced-apart waveguides and at least two spaced-apart resonator-cavity loops accommodated between the two waveguides and connected to each other through sections of the waveguides, the resonator cavities and the waveguide sections creating a closed loop compound resonator for storing optical energy of a predetermined frequency range; and a control means for controlling physical characteristics of the compound resonator to adjust its optical storage characteristics, the method comprising the steps of:
(i) performing a first lithography process to form said at least two spaced-apart resonator-cavity loops in a first optical layer; and (ii) performing a second lithography process to form the two waveguides in a locally adjacent optical layer.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL13238599A IL132385A0 (en) | 1999-10-14 | 1999-10-14 | An integrated optical device for data communications |
IL13238599 | 1999-10-14 | ||
US478717 | 2000-01-06 | ||
US09/478,717 US6668006B1 (en) | 1999-10-14 | 2000-01-06 | Integrated optical device for data communication |
US23206100P | 2000-09-12 | 2000-09-12 | |
US232061P | 2000-09-12 | ||
PCT/IL2000/000654 WO2001027692A1 (en) | 1999-10-14 | 2000-10-15 | An integrated optical device for data communication |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1221069A1 true EP1221069A1 (en) | 2002-07-10 |
Family
ID=27271917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00969774A Withdrawn EP1221069A1 (en) | 1999-10-14 | 2000-10-15 | An integrated optical device for data communication |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1221069A1 (en) |
JP (1) | JP2003527625A (en) |
AU (1) | AU7942000A (en) |
CA (1) | CA2385020A1 (en) |
WO (1) | WO2001027692A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU1795201A (en) | 1999-11-23 | 2001-06-04 | Nanovation Technologies, Inc. | Localized thermal tuning of ring resonators |
IL135806A0 (en) | 2000-04-24 | 2001-05-20 | Lambda Crossing Ltd | A multi layer integrated optical device and a method of fabrication thereof |
DE60100936T2 (en) | 2000-04-24 | 2004-08-12 | Lambda Crossing Ltd. | MULTI-LAYER INTEGRATED DEVICE AND A METHOD FOR PRODUCING IT |
US6885689B2 (en) * | 2000-09-06 | 2005-04-26 | Lambda Crossing Ltd. | Multisegment integrated laser and a method for fabrication thereof |
WO2002023242A2 (en) * | 2000-09-12 | 2002-03-21 | Lambda Crossing Ltd. | Ring waveguide based optical device |
US7120333B2 (en) | 2001-10-25 | 2006-10-10 | Lambda Crossing, Ltd. | Polarization insensitive tunable optical filters |
US6839482B2 (en) * | 2002-06-17 | 2005-01-04 | Lambda Crossing Ltd. | Tunable optical filtering device and method |
US6888854B2 (en) | 2002-07-03 | 2005-05-03 | Lambda Crossing Ltd. | Integrated monitor device |
US6885794B2 (en) | 2002-07-11 | 2005-04-26 | Lambda Crossing, Ltd. | Micro-ring resonator |
IL152195A0 (en) * | 2002-10-09 | 2003-05-29 | Lambda Crossing Ltd | Tunable laser |
US7065276B2 (en) | 2003-04-03 | 2006-06-20 | Lambda Crossing Ltd. | Integrated optical filters utilizing resonators |
US7057250B2 (en) * | 2003-04-09 | 2006-06-06 | University Of Delaware | Terahertz frequency band wavelength selector |
EP1646898A1 (en) | 2003-07-15 | 2006-04-19 | Massachusetts Institute Of Technology | Optical coupled-resonator filters with asymmetric coupling |
JP2006332137A (en) * | 2005-05-23 | 2006-12-07 | Nippon Telegr & Teleph Corp <Ntt> | Light-emitting device |
JP2008270583A (en) | 2007-04-23 | 2008-11-06 | Nec Corp | Wavelength variable light source and its control method, and program for control |
JP4901768B2 (en) * | 2008-01-18 | 2012-03-21 | 株式会社東芝 | Optical multiplexer / demultiplexer |
CN104375242B (en) * | 2014-11-06 | 2017-02-15 | 上海交通大学 | Nesting sub-ring based wavelength selection switch for silica-based micro-ring resonant cavity |
US10509173B2 (en) | 2015-09-22 | 2019-12-17 | Hewlett Packard Enterprise Development Lp | Optical notch filter system with independent control of coupled devices |
CN107991738B (en) * | 2017-12-08 | 2019-11-22 | 华中科技大学 | A kind of silicon substrate multifunctional reconfigurable optical filter |
KR102496484B1 (en) | 2018-06-20 | 2023-02-06 | 삼성전자주식회사 | Light steering apparatus and system including the light steering apparatus |
JP7476317B2 (en) | 2022-02-17 | 2024-04-30 | 三菱電機株式会社 | Non-invasive material analysis device |
WO2023181226A1 (en) * | 2022-03-24 | 2023-09-28 | 三菱電機株式会社 | Optical sensor device, measurement system, and measurement method |
WO2023181227A1 (en) * | 2022-03-24 | 2023-09-28 | 三菱電機株式会社 | Optical sensor chip, optical sensor system, and measuring method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2118765B (en) * | 1982-04-14 | 1986-04-03 | Oudar Jean Louis | Bistable optical device |
US4775214A (en) * | 1983-12-21 | 1988-10-04 | Rosemount Inc. | Wavelength coded resonant optical sensor |
US5742633A (en) * | 1996-10-02 | 1998-04-21 | Yale University | Asymmetric resonant optical cavity apparatus |
US6101300A (en) * | 1997-06-09 | 2000-08-08 | Massachusetts Institute Of Technology | High efficiency channel drop filter with absorption induced on/off switching and modulation |
US6052495A (en) * | 1997-10-01 | 2000-04-18 | Massachusetts Institute Of Technology | Resonator modulators and wavelength routing switches |
-
2000
- 2000-10-15 CA CA002385020A patent/CA2385020A1/en not_active Abandoned
- 2000-10-15 EP EP00969774A patent/EP1221069A1/en not_active Withdrawn
- 2000-10-15 WO PCT/IL2000/000654 patent/WO2001027692A1/en active Search and Examination
- 2000-10-15 JP JP2001530643A patent/JP2003527625A/en active Pending
- 2000-10-15 AU AU79420/00A patent/AU7942000A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0127692A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU7942000A (en) | 2001-04-23 |
CA2385020A1 (en) | 2001-04-19 |
JP2003527625A (en) | 2003-09-16 |
WO2001027692A1 (en) | 2001-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6668006B1 (en) | Integrated optical device for data communication | |
WO2001027692A1 (en) | An integrated optical device for data communication | |
EP1013022B1 (en) | Arrangement and method relating to optical transmission | |
JP4678191B2 (en) | Multiple resonator design method | |
Sadot et al. | Tunable optical filters for dense WDM networks | |
US6201909B1 (en) | Wavelength selective optical routers | |
Offrein et al. | Resonant coupler-based tunable add after-drop filter in silicon-oxynitride technology for WDM networks | |
EP0979435A1 (en) | Ultra-fast tunable optical filters | |
US20040228564A1 (en) | External cavity laser source | |
EP1423751B1 (en) | Integrated optical signal handling device | |
US20050058396A1 (en) | Nested function ring resonator | |
JP4629942B2 (en) | Apparatus and method for optical multiplexing / demultiplexing | |
JP4410584B2 (en) | Thermo-optic optical functional component and control method thereof | |
US6744941B2 (en) | Optical wavelength tunable filter | |
IL148556A (en) | Integrated optical device for data communication | |
GB2363536A (en) | WDM signal monitoring using variable arrayed waveguides | |
WO2007107186A1 (en) | Integrated laser optical source | |
JP3600785B2 (en) | Waveguide type laser | |
JPH05107420A (en) | Semiconductor optical element | |
Liptak et al. | Fiber-Optic Network Components | |
Maru et al. | High resolution dynamic gain equalizer using super-high∆ planar lightwave circuit technology | |
JP2755121B2 (en) | Optical node device for WDM communication | |
North | WDM Devices | |
JPH07168216A (en) | Wavelength selecting optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020313 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20051222 |