EP1207978A1 - Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method - Google Patents

Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method

Info

Publication number
EP1207978A1
EP1207978A1 EP00951258A EP00951258A EP1207978A1 EP 1207978 A1 EP1207978 A1 EP 1207978A1 EP 00951258 A EP00951258 A EP 00951258A EP 00951258 A EP00951258 A EP 00951258A EP 1207978 A1 EP1207978 A1 EP 1207978A1
Authority
EP
European Patent Office
Prior art keywords
path
target path
change
actual
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00951258A
Other languages
German (de)
French (fr)
Inventor
Marcel Heerman
Hubert De Steur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1207978A1 publication Critical patent/EP1207978A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • the invention relates to a method for describing a predetermined target path with a beam of particles or waves, the direction of which can be changed by a movable beam straightener.
  • the invention further relates to the use of the method.
  • the deviation of the actual path from the target path leads to an increased at a constant laser pulse frequency Number of laser pulses are placed on a shortened track. This is shown in Figures 2a and 2b.
  • a row of laser spots 7 along a desired path 1 is shown in FIG. 2a.
  • the arrows mark the direction of movement of the laser beam.
  • a row of laser spots 7 along the actual path is shown in FIG. 2b.
  • the arrows mark the direction of movement of the laser beam. If the laser beam is used to structure a surface, this increased pulse density can lead to a higher energy input per surface with all possible undesirable consequences.
  • the aim of the present invention is therefore to provide a method for describing a predetermined target path with a beam of particles or waves, in which the deviation of the actual path actually achieved from the target path is minimized.
  • the invention specifies a method for describing a predetermined target path with a beam of particles or waves, in which a movable beam director influences the direction of the beam.
  • the jet is directed by the jet judge onto a surface on which it describes an actual path at the speed V ß .
  • a control device converts the target path into a corrected target path, which describes a detour in the vicinity of a discrete change from a first direction of the target path to a second direction of the target path. This detour is created by adding or deleting any section to the target path.
  • the control device transmits the data of the corrected target path in control instructions for the jet straightener.
  • the method according to claim 1 can also be used particularly advantageously for curved target paths, in that the target path with continuous change of direction is approximated by a target path with successive, discrete changes of direction, which is then corrected according to the method according to claim 1.
  • a method in which a pulsed beam is used is particularly advantageous. For example, when structuring a surface using laser beams, there is the problem that an increased laser pulse density is placed on the shortened actual path section due to the path inaccuracies. The increased laser pulse density can be avoided by the path correction.
  • the method according to the invention can be used particularly advantageously when a laser beam is used as the beam and a mirror with a galvanometer motor is used as the movable beam director.
  • the problem of the mechanical inertia of the jet straightener has so far emerged particularly in mirrors with galvanometer motors.
  • the method according to the invention can be used particularly advantageously for processing or changing a surface, for example for labeling dials, or for applying or removing material, such as for example in the case of laser structuring or doping semiconductor surfaces by means of ion beams.
  • an ion beam is used as the beam, it is particularly advantageous to use a magnetic lens as the beam director.
  • Figures 3a to 3c show a predetermined target path, a target path corrected according to the invention and the resulting actual path.
  • FIG. 4 shows a target path with continuous changes of direction, which was approximated by a target path with discrete changes of direction.
  • FIG. 3a shows a predetermined target path 1, in which a change of direction takes place from a first to a second direction.
  • the target path 1 is described with the path speed VR in the direction of the arrow.
  • FIG. 3b shows the corrected target path 2 belonging to FIG. 3a.
  • a first straight line section of length L which points in the first direction, is added to the kink point of the target path. This line segment is described with the path speed VR.
  • a second straight section of the same length is added to the first straight section, which points in the opposite direction. This second straight line section is described with the maximum path speed v max , as a result of which it essentially represents a return command to the location of the change of direction.
  • the corrected nominal path corresponds to the nominal path, which is described with the path speed VR.
  • FIG. 3c shows the actual path 5 that is achieved and belongs to FIG. 3b.
  • the two straight sections are described with the path speed VR in the direction indicated by the arrows.
  • the corrected actual path 5 corresponds to the predetermined target path.
  • FIG. 4 shows a curved target path 6. This is determined by a target path 1 with successive, discrete directional change approximately. The locations of the change of direction are marked by arrows. This target path 1 with discrete changes of direction can again be corrected in accordance with the method according to the invention.
  • the invention is not limited to the exemplary embodiments shown, but is defined in its most general form by claim 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

The invention relates to a method for describing a predetermined desired course (1) with a beam consisting of particles or waves. A movable device for directing a beam influences the direction of the beam, which describes an actual course (3, 4). The deviation of the actual course (3, 4) from the desired course that results from inertia is minimized by providing a corrected desired course (2), which describes diversions at the point where the direction is changed. The invention also relates to the use of this method for laser structuring or for writing guard plates or dial plates.

Description

Beschreibungdescription
Verfahren zum Beschreiben einer vorgegebenen Sollbahn mit einem Strahl aus Teilchen oder Wellen und Verwendung des Ver- fahrensMethod for describing a predetermined target path with a beam of particles or waves and using the method
Die Erfindung betrifft ein Verfahren zum Beschreiben einer vorgegebenen Sollbahn mit einem Strahl aus Teilchen oder Wellen, dessen Richtung durch einen beweglichen Strahlrichter veränderbar ist. Die Erfindung betrifft ferner die Verwendung des Verfahrens .The invention relates to a method for describing a predetermined target path with a beam of particles or waves, the direction of which can be changed by a movable beam straightener. The invention further relates to the use of the method.
Es sind aus US 5,593,606 Verfahren bekannt, bei denen ein gepulster Laserstrahl von einem motorgesteuerten Spiegel abge- lenkt wird. Die Daten einer vorgegebenen Sollbahn werden von einem Ansteuergerät in Steueranweisungen für den Motor übertragen. Der bewegliche Strahlrichter beeinflußt die Richtung des Strahls, wodurch dieser auf eine Fläche pro iziert eine Istbahn mit der Geschwindigkeit vg beschreibt.Methods are known from US Pat. No. 5,593,606 in which a pulsed laser beam is deflected by a motor-controlled mirror. The data of a predetermined target path are transmitted by a control device in control instructions for the engine. The movable jet straightener influences the direction of the jet, which means that it describes an actual path at a speed of vg per area.
Diese bekannten Verfahren haben den Nachteil, daß bei einer geradlinigen Sollbahn die Istbahn aufgrund der mechanischen Trägheit des Strahlrichters mit einer konstanten Verzögerung um die Schleppfehlerzeit tg beschrieben wird. Dieser Schlepp- fehler führt dazu, daß die zu einer gekrümmten Sollbahn gehörende Istbahn von dieser abweicht. Dabei ist die Abweichung abhängig von der Bahngeschwindigkeit Vg. Die Figuren la bis ld zeigen verschiedene Beispiele für diese Abweichungen. Es sind jeweils die Sollbahn 1 und die Istbahn 3 bei niedriger Bahngeschwindigkeit dargestellt. Darüber hinaus sind in den Figuren lb und lc jeweils eine Istbahn 4 bei hoher Bahngeschwindigkeit dargestellt.These known methods have the disadvantage that, in the case of a straight-line nominal path, the actual path is written with a constant delay by the lag error time tg due to the mechanical inertia of the jet straightener. This following error leads to the fact that the actual path belonging to a curved target path deviates from this. The deviation is dependent on the web speed Vg. Figures la to ld show different examples of these deviations. The target path 1 and the actual path 3 are shown at a low path speed. In addition, FIGS. 1b and 1c each show an actual path 4 at a high path speed.
Die Abweichung der Istbahn von der Sollbahn ist um so größer, je höher die Bahngeschwindigkeit ist, mit der die Sollbahn beschrieben wird. Die Abweichung der Istbahn von der Sollbahn führt dazu, daß bei konstanter Laserpulsfrequenz eine erhöhte Anzahl von Laserpulsen auf ein eingekürztes Bahnstück gegeben werden. Dies ist in den Figuren 2a und 2b dargestellt. In Figur 2a ist eine Reihe von Laserflecken 7 entlang einer Sollbahn 1 dargestellt. Die Pfeile markieren dabei die Bewegungs- richtung des Laserstrahls. In Figur 2b ist eine Reihe von Laserflecken 7 entlang der Istbahn dargestellt. Die Pfeile markieren die Bewegungsrichtung des Laserstrahls. Wird der Laserstrahl zum Strukturieren einer Oberfläche verwendet, so kann diese erhöhte Pulsdichte zu einem höheren Energieeintrag pro Fläche mit allen möglichen unerwünschten Konsequenzen führen .The higher the path speed at which the target path is written, the greater the deviation of the actual path from the target path. The deviation of the actual path from the target path leads to an increased at a constant laser pulse frequency Number of laser pulses are placed on a shortened track. This is shown in Figures 2a and 2b. A row of laser spots 7 along a desired path 1 is shown in FIG. 2a. The arrows mark the direction of movement of the laser beam. A row of laser spots 7 along the actual path is shown in FIG. 2b. The arrows mark the direction of movement of the laser beam. If the laser beam is used to structure a surface, this increased pulse density can lead to a higher energy input per surface with all possible undesirable consequences.
Ziel der vorliegenden Erfindung ist es daher, ein Verfahren zum Beschreiben einer vorgegebenen Sollbahn mit einem Strahl aus Teilchen oder Wellen bereitzustellen, bei dem die Abweichung der tatsächlich erreichten Istbahn von der Sollbahn minimiert ist.The aim of the present invention is therefore to provide a method for describing a predetermined target path with a beam of particles or waves, in which the deviation of the actual path actually achieved from the target path is minimized.
Dieses Ziel wird erfindungsgemäß durch ein Verfahren nach An- spruch 1 erreicht. Vorteilhafte Ausgestaltungen der Erfindung und Verwendungen der Erfindung sind den weiteren Ansprüchen zu entnehmen .According to the invention, this aim is achieved by a method according to claim 1. Advantageous embodiments of the invention and uses of the invention can be found in the further claims.
Die Erfindung gibt ein Verfahren zum Beschreiben einer vorge- gebenen Sollbahn mit einem Strahl aus Teilchen oder Wellen an, bei dem ein beweglicher Strahlrichter die Richtung des Strahls beeinflußt. Der Strahl wird durch den Strahlrichter auf eine Fläche gerichtet, auf der er mit der Geschwindigkeit Vß eine Istbahn beschreibt. Ein Ansteuergerät wandelt die Sollbahn in eine korrigierte Sollbahn um, die in der Umgebung eines diskreten Wechsels einer ersten Richtung der Sollbahn in eine zweite Richtung der Sollbahn einen Umweg beschreibt. Dieser Umweg entsteht durch Hinzufügen oder Löschen beliebiger Abschnitte zur Sollbahn. Die Daten der korrigierten Soll- bahn werden durch das Ansteuergerät in Steueranweisungen für den Strahlrichter übertragen. El φ rH H φ ßThe invention specifies a method for describing a predetermined target path with a beam of particles or waves, in which a movable beam director influences the direction of the beam. The jet is directed by the jet judge onto a surface on which it describes an actual path at the speed V ß . A control device converts the target path into a corrected target path, which describes a detour in the vicinity of a discrete change from a first direction of the target path to a second direction of the target path. This detour is created by adding or deleting any section to the target path. The control device transmits the data of the corrected target path in control instructions for the jet straightener. El φ rH H φ ß
X υX υ
01 ß01 ß
H H
ΦΦ
4-14-1
Dl rH o .Dl rH o.
4H 014H 01
El rH φ φEl rH φ φ
0101
X r υ υ td Φ ß 5 td ölX r υ υ td Φ ß 5 td oil
Q Di ßQ Di ß
« ß ß 4 φ X«Ss ß 4 φ X
D) υ o -HD) υ o -H
N PiN Pi
ΦΦ
Di 01 φTue 01 φ
01 TJ ß td 4-1 ß El01 TJ ß td 4-1 ß el
-H o ß-H o ß
01 ε ß01 ε ß
<H N<H N
Φ ö D)Φ ö D)
X ß υ ß φ EiX ß υ ß φ Ei
5 öl 0 a15 oil 0 a1
Di X ß υ ß :ß 4-> cDi X ß υ ß: ß 4-> c
LD o LD O o un rH rH CM LD o LD O o un rH rH CM
Das Verfahren nach Anspruch 1 kann besonders vorteilhaft auch für gekrümmte Sollbahnen verwendet werden, indem die Sollbahn mit kontinuierlichem Richtungswechsel durch eine Sollbahn mit aufeinanderfolgenden, diskreten Richtungswechseln angenähert wird, welche dann gemäß dem Verfahren nach Anspruch 1 korrigiert wird.The method according to claim 1 can also be used particularly advantageously for curved target paths, in that the target path with continuous change of direction is approximated by a target path with successive, discrete changes of direction, which is then corrected according to the method according to claim 1.
Besonders vorteilhaft ist ein Verfahren, bei dem ein gepulster Strahl verwendet wird. Beispielsweise bei der Struktu- rierung einer Oberfläche mittels Laserstrahlen besteht das Problem, daß durch die Bahnungenauigkeiten eine erhöhte Laserpulsdichte auf das verkürzte Istbahnstück gesetzt wird. Durch die Bahnkorrektur kann die erhöhte Laserpulsdichte vermieden werden.A method in which a pulsed beam is used is particularly advantageous. For example, when structuring a surface using laser beams, there is the problem that an increased laser pulse density is placed on the shortened actual path section due to the path inaccuracies. The increased laser pulse density can be avoided by the path correction.
Des weiteren ist das erfindungsgemäße Verfahren besonders vorteilhaft dann einzusetzen, wenn als Strahl ein Laserstrahl und als beweglicher Strahlrichter ein Spiegel mit Galvanometermotor verwendet wird. Gerade bei Spiegeln mit Galvanome- termotoren tritt bislang das Problem der mechanischen Trägheit des Strahlrichters deutlich zu Tage.Furthermore, the method according to the invention can be used particularly advantageously when a laser beam is used as the beam and a mirror with a galvanometer motor is used as the movable beam director. The problem of the mechanical inertia of the jet straightener has so far emerged particularly in mirrors with galvanometer motors.
Das erfindungsgemäße Verfahren kann besonders vorteilhaft verwendet werden zum Bearbeiten oder Verändern einer Oberflä- ehe, beispielsweise zum Beschriften von Zifferblättern, oder zum Auf- oder Abtragen von Material, wie beispielsweise bei einer Laserstrukturierung oder einer Dotierung von Halbleiteroberflächen mittels Ionenstrahlen.The method according to the invention can be used particularly advantageously for processing or changing a surface, for example for labeling dials, or for applying or removing material, such as for example in the case of laser structuring or doping semiconductor surfaces by means of ion beams.
Verwendet man als Strahl einen Ionenstrahl, so ist es besonders vorteilhaft, als Strahlrichter eine magnetische Linse zu verwenden .If an ion beam is used as the beam, it is particularly advantageous to use a magnetic lens as the beam director.
Im folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazugehörigen Figuren näher erläutert. Figuren 3a bis 3c zeigen eine vorgegebene Sollbahn, eine erfindungsgemäß korrigierte Sollbahn und die daraus resultierende Istbahn .The invention is explained in more detail below with the aid of exemplary embodiments and the associated figures. Figures 3a to 3c show a predetermined target path, a target path corrected according to the invention and the resulting actual path.
Figur 4 zeigt eine Sollbahn mit kontinuierlichem Richtungswechseln, die durch eine Sollbahn mit diskreten Richtungswechseln angenähert wurde.FIG. 4 shows a target path with continuous changes of direction, which was approximated by a target path with discrete changes of direction.
Figur 3a zeigt eine vorgegebene Sollbahn 1, bei der ein Rich- tungswechsel von einer ersten in eine zweite Richtung stattfindet. Die Sollbahn 1 wird mit der Bahngeschwindigkeit VR jeweils in Pfeilrichtung beschrieben.FIG. 3a shows a predetermined target path 1, in which a change of direction takes place from a first to a second direction. The target path 1 is described with the path speed VR in the direction of the arrow.
Figur 3b zeigt die zu Figur 3a gehörige korrigierte Sollbahn 2. Am Knickpunkt der Sollbahn wird ein erster Geradenabschnitt der Länge L angefügt, der in die erste Richtung weist. Dieser Geradenabschnitt wird mit der Bahngeschwindigkeit VR beschrieben. An den ersten Geradenabschnitt wird ein zweiter Geradenabschnitt gleicher Länge angefügt, der in die entgegengesetzte Richtung zeigt. Dieser zweite Geradenabschnitt wird mit der maximalen Bahngeschwindigkeit vmax beschrieben, wodurch er quasi einen Rücksprungbefehl an den Ort des Richtungswechsels darstellt. Nach dem Knick der zweiten Richtung folgend entspricht die korrigierte Sollbahn der Sollbahn, welche mit der Bahngeschwindigkeit VR beschrieben wird.FIG. 3b shows the corrected target path 2 belonging to FIG. 3a. A first straight line section of length L, which points in the first direction, is added to the kink point of the target path. This line segment is described with the path speed VR. A second straight section of the same length is added to the first straight section, which points in the opposite direction. This second straight line section is described with the maximum path speed v max , as a result of which it essentially represents a return command to the location of the change of direction. After the kink following the second direction, the corrected nominal path corresponds to the nominal path, which is described with the path speed VR.
Figur 3c zeigt die zu Figur 3b gehörende erzielte Istbahn 5. Die beiden Geradenstücke werden mit der Bahngeschwindigkeit VR in die durch die Pfeile angegebene Richtung beschrieben. Abgesehen von einer kleinen Lücke und einer kleinen Krümmung des zweiten Richtungsabschnitts am Ort des Richtungswechsels entspricht die korrigierte Istbahn 5 der vorgegebenen Sollbahn.FIG. 3c shows the actual path 5 that is achieved and belongs to FIG. 3b. The two straight sections are described with the path speed VR in the direction indicated by the arrows. Apart from a small gap and a small curvature of the second direction section at the location of the change of direction, the corrected actual path 5 corresponds to the predetermined target path.
Figur 4 zeigt eine gekrümmte Sollbahn 6. Diese wird durch eine Sollbahn 1 mit aufeinanderfolgenden, diskreten Richtungs- wechseln angenähert. Die Orte der Richtungswechsel sind durch Pfeile markiert. Diese Sollbahn 1 mit diskreten Richtungswechseln kann nun wiederum entsprechend dem erfindungsgemäßen Verfahren korrigiert werden.FIG. 4 shows a curved target path 6. This is determined by a target path 1 with successive, discrete directional change approximately. The locations of the change of direction are marked by arrows. This target path 1 with discrete changes of direction can again be corrected in accordance with the method according to the invention.
Die Erfindung beschränkt sich nicht auf die beispielhaft gezeigten Ausführungsformen, sondern wird in ihrer allgemeinsten Form durch Anspruch 1 definiert. The invention is not limited to the exemplary embodiments shown, but is defined in its most general form by claim 1.

Claims

Patentansprüche claims
1. Verfahren zum Beschreiben einer Bahn gemäß einer einen Richtungswechsel aufweisenden vorgegebenen Sollbahn (1) mit einem Strahl aus Teilchen oder Wellen, wobei ein beweglicher Strahlrichter die Richtung des Strahls beeinflußt, wodurch dieser auf eine Fläche projiziert eine Istbahn (3, 4) mit der Geschwindigkeit vg beschreibt, wobei die Sollbahn (1) von einem Ansteuergerät in eine korri- gierte Sollbahn (2) umgewandelt wird, die in der Umgebung des diskreten Richtungswechsels von einer ersten Richtung in eine zweite Richtung einen Umweg beschreibt, der durch Hinzufügen und/oder Löschen beliebiger Abschnitte zur Sollbahn (1) entsteht, und wobei die korrigierte Sollbahn (2) durch das An- Steuergerät in Steueranweisungen für den Strahlrichter übertragen wird.1. A method for describing a path according to a predetermined change of direction having a predetermined target path (1) with a beam of particles or waves, a movable beam director influencing the direction of the beam, whereby it projects an actual path (3, 4) onto a surface Velocity vg describes, the target path (1) being converted by a control device into a corrected target path (2), which describes a detour in the vicinity of the discrete change of direction from a first direction to a second direction, which can be achieved by adding and / or Deletion of any section to the target path (1) arises, and the corrected target path (2) is transmitted by the control device in control instructions for the jet judge.
2. Verfahren nach Anspruch 1, bei dem die Abschnitte Geradenabschnitte sind.2. The method of claim 1, wherein the sections are straight sections.
3. Verfahren nach Anspruch 1 oder 2 ,3. The method according to claim 1 or 2,
- wobei die Istbahn (3, 4) mit konstanter Bahngeschwindigkeit VR beschrieben wird,- The actual path (3, 4) is written with a constant path speed V R ,
- wobei bei einer geradlinigen Sollbahn (1) die Istbahn (3, 4) aufgrund der mechanischen Trägheit des Strahlrichters mit einer konstanten Verzögerung um die Schleppfehlerzeit tg beschrieben wird,- In the case of a rectilinear nominal path (1), the actual path (3, 4) is described with a constant delay by the lag error time tg due to the mechanical inertia of the jet straightener,
- wobei die korrigierte Sollbahn (2) aus der Sollbahn (1) entsteht, - indem am Ort des Richtungswechsels ein in die erste- The corrected target path (2) arises from the target path (1), - by one at the location of the change of direction in the first
Richtung weisender erster Geradenabschnitt der Länge L an die bisherige Bahn angefügt wird, für den gilt: L = VR X tg. undDirection-pointing first straight section of length L is added to the previous path, for which the following applies: L = V R X tg. and
- indem ein in die entgegengesetzte Richtung weisender, zweiter Geradenabschnitt der Länge L an das vom Ort des Rich- tungswechsels abgewandten Ende des ersten Geradenabschnitts angefügt wird, für den eine maximale Bahngeschwindigkeit vmax vorgegeben wird, wobei vmax > VR. - By adding a second line section of length L pointing in the opposite direction to the end of the first line section facing away from the location of the change of direction, for which a maximum path speed v max is specified, v max > V R.
4. Verfahren nach Anspruch 1 bis 3, bei dem eine Sollbahn (6) mit kontinuierlichem Richtungswechsel durch eine Sollbahn (1) mit aufeinanderfolgenden, diskre- ' ten Richtungswechseln angenähert wird.4. The method according to claim 1 to 3, wherein a target path (6) with a continuous change of direction is approximated by a target path (1) with successive, discreet ' changes of direction.
5. Verfahren nach Anspruch 1 bis 4, bei dem ein gepulster Strahl verwendet wird.5. The method according to claim 1 to 4, wherein a pulsed beam is used.
6. Verfahren nach Anspruch 1 bis 5, bei dem als Strahl ein Laserstrahl und als beweglicher Strahlrichter ein Spiegel mit Galvanometermotor verwendet wird.6. The method according to claim 1 to 5, in which a laser beam is used as the beam and a mirror with a galvanometer motor is used as the movable beam director.
7. Verwendung des Verfahrens nach Anspruch 1 bis 6 zum Bearbeiten oder Verändern einer Oberfläche oder zum Auf- oder Abtragen von Material .7. Use of the method according to claim 1 to 6 for processing or changing a surface or for applying or removing material.
8. Verwendung des Verfahrens nach Anspruch 1 bis 6 zum Be- Schriften von Schildern oder Zifferblättern.8. Use of the method according to claim 1 to 6 for inscribing signs or dials.
9. Verfahren nach Anspruch 1 bis 5, bei dem als Strahl ein lonenstrahl und als Strahlrichter eine magnetische Linse verwendet wird. 9. The method according to claim 1 to 5, in which an ion beam is used as the beam and a magnetic lens is used as the beam director.
EP00951258A 1999-07-05 2000-07-05 Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method Withdrawn EP1207978A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930976 1999-07-05
DE19930976 1999-07-05
PCT/DE2000/002189 WO2001002128A1 (en) 1999-07-05 2000-07-05 Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method

Publications (1)

Publication Number Publication Date
EP1207978A1 true EP1207978A1 (en) 2002-05-29

Family

ID=7913709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951258A Withdrawn EP1207978A1 (en) 1999-07-05 2000-07-05 Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method

Country Status (6)

Country Link
US (1) US6639180B1 (en)
EP (1) EP1207978A1 (en)
JP (1) JP2003503213A (en)
KR (1) KR20020025180A (en)
CN (1) CN1142842C (en)
WO (1) WO2001002128A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610768B2 (en) * 2001-03-29 2011-01-12 パナソニック電工Sunx株式会社 Laser marking device
DE102004034956A1 (en) * 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Method for detecting at least one sample area with a light scanning microscope with linear scanning
US7087865B2 (en) * 2004-10-15 2006-08-08 Lerner William S Heat warning safety device using fiber optic cables
DE102005047217A1 (en) * 2005-10-01 2007-04-05 Carl Zeiss Jena Gmbh Optical scanner driving method for e.g. laser scanning microscope, involves generating driving signals for optical scanner depending on input signal using scanner parameter for moving illuminating laser beam and detection radiations
US8057463B2 (en) * 2006-04-07 2011-11-15 Amo Development, Llc. Adaptive pattern correction for laser scanners
JPWO2008010311A1 (en) * 2006-07-18 2009-12-17 株式会社ニコン Laser scanning device and laser scanning microscope
EP1895347A1 (en) * 2006-09-01 2008-03-05 Universität Zürich Scanning-microscope and method for operating a scanning-microscope
JP2009145566A (en) * 2007-12-13 2009-07-02 Nikon Corp Laser scanning microscope and scanner drive unit
CN102581444B (en) * 2012-02-03 2014-03-19 天津大学 Online demonstration method for 'J'-shaped groove welding robot
CN109848595A (en) * 2017-11-03 2019-06-07 金门建筑有限公司 Welding system and method
CN116615301B (en) * 2021-02-24 2024-06-18 三菱电机株式会社 Additional manufacturing device, additional manufacturing system, additional manufacturing method, recording medium, and learning device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736402A (en) * 1970-09-17 1973-05-29 Coherent Radiation Automated laser tool
SU796805A1 (en) 1977-10-31 1981-01-15 Предприятие П/Я Г-4696 Method and device for automatic control of heat moisten treatment of concrete and reinforced concrete articles
US4348576A (en) * 1979-01-12 1982-09-07 Steigerwald Strahltechnik Gmbh Position regulation of a charge carrier beam
EP0128993B1 (en) 1983-06-17 1987-06-03 Lasarray Holding Ag Reference determining process for correcting mechanical movements when writing lines in a metallized grid by means of a laser, and apparatus therefor
JPS63115687A (en) * 1986-10-31 1988-05-20 Yamazaki Mazak Corp Laser beam machine
US4918611A (en) * 1988-07-21 1990-04-17 Industrial Technology Research Institute Method and apparatus for controlling laser cutting by image processing
US5173582A (en) * 1988-10-31 1992-12-22 Fujitsu Limited Charged particle beam lithography system and method
US5593606A (en) 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
DE19544067A1 (en) 1995-11-25 1996-05-15 Dirk Meyer Video projection method using moving mirror
DE19702752C2 (en) 1997-01-27 2001-12-13 Zeiss Carl Jena Gmbh Control system for a scanner drive
US6031225A (en) 1998-02-05 2000-02-29 Robotic Vision Systems, Inc. System and method for selective scanning of an object or pattern including scan correction
US6262425B1 (en) * 1999-03-11 2001-07-17 International Business Machines Corporation Curvilinear axis set-up for charged particle lithography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0102128A1 *

Also Published As

Publication number Publication date
JP2003503213A (en) 2003-01-28
CN1142842C (en) 2004-03-24
WO2001002128A1 (en) 2001-01-11
KR20020025180A (en) 2002-04-03
US6639180B1 (en) 2003-10-28
CN1360532A (en) 2002-07-24

Similar Documents

Publication Publication Date Title
EP1207978A1 (en) Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method
DE2918283C2 (en) Device for substrate treatment with a rotating mirror or the like.
EP0565664B1 (en) Stereographic equipment and method
EP0467076B1 (en) Method and apparatus for fabricating microstructures on a photosensitively layered substrate by means of focussed laser radiation
WO2010006589A4 (en) Laser scribing system for structuring substrates for thin-layer solar modules
DE102017126354A1 (en) Method and apparatus for wired additive manufacturing
EP0762247A1 (en) Coordinate measuring machine with a controller that moves the probe of the measuring apparatus in accordance with reference date
DE2725959B2 (en) Electron beam processing equipment
DE102018205270A1 (en) Laser beam positioning system, laser processing device and control method
DE1936291A1 (en) Device for the controlled deposit of liquid droplets on a receiving surface
EP0015307B1 (en) Cashless-payment system for commodities or services
EP1524503B1 (en) Optical encoder
DE4026130C2 (en) Device for deflecting a light beam
DE3825587A1 (en) PIEZOELECTRIC LINEAR MOTOR
EP1006342B1 (en) Marking method for measuring tracks
DE2123558A1 (en) Device for creating characters or parts of images
WO1995025003A1 (en) Stereolithographic process and device for producing objects in a bath of a radiation-hardenable liquid
DE102022210262A1 (en) Method, device and computer program product for processing a body, in particular a mirror body of an EUV mirror
EP1132944A2 (en) Method of aligning an electron beam with a target position on a substrate surface
DE3012790A1 (en) Waveguide and aerial for rail vehicle control - has slot between flanges under waveguide for travelling aerial member carrying permanent magnet
EP1132945B1 (en) Method and device for producing curved lines on an irradiation sensitive resist
DE102020107925A1 (en) Device for the generative production of components, in particular by means of selective melting or sintering
EP1510118B1 (en) Method for measuring the deformation of a surface positioning device
WO2005051591A1 (en) Device for material processing by means of a laser beam guided by a deflecting unit comprising a piezoelectric deflector plate
DE2733652A1 (en) DEVICE FOR WRITING GRAPHIC SYMBOLS AND ALPHANUMERIC CHARACTERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040415