EP1215707B1 - X-ray source with liquid metal target and X-ray apparatus - Google Patents

X-ray source with liquid metal target and X-ray apparatus Download PDF

Info

Publication number
EP1215707B1
EP1215707B1 EP01000722A EP01000722A EP1215707B1 EP 1215707 B1 EP1215707 B1 EP 1215707B1 EP 01000722 A EP01000722 A EP 01000722A EP 01000722 A EP01000722 A EP 01000722A EP 1215707 B1 EP1215707 B1 EP 1215707B1
Authority
EP
European Patent Office
Prior art keywords
liquid metal
ray source
duct segment
duct
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01000722A
Other languages
German (de)
French (fr)
Other versions
EP1215707A2 (en
EP1215707A3 (en
Inventor
Geoffrey Harding
Bernd Ulmer
Bernd David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7667538&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1215707(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1215707A2 publication Critical patent/EP1215707A2/en
Publication of EP1215707A3 publication Critical patent/EP1215707A3/en
Application granted granted Critical
Publication of EP1215707B1 publication Critical patent/EP1215707B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids

Definitions

  • the invention relates to an X-ray source with liquid metal target and an electron source for emitting an electron beam into a window of a conduit part, through the in operation, the liquid metal target flows, and an X-ray machine with a such X-ray source.
  • An X-ray source of this type is known from DE 198 21939.3.
  • This type of cooling significantly improves the continuous loadability of the X-ray source.
  • a further increase in resilience is opposed by the fact that the Window and the surrounding areas of the window of the X-ray source, d. H. of the Window frames, relatively high thermal stresses are exposed. The reasons for this lie in the heat generation in particular due to the direct incidence of electrons with high energy and due to the flow of hot liquid metal under the window. Furthermore, the scattered electrons carry only a small energy loss have, for generating heat.
  • An object on which the invention is based is an X-ray source to provide liquid metal target and an electron source of the type mentioned, whose continuous load capacity can be further increased.
  • an X-ray source of the type mentioned which is according to claim 1 characterized in that the conduit part by a first line section, which has the window and through which the liquid metal target flows, as well a second conduit section is formed through which a coolant flows and so on attached to the first line section is that the area of the action of the electron beam is cooled to the first line section.
  • a particular advantage of this solution is that due to the increased heat dissipation the load capacity of the X-ray source, especially in such applications on can be increased, in which in a short time a high X-ray dose must be generated, such as in CT devices with a high sampling rate
  • FIG. 1 schematically shows an X-ray emitter in which the electron-irradiated Target is formed by a liquid in the operating state of the X-ray source metal.
  • an electron source in the form of a cathode 3, which emits an electron beam 4 in the operating state.
  • This Electron beam 4 is directed to a conduit part 51 of a Rohdeitungssystems 50 and passes through a window 22, 34 which is substantially transparent to the electrons flowing liquid metal target to the piping 50, so that X-rays be stimulated.
  • a pump 52 the liquid metal in a circuit the Rohdeitungssystem 50 pumped, which also leads through a heat exchanger 53, so that the generated heat is removed from the liquid metal via a cooling circuit can.
  • the conduit part 51 of the Rohdeitungssystems 50 is shown in Figures 2 and 3 in detail in Top view shown.
  • the line part 51 is composed according to Figure 2 of four elements 10,20,30,40, which are shown in the order (a) to (d) and in this order one above the other are arranged, that is, on the first element 10 according to Figure 2 (a), the second Element 20 according to Figure 2 (b), thereon, the third element 30 according to Figure 2 (c) and thereon finally, the fourth element 40 according to FIG. 2 (d) is set.
  • the elements are in the in Figure 2 alignment shown assembled.
  • the electron beam enters the plane the drawing vertical direction from above initially in the fourth element 40 and then passes through the third and second elements 30, 20 finally into the first element 10th
  • the electron beam has a line-shaped focal point ("Stroke focus"), which in the illustrations according to FIG. 2 is from left to right extends.
  • stitch focus has, for example, dimensions of 1 mm x 7 mm and is often used in X-ray sources to provide the power at constant power density to increase the irradiated area.
  • the first element 10 according to FIG. 2 (a) is made of a solid metal body, for example made of steel or molybdenum, for example, about 100 mm long, 25 mm wide and 10 mm deep.
  • a first channel 11 is introduced, through which in Operating state of the assembled line part, the liquid metal target in which the X-rays are generated, according to the indication by the arrow P1 flows.
  • the depth This first channel 11 is not constant, but decreases in a central region 12.
  • the channel At the location of the central region 12 where the electron beam enters, the channel has its lowest depth, which is there for example about 200 microns.
  • the second element 20 shown in Figure 2 (b) is about 1 mm thick and otherwise in the essentially the same external dimensions as the first element 10.
  • a central Area 21 is a substantially circular insert 22 into which a first, in essentially rectangular slot 23 is introduced for the electron beam. This slot extends with its longitudinal direction perpendicular to the flow direction of Liquid metal targets, resulting in optimum heat dissipation.
  • the first slot 23 is at its lower side in the illustration with a diamond layer closed with a thickness of about 1 micron, by gluing or otherwise the insert 22 is attached.
  • the first slot thus forms a diamond window 23 suitable for Electrons are permeable.
  • the second element 20 is fastened with screws or other fastening means (not shown) mounted on the first element 10 so that a first liquid-tight line section 10, 20 is formed, through which the liquid metal target can flow. Due to the reduced Depth of the channel 11 in the central region 12 and in particular on the diamond window the target is accelerated there, creating a turbulent flow. These turbulent flow ensures a particularly effective dissipation of thermal energy from the window, because of the resulting vortex the liquid is particularly good and fast is mixed. This is especially true in the temperature critical area of Diamond window and its attachment to the insert 22 advantageous.
  • the first line section 10, 20 is part of a primary liquid metal circuit by the heat exchanger 53 ( Figure 1) leads.
  • a second line section 30, 40 is provided which leads a coolant and according to the position shown in Figure 2 (c), (d) at an angle of about 90 degrees the first line section 10, 20 is mounted so that it is in the longitudinal direction of first slot 23 extends over this.
  • the second line section comprises a third element 30, which according to Figure 2 (c) from a metal body, for example made of steel or molybdenum, with a central region 33 is formed.
  • a metal body for example made of steel or molybdenum
  • a second, substantially rectangular Slit 34 a which is arranged and formed so that the first slot 23 in the second element 20 continues.
  • In the metal body are still two channels 31, 32nd milled, which extend in the longitudinal direction of the second slot 34 a and outside the central region 33 parallel to each other. Start in the central area 33 the channels 31, 32 at the level of one end of the second slot 34 a apart until it returns to beyond the height of the other end of the slot 34a Move back direction to their parallel sections outside the central area.
  • the channels 31, 32 thus close in the central region 33 in the substantially circular segment-like surface 35 in which the first slot 34a is located.
  • the fourth element 40 has substantially the same outer shape as the third element 30 and is mounted with fasteners (not shown) on this, so that the second liquid-tight line section 30, 40 results.
  • a central area 41 of the fourth element 40 is a substantially rectangular opening 34 b of the second slot 34a.
  • a circular segment-like recess 43 introduced in the outer surface of the central region 41 , the shape of which with the shape of the surface 35th corresponding to the channels 31, 32 in the central region 33 of the third element 30 enclose. This sinking is done by removing material by milling or on introduced another way.
  • the second line section 30, 40 has in the region of the recess 43, in which the dashed line of the electron beam, when assembled, has a thickness of about 3 mm. Outside this range, ie both in one direction upstream and downstream, as well as in a direction perpendicular to it, the strength can be greater, so that the Channels 31, 32 can be formed wider or deeper and thus flow losses due to the viscosity of the coolant (secondary fluid) can be reduced.
  • the only limitation in this regard is given by the requirement that the dimensions and the shape of the second line section does not affect the usable x-ray beam to hamper.
  • the second conduit section 30, 40 forms part of a secondary fluid circuit and serves to heat from the first line section, in particular its central Area in which the first slot 23 and thus the diamond window is to dissipate.
  • the second line section 30, 40 extends at an angle of 90 Degree to the first line section 10,20.
  • the preferred direction of the flow of primary liquid metal targets through the first line section 10,20 is indicated by the arrow P1 in Figure 2 (a) and the preferred direction of secondary fluid flow through the second line section 30, 40 is indicated by the arrows P2 in Figure 2 (c).
  • the Working temperature of the primary liquid metal target is reduced. This will on the other hand also the temperature of the connection between the diamond window and the insert 22 lowered, and finally the thermal effect of the secondary electrons coming out of the primary electron beam are scattered out and under the influence of the opposite hit the cathode of the positive potential of the anode near the focal point, reduced.
  • FIG. 3 shows these relationships for one of the first and the second line section composed line part 51, wherein the preferred flow direction of the primary liquid metal target in turn by the Arrow P1 and the secondary liquid is again indicated by the arrow P2.
  • the channels 31, 32 diverge within the central region 33 of the third element 30 in such a way that the X-ray beam 50 exiting according to FIG. 3 does not pass through the channels is disturbed or damped.
  • the primary and secondary fluid circuits may be as shown in FIG 4 with the same liquid metal together via line 50 ( Figure 1) with the pump 52 are fed, the line is preferably passed through the heat exchanger 53 becomes.
  • a first line splitter 501 (Y-piece) is provided for this purpose the line 50 is connected and from which a primary line 502 and a secondary line 503 goes out. These lines feed the line part 51 and sit down continue at its outputs until it is connected to a second line splitter 504 (Y-piece) to be reunited and continued as joint leadership.
  • the primary and the Secondary line 502,503 are guided so that they are at each a right angle to each other having inputs or outputs of the line part 51 and the first or second line divider 501, 504 can be connected.
  • the secondary fluid circuit may be separate and independent of guided to the primary circuit of the liquid metal target. This can be special then be useful if a cooling liquid to be used, for example, a having particularly low viscosity and / or high thermal conductivity.
  • the heat dissipation achieved with the conduit part 51 according to the invention from the window into which the electron beam enters to generate X-rays much more effective than in known arrangements of this type, so that in a corresponding X-ray source reduces the working temperature or the radiation intensity can be increased.

Landscapes

  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft einen Röntgenstrahler mit Flüssigmetall-Target und einer Elektronenquelle zur Emission eines Elektronenstrahls in ein Fenster eines Leitungsteils, durch das im Betriebszustand das Flüssigmetall-Target fließt, sowie ein Röntgengerät mit einem solchen Röntgenstrahler.The invention relates to an X-ray source with liquid metal target and an electron source for emitting an electron beam into a window of a conduit part, through the in operation, the liquid metal target flows, and an X-ray machine with a such X-ray source.

Ein Röntgenstrahler dieser Art ist aus der DE 198 21939.3 bekannt. Dabei wird das Fenster, durch das die von der Elektronenquelle emittierten Elektronen hindurchtreten und auf das Flüssigmetall-Target treffen, durch eine turbulente Strömung des Targets gekühlt. Durch diese Art der Kühlung wird die Dauerbelastbarkeit des Röntgenstrahlers erheblich verbessert. Einer weiteren Steigerung der Belastbarkeit steht jedoch die Tatsache entgegen, dass das Fenster sowie die das Fenster umgebenden Bereiche des Röntgenstrahlers, d. h. der Fensterrahmen, relativ hohen thermischen Spannungen ausgesetzt sind. Die Ursachen hierfür liegen in der Wärmeerzeugung insbesondere aufgrund des direkten Einfalls von Elektronen mit hoher Energie und aufgrund der Strömung des heißen Flüssigmetalls unter dem Fenster. Weiterhin tragen auch die gestreuten Elektronen, die einen nur geringen Energieverlust aufweisen, zur Wärmeerzeugung bei.An X-ray source of this type is known from DE 198 21939.3. At the same time the window, through which the electrons emitted by the electron source pass and onto the Liquid metal target meet, cooled by a turbulent flow of the target. By This type of cooling significantly improves the continuous loadability of the X-ray source. However, a further increase in resilience is opposed by the fact that the Window and the surrounding areas of the window of the X-ray source, d. H. of the Window frames, relatively high thermal stresses are exposed. The reasons for this lie in the heat generation in particular due to the direct incidence of electrons with high energy and due to the flow of hot liquid metal under the window. Furthermore, the scattered electrons carry only a small energy loss have, for generating heat.

Dies ist deshalb besonders kritisch, weil die Verbindung zwischen dem Fenster und dem Fensterrahmen in Abhängigkeit von der verwendeten Bond-Technologie (z. B.Lötung, Klebung) einer nur begrenzten maximalen Temperatur standhalten kann.This is particularly critical because the connection between the window and the Depending on the bonding technology used (eg soldering, Gluing) a limited maximum temperature can withstand.

Eine Aufgabe, die der Erfindung zugrunde liegt, besteht deshalb darin, einen Röntgenstrahler mit Flüssigmetall-Target und einer Elektronenquelle der eingangs genannten Art zu schaffen, dessen Dauerbelastbarkeit weiter gesteigert werden kann.An object on which the invention is based, therefore, is an X-ray source to provide liquid metal target and an electron source of the type mentioned, whose continuous load capacity can be further increased.

Gelöst wird diese Aufgabe mit einem Röntgenstrahler der eingangs genannten Art, der sich gemäß Anspruch 1 dadurch auszeichnet, dass das Leitungsteil durch einen ersten Leitungsabschnitt, der das Fenster aufweist und durch den das Flüssigmetall-Target fließt, sowie einen zweiten Leitungsabschnitt gebildet ist, durch den ein Kühlmittel strömt und der so an dem ersten Leitungsabschnitt befestigt ist, dass der Bereich der Einwirkung des Elektronenstrahls auf den ersten Leitungsabschnitt gekühlt wird.This object is achieved with an X-ray source of the type mentioned, which is according to claim 1 characterized in that the conduit part by a first line section, which has the window and through which the liquid metal target flows, as well a second conduit section is formed through which a coolant flows and so on attached to the first line section is that the area of the action of the electron beam is cooled to the first line section.

Ein besonderer Vorteil dieser Lösung besteht darin, dass durch die erhöhte Wärmeabführung die Belastbarkeit des Röntgenstrahlers insbesondere bei solchen Anwendungen weiter gesteigert werden kann, bei denen in einer kurzen Zeit eine hohe Röntgenstrahlen-Dosis erzeugt werden muss, wie zum Beispiel bei CT-Geräten mit hoher AbtastrateA particular advantage of this solution is that due to the increased heat dissipation the load capacity of the X-ray source, especially in such applications on can be increased, in which in a short time a high X-ray dose must be generated, such as in CT devices with a high sampling rate

Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt.The dependent claims have advantageous developments of the invention to the content.

In den Ansprüchen 2 bis 5 werden jeweils Maßnahmen beschrieben, die auf verschiedene Arten die Wärmeabführung weiter verbessern. Mit den Ausführungsformen gemäß den Ansprüchen 6 und 7 wird in vorteilhafter Weise die Gestaltung des Leitungsteils so vorgenommen, dass einerseits ein sich mit einem bestimmten räumlichen Öffnungswinkel ausbreitender Röntgenstrahl nicht gestört wird, andererseits aber auch keine Beeinträchtigung der Kühlung in Kauf genommen werden muss.In the claims 2 to 5 respectively measures are described, which are based on different Types that further improve heat dissipation. With the embodiments according to the Claims 6 and 7, the design of the line part is made in an advantageous manner, on the one hand, a propagating with a certain spatial opening angle X-ray is not disturbed, on the other hand, no impairment the cooling must be taken into account.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform anhand der Zeichnung. Es zeigt:

Fig. 1
eine schematische Darstellung eines erfindungsgemäßen Röntgenstrahlers;
Fig. 2
Darstellungen von verschiedenen Elementen eines erfindungsgemäßen Leitungsteils;
Fig. 3
das erfindungsgemäße Leitungsteil in zusammengebautem Zustand; und
Fig. 4
eine Speisung des erfindungsgemäßen Leitungsteils.
Further details, features and advantages of the invention will become apparent from the following description of a preferred embodiment with reference to the drawing. It shows:
Fig. 1
a schematic representation of an X-ray source according to the invention;
Fig. 2
Representations of different elements of a conduit part according to the invention;
Fig. 3
the conduit part according to the invention in the assembled state; and
Fig. 4
a supply of the line part according to the invention.

Figur 1 zeigt schematisch einen Röntgenstrahler, bei dem das mit Elektronen bestrahlte Target durch ein im Betriebszustand des Röntgenstrahlers flüssiges Metall gebildet ist. Innerhalb eines Röhrenkolbens 1 befindet sich in einem Vakuumraum eine Elektronenquelle in Form einer Kathode 3, die im Betriebszustand einen Elektronenstrahl 4 emittiert. Dieser Elektronenstrahl 4 ist auf ein Leitungsteil 51 eines Rohdeitungssystems 50 gerichtet und trifft durch ein für die Elektronen im wesentlichen durchlässiges Fenster 22, 34 auf das in dem Rohrleitungssystem 50 strömende Flüssigmetall-Target, so dass Röntgenstrahlen angeregt werden. Mittels einer Pumpe 52 wird das flüssige Metall in einem Kreislauf durch das Rohdeitungssystem 50 gepumpt, das auch durch einen Wärmetauscher 53 führt, so dass die erzeugte Wärme aus dem flüssigen Metall über einen Kühlkreislauf abgeführt werden kann.FIG. 1 schematically shows an X-ray emitter in which the electron-irradiated Target is formed by a liquid in the operating state of the X-ray source metal. Within a tubular piston 1 is located in a vacuum space, an electron source in the form of a cathode 3, which emits an electron beam 4 in the operating state. This Electron beam 4 is directed to a conduit part 51 of a Rohdeitungssystems 50 and passes through a window 22, 34 which is substantially transparent to the electrons flowing liquid metal target to the piping 50, so that X-rays be stimulated. By means of a pump 52, the liquid metal in a circuit the Rohdeitungssystem 50 pumped, which also leads through a heat exchanger 53, so that the generated heat is removed from the liquid metal via a cooling circuit can.

Das Leitungsteil 51 des Rohdeitungssystems 50 ist in den Figuren 2 und 3 im einzelnen in Draufsicht dargestellt.The conduit part 51 of the Rohdeitungssystems 50 is shown in Figures 2 and 3 in detail in Top view shown.

Das Leitungsteil 51 setzt sich gemäß Figur 2 aus vier Elementen 10,20,30,40 zusammen, die in der Reihenfolge (a) bis (d) dargestellt sind und in dieser Reihenfolge übereinander angeordnet werden, das heißt auf das erste Element 10 gemäß Figur 2(a) wird das zweite Element 20 gemäß Figur 2(b), darauf das dritte Element 30 gemäß Figur 2(c) und darauf schließlich das vierte Element 40 gemäß Figur 2(d) gesetzt. Die Elemente werden in der in Figur 2 gezeigten Ausrichtung aufeinander montiert. Der Elektronenstrahl tritt in zur Ebene der Zeichnung senkrechter Richtung von oben zunächst in das vierte Element 40 ein und gelangt dann durch das dritte und zweite Element 30, 20 schließlich in das erste Element 10.The line part 51 is composed according to Figure 2 of four elements 10,20,30,40, which are shown in the order (a) to (d) and in this order one above the other are arranged, that is, on the first element 10 according to Figure 2 (a), the second Element 20 according to Figure 2 (b), thereon, the third element 30 according to Figure 2 (c) and thereon finally, the fourth element 40 according to FIG. 2 (d) is set. The elements are in the in Figure 2 alignment shown assembled. The electron beam enters the plane the drawing vertical direction from above initially in the fourth element 40 and then passes through the third and second elements 30, 20 finally into the first element 10th

Weiterhin ist davon auszugehen, dass der Elektronenstrahl einen linienförmigen Brennpunkt ("Strichfocus") bildet, der sich in den Darstellungen gemäß Figur 2 von links nach rechts erstreckt. Ein solcher Stichfocus hat zum Beispiel Abmessungen von 1 mm x 7 mm und wird häufig bei Röntgenstrahlern verwendet, um bei konstanter Leistungsdichte die bestrahlte Fläche zu vergrößern.Furthermore, it can be assumed that the electron beam has a line-shaped focal point ("Stroke focus"), which in the illustrations according to FIG. 2 is from left to right extends. Such a stitch focus has, for example, dimensions of 1 mm x 7 mm and is often used in X-ray sources to provide the power at constant power density to increase the irradiated area.

Das erste Element 10 gemäß Figur 2(a) ist aus einem massiven Metallkörper zum Beispiel aus Stahl oder Molybdän gebildet, der zum Beispiel etwa 100 mm lang, 25 mm breit und 10 mm tief ist. In diesen Metallkörper ist ein erster Kanal 11 eingebracht, durch den im Betriebszustand des zusammengebauten Leitungsteils das Flüssigmetall-Target, in dem die Röntgenstrahlen erzeugt werden, gemäß der Andeutung durch den Pfeil P1 fließt. Die Tiefe dieses ersten Kanals 11 ist nicht konstant, sondern nimmt in einem zentralen Bereich 12 ab. The first element 10 according to FIG. 2 (a) is made of a solid metal body, for example made of steel or molybdenum, for example, about 100 mm long, 25 mm wide and 10 mm deep. In this metal body, a first channel 11 is introduced, through which in Operating state of the assembled line part, the liquid metal target in which the X-rays are generated, according to the indication by the arrow P1 flows. The depth This first channel 11 is not constant, but decreases in a central region 12.

An der Stelle des zentralen Bereiches 12, an der der Elektronenstrahl eintritt, hat der Kanal seine geringste Tiefe, die dort zum Beispiel etwa 200 µm beträgt.At the location of the central region 12 where the electron beam enters, the channel has its lowest depth, which is there for example about 200 microns.

Das in Figur 2(b) gezeigte zweite Element 20 ist etwa 1 mm stark und hat ansonsten im wesentlichen die gleichen äußeren Abmessungen wie das erste Element 10. In einem zentralen Bereich 21 befindet sich ein im wesentlichen kreisförmiger Einsatz 22, in den ein erster, im wesentlichen rechteckiger Schlitz 23 für den Elektronenstrahl eingebracht ist. Dieser Schlitz erstreckt sich mit seiner Längsrichtung senkrecht zu der Strömungsrichtung des Flüssigmetall-Targets, so dass sich eine optimale Wärmeabführung ergibt.The second element 20 shown in Figure 2 (b) is about 1 mm thick and otherwise in the essentially the same external dimensions as the first element 10. In a central Area 21 is a substantially circular insert 22 into which a first, in essentially rectangular slot 23 is introduced for the electron beam. This slot extends with its longitudinal direction perpendicular to the flow direction of Liquid metal targets, resulting in optimum heat dissipation.

Der erste Schlitz 23 ist an seiner in der Darstellung unteren Seite mit einer Diamantschicht mit einer Dicke von etwa 1 µm verschlossen, die durch Kleben oder auf andere Weise an dem Einsatz 22 befestigt wird. Der erste Schlitz bildet somit ein Diamantfenster 23, das für Elektronen durchlässig ist.The first slot 23 is at its lower side in the illustration with a diamond layer closed with a thickness of about 1 micron, by gluing or otherwise the insert 22 is attached. The first slot thus forms a diamond window 23 suitable for Electrons are permeable.

Das zweite Element 20 wird mit Schrauben oder anderen Befestigungsmitteln (nicht gezeigt) auf dem ersten Element 10 so befestigt, dass ein erster flüssigkeitsdichter Leitungsabschnitt 10, 20 entsteht, durch den das Flüssigmetall-Target fließen kann. Aufgrund derreduzierten Tiefe des Kanals 11 in dem zentralen Bereich 12 und insbesondere an dem Diamantfenster wird das Target dort beschleunigt, so dass eine turbulente Strömung entsteht. Diese turbulente Strömung sorgt für eine besonders wirksame Abführung von thermischer Energie von dem Fenster, da durch die entstehenden Wirbel die Flüssigkeit besonders gut und schnell durchmischt wird. Dies ist insbesondere in dem temperaturkritischen Bereich des Diamantfensters und seiner Befestigung an dem Einsatz 22 vorteilhaft.The second element 20 is fastened with screws or other fastening means (not shown) mounted on the first element 10 so that a first liquid-tight line section 10, 20 is formed, through which the liquid metal target can flow. Due to the reduced Depth of the channel 11 in the central region 12 and in particular on the diamond window the target is accelerated there, creating a turbulent flow. These turbulent flow ensures a particularly effective dissipation of thermal energy from the window, because of the resulting vortex the liquid is particularly good and fast is mixed. This is especially true in the temperature critical area of Diamond window and its attachment to the insert 22 advantageous.

Der erste Leitungsabschnitt 10, 20 ist Teil eines primären Flüssigmetall-Kreislaufs, der durch den Wärmetauscher 53 (Figur 1) führt.The first line section 10, 20 is part of a primary liquid metal circuit by the heat exchanger 53 (Figure 1) leads.

Weiterhin ist ein zweiter Leitungsabschnitt 30, 40 vorgesehen, der ein Kühlmittel führt und gemäß der in Figur 2(c), (d) gezeigten Stellung mit einem Winkel von etwa 90 Grad auf dem ersten Leitungsabschnitt 10, 20 montiert wird, so dass er sich in Längsrichtung des ersten Schlitzes 23 über diesem erstreckt. Furthermore, a second line section 30, 40 is provided which leads a coolant and according to the position shown in Figure 2 (c), (d) at an angle of about 90 degrees the first line section 10, 20 is mounted so that it is in the longitudinal direction of first slot 23 extends over this.

Der zweite Leitungsabschnitt umfasst ein drittes Element 30, das gemäß Figur 2(c) aus einem Metallkörper zum Beispiel aus Stahl oder Molybdän mit einem zentralen Bereich 33 gebildet ist. In dem zentralen Bereich 33 befindet sich ein zweiter, im wesentlichen rechteckiger Schlitz 34a, der so angeordnet und ausgebildet ist, dass er den ersten Schlitz 23 in dem zweiten Element 20 fortsetzt. In den Metallkörper sind weiterhin zwei Kanäle 31, 32 eingefräst, die sich in Längsrichtung des zweiten Schlitzes 34a erstrecken und außerhalb des zentralen Bereiches 33 parallel zueinander verlaufen. In dem zentralen Bereich 33 beginnen die Kanäle 31, 32 auf der Höhe des einen Endes des zweiten Schlitzes 34a auseinander zulaufen, bis sie sich jenseits der Höhe des anderen Endes des Schlitzes 34a wieder in Richtung auf ihre parallelen Abschnitte außerhalb des zentralen Bereiches zurückerstrecken. Die Kanäle 31, 32 schließen auf diese Weise in dem zentralen Bereich 33 eine im wesentlichen kreissegmentähnliche Fläche 35 ein, in der sich der erste Schlitz 34a befindet.The second line section comprises a third element 30, which according to Figure 2 (c) from a metal body, for example made of steel or molybdenum, with a central region 33 is formed. In the central region 33 is a second, substantially rectangular Slit 34 a, which is arranged and formed so that the first slot 23 in the second element 20 continues. In the metal body are still two channels 31, 32nd milled, which extend in the longitudinal direction of the second slot 34 a and outside the central region 33 parallel to each other. Start in the central area 33 the channels 31, 32 at the level of one end of the second slot 34 a apart until it returns to beyond the height of the other end of the slot 34a Move back direction to their parallel sections outside the central area. The channels 31, 32 thus close in the central region 33 in the substantially circular segment-like surface 35 in which the first slot 34a is located.

Das vierte Element 40 hat im wesentlichen die gleiche äußere Form wie das dritte Element 30 und wird mit Befestigungsmitteln (nicht dargestellt) auf diesem montiert, so dass sich der zweite flüssigkeitsdichte Leitungsabschnitt 30, 40 ergibt. In einem zentralen Bereich 41 des vierten Elementes 40 befindet sich eine im wesentlichen rechteckige Öffnung 34b des zweiten Schlitzes 34a. Außerdem ist in die äußere Fläche des zentralen Bereiches 41 eine kreissegmentähnliche Einsenkung 43 eingebracht, deren Form mit der Form der Fläche 35 korrespondiert, die die Kanäle 31, 32 in dem zentralen Bereich 33 des dritten Elementes 30 umschließen. Diese Einsenkung wird durch Abtragen von Material durch Fräsen oder auf andere Weise eingebracht.The fourth element 40 has substantially the same outer shape as the third element 30 and is mounted with fasteners (not shown) on this, so that the second liquid-tight line section 30, 40 results. In a central area 41 of the fourth element 40 is a substantially rectangular opening 34 b of the second slot 34a. In addition, in the outer surface of the central region 41 a circular segment-like recess 43 introduced, the shape of which with the shape of the surface 35th corresponding to the channels 31, 32 in the central region 33 of the third element 30 enclose. This sinking is done by removing material by milling or on introduced another way.

Der zweite Leitungsabschnitt 30, 40 hat im Bereich der Einsenkung 43, in dem der Strichfokus des Elektronenstrahls liegt, in zusammengebautem Zustand eine Stärke von etwa 3 mm. Außerhalb dieses Bereiches, dh sowohl in einer Richtung stromaufwärts und stromabwärts, als auch in einer Richtung senkrecht dazu, kann die Stärke größer sein, so dass die Kanäle 31, 32 breiter bzw. tiefer ausgebildet werden können und damit Strömungsverluste aufgrund der Viskosität des Kühlmittels (sekundäre Flüssigkeit) vermindert werden. Die einzige Beschränkung in dieser Hinsicht ist durch die Forderung gegeben, dass die Abmessungen und die Form des zweiten Leitungsabschnitts den nutzbaren Röntgenstrahl nicht behindern sollen.The second line section 30, 40 has in the region of the recess 43, in which the dashed line of the electron beam, when assembled, has a thickness of about 3 mm. Outside this range, ie both in one direction upstream and downstream, as well as in a direction perpendicular to it, the strength can be greater, so that the Channels 31, 32 can be formed wider or deeper and thus flow losses due to the viscosity of the coolant (secondary fluid) can be reduced. The only limitation in this regard is given by the requirement that the dimensions and the shape of the second line section does not affect the usable x-ray beam to hamper.

Der zweite Leitungsabschnitt 30, 40 bildet einen Teil eines sekundären Flüssigkeitskreislaufs und dient dazu, Wärme von dem ersten Leitungsabschnitt, insbesondere dessen zentralem Bereich, in dem sich der erste Schlitz 23 und damit das Diamantfenster befindet, abzuführen. Zu diesem Zweck verläuft der zweite Leitungsabschnitt 30, 40 mit einem Winkel von 90 Grad zu dem ersten Leitungsabschnitt 10,20. Die bevorzugte Richtung der Strömung des primären Flüssigmetall-Targets durch den ersten Leitungsabschnitt 10,20 ist durch den Pfeil P1 in Figur 2(a) und die bevorzugte Richtung der Strömung der sekundären Flüssigkeit durch den zweiten Leitungsabschnitt 30, 40 ist durch die Pfeile P2 in Figur 2(c) angedeutet.The second conduit section 30, 40 forms part of a secondary fluid circuit and serves to heat from the first line section, in particular its central Area in which the first slot 23 and thus the diamond window is to dissipate. For this purpose, the second line section 30, 40 extends at an angle of 90 Degree to the first line section 10,20. The preferred direction of the flow of primary liquid metal targets through the first line section 10,20 is indicated by the arrow P1 in Figure 2 (a) and the preferred direction of secondary fluid flow through the second line section 30, 40 is indicated by the arrows P2 in Figure 2 (c).

Mit dieser Anordnung werden drei vorteilhafte Wirkungen erzielt. Einerseits wird die Arbeitstemperatur des primären Flüssigmetall-Targets vermindert. Dadurch wird andererseits auch die Temperatur der Verbindung zwischen dem Diamantfenster und dem Einsatz 22 abgesenkt, und schließlich wird die Wärmewirkung der sekundären Elektronen, die aus dem primären Elektronenstrahl herausgestreut werden und die unter dem Einfluss des gegenüber der Kathode positiven Potentials der Anode in der Nähe des Brennpunktes aufschlagen, vermindert.With this arrangement, three advantageous effects are achieved. On the one hand, the Working temperature of the primary liquid metal target is reduced. This will on the other hand also the temperature of the connection between the diamond window and the insert 22 lowered, and finally the thermal effect of the secondary electrons coming out of the primary electron beam are scattered out and under the influence of the opposite hit the cathode of the positive potential of the anode near the focal point, reduced.

Diese Wirkungen werden dadurch unterstützt, dass die beiden Kanäle 31, 32 des zweiten Leitungsabschnitts 30, 40 parallel zu der Richtung des Strichfocus des Elektronenstrahls und zu beiden Seiten der Schlitze verlaufen. Dadurch wird die Strömung in dem sekundären Flüssigkeitskreislauf sehr nahe an die Stelle des Elektroneneinschlags geführt.These effects are supported by the fact that the two channels 31, 32 of the second Line section 30, 40 parallel to the direction of the line focus of the electron beam and on both sides of the slots. This will change the flow in the secondary Liquid circuit is guided very close to the point of electron impact.

Durch das Divergieren der Kanäle 31, 32 innerhalb des zentralen Bereiches 33 des zweiten Leitungsabschnitts sowie die kreissegmentähnliche Einsenkung 43 des zentralen Bereiches 41 des vierten Elementes 40 wird der Tatsache Rechnung getragen, dass ein Röntgenstrahl mit einem bestimmten räumlichen Öffnungswinkel aus der Öffnung 34b des zweiten Schlitzes 34a austreten muss. Bei allgemein gebräuchlichen diagnostischen Röntgenröhren beträgt der Winkel zwischen der Ebene der Anode und dem Röntgenstrahl, der am nächsten an der Anodenebene liegt, etwa 12 Grad. Figur 3 zeigt diese Zusammenhänge für ein aus dem ersten und dem zweiten Leitungsabschnitt zusammengesetztes Leitungsteil 51, wobei die bevorzugte Strömungsrichtung des primären Flüssigmetall-Targets wiederum durch den Pfeil P1 und der sekundären Flüssigkeit wiederum durch den Pfeil P2 angedeutet ist.By diverging the channels 31, 32 within the central region 33 of the second Line section and the circular segment-like depression 43 of the central region 41st of the fourth element 40, the fact is taken into account that an X-ray beam with a certain spatial opening angle from the opening 34b of the second slot 34a must emerge. In commonly used diagnostic X-ray tubes is the Angle between the plane of the anode and the x-ray closest to the Anode level is about 12 degrees. FIG. 3 shows these relationships for one of the first and the second line section composed line part 51, wherein the preferred flow direction of the primary liquid metal target in turn by the Arrow P1 and the secondary liquid is again indicated by the arrow P2.

Die Kanäle 31, 32 divergieren innerhalb des zentralen Bereiches 33 des dritten Elementes 30 in der Weise, dass der gemäß Figur 3 austretende Röntgenstrahl 50 durch die Kanäle nicht gestört bzw. gedämpft wird. Entsprechendes gilt für die Bemessung der Einsenkung 43 in dem vierten Element, so dass sich mit diesen beiden Maßnahmen der erzeugte Röntgenstrahl im wesentlichen ungestört kegelförmig ausbreiten kann.The channels 31, 32 diverge within the central region 33 of the third element 30 in such a way that the X-ray beam 50 exiting according to FIG. 3 does not pass through the channels is disturbed or damped. The same applies to the design of the recess 43 in the fourth element, so that with these two measures the generated X-ray beam essentially undisturbed conical spreading can.

Der primäre und der sekundäre Flüssigkeitskreislauf können gemäß der Darstellung in Figur 4 mit dem gleichen Flüssigmetall gemeinsam über die Leitung 50 (Figur 1) mit der Pumpe 52 gespeist werden, wobei die Leitung vorzugsweise durch den Wärmetauscher 53 geführt wird.The primary and secondary fluid circuits may be as shown in FIG 4 with the same liquid metal together via line 50 (Figure 1) with the pump 52 are fed, the line is preferably passed through the heat exchanger 53 becomes.

Im einzelnen ist zu diesem Zweck ein erster Leitungsverzweiger 501 (Y-Stück) vorgesehen, an den die Leitung 50 angeschlossen ist und von dem eine primäre Leitung 502 und eine sekundäre Leitung 503 ausgeht. Diese Leitungen speisen das Leitungsteil 51 und setzen sich an dessen Ausgängen weiter fort, bis sie mit einem zweiten Leitungsverzweiger 504 (Y-Stück) wieder vereint und als gemeinsame Leitung 50 fortgesetzt werden. Die primäre und die sekundäre Leitung 502,503 sind so geführt, dass sie an die jeweils einen rechten Winkel zueinander aufweisenden Eingänge bzw. Ausgänge des Leitungsteils 51 sowie den ersten bzw. zweiten Leitungsteiler 501, 504 angeschlossen werden können.In detail, a first line splitter 501 (Y-piece) is provided for this purpose the line 50 is connected and from which a primary line 502 and a secondary line 503 goes out. These lines feed the line part 51 and sit down continue at its outputs until it is connected to a second line splitter 504 (Y-piece) to be reunited and continued as joint leadership. The primary and the Secondary line 502,503 are guided so that they are at each a right angle to each other having inputs or outputs of the line part 51 and the first or second line divider 501, 504 can be connected.

Alternativ dazu kann der sekundäre Flüssigkeitskreislauf auch getrennt und unabhängig von dem primären Kreislauf des Flüssigmetall-Targets geführt wenden. Dies kann insbesondere dann sinnvoll sein, wenn eine Kühlflüssigkeit verwendet werden soll, die zum Beispiel eine besonders niedrige Viskosität und /oder eine hohe Wärmeleitfähigkeit aufweist.Alternatively, the secondary fluid circuit may be separate and independent of guided to the primary circuit of the liquid metal target. This can be special then be useful if a cooling liquid to be used, for example, a having particularly low viscosity and / or high thermal conductivity.

In jedem Fall ist die mit dem erfindungsgemäßen Leitungsteil 51 erzielte Wärmeabführung von dem Fenster, in das der Elektronenstrahl zur Erzeugung von Röntgenstrahlen eintritt, wesentlich wirksamer als bei bekannten Anordnungen dieser Art, so dass bei einem entsprechenden Röntgenstrahler die Arbeitstemperatur vermindert oder die Strahlungsintensität erhöht werden kann.In any case, the heat dissipation achieved with the conduit part 51 according to the invention from the window into which the electron beam enters to generate X-rays, much more effective than in known arrangements of this type, so that in a corresponding X-ray source reduces the working temperature or the radiation intensity can be increased.

Claims (9)

  1. An X-ray source that includes a liquid metal target and an electron source for the emission of an electron beam in a window of a duct section wherethrough the liquid metal target flows in the operating condition, characterized in that the duct section (51) is formed by a first duct segment (10, 20) that includes the window (23) and wherethrough the liquid metal target flows, as well as by a second duct segment (30, 40) wherethrough a cooling medium flows and which is connected to the first duct segment in such a manner that the area in which the electron beam acts on the first duct segment is cooled.
  2. An X-ray source as claimed in claim 1, characterized in that the first and the second duct segment (10, 20; 30, 40) are situated in a plane that extends essentially perpendicularly to the direction of incidence of the electron beam and enclose an angle of approximately 90 degrees relative to one another.
  3. An X-ray source as claimed in claim 1, characterized in that the window in the first duct segment (10, 20) is formed by a first, essentially rectangular slit (23) that is provided with a diamond layer, the longitudinal direction of said slit extending essentially perpendicularly to the direction of flow of the liquid metal target.
  4. An X-ray source as claimed in claim 1, characterized in that the first duct segment (10, 20) is provided with a duct (11) in which the liquid metal target flows and which is provided with a constriction at the area of the first slit (23).
  5. An X-ray source as claimed in claim 1, characterized in that the second duct segment (30, 40) is arranged between the electron source (3) and the first duct segment (10, 20) and is provided with a second, essentially rectangular slit (34a, 34b) wherethrough the electron beam is incident in the first slit (23) of the first duct segment (10, 20).
  6. An X-ray source as claimed in claim 5, characterized in that the second duct segment (30, 40) includes two ducts (31, 32) for the cooling medium that extend essentially in parallel but diverge at the area of the second slit (34a) in such a manner that they enclose a surface area (35) that is shaped essentially as a segment of circle in which the second slit is situated.
  7. An X-ray source as claimed in claim 5, characterized in that an opening (34b) of the second slit (34a) is situated in a recess (43) in the external surface that is provided in the second duct segment (30, 40) and is shaped essentially as a segment of circle.
  8. An X-ray source as claimed in claim 1, characterized in that the first and the second duct segment (10, 20; 30, 40) are connected to a common circuit for the liquid metal target, the liquid metal in the second duct segment acting as the cooling medium.
  9. An X-ray apparatus that includes an X-ray source as claimed in one of the preceding claims.
EP01000722A 2000-12-16 2001-12-06 X-ray source with liquid metal target and X-ray apparatus Expired - Lifetime EP1215707B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10062928A DE10062928A1 (en) 2000-12-16 2000-12-16 X-ray tube with liquid metal target
DE10062928 2000-12-16

Publications (3)

Publication Number Publication Date
EP1215707A2 EP1215707A2 (en) 2002-06-19
EP1215707A3 EP1215707A3 (en) 2004-02-11
EP1215707B1 true EP1215707B1 (en) 2005-10-12

Family

ID=7667538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000722A Expired - Lifetime EP1215707B1 (en) 2000-12-16 2001-12-06 X-ray source with liquid metal target and X-ray apparatus

Country Status (4)

Country Link
US (1) US6477234B2 (en)
EP (1) EP1215707B1 (en)
JP (1) JP3754361B2 (en)
DE (2) DE10062928A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130070A1 (en) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty X-ray tube with liquid metal target
DE10147473C2 (en) * 2001-09-25 2003-09-25 Siemens Ag Rotating anode X-ray tube
EP1485935A1 (en) * 2002-03-08 2004-12-15 Koninklijke Philips Electronics N.V. A device for generating x-rays having a liquid metal anode
DE102004013620B4 (en) * 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Electron window for a liquid metal anode, liquid metal anode, X-ray source and method of operating such an X-ray source
DE102004015590B4 (en) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anode module for a liquid metal anode X-ray source and X-ray source with an anode module
JP2007533093A (en) * 2004-04-13 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray generator having a liquid metal anode
DE102004031973B4 (en) * 2004-07-01 2006-06-01 Yxlon International Security Gmbh Shielding an X-ray source
SE530094C2 (en) * 2006-05-11 2008-02-26 Jettec Ab Method for generating X-rays by electron irradiation of a liquid substance
DE102008026938A1 (en) * 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Radiation source and method for generating X-radiation
HUP1000635A2 (en) 2010-11-26 2012-05-29 Ge Hungary Kft Liquid anode x-ray source
US20140161233A1 (en) * 2012-12-06 2014-06-12 Bruker Axs Gmbh X-ray apparatus with deflectable electron beam
EP3385976A1 (en) * 2017-04-05 2018-10-10 Excillum AB Vapour monitoring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246146A (en) * 1963-07-11 1966-04-12 Ass Elect Ind Apparatus for the X-ray analysis of a liquid suspension of specimen material
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
US5052034A (en) * 1989-10-30 1991-09-24 Siemens Aktiengesellschaft X-ray generator
DE19821939A1 (en) * 1998-05-15 1999-11-18 Philips Patentverwaltung X-ray tube with a liquid metal target

Also Published As

Publication number Publication date
US20020080919A1 (en) 2002-06-27
JP2002289125A (en) 2002-10-04
DE50107672D1 (en) 2005-11-17
JP3754361B2 (en) 2006-03-08
EP1215707A2 (en) 2002-06-19
EP1215707A3 (en) 2004-02-11
US6477234B2 (en) 2002-11-05
DE10062928A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
DE112010002512B4 (en) X-ray generating device and examination device using the same
EP1215707B1 (en) X-ray source with liquid metal target and X-ray apparatus
DE202013105829U1 (en) Standing wave electron linear accelerator with continuously adjustable energy
DE19639243C2 (en) Multi, especially dichromatic X-ray source
DE602005002257T2 (en) DEVICE FOR GENERATING X-RAY RAYS WITH A LIQUID METAL LODGE
DE10334606A1 (en) Cathode for high-emission X-ray tube
EP0378274B1 (en) Rotary anode X-ray tube with at least two spirally grooved bearings
DE102007046278A1 (en) X-ray tube with transmission anode
DE8914064U1 (en) X-ray tube
DE20200484U1 (en) Cooling device for components, in particular for electrical or electronic components, such as converters or the like.
WO2005096341A1 (en) Anode module for a liquid metal anode x-ray source, and x-ray emitter comprising an anode module
WO2005091327A2 (en) Electron window for a liquid metal anode, liquid metal anode, x-ray emitter and method for operating an x-ray emitter of this type
DE102006060135A1 (en) Structure for trapping scattered electrons
EP1158562B1 (en) X-ray tube with a flat cathode
WO2015121069A1 (en) Cooling arrangement for a computer system
DE3514700A1 (en) X-ray tube
DE102005045203B4 (en) Modular irradiation device
DE102010039214B4 (en) Liquid cooling of an X-ray tube
DE102012103974A1 (en) Apparatus for generating X-rays emitting focal spot, has diaphragm portion comprising mechanical orifice passage that limits electron beam and/or X-rays, so that size of first effective focal spot is adjusted
WO2008006552A1 (en) Liquid-cooled target for producing electromagnetic radiation
DE102010020151A1 (en) Thermionic flat emitter and associated method for operating an X-ray tube
DE19518623C2 (en) Device for irradiating surfaces with electrons
DE69821746T2 (en) X-ray tube with a cooling profile adapted to the focal point shape
DE1200962B (en) Rotary anode tube
DE102018201245B3 (en) Target for a radiation source, radiation source for generating invasive electromagnetic radiation, use of a radiation source and method for producing a target for a radiation source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040811

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARDING, GEOFFREY

Inventor name: ULMER, BERND

Inventor name: DAVID, BERND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50107672

Country of ref document: DE

Date of ref document: 20051117

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091230

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100225

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107672

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701