EP1211336A1 - Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion - Google Patents
Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion Download PDFInfo
- Publication number
- EP1211336A1 EP1211336A1 EP00403362A EP00403362A EP1211336A1 EP 1211336 A1 EP1211336 A1 EP 1211336A1 EP 00403362 A EP00403362 A EP 00403362A EP 00403362 A EP00403362 A EP 00403362A EP 1211336 A1 EP1211336 A1 EP 1211336A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- resistance
- phase
- hot corrosion
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
Definitions
- the invention relates to a nickel-based superalloy, suitable in the manufacture by direct solidification of monocrystalline blades stationary and mobile industrial gas turbines.
- Nickel-based superalloys are the most common materials most efficient used today for the manufacture of stationary and movable blades of industrial gas turbines. The two main features requested so far to these alloys for these specific applications are good creep resistance at temperatures up to go up to 850 ° C and very good corrosion resistance hot. Reference alloys commonly used in this area are those known under the designations IN738, IN939 and IN792.
- the blades produced with these reference alloys are produced by conventional lost wax casting and have a polycrystalline structure, that is to say that they consist of the juxtaposition of crystals randomly oriented with respect to each other. and called grains. These grains are themselves made up of an austenitic gamma ( ⁇ ) matrix based on nickel in which are hardened particles of gamma prime phase ( ⁇ '), the base of which is the intermetallic compound Ni 3 Al. This particular structure of Grain gives these alloys a high creep resistance up to temperatures around 850 ° C, which guarantees the longevity of the blades for which we generally seek lifetimes between 50,000 and 100,000 hours.
- the chemical composition of the alloys IN939, IN738 and IN792 has also been defined so as to give them excellent resistance to the environment of combustion gases, in particular with respect to hot corrosion, a particularly aggressive phenomenon in the industrial gas turbines.
- the classification of these alloys is: IN939 ⁇ IN738 ⁇ IN792. From the point of view of resistance to hot corrosion, the classification is reversed, ie: IN792 ⁇ IN738 ⁇ IN939.
- These monocrystalline blades are produced by solidification directed in lost wax foundry. Elimination of grain boundaries, which are preferred locations for creep deformation at high temperature, increased dramatically the performance of superalloys based on nickel.
- the solidification process monocrystalline allows to select the preferential orientation growth of the monocrystalline part and thus choose the orientation ⁇ 001> which is optimal from the point of the resistance to creep and to thermal fatigue, these two modes of mechanical stress being the most harmful to turbine blades.
- a nickel-based superalloy rich in chromium and capable of solidifying monocrystalline parts of industrial gas turbines is known under the name SC16 and described in FR 2 643 085 A. Its chromium concentration is equal to 16% by weight.
- the creep resistance characteristics of the SC16 alloy are such that this alloy provides, compared to the reference polycrystalline alloy IN738, a gain in operating temperature ranging from approximately 30 ° C. (830 ° C. instead of 800 ° C.) at around 50 ° C (950 ° C instead of 900 ° C). Comparative tests of cyclic corrosion at 850 ° C. in air at atmospheric pressure with contamination by Na 2 SO 4 have shown that the resistance to hot corrosion of the alloy SC16 was at least equivalent to that of the alloy polycrystalline reference IN738.
- the object of the invention is to propose a superalloy based on nickel having resistance to hot corrosion, in the aggressive environment of the combustion gases of industrial gas turbines, at least equivalent to that of polycrystalline reference superalloy IN792, with a creep resistance greater than or equal to that of the alloy IN792 reference in a temperature range from up to 1000 ° C.
- This superalloy must in particular be suitable for manufacturing by directed solidification of fixed monocrystalline vanes and large-scale mobiles (up to several tens of centimeters in height) of industrial gas turbines.
- This superalloy must also show good stability. microstructural with respect to phase precipitation fragile intermetallics rich in chromium during long-term maintenance at high temperature.
- the superalloy according to the invention capable of monocrystalline solidification, has the following weight composition: Co 4.75 to 5.25% Cr 11.5 to 12.5% MB 0.8 to 1.2% W 3.75 to 4.25% al 3.75 to 4.25% Ti 4 to 4.8% Your 1.75 to 2.25% VS 0.006 to 0.04% B ⁇ 0.01% Zr ⁇ 0.01% Hf ⁇ 1% Nb ⁇ 1% Ni and possible impurities: complement to 100%.
- the alloy according to the invention presents an excellent compromise between creep resistance and corrosion resistance hot. It is suitable for the manufacture of monocrystalline parts, that is to say made up of a single metallurgical grain. This particular structure is obtained for example using a conventional directed solidification process in a thermal gradient, using a device selection of grain with propeller or baffles or a germ Monocrystalline.
- the invention also relates to a turbine blade industrial carried out by monocrystalline solidification of above superalloy.
- Figures 1 and 2 are graphs illustrating the properties of different superalloys.
- SCB444 An alloy according to the invention called SCB444 was developed by targeting the nominal composition presented in Table I. In this table are also reported the nominal concentrations of major elements of the reference alloys IN939, IN738, IN792 and SC16. Concentrations by weight of major elements (%) Alloy Or Co Cr MB W al Ti Your Nb IN939 Based 19 22.5 - 2 1.9 3.7 1.4 1 IN738 Based 8.5 16 1.7 2.6 3.4 3.4 1.7 0.9 IN792 Based 9 12.4 1.9 3.8 3.1 4.5 3.9 - SC16 Based - 16 3 - 3.5 3.5 3.5 - SCB444 Based 5 12 1 4 4 4.4 2 -
- Chromium has a beneficial and predominant effect on the hold to hot corrosion of nickel-based superalloys.
- a concentration close to 12% by weight was necessary and sufficient in the alloy of the invention to obtain corrosion resistance to hot equivalent to that of the reference alloy IN792 under the conditions of the hot corrosion tests described further, which are representative of the environment created by the combustion gases of certain industrial turbines.
- a higher chromium content would not allow reach the volume fraction of phase ⁇ 'necessary for the good creep resistance of the alloy up to 1000 ° C, without the alloy becomes unstable with respect to the precipitation of fragile intermetallic phases rich in chromium in the matrix ⁇ .
- a lower concentration of chrome would not match the resistance to hot corrosion of the reference alloy IN792.
- Chrome also participates in the hardening of the matrix ⁇ in which this element is distributed preferentially.
- Molybdenum strongly hardens the ⁇ matrix in which this element is distributed preferentially.
- the quantity of molybdenum which can be introduced into the alloy is however limited because this element has a detrimental effect on the resistance to hot corrosion of superalloys based on nickel.
- a concentration close to 1% by weight in the alloy of the invention is not penalizing for its corrosion resistance and contributes significantly to its hardening.
- Cobalt also participates in solution hardening solid of the matrix ⁇ .
- the cobalt concentration has a influence on the solution dissolution temperature of the phase hardening ⁇ '(solvent temperature ⁇ '). It is so advantageous to increase the cobalt concentration for lower the solvent temperature of the ⁇ 'phase and facilitate homogenization of the alloy by heat treatment without may cause the onset of fusion. Besides, he can also be beneficial to reduce the concentration of cobalt to increase the solvent temperature of the phase ⁇ 'and thus benefit from greater stability of the ⁇ 'phase at high temperature which is favorable for creep resistance.
- the concentration around 5% in weight of cobalt in the alloy of the invention leads to a optimal compromise between good homogenization ability and good creep resistance.
- Tungsten whose concentration is close to 4% in weight in the alloy of the invention is distributed so substantially equal between phases ⁇ and ⁇ 'and contributes thus to their respective hardening. His concentration in the alloy is however limited because this element is heavy, and has a negative effect on the resistance to hot corrosion.
- the aluminum concentration is close to 4% by weight in the alloy of the invention.
- the presence of this element causes precipitation of the hardening phase ⁇ '.
- Aluminum also promotes resistance to oxidation. Titanium and tantalum elements are added to the alloy of the invention in order to strengthen the ⁇ 'phase in which they replace the aluminum element.
- the concentrations respective of these two elements in the alloy of the invention are close to 4.4% by weight for titanium and 2% by weight for tantalum. In the conditions described more far from hot corrosion tests, corresponding to the application aimed, experience has shown that the presence of titanium was more favorable to resistance to hot corrosion than tantalum is.
- the titanium concentration has however was limited on the one hand by the fact that this element can have a negative effect on oxidation resistance, and on the other hand because too high a concentration of titanium may cause destabilization of the ⁇ 'phase.
- the sum tantalum, titanium and aluminum concentrations defined roughly the volume fraction of hardening phase ⁇ '.
- the concentrations of these three elements were adjusted from so as to optimize the volume fraction of phase ⁇ ', all by keeping the ⁇ and ⁇ 'phases stable during maintain for a long time at high temperature, and taking taking into account that the chromium concentration has been set at about 12% by weight so as to achieve resistance to corrosion desired.
- the alloy SCB444 was developed in the form of single crystals of orientation ⁇ 001>.
- the density of this alloy was measured and found to be 8.22 g.cm -3 .
- the alloy After directed solidification, the alloy essentially consists of two phases: the austenitic matrix ⁇ , a solid solution based on nickel, and the phase ⁇ ', an intermetallic compound whose basic formula is Ni 3 Al, which precipitates most of the within the matrix ⁇ in the form of fine particles of size less than one micrometer during cooling in the solid state.
- ⁇ 'phase A small fraction of ⁇ 'phase is also found in massive particles resulting from a liquid eutectic transformation -> ⁇ + ⁇ ' at the end of solidification.
- the volume fraction of eutectic phase ⁇ / ⁇ ' is close to 1.4%.
- SCB444 alloy has undergone a homogenization heat treatment at a temperature of 1270 ° C for 3 hours with air cooling. This temperature is higher than the solvent temperature of phase ⁇ '(setting temperature in solution of the precipitates of phase ⁇ '), which is equal to 1253 ° C, and lower than the melting start temperature, equal to 1285 ° C.
- the purpose of this treatment is to dissolve all of the ⁇ 'phase precipitates whose distribution of sizes is very extensive in the raw solidification state directed, to eliminate massive particles of eutectic ⁇ / ⁇ 'and to reduce the chemical heterogeneities linked to the dendritic solidification structure.
- the difference between the solvent temperature ⁇ 'of the alloy SCB444 and its melting start temperature is very large, which allows easy application of the homogenization treatment without risk of merger and with the certainty of obtaining a homogeneous microstructure allowing resistance to creep optimized.
- the cooling after the homogenization treatment described above was produced by air quenching. In practical, the speed of this cooling must be sufficient high so that the particle size having precipitated during this cooling to be less than 500 nm.
- the homogenization heat treatment procedure which just described is an example to obtain the expected result, i.e. a homogeneous distribution of fines ⁇ 'phase particles whose size does not exceed 500 nm.
- SCB444 alloy has been tested after being subjected to a homogenization treatment as described above, then two income treatments to stabilize the size and volume fraction of ⁇ 'phase precipitates.
- a first income treatment consisted of heating the alloy at 1100 ° C for 4 hours with cooling to air which has the effect of stabilizing the size of ⁇ 'phase precipitates.
- a second income treatment at 850 ° C for 24 hours, followed by air cooling, optimizes the volume fraction of phase ⁇ '. This ⁇ 'phase volume fraction is estimated at 57% in SCB444 alloy. After all the treatments thermal, the ⁇ 'phase precipitated in the form of particles cuboidal whose size is between 200 and 500 nm.
- Cyclic hot corrosion tests were carried out at 900 ° C on the SCB444 alloy in an industrial corrosion bench with burner.
- the cycle was as follows: 1 hour at 900 ° C. in the corrosive atmosphere produced by the burner, then 15 minutes out of the oven at room temperature.
- the burner operated with fuel loaded with 0.20% sulfur.
- a 0.5 g -1 salt water solution of NaCl was sprayed onto the sample at a flow rate of 2.2 m 3 .h -1 .
- the sample was covered every 100 hours with a deposit of 0.5 mg.cm - 2 of Na 2 SO 4 .
- the alloys IN738 and IN792 were tested simultaneously.
- the corrosion resistance criterion is the number of cycles for which the first pits of corrosion appear on the surface of the sample.
- Creep tests in tension were carried out on test pieces machined in monocrystalline bars of orientation ⁇ 001>. The bars were previously homogenized and then returned according to the procedures described above. Break time values obtained at 750, 850 and 950 ° C for different levels of applied stress are given in Table II. Creep lifetime of SCB444 alloy Temperature (° C) Stress (MPa) Break time (h) 750 725 134 750 650 612 750 600 1152 850 500 43.1 850 425 168.5 850 300 3545 /> 3456 950 250 115/135 950 200 551/544 950 180 578 950 140 2109 950 120 3872
- the graph in FIG. 2 makes it possible to compare the creep rupture times obtained for the alloys SCB444, IN738, IN792 and SC16.
- the applied stress is plotted on the abscissa.
- the value of the Larson-Miller parameter is plotted on the ordinate.
- T the creep temperature in Kelvin and t the failure time in hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
L'invention concerne un superalliage à base de nickel, adapté à la fabrication par solidification dirigée d'aubes monocristallines fixes et mobiles de turbines à gaz industrielles.The invention relates to a nickel-based superalloy, suitable in the manufacture by direct solidification of monocrystalline blades stationary and mobile industrial gas turbines.
Les superalliages à base de nickel sont les matériaux les plus performants utilisés aujourd'hui pour la fabrication des aubes fixes et mobiles des turbines à gaz industrielles. Les deux principales caractéristiques demandées jusqu'à maintenant à ces alliages pour ces applications spécifiques sont une bonne résistance au fluage à des températures pouvant aller jusqu'à 850 °C et une très bonne tenue à la corrosion à chaud. Des alliages de référence couramment utilisés dans ce domaine sont ceux connus sous les désignations IN738, IN939 et IN792.Nickel-based superalloys are the most common materials most efficient used today for the manufacture of stationary and movable blades of industrial gas turbines. The two main features requested so far to these alloys for these specific applications are good creep resistance at temperatures up to go up to 850 ° C and very good corrosion resistance hot. Reference alloys commonly used in this area are those known under the designations IN738, IN939 and IN792.
Les aubes fabriquées avec ces alliages de référence sont élaborées par fonderie conventionnelle à la cire perdue et ont une structure polycristalline, c'est-à-dire qu'elles sont constituées de la juxtaposition de cristaux orientés de manière aléatoire les uns par rapport aux autres et appelés grains. Ces grains sont eux-mêmes constitués d'une matrice gamma (γ) austénitique à base de nickel dans laquelle sont dispersées des particules durcissantes de phase gamma prime (γ') dont la base est le composé intermétallique Ni3Al. Cette structure particulière des grains confère à ces alliages une résistance élevée en fluage jusqu'à des températures voisines de 850 °C, ce qui garantit la longévité des aubes pour lesquelles on recherche généralement des durées de vie comprises entre 50 000 et 100 000 heures. La composition chimique des alliages IN939, IN738 et IN792 a par ailleurs été définie de manière à leur conférer une excellente résistance à l'environnement des gaz de combustion, en particulier vis-à-vis de la corrosion à chaud, phénomène particulièrement agressif dans le cas des turbines à gaz industrielles. Des ajouts importants de chrome, typiquement entre 12 et 22 % en poids, sont ainsi nécessaires pour conférer à ces alliages la tenue à la corrosion à chaud requise pour les applications concernées. Du point de vue de la résistance au fluage le classement de ces alliages est: IN939 < IN738 < IN792. Du point de vue de la résistance à la corrosion à chaud, le classement est inversé, soit: IN792 < IN738 < IN939.The blades produced with these reference alloys are produced by conventional lost wax casting and have a polycrystalline structure, that is to say that they consist of the juxtaposition of crystals randomly oriented with respect to each other. and called grains. These grains are themselves made up of an austenitic gamma (γ) matrix based on nickel in which are hardened particles of gamma prime phase (γ '), the base of which is the intermetallic compound Ni 3 Al. This particular structure of Grain gives these alloys a high creep resistance up to temperatures around 850 ° C, which guarantees the longevity of the blades for which we generally seek lifetimes between 50,000 and 100,000 hours. The chemical composition of the alloys IN939, IN738 and IN792 has also been defined so as to give them excellent resistance to the environment of combustion gases, in particular with respect to hot corrosion, a particularly aggressive phenomenon in the industrial gas turbines. Significant additions of chromium, typically between 12 and 22% by weight, are thus necessary to give these alloys the resistance to hot corrosion required for the applications concerned. From the point of view of creep resistance, the classification of these alloys is: IN939 <IN738 <IN792. From the point of view of resistance to hot corrosion, the classification is reversed, ie: IN792 <IN738 <IN939.
Pour améliorer les performances des turbines à gaz industrielles, en termes de rendement et de consommation, une voie consiste à augmenter la température des gaz à l'entrée de la turbine. Ceci nécessite par conséquent de pouvoir disposer d'alliages pour aubes de turbines pouvant supporter des températures de fonctionnement de plus en plus élevées, tout en conservant les mêmes caractéristiques mécaniques, en particulier en fluage, afin de pouvoir atteindre les mêmes durées de vie.To improve the performance of industrial gas turbines, in terms of yield and consumption, one way consists in increasing the temperature of the gases entering the turbine. This therefore requires being able to have alloys for turbine blades capable of withstanding increasingly high operating temperatures, everything retaining the same mechanical characteristics, particular in creep, in order to be able to reach the same lifetimes.
Le même type de problème s'est posé par le passé dans le cas des turbines à gaz de turboréacteurs et de turbomachines pour applications aéronautiques. Dans ce cas la solution retenue a consisté à passer des aubes dites polycristallines élaborées par fonderie conventionnelle aux aubes dites monocristallines, c'est-à-dire constituées d'un seul grain métallurgique.The same type of problem has arisen in the past in the case gas turbines for turbojets and turbomachines for aeronautical applications. In this case the solution chosen consisted in passing so-called polycrystalline blades by conventional foundry with so-called monocrystalline blades, that is to say made up of a single metallurgical grain.
Ces aubes monocristallines sont fabriquées par solidification dirigée en fonderie à la cire perdue. L'élimination des joints de grains, qui sont des lieux préférentiels de déformation en fluage à haute température, a permis d'augmenter de manière spectaculaire les performances des superalliages à base de nickel. De plus le procédé de solidification monocristalline permet de sélectionner l'orientation préférentielle de croissance de la pièce monocristalline et de choisir ainsi l'orientation <001> qui est optimale du point de vue de la résistance au fluage et à la fatigue thermique, ces deux modes de sollicitation mécanique étant les plus nocifs pour les aubes de turbines. These monocrystalline blades are produced by solidification directed in lost wax foundry. Elimination of grain boundaries, which are preferred locations for creep deformation at high temperature, increased dramatically the performance of superalloys based on nickel. In addition, the solidification process monocrystalline allows to select the preferential orientation growth of the monocrystalline part and thus choose the orientation <001> which is optimal from the point of the resistance to creep and to thermal fatigue, these two modes of mechanical stress being the most harmful to turbine blades.
Cependant les compositions chimiques de superalliages développées pour les aubes monocristallines de turbines pour applications aéronautiques ne conviennent pas pour les aubes pour applications terrestres ou marines, dites industrielles. Ces alliages sont en effet définis de manière à privilégier leur résistance mécanique jusqu'à des températures supérieures à 1100 °C, et ce au détriment de leur résistance à la corrosion à chaud. Ainsi la concentration en chrome des superalliages pour aubes monocristallines de turbines aéronautiques est généralement inférieure à 8 % en poids ce qui permet d'atteindre des fractions volumiques de phase γ' de l'ordre de 70 %, favorables à la résistance au fluage à haute température.However the chemical compositions of superalloys developed for single crystal turbine blades for aeronautical applications are not suitable for blades for land or marine applications, called industrial. These alloys are in fact defined so as to favor their mechanical resistance up to higher temperatures at 1100 ° C, to the detriment of their resistance to hot corrosion. Thus the chromium concentration of superalloys for single crystal turbine blades aeronautical is generally less than 8% by weight this which makes it possible to reach volume fractions of phase γ ' of the order of 70%, favorable to the creep resistance at high temperature.
Un superalliage à base de nickel riche en chrome et apte à la solidification monocristalline de pièces de turbines à gaz industrielles est connu sous la dénomination SC16 et décrit dans FR 2 643 085 A. Sa concentration en chrome est égale à 16 % en poids. Les caractéristiques de résistance au fluage de l'alliage SC16 sont telles que cet alliage apporte par rapport à l'alliage polycristallin de référence IN738 un gain en température de fonctionnement allant de 30 °C environ (830 °C au lieu de 800 °C) à 50 °C environ (950 °C au lieu de 900 °C). Des essais comparatifs de corrosion cyclique à 850 °C dans l'air à la pression atmosphérique avec contamination par Na2SO4 ont montré que la résistance à la corrosion à chaud de l'alliage SC16 était au moins équivalente à celle de l'alliage polycristallin de référence IN738.A nickel-based superalloy rich in chromium and capable of solidifying monocrystalline parts of industrial gas turbines is known under the name SC16 and described in FR 2 643 085 A. Its chromium concentration is equal to 16% by weight. The creep resistance characteristics of the SC16 alloy are such that this alloy provides, compared to the reference polycrystalline alloy IN738, a gain in operating temperature ranging from approximately 30 ° C. (830 ° C. instead of 800 ° C.) at around 50 ° C (950 ° C instead of 900 ° C). Comparative tests of cyclic corrosion at 850 ° C. in air at atmospheric pressure with contamination by Na 2 SO 4 have shown that the resistance to hot corrosion of the alloy SC16 was at least equivalent to that of the alloy polycrystalline reference IN738.
Des essais de corrosion à chaud ont été réalisés sur l'alliage SC16 par les fabricants de turbines industrielles dans leurs propres bancs d'essai. Dans des environnements très sévères, représentatifs de conditions extrêmes de fonctionnement, il a été montré que la résistance à la corrosion à chaud de cet alliage restait inférieure à celle de l'alliage IN738.Hot corrosion tests have been carried out on the alloy SC16 by industrial turbine manufacturers in their own test benches. In very severe, representative of extreme operating conditions, corrosion resistance has been shown to hot of this alloy remained lower than that of the alloy IN738.
Par ailleurs, la demande croissante de ces fabricants pour une augmentation de la température de fonctionnement des turbines à gaz nécessite une résistance au fluage encore améliorée des superalliages pour aubes.In addition, the growing demand from these manufacturers for an increase in the operating temperature of gas turbines still requires creep resistance improved superalloys for blades.
Le but de l'invention est de proposer un superalliage à base de nickel présentant une résistance à la corrosion à chaud, dans l'environnement agressif des gaz de combustion des turbines à gaz industrielles, au moins équivalente à celle du superalliage polycristallin de référence IN792, avec une résistance au fluage supérieure ou égale à celle de l'alliage de référence IN792 dans une gamme de températures allant jusqu'à 1000 °C.The object of the invention is to propose a superalloy based on nickel having resistance to hot corrosion, in the aggressive environment of the combustion gases of industrial gas turbines, at least equivalent to that of polycrystalline reference superalloy IN792, with a creep resistance greater than or equal to that of the alloy IN792 reference in a temperature range from up to 1000 ° C.
Ce superalliage doit en particulier convenir à la fabrication par solidification dirigée d'aubes monocristallines fixes et mobiles de grandes dimensions (jusqu'à plusieurs dizaines de centimètres de hauteur) de turbines à gaz industrielles.This superalloy must in particular be suitable for manufacturing by directed solidification of fixed monocrystalline vanes and large-scale mobiles (up to several tens of centimeters in height) of industrial gas turbines.
Ce superalliage doit de plus montrer une bonne stabilité microstructurale vis-à-vis de la précipitation de phases intermétalliques fragiles riches en chrome au cours de maintiens de longue durée à haute température.This superalloy must also show good stability. microstructural with respect to phase precipitation fragile intermetallics rich in chromium during long-term maintenance at high temperature.
Plus spécifiquement, on a recherché une composition d'alliage assurant:
- Une résistance à la corrosion à chaud optimisée, dans tous les cas au moins égale à celle du superalliage polycristallin de référence IN792, et ce dans divers environnements représentatifs de celui des gaz de combustion des turbines industrielles;
- Une fraction volumique maximale de précipités durcissants de phase γ' afin de favoriser la résistance au fluage à haute température;
- Une résistance au fluage jusqu'à 1000 °C supérieure à celle de l'alliage polycristallin de référence IN792;
- Une aptitude à l'homogénéisation par remise en solution totale des particules de phase γ', y compris les phases eutectiques γ/γ';
- L'absence de précipitation de phases intermétalliques fragiles riches en chrome, à partir de la matrice γ, au cours de maintiens de longue durée à haute température;
- Une masse volumique inférieure à 8,4 g.cm-3 afin de minimiser la masse des aubes monocristallines et par conséquent de limiter la contrainte centrifuge agissant sur ces aubes et sur le disque de turbine sur lequel elles sont fixées;
- Une bonne aptitude à la solidification monocristalline d'aubes de turbines dont la hauteur peut atteindre plusieurs dizaines de centimètres et la masse plusieurs kilogrammes.
- Optimized resistance to hot corrosion, in all cases at least equal to that of the polycrystalline superalloy reference IN792, and this in various environments representative of that of the combustion gases of industrial turbines;
- A maximum volume fraction of hardening precipitates of phase γ 'in order to promote resistance to creep at high temperature;
- A creep resistance up to 1000 ° C higher than that of the polycrystalline alloy of reference IN792;
- A capacity for homogenization by re-dissolving the particles of phase γ ', including the eutectic phases γ / γ';
- The absence of precipitation of fragile intermetallic phases rich in chromium, from the γ matrix, during long-term maintenance at high temperature;
- A density less than 8.4 g.cm -3 in order to minimize the mass of the monocrystalline blades and therefore to limit the centrifugal stress acting on these blades and on the turbine disk on which they are fixed;
- Good ability to solidify monocrystalline turbine blades, the height of which can reach several tens of centimeters and the mass of several kilograms.
Le superalliage selon l'invention, apte à la solidification
monocristalline, possède la composition pondérale suivante:
L'alliage selon l'invention présente un excellent compromis entre la résistance au fluage et la résistance à la corrosion à chaud. Il convient à la fabrication de pièces monocristallines, c'est-à-dire constituées d'un seul grain métallurgique. Cette structure particulière est obtenue par exemple à l'aide d'un procédé classique de solidification dirigée dans un gradient thermique, en utilisant un dispositif de sélection de grain à hélice ou à chicanes ou un germe monocristallin. The alloy according to the invention presents an excellent compromise between creep resistance and corrosion resistance hot. It is suitable for the manufacture of monocrystalline parts, that is to say made up of a single metallurgical grain. This particular structure is obtained for example using a conventional directed solidification process in a thermal gradient, using a device selection of grain with propeller or baffles or a germ Monocrystalline.
L'invention a également pour objet une aube de turbine industrielle réalisée par solidification monocristalline du superalliage ci-dessus.The invention also relates to a turbine blade industrial carried out by monocrystalline solidification of above superalloy.
Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés.The characteristics and advantages of the invention will be described in more detail in the description below, in referring to the attached drawings.
Les figures 1 et 2 sont des graphiques illustrant les propriétés de différents superalliages.Figures 1 and 2 are graphs illustrating the properties of different superalloys.
Un alliage selon l'invention dénommé SCB444 a été élaboré en
visant la composition nominale présentée dans le tableau I.
Dans ce tableau sont également reportées les concentrations
nominales en éléments majeurs des alliages de référence
IN939, IN738, IN792 et SC16.
Le chrome a un effet bénéfique et prépondérant sur la tenue à la corrosion à chaud des superalliages à base de nickel. L'expérience a ainsi montré qu'une concentration voisine de 12 % en poids était nécessaire et suffisante dans l'alliage de l'invention pour obtenir une résistance à la corrosion à chaud équivalente à celle de l'alliage de référence IN792 dans les conditions des essais de corrosion à chaud décrits plus loin, qui sont représentatives de l'environnement créé par les gaz de combustion de certaines turbines industrielles. Une teneur plus élevée en chrome ne permettrait pas d'atteindre la fraction volumique de phase γ' nécessaire à la bonne tenue en fluage de l'alliage jusqu'à 1000 °C, sans que l'alliage devienne instable vis-à-vis de la précipitation de phases intermétallique fragiles riches en chrome dans la matrice γ. Par ailleurs, une concentration plus faible en chrome ne permettrait pas d'égaler la résistance à la corrosion à chaud de l'alliage de référence IN792. Le chrome participe également au durcissement de la matrice γ dans laquelle cet élément se répartit préférentiellement.Chromium has a beneficial and predominant effect on the hold to hot corrosion of nickel-based superalloys. Experience has thus shown that a concentration close to 12% by weight was necessary and sufficient in the alloy of the invention to obtain corrosion resistance to hot equivalent to that of the reference alloy IN792 under the conditions of the hot corrosion tests described further, which are representative of the environment created by the combustion gases of certain industrial turbines. A higher chromium content would not allow reach the volume fraction of phase γ 'necessary for the good creep resistance of the alloy up to 1000 ° C, without the alloy becomes unstable with respect to the precipitation of fragile intermetallic phases rich in chromium in the matrix γ. In addition, a lower concentration of chrome would not match the resistance to hot corrosion of the reference alloy IN792. Chrome also participates in the hardening of the matrix γ in which this element is distributed preferentially.
Le molybdène durcit fortement la matrice γ dans laquelle cet élément se répartit préférentiellement. La quantité de molybdène pouvant être introduite dans l'alliage est cependant limitée car cet élément a un effet néfaste sur la résistance à la corrosion à chaud des superalliages à base de nickel. Une concentration voisine de 1 % en poids dans l'alliage de l'invention n'est pas pénalisante pour sa résistance à la corrosion et participe de manière significative à son durcissement.Molybdenum strongly hardens the γ matrix in which this element is distributed preferentially. The quantity of molybdenum which can be introduced into the alloy is however limited because this element has a detrimental effect on the resistance to hot corrosion of superalloys based on nickel. A concentration close to 1% by weight in the alloy of the invention is not penalizing for its corrosion resistance and contributes significantly to its hardening.
Le cobalt participe également au durcissement en solution solide de la matrice γ. La concentration en cobalt a une influence sur la température de mise en solution de la phase durcissante γ' (température de solvus γ'). Il est ainsi avantageux d'augmenter la concentration en cobalt pour abaisser la température de solvus de la phase γ' et faciliter l'homogénéisation de l'alliage par traitement thermique sans risque de provoquer un début de fusion. Par ailleurs il peut être également avantageux de réduire la concentration en cobalt afin d'augmenter la température de solvus de la phase γ' et de bénéficier ainsi d'une plus grande stabilité de la phase γ' à haute température ce qui est favorable à la résistance au fluage. La concentration voisine de 5 % en poids de cobalt dans l'alliage de l'invention conduit à un compromis optimal entre une bonne aptitude à l'homogénéisation et une bonne tenue au fluage.Cobalt also participates in solution hardening solid of the matrix γ. The cobalt concentration has a influence on the solution dissolution temperature of the phase hardening γ '(solvent temperature γ'). It is so advantageous to increase the cobalt concentration for lower the solvent temperature of the γ 'phase and facilitate homogenization of the alloy by heat treatment without may cause the onset of fusion. Besides, he can also be beneficial to reduce the concentration of cobalt to increase the solvent temperature of the phase γ 'and thus benefit from greater stability of the γ 'phase at high temperature which is favorable for creep resistance. The concentration around 5% in weight of cobalt in the alloy of the invention leads to a optimal compromise between good homogenization ability and good creep resistance.
Le tungstène dont la concentration est voisine de 4 % en poids dans l'alliage de l'invention se répartit de manière sensiblement égale entre les phases γ et γ' et contribue ainsi à leurs durcissements respectifs. Sa concentration dans l'alliage est cependant limitée car cet élément est lourd, et a un effet négatif sur la résistance à la corrosion à chaud.Tungsten whose concentration is close to 4% in weight in the alloy of the invention is distributed so substantially equal between phases γ and γ 'and contributes thus to their respective hardening. His concentration in the alloy is however limited because this element is heavy, and has a negative effect on the resistance to hot corrosion.
La concentration en aluminium est voisine de 4 % en poids dans l'alliage de l'invention. La présence de cet élément provoque la précipitation de la phase durcissante γ'. L'aluminium favorise également la résistance à l'oxydation. Les éléments titane et tantale sont ajoutés à l'alliage de l'invention afin de renforcer la phase γ' dans laquelle ils se substituent à l'élément aluminium. Les concentrations respectives de ces deux éléments dans l'alliage de l'invention sont voisines de 4,4 % en poids pour le titane et de 2 % en poids pour le tantale. Dans les conditions décrites plus loin d'essais de corrosion à chaud, correspondant à l'application visée, l'expérience a montré que la présence de titane était plus favorable à la résistance à la corrosion à chaud que ne l'est celle du tantale. La concentration en titane a cependant été limitée d'une part par le fait que cet élément peut avoir un effet négatif sur la tenue à l'oxydation, et d'autre part parce qu'une concentration trop élevée en titane peut entraíner une déstabilisation de la phase γ'. La somme des concentrations en tantale, titane et aluminium définit grossièrement la fraction volumique de phase durcissante γ'. Les concentrations de ces trois éléments ont été réglées de manière à optimiser la fraction volumique de phase γ', tout en conservant les phases γ et γ' stables au cours des maintiens de longue durée à haute température, et en tenant compte du fait que la concentration en chrome a été fixée à environ 12 % en poids de façon à atteindre la résistance à la corrosion désirée.The aluminum concentration is close to 4% by weight in the alloy of the invention. The presence of this element causes precipitation of the hardening phase γ '. Aluminum also promotes resistance to oxidation. Titanium and tantalum elements are added to the alloy of the invention in order to strengthen the γ 'phase in which they replace the aluminum element. The concentrations respective of these two elements in the alloy of the invention are close to 4.4% by weight for titanium and 2% by weight for tantalum. In the conditions described more far from hot corrosion tests, corresponding to the application aimed, experience has shown that the presence of titanium was more favorable to resistance to hot corrosion than tantalum is. The titanium concentration has however was limited on the one hand by the fact that this element can have a negative effect on oxidation resistance, and on the other hand because too high a concentration of titanium may cause destabilization of the γ 'phase. The sum tantalum, titanium and aluminum concentrations defined roughly the volume fraction of hardening phase γ '. The concentrations of these three elements were adjusted from so as to optimize the volume fraction of phase γ ', all by keeping the γ and γ 'phases stable during maintain for a long time at high temperature, and taking taking into account that the chromium concentration has been set at about 12% by weight so as to achieve resistance to corrosion desired.
L'alliage SCB444 a été élaboré sous la forme de monocristaux d'orientation <001>. La masse volumique de cet alliage a été mesurée et trouvée égale à 8,22 g.cm-3.The alloy SCB444 was developed in the form of single crystals of orientation <001>. The density of this alloy was measured and found to be 8.22 g.cm -3 .
Après solidification dirigée, l'alliage est essentiellement constitué de deux phases: la matrice austénitique γ, solution solide à base de nickel, et la phase γ', composé intermétallique dont la formule de base est Ni3Al, qui précipite en majeure partie au sein de la matrice γ sous la forme de fines particules de taille inférieure à un micromètre au cours du refroidissement à l'état solide. Une faible fraction de phase γ' se retrouve également dans des particules massives résultant d'une transformation eutectique liquide -> γ + γ' en fin de solidification. La fraction volumique de phase eutectique γ/γ' est voisine de 1,4 %.After directed solidification, the alloy essentially consists of two phases: the austenitic matrix γ, a solid solution based on nickel, and the phase γ ', an intermetallic compound whose basic formula is Ni 3 Al, which precipitates most of the within the matrix γ in the form of fine particles of size less than one micrometer during cooling in the solid state. A small fraction of γ 'phase is also found in massive particles resulting from a liquid eutectic transformation -> γ + γ' at the end of solidification. The volume fraction of eutectic phase γ / γ 'is close to 1.4%.
L'alliage SCB444 a subi un traitement thermique d'homogénéisation à la température de 1270 °C pendant 3 heures avec refroidissement à l'air. Cette température est supérieure à la température de solvus de la phase γ' (température de mise en solution des précipités de phase γ'), qui est égale à 1253 °C, et inférieure à la température de début de fusion, égale à 1285 °C. Ce traitement a pour objectif de dissoudre la totalité des précipités de phase γ' dont la distribution de tailles est très étendue dans l'état brut de solidification dirigée, d'éliminer les particules massives d'eutectique γ/γ' et de réduire les hétérogénéités chimiques liées à la structure dendritique de solidification.SCB444 alloy has undergone a homogenization heat treatment at a temperature of 1270 ° C for 3 hours with air cooling. This temperature is higher than the solvent temperature of phase γ '(setting temperature in solution of the precipitates of phase γ '), which is equal to 1253 ° C, and lower than the melting start temperature, equal to 1285 ° C. The purpose of this treatment is to dissolve all of the γ 'phase precipitates whose distribution of sizes is very extensive in the raw solidification state directed, to eliminate massive particles of eutectic γ / γ 'and to reduce the chemical heterogeneities linked to the dendritic solidification structure.
L'écart entre la température de solvus γ' de l'alliage SCB444 et sa température de début de fusion est très grand, ce qui autorise l'application aisée du traitement d'homogénéisation sans risque de fusion et avec la certitude d'obtenir une microstructure homogène autorisant une résistance au fluage optimisée.The difference between the solvent temperature γ 'of the alloy SCB444 and its melting start temperature is very large, which allows easy application of the homogenization treatment without risk of merger and with the certainty of obtaining a homogeneous microstructure allowing resistance to creep optimized.
Le refroidissement succédant au traitement d'homogénéisation décrit ci-dessus a été réalisé par trempe à l'air. En pratique, la vitesse de ce refroidissement doit être suffisamment élevée pour que la taille des particules ayant précipité au cours de ce refroidissement soit inférieure à 500 nm.The cooling after the homogenization treatment described above was produced by air quenching. In practical, the speed of this cooling must be sufficient high so that the particle size having precipitated during this cooling to be less than 500 nm.
La procédure de traitement thermique d'homogénéisation qui vient d'être décrite est un exemple permettant d'obtenir le résultat escompté, soit une distribution homogène de fines particules de phase γ' dont la taille n'excède pas 500 nm. The homogenization heat treatment procedure which just described is an example to obtain the expected result, i.e. a homogeneous distribution of fines γ 'phase particles whose size does not exceed 500 nm.
Ceci n'exclut pas la possibilité d'obtenir un résultat semblable en utilisant une autre température de traitement pourvu qu'elle soit comprise dans l'intervalle séparant la température de solvus γ' et la température de début de fusion.This does not exclude the possibility of obtaining a result. similar using another processing temperature provided that it falls within the interval separating the solvent temperature γ 'and the start temperature of fusion.
L'alliage SCB444 a été testé après avoir été soumis à un traitement d'homogénéisation tel que décrit plus haut, puis à deux traitements de revenu permettant de stabiliser la taille et la fraction volumique des précipités de phase γ'. Un premier traitement de revenu a consisté à chauffer l'alliage à 1100 °C pendant 4 heures avec refroidissement à l'air ce qui a pour effet de stabiliser la taille des précipités de phase γ'. Un deuxième traitement de revenu à 850 °C pendant 24 heures, suivi d'un refroidissement à l'air, permet d'optimiser la fraction volumique de phase γ'. Cette fraction volumique de phase γ' est estimée à 57 % dans l'alliage SCB444. À l'issue de l'ensemble des traitements thermiques, la phase γ' a précipité sous la forme de particules cuboïdales dont la taille est comprise entre 200 et 500 nm.SCB444 alloy has been tested after being subjected to a homogenization treatment as described above, then two income treatments to stabilize the size and volume fraction of γ 'phase precipitates. A first income treatment consisted of heating the alloy at 1100 ° C for 4 hours with cooling to air which has the effect of stabilizing the size of γ 'phase precipitates. A second income treatment at 850 ° C for 24 hours, followed by air cooling, optimizes the volume fraction of phase γ '. This γ 'phase volume fraction is estimated at 57% in SCB444 alloy. After all the treatments thermal, the γ 'phase precipitated in the form of particles cuboidal whose size is between 200 and 500 nm.
Des essais de corrosion cyclique à chaud ont été réalisés à 900 °C sur l'alliage SCB444 dans un banc de corrosion industriel avec brûleur. Le cycle était le suivant: 1 heure à 900 °C dans l'atmosphère corrosive produite par le brûleur, puis 15 minutes hors du four à la température ambiante. Le brûleur fonctionnait avec du fuel chargé de 0,20 % de soufre. Une solution d'eau salée à 0,5 g.l-1 de NaCl était vaporisée sur l'échantillon à un débit de 2,2 m3.h-1. L'échantillon était recouvert toutes les 100 heures d'un dépôt de 0,5 mg.cm- 2 de Na2SO4. Pour comparaison, les alliages IN738 et IN792 ont été testés simultanément. Le critère de résistance à la corrosion est le nombre de cycles pour lequel les premières piqûres de corrosion apparaissent à la surface de l'échantillon.Cyclic hot corrosion tests were carried out at 900 ° C on the SCB444 alloy in an industrial corrosion bench with burner. The cycle was as follows: 1 hour at 900 ° C. in the corrosive atmosphere produced by the burner, then 15 minutes out of the oven at room temperature. The burner operated with fuel loaded with 0.20% sulfur. A 0.5 g -1 salt water solution of NaCl was sprayed onto the sample at a flow rate of 2.2 m 3 .h -1 . The sample was covered every 100 hours with a deposit of 0.5 mg.cm - 2 of Na 2 SO 4 . For comparison, the alloys IN738 and IN792 were tested simultaneously. The corrosion resistance criterion is the number of cycles for which the first pits of corrosion appear on the surface of the sample.
Les résultats des essais de corrosion sont illustrés par le graphique de la figure 1. L'amorçage de la corrosion à 900 °C intervient pour des nombres de cycles comparables pour les alliages SCB444 et IN792 ce qui satisfait à l'objectif fixé.The results of the corrosion tests are illustrated by the graph of figure 1. The initiation of corrosion at 900 ° C intervenes for comparable number of cycles for alloys SCB444 and IN792 which meets the set objective.
Des essais de fluage en traction ont été réalisés sur des
éprouvettes usinées dans des barreaux monocristallins
d'orientation <001>. Les barreaux ont été préalablement
homogénéisés puis revenus selon les procédures décrites
auparavant. Des valeurs de temps à rupture obtenues à 750,
850 et 950 °C pour différents niveaux de contrainte appliquée
sont reportées dans le tableau II.
Le graphique de la figure 2 permet de comparer les temps à rupture en fluage obtenus pour les alliages SCB444, IN738, IN792 et SC16. En abscisse est portée la contrainte appliquée. En ordonnée est portée la valeur du paramètre de Larson-Miller. Ce paramètre est donné par la formule P = T(20 + log t)× 10-3 où T est la température de fluage en Kelvin et t le temps à rupture en heures. Ce graphique fait apparaítre que la résistance au fluage de l'alliage SCB444 est nettement supérieure à celle de l'alliage IN792.The graph in FIG. 2 makes it possible to compare the creep rupture times obtained for the alloys SCB444, IN738, IN792 and SC16. The applied stress is plotted on the abscissa. The value of the Larson-Miller parameter is plotted on the ordinate. This parameter is given by the formula P = T (20 + log t) × 10 -3 where T is the creep temperature in Kelvin and t the failure time in hours. This graph shows that the creep resistance of the SCB444 alloy is significantly higher than that of the IN792 alloy.
Le contrôle de la microstructure des éprouvettes d'alliage SCB444 à l'issue des essais de fluage a démontré l'absence de précipitation de particules intermétalliques fragiles riches en chrome susceptibles d'apparaítre au cours de maintiens de longue durée à haute température dans les superalliages à base de nickel où la matrice γ est sursaturée en éléments d'addition.Control of the microstructure of alloy test pieces SCB444 after the creep tests demonstrated the absence of precipitation of rich fragile intermetallic particles chrome likely to appear during maintenance of long-term high temperature in superalloys with nickel base where the matrix γ is supersaturated with elements addition.
Des essais de fabrication de pièces monocristallines en superalliage SCB444 ont montré qu'il était possible de couler un large éventail de composants dont la masse peut aller de quelques grammes à plus de 10 kg, avec divers degrés de complexité. La croissance des pièces selon l'orientation cristallographique <001> est favorisée et dominante et la présence de grains orientés de manière aléatoire est minimisée. Le métal liquide est stable en ce sens qu'il ne réagit pas avec les matériaux utilisés communément pour la fabrication des moules. Le phénomène de recristallisation pouvant se produire durant le traitement d'homogénéisation à haute température est absent dans le cas de l'alliage SCB444.Tests for the production of monocrystalline parts in SCB444 superalloy showed that it was possible to sink a wide range of components whose mass can range from a few grams to more than 10 kg, with varying degrees of complexity. Parts growth according to orientation <001> is favored and dominant and the presence of randomly oriented grains is minimized. Liquid metal is stable in the sense that it does not react not with the materials commonly used for manufacturing mussels. The recrystallization phenomenon can be occur during the high homogenization treatment temperature is absent in the case of alloy SCB444.
Claims (2)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60035052T DE60035052T2 (en) | 2000-11-30 | 2000-11-30 | Nickel base superalloy for single crystal turbine blades of industrial turbines with high resistance to hot corrosion |
EP00403362A EP1211336B1 (en) | 2000-11-30 | 2000-11-30 | Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion |
JP2001365810A JP2002194467A (en) | 2000-11-30 | 2001-11-30 | Nickel based superalloy having high temperature corrosion resistance for single crystal blade of industrial turbine |
US10/008,745 US20030047252A1 (en) | 2000-11-30 | 2001-11-30 | Nickel-based superalloy having high resistance to hot-corrosion for monocrystalline blades of industrial turbines |
US10/636,024 US20040069380A1 (en) | 2000-11-30 | 2003-08-07 | Nickel-based superalloy having high resistance to hot-corrosion for monocrystalline blades of industrial turbines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00403362A EP1211336B1 (en) | 2000-11-30 | 2000-11-30 | Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1211336A1 true EP1211336A1 (en) | 2002-06-05 |
EP1211336B1 EP1211336B1 (en) | 2007-05-30 |
Family
ID=8173964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00403362A Expired - Lifetime EP1211336B1 (en) | 2000-11-30 | 2000-11-30 | Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion |
Country Status (4)
Country | Link |
---|---|
US (2) | US20030047252A1 (en) |
EP (1) | EP1211336B1 (en) |
JP (1) | JP2002194467A (en) |
DE (1) | DE60035052T2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057880A1 (en) * | 2016-10-25 | 2018-04-27 | Safran | SUPERALLIAGE BASED ON NICKEL, MONOCRYSTALLINE AUBE AND TURBOMACHINE |
WO2020260645A1 (en) * | 2019-06-28 | 2020-12-30 | Safran Aircraft Engines | Method for manufacturing a part made of a monocrystalline superalloy |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060182649A1 (en) * | 2005-02-16 | 2006-08-17 | Siemens Westinghouse Power Corp. | High strength oxidation resistant superalloy with enhanced coating compatibility |
EP2103700A1 (en) * | 2008-03-14 | 2009-09-23 | Siemens Aktiengesellschaft | Nickel base alloy and use of it, turbine blade or vane and gas turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885216A (en) * | 1987-04-03 | 1989-12-05 | Avco Corporation | High strength nickel base single crystal alloys |
GB2234521A (en) * | 1986-03-27 | 1991-02-06 | Gen Electric | Nickel-base superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
EP1038982A1 (en) * | 1999-03-26 | 2000-09-27 | Howmet Research Corporation | Single crystal superalloy articles with reduced grain recrystallization |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3109293C2 (en) * | 1980-03-13 | 1985-08-01 | Rolls-Royce Ltd., London | Use of a nickel alloy for single crystal castings |
US5399313A (en) * | 1981-10-02 | 1995-03-21 | General Electric Company | Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
US5154884A (en) * | 1981-10-02 | 1992-10-13 | General Electric Company | Single crystal nickel-base superalloy article and method for making |
US5403546A (en) * | 1989-02-10 | 1995-04-04 | Office National D'etudes Et De Recherches/Aerospatiales | Nickel-based superalloy for industrial turbine blades |
US5395584A (en) * | 1992-06-17 | 1995-03-07 | Avco Corporation | Nickel-base superalloy compositions |
US6355117B1 (en) * | 1992-10-30 | 2002-03-12 | United Technologies Corporation | Nickel base superalloy single crystal articles with improved performance in air and hydrogen |
JPH07286503A (en) * | 1994-04-20 | 1995-10-31 | Hitachi Ltd | Highly efficient gas turbine |
EP1054072B1 (en) * | 1999-05-20 | 2003-04-02 | ALSTOM (Switzerland) Ltd | Nickel base superalloy |
EP1204776B1 (en) * | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
-
2000
- 2000-11-30 EP EP00403362A patent/EP1211336B1/en not_active Expired - Lifetime
- 2000-11-30 DE DE60035052T patent/DE60035052T2/en not_active Expired - Lifetime
-
2001
- 2001-11-30 US US10/008,745 patent/US20030047252A1/en not_active Abandoned
- 2001-11-30 JP JP2001365810A patent/JP2002194467A/en active Pending
-
2003
- 2003-08-07 US US10/636,024 patent/US20040069380A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2234521A (en) * | 1986-03-27 | 1991-02-06 | Gen Electric | Nickel-base superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
US4885216A (en) * | 1987-04-03 | 1989-12-05 | Avco Corporation | High strength nickel base single crystal alloys |
EP1038982A1 (en) * | 1999-03-26 | 2000-09-27 | Howmet Research Corporation | Single crystal superalloy articles with reduced grain recrystallization |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057880A1 (en) * | 2016-10-25 | 2018-04-27 | Safran | SUPERALLIAGE BASED ON NICKEL, MONOCRYSTALLINE AUBE AND TURBOMACHINE |
WO2018078269A1 (en) * | 2016-10-25 | 2018-05-03 | Safran | Superalloy based on nickel, monocrystalline blade and turbomachine |
US11220727B2 (en) | 2016-10-25 | 2022-01-11 | Safran | Superalloy based on nickel, monocrystalline blade and turbomachine |
WO2020260645A1 (en) * | 2019-06-28 | 2020-12-30 | Safran Aircraft Engines | Method for manufacturing a part made of a monocrystalline superalloy |
FR3097879A1 (en) * | 2019-06-28 | 2021-01-01 | Safran Aircraft Engines | MANUFACTURING PROCESS OF A MONOCRISTALLINE SUPERALLY PART |
Also Published As
Publication number | Publication date |
---|---|
DE60035052T2 (en) | 2008-01-24 |
US20040069380A1 (en) | 2004-04-15 |
JP2002194467A (en) | 2002-07-10 |
DE60035052D1 (en) | 2007-07-12 |
EP1211336B1 (en) | 2007-05-30 |
US20030047252A1 (en) | 2003-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0971041B1 (en) | Single crystal nickel-based superalloy with high solvus gamma prime phase | |
EP1840232B1 (en) | Nickel-based alloy | |
EP0063511B1 (en) | Monocrystalline superalloy with nickel-base matrix, process for improving articles made from this alloy and articles obtained by this process | |
FR2731714A1 (en) | Nickel-base superalloy for single-crystal castings | |
EP3710610B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
EP1211335B1 (en) | Nickel based superalloy having a very high resistance to hot corrosion for single crystal turbine blades of industrial turbines | |
EP3710611B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
EP1211336B1 (en) | Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion | |
WO2021116607A1 (en) | Nickel-based superalloy | |
EP3802895B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
FR2860804A1 (en) | SUPERALLIAGE BASED ON NICKEL AND PARTS DONE IN MONOCRYSTAL | |
FR2557146A1 (en) | HEAT TREATMENT BEFORE HOT ISOSTATIC COMPRESSION OF SUPERALLY MOLDED PIECES | |
EP0187573B1 (en) | Nickel base alloy | |
EP3911773B1 (en) | Nickel based alloy with low density and mechanical and environmental strength at high temperature | |
EP3918101A1 (en) | Nickel-based superalloy having high mechanical and environmental strength at high temperatures and low density | |
FR2854165A1 (en) | Nickel base superalloy for turbine airfoil, which is single crystal cast airfoil, comprises chromium, cobalt, tantalum, aluminum, tungsten, molybdenum, titanium, rhenium, hafnium, carbon, boron, and nickel and incidental impurities | |
FR2513269A1 (en) | COMPOSITION AND THERMAL TREATMENT FOR ALLOY FOR MONOCRYSTALLINE MOLDINGS | |
EP3990672A1 (en) | Method for manufacturing a part made of a monocrystalline superalloy | |
FR3117507A1 (en) | METHOD FOR MANUFACTURING A MONOCRYSTALLINE SUPERALLOY PART | |
WO2024047315A1 (en) | Nickel-based superalloy, single-crystal blade and turbine engine | |
EP0570270A1 (en) | Nickel-base single-crystal superalloy, suitable for turbine blades of rocket engines and their production process | |
EP0570271A1 (en) | Iron-nickel base single-crystal superalloy, suitable for turbine blades of socket engines and their production process | |
FR2729675A1 (en) | Heat-resistant nickel@-based alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20021125 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60035052 Country of ref document: DE Date of ref document: 20070712 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070830 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080303 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TQ |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191021 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191022 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60035052 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20201129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20201129 |