EP1206671B1 - Drying and/or dry process preservation method using semi-permeable membrane - Google Patents

Drying and/or dry process preservation method using semi-permeable membrane Download PDF

Info

Publication number
EP1206671B1
EP1206671B1 EP00958753A EP00958753A EP1206671B1 EP 1206671 B1 EP1206671 B1 EP 1206671B1 EP 00958753 A EP00958753 A EP 00958753A EP 00958753 A EP00958753 A EP 00958753A EP 1206671 B1 EP1206671 B1 EP 1206671B1
Authority
EP
European Patent Office
Prior art keywords
membrane
solvent
drying
materials
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00958753A
Other languages
German (de)
French (fr)
Other versions
EP1206671A1 (en
Inventor
Patrick Duhaut
Isabelle Deschamps-Hulak
Eberhard Wittich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotel SA
Original Assignee
Biotel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotel SA filed Critical Biotel SA
Publication of EP1206671A1 publication Critical patent/EP1206671A1/en
Application granted granted Critical
Publication of EP1206671B1 publication Critical patent/EP1206671B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/006Removable covering devices, e.g. pliable or flexible

Definitions

  • the present invention relates to the techniques of extractive separation, among which are in especially drying techniques, which consist of bring and / or maintain a product in a dry state determined, in terms of its solvent content humidification determined.
  • the invention aims particularly the provision of industries pharmaceutical, chemical, cosmetic and agro-food of a new membrane separation technique solid / liquid or liquid / liquid as an alternative to concentration, drying and already existing dry storage.
  • the invention relates to a new process for drying of materials sensitive to humidification by a solvent, which has the particular advantage of being able to be put implemented without requiring any energy input, and in particular of fossil energy, and to be usable both in laboratory than within industrial production sites.
  • This drying process is characterized in that it mainly consists in separating said materials from a surrounding atmosphere in which said solvent is present by hermetically enclosing said materials in an envelope advantageously having a wall zone not adherent to said materials in which said envelope is essentially constituted by a membrane in selectively vapor permeable polymeric material of the humidification solvent for said materials to be removed presence of said solvent in the liquid state, operating under the effect of differential osmotic pressure between two faces of said membrane, by a migration of gaseous molecules of said solvent within said material polymer which is ensured thanks to the mobility of sites vacant intra-molecular polymer material.
  • the method according to the invention therefore puts using a semi-permeable membrane that we can say integrates, because continuous, without perforations and not porous, which is nonetheless designed to pass through by individualized molecules as are molecules in the gaseous state unlike molecules not differentiated from non-vaporized liquids.
  • membranes are preferably of the type of those which are described in the international patent application filed on same day as this under the priority of same date covered by French patent application 99 10850 in the names of the same inventors.
  • the process according to the invention therefore involves preferably, according to the content of the latter, various secondary characteristics which concern the polymer composition used to form the semi-permeable membrane.
  • the membrane advantageously continuous, without perforations or porosity, is preferably made of a copolymer formed of rigid blocks ensuring the mechanical strength of said membrane and flexible sequences based on an elastomeric oligomer ensuring membrane permeability selectively for gaseous molecules of said solvent by site mobility vacant and with a preferential affinity for molecules of said solvent.
  • the semi-permeable membrane does not adhere to the materials to be dried, it is not not to maintain a large space between their respective surfaces. In general, there is a space sufficient natural between materials in the solid state, blocks or powder, and the membrane, and even materials to the pasty or liquid state can be treated by the method of the invention.
  • Materials sensitive to humidification by a solvent correspond either to materials containing a solvent which must be eliminated for obtain dry and pure materials, i.e. already dry, but can easily regain moisture if they are not separated from the surrounding atmosphere in which the solvent to which they are sensitive is present.
  • the humidification solvent is not necessarily aqueous in nature and that by therefore, the moisture in question may be due to any solvent other than water.
  • the drying method of the invention is based on a phenomenon approaching osmosis. He exploits the fact inside the envelope containing the materials humid, an osmotic type overpressure is created due to an increase in the partial pressure of the solvent humidification to be eliminated. Under such conditions, thermodynamic laws provide that vapor pressures balance on either side of the wall of the envelope. According to the invention, and thanks to this balancing of pressures, between the interior environment and the exterior environment of the envelope, drying is gradually established by solvent evaporation above the material to be dried at inside the envelope, then by diffusion and transfer vapor of the humidifying solvent through the envelope wall.
  • drying by the hermetically closed membrane implies that partial evaporation of the solvent takes place also in the immediate vicinity of the internal face of the membrane in contact with said solvent, and as the solvent is present in large quantities, the global kinetics of drying is improved considerably.
  • the material becomes depleted in liquid solvent and therefore dry.
  • the osmotic type overpressure is maintained inside the envelope as long as the material is wet.
  • the drying stops when the thermodynamic equilibrium, namely the equality of the partial pressures of the solvent to be removed on either side of the membrane, is reached.
  • the activity of the solvent to be eliminated defined as being equal to the ratio of the partial pressure of the vapor of the solvent considered above the product to be dried to the partial pressure of the vapor of the pure solvent at the same temperature decreases so that there remains an excess pressure, then it remains constant after the pressure equalization is established.
  • the drying of the hermetically sealed moist material in the envelope is governed by two phenomena thermodynamics which combine their effects, namely of a share the evaporation of the solvent thus extracting from the product to dry, preferably in the vicinity of a wall area away from the wet material, at least when it is the solid state, and on the other hand the diffusion of the vapor of the solvent within the membrane causing its migration to through its thickness.
  • drying takes place as soon as the kinetics solvent evaporation in the envelope is faster that the kinetics of diffusion across the thickness of the membrane.
  • it is desirable that the kinetics diffusion is not too slow for drying to be effective.
  • the gaseous molecules diffuse the faster the thickness of the membrane cross is weaker. So here we see a way of control the drying rate of a wet material, by modification of the thickness of the membrane layer of the envelope.
  • the semi-permeable membrane used for the drying is preferably transparent, or at least translucent, and transparency to visible radiation, or more generally to solar radiation, is particularly advantageous in most practical applications of the invention, in accordance with secondary features of the invention which involve that the wall comprising the semi-permeable membrane is externally exposed to such radiation.
  • the invention provides for operating the drying through a semi-permeable membrane which, at least in its active part, is transparent to waves electromagnetic whose wavelengths can in particular vary from 10 nm to 0.1 m, in other words radiation ranging from ultraviolet to microwave.
  • the temperature inside the container will increase by establishing a confinement phenomenon radiation similar to what is commonly called the greenhouse effect. Electromagnetic radiation incidents lose some of their energy while crossing the membrane, so that the spectrum is changed. Of internal side of the film, there are radiations capable to cross the membrane in the other direction, which are therefore re-emitted to the outside, and radiation that cannot that reflect on the membrane and remain confined to the side inside.
  • the radiation thus confined causes a significant increase in temperature prevailing in the atmosphere closed by the membrane.
  • the membrane itself heats up.
  • the incorporation of particles of silica of small particle size advantageously between 2% to 20% by weight in the composition of polymers constituting it, allows significantly improve the temperature rise to the interior of the membrane, and thereby the speed of diffusion drying through the membrane increasing the partial pressure of the solvent.
  • the invention provides a means economical to operate drying, using energy natural solar radiation, readily available and not polluting, excluding all energy, and in particular fossil fuel.
  • An additional benefit of the effect of confinement of radiation is linked to the increase in internal membrane temperature, as far as this promotes the mobility of macromolecular chains, and therefore the diffusion of gas molecules through the membrane.
  • the transfer by migration of gas molecules from solvent is made possible by the existence within of polymeric material and at the microscopic scale of spaces or intra-molecular vacant sites that constitute globally what is called free volume.
  • the total volume occupied by the polymer includes a first volume corresponding to the volume what would the polymer occupy if it was condensed and a second volume corresponding to spaces not occupied by the polymer and which is known as free volume.
  • the capacity is exploited vacant sites to selectively ensure the migration of gas molecules through the thickness of the material polymer, excluding the same solvent in the liquid state, constituting the polymer of the membrane so that from preferably by flexible sequences, it presents a selective chemical affinity with said gas molecules solvent, which are advantageously compact and can thus freely migrate to vacant sites in the material.
  • Optimal implementation of the process according to the invention therefore requires that the semi-permeable membrane can establish physico-chemical interactions with said molecules, and that it has a quantity of sufficient free volume available, vacant sites being for this purpose sufficiently large and sufficiently mobile to welcome the steam molecules and train them to across the entire thickness of the membrane.
  • the size of the sites vacancies is advantageously of the order of angstroms (10-10 m), making it only possible to transfer molecules dissociated by migration across the thickness of the membrane which is on the order of a few tens of micrometers.
  • the liquid molecules being non-individualized cannot cross the membrane by through vacant sites.
  • the polymer material is a copolymer formed of rather crystalline rigid sequences, ensuring the mechanical resistance of the material, and flexible sequences rather amorphous elastomer, ensuring the permeability of the solvent vapor material by site mobility vacant.
  • the chemical nature of the flexible sequences is chosen so that said sequences have a selective affinity for gaseous molecules of solvent, without possibility of interaction with others constituents of matter.
  • the membrane can be combined polymer with a mechanical reinforcement support layer which it is advantageously made integral by adhesion, with or without the use of a layer adhesive intermediary in the film thus formed.
  • This layer support may in particular be made of a textile material or the like made in particular of nonwoven fibers, the nature is chosen so that it does not disturb the capabilities of the membrane.
  • a nonwoven is by example based on polypropylene resin fibers or polyester resins.
  • a similar backing layer based on a felt permeable non-woven fibers, can be made with other materials, such as paper.
  • a sufficiently thick and resistant polymer membrane to represent the only constituent of a monolayer film, in which case we can plan to support the membrane, on the place of use, on a micro-perforated plate by example. It is obviously advisable, each time, to choose a support layer which does not alter the semi-permeable properties of the membrane. For this, it is advantageous that the material constituting said support layer has a openwork structure. It is also advisable to make sure, before to fix the membrane to the support layer, that the composition chemical of the material of said support layer either compatible with that of the membrane so that the adhesion between the membrane and the support layer is facilitated.
  • a multi-layer film suitable for carrying out the process drying according to the invention is advantageously carried out by hot calendering of the appropriate polymer, under control the thickness of the membrane.
  • hydrophilicity being a direct consequence of the presence of polar groups
  • said hydrophilic oligomer can establish also polar-type interactions with a solvent polar organic and therefore the process according to the invention makes it possible to dry materials moistened with water or any other polar organic solvent to analogous behavior, such as methanol, ethanol, acetone which are frequently used in synthesis organic.
  • a poly (ether-block-amide) is a block copolymer, the macromolecular chains of which consist of successive sequences of polyether blocks representing the flexible sequences and of polyamide blocks representing the rigid sequences. Such a copolymer results from the polycondensation of polyamide oligomer chains with ends of dicarboxylic chains with polyether-diol oligomer chains.
  • a particular poly (ether-block-amide) comprises a single type of polyamide block and a single type of polyether block.
  • polyamide blocks formed solely of polyamide 12 denoted PA-12 (- (CH 2 ) 11 -CO-NH-), and polyether-diol sequences formed either of polyethylene glycol, denoted PEG (-O- (CH 2 ) 2 -), or polytetramethylene glycol, noted PTMG (-O- (CH 2 ) 4 -).
  • the PA-12 blocks of poly are crystalline and rather hydrophobic. Inherently, they have therefore tend to have a rather repulsive effect with regard to polar solvents. On the other hand, they bring the properties mechanical elements necessary for the membrane to resist certain industrial uses for which it is intended.
  • the polyether blocks are rather amorphous rather hydrophilic. They therefore present, within the membrane selectively permeable to molecules in the gas phase, a selective affinity for molecules which lend themselves, by polar attraction, to physico-chemical interactions specific with macromolecular chains. Those are then the polyether blocks which, due to their affinity with polar diffusing molecules, ensure the transfer of water vapor and solvent vapors polar through vacant sites available.
  • the ethers functions of polyether blocks allow to give the macromolecular chains of the membrane additional rotations around the oxygen atom. This movement of the chains brought by the oxygen atoms of polyether blocks generates a greater amount of volume free available and therefore better permeability of the membrane.
  • the number-average molecular masses of polyether sequences and PA-12 sequences are chosen from so that they are not too high for the membrane permeability capacities are optimal. Indeed, the amount of free volume available increases when the number-average molecular mass of the blocks polyethers decreases.
  • Number average molecular weight PA-12 sequences is advantageously between 1500 and 5000 and that of the polyether sequences between 650 and 2000.
  • the proportions of each of the polyamide blocks and polyether are chosen so as to obtain a material inherently hydrophilic in nature.
  • the poly (ether-blocks-amide) used for the implementation of the process comprises from 30 to 60% by weight of polyether blocks and from 70 to 40% by weight of polyamide blocks.
  • the polymer composition of the membrane material has a majority of flexible oligomer sequences characterized by the hydrophilic affinity sites which they comprise, and for a minority of rigid oligomer sequences, the proper behavior is rather hydrophobic.
  • the membrane which has just been described in example is particularly suitable for drying materials containing water or any polar solvent with similar behavior, it should be emphasized that would not go beyond the scope of the process of the invention if the materials contained a nature wetting solvent apolar, in which case it would obviously be necessary to provide a rather hydrophobic in nature, for example a membrane made of polyolefins, so that it exhibits selective affinity for molecules gaseous of said non-polar solvent.
  • said membrane is chosen to be continuous, that is to say devoid of any micro-perforations, therefore impermeable to bacteria and microorganisms. She is possibly sterilized. Sterilization can be performed by usual sterilization techniques such as by autoclaving (120 ° C), by ⁇ or ⁇ rays or by ethylene oxide. The use of a membrane beforehand sterilized keeps materials in the middle sterile. The membrane is obviously chemically inert vis-à-vis the solvent to be removed.
  • the thickness of the membrane is chosen so that that the vapor migration is not too slow. She is in practice greater than 2 ⁇ m but less than 1000 ⁇ m in order to be in the orders of magnitude of a film generally flexible which can be coiled in rolls. Of preferably the thickness of the semi-permeable membrane is between 10 and 100 ⁇ m, and advantageously between between 10 and 60 ⁇ m.
  • the membranes used advantageously have a permeability to water vapor of between 7,000 and 20,000 g / m2 / 24 h (according to standard ASTM E 96 B, at 38 ° C and 50% RH), a permeability to oxygen from 6,500 to 18,500 cm 3 / m2 / 24 h / bar and a permeability to carbon dioxide of between 72,000 and 177,000 cm3 / m2 / 24 h / bar.
  • Said membranes have a density of 1.02 to 1.07 g / cm3 and a Shore hardness of 25 to 75 D. The elongation at break is close to 365% and the load at break close to 3.9 daN / mm2.
  • the material once dry, does not resume moisture if kept inside the envelope hermetically sealed. Indeed, as we have exposed above, once the thermodynamic equilibrium is reached, no more vapor transfer can occur through the thickness of the polymer membrane. This one being more impermeable to liquids, the recovery moisture from the product is no longer possible. Through therefore, the dry storage of the material is assured. If you place a dry material, but sensitive to humidity and in particular air humidity, in a hermetically sealed envelope consisting of a membrane having the characteristics described above, said material remains dry. It is therefore clear that the introduction dry matter, but sensitive to humidification, in said envelope constitutes a preventive treatment against humidification.
  • the envelope containing the materials to be dried is either in the form of a flat sealing film a closed system at the usual places of storage or production, either in the form of hermetically sealed bags particularly suitable for drying products in laboratory.
  • the bags are hermetically sealed by means known in themselves, such as by welding hot or ultrasonic or by adhesiveness.
  • the envelope as a flat film deployable from of rollers is arranged in a "tunnel" covering plants in the open field.
  • Materials to be dried can be stored there deposited on a waterproof film or not representing the base of the enclosed space inside the membrane. They can also be placed on racks or in crates vegetables which themselves are laid on said film. We cover everything, with or without poles, using the semi-permeable membrane, possibly complexed with a support layer. Sufficient sealing can be achieved on the edges of the membrane that is placed on the ground.
  • wet materials to be dried can be placed on a grid, which increases the active surface of the membrane.
  • the material to be dried is advantageously in the divided state, in the form of crystals or small particles.
  • solid materials in blocks larger than a few millimeters it's advantageous to grind them before packaging in the envelope.
  • the process according to the invention is suitable for drying solid products, pasty or powdery products as well as of liquid products.
  • Pasty or powdery products particularly targeted by the invention are the powders pharmaceuticals, solid chemicals and specific such as thixotropic products, material organic from agricultural, animal and vegetable origin.
  • solid products that can be dried and kept dry by the process of the invention mention may, for example, be made of mechanical and electronic objects, exhibits legal proceedings, textiles such as clothes or household linen.
  • Liquids such as blood, fruit juices, wines, milk, or waste liquids such as sewage liquids, can be concentrated using the process of the invention.
  • the method is no longer used for solid / liquid separation, but for liquid / liquid separation. It is then about to selectively separate a liquid contained in a liquid mixture formed from at least two liquids in nature different chemical.
  • This separation is based on the same operating principle as solid / liquid separation, namely evaporation of a liquid solvent then diffusion of corresponding vapors through a membrane having a selective affinity with respect to said solvent to be eliminated.
  • One of the liquids in the mixture is compatible with the chemical composition of the membrane, therefore in particular of hydrophilic nature in the case of the preferred example considered here while the other is relatively inconsistent with it, of which hydrophobic in nature under the same conditions.
  • the membrane is selectively permeable to vapor from compatible solvent, with which it establishes chemical interactions facilitating the migration of molecules vaporized through the thickness of the membrane.
  • the solvent said to be incompatible, which does not exhibit interactions with the membrane polymer, is gradually freed from compatible solvent, and it thus concentrates until it becomes pure.
  • a very first advantage of the invention resides in the fact that the polymer membrane protects the product it contains aggressions from the outside environment. In particular, it prevents the risks of cross-contamination from produce and microorganisms to enter the envelope, which allows very little aseptic drying expensive.
  • Another advantage of the present invention lies in the fact that the quality of drying of fragile products or difficult to dry is optimal. Indeed, for products sensitive to high temperatures, such as chemicals with a melting point below 40 ° C, proteins or natural products and extracts, the process drying prevents any denaturation.
  • Another advantage is that the process according to the invention makes it possible to perfect the drying of products, partially dried with another technique, by simple packaging of products in a hermetically sealed bag, left at room temperature and pressure.
  • Another advantage is that the products, even so-called hygroscopic, dried according to the process of the invention do not absorb moisture, at temperature and ambient pressure, when locked up hermetically in an envelope made of a material inherently hydrophilic in nature.
  • Another advantage of the invention resides in a elimination of risks of toxicity for operators. In effect, the products to be dried being introduced into a hermetically sealed envelope, operators are no longer in contact with toxic or potentially toxic products toxic.
  • Another advantage finally of the invention is the possibility of cold drying in a room closed to air purification avoiding pollution of the environment by solvents in exhaust gases to the atmosphere.
  • Hygroscopic granules containing 79% water are reduced to powder form by simple grinding. 100 g of this powder are then introduced into two separate envelopes, the total area of which is 962 cm 2 .
  • the envelopes used consist of a semi-permeable membrane formed of a polymer material based on a poly (ether-block-amide) composed of 40% by weight of PTMG sequences and 60% by weight of PA- sequences 12.
  • the thickness of the wall of the envelope is 25 ⁇ m.
  • Each envelope is heat sealed so as to obtain a bag.
  • a flat container containing the powder left in the open air is used.
  • the samples in the bags were placed on shelves at room temperature, on the one hand, and in an oven at 50 ° C, on the other hand.
  • the weight of the product hardly changes after 50 hours.
  • the weight of the product introduced into the envelope placed in the oven is 20 g while that introduced into the envelope left at room temperature is 35 g.
  • Low woody plants are harvested in good time cool and rainy. 175 g of the sample of plant, which has been roughly cut, in an envelope hermetically closed. The total surface of the envelope is 1500 cm2.
  • the envelopes used consist of a semi-permeable membrane formed from a polymeric material based a poly (ether-block-amide) composed of 40% by weight of PTMG sequences and 60% by weight of PA-12 sequences. The thickness of the envelope wall is 25 ⁇ m. A bag freezer is used as a control.
  • the envelope and the freezer bag are hanging in a room without mechanical ventilation. Temperature is maintained around 19 ° C and relative humidity at 70%.
  • the sample introduced into the envelope behaves differently.
  • the plant retains its green color, and a characteristic odor of dry plant is released during test.
  • the envelope is opened, the plant crumbles under the fingers.
  • the envelope is weighed regularly to assess the drying kinetics. The loss of humidity is noticeable from that the plant is introduced into the envelope. At the end of fourth day, the plant sample weighs 90 g. From from the sixth day the weight loss is much less important. On the tenth day, the sample weighs only 55 g and is completely rid of the moisture it contained.
  • a chemical with a melting point close to 40 ° C and containing 20% water is introduced into a hermetically sealed envelope.
  • the envelope is consisting of a semi-permeable membrane formed of a polymer material based on poly (ether-block-amide) composed 40% by weight of PTMG sequences and 60% by weight of PA-12 sequences.
  • the thickness of the envelope wall is 25 ⁇ m and the total envelope surface is 2184 cm2.
  • the chemical does not establish interactions physico-chemical with poly (ether-blocks-amide).
  • Freshly cut medicinal plants and laid on the ground are covered by a semi-permeable membrane combined with a polyester nonwoven forming a movie.
  • the membrane is based on a poly (ether-blocks-amide) consisting of 50% by weight of PA-12 blocks and 50% by weight of PEG blocks.
  • the thickness of the active membrane is 18 ⁇ m.
  • the grammage of the nonwoven is 30 g / m2 and its thickness of 0.13 mm.
  • the water vapor permeability of this film measured according to the method described in the ASTM standard E 96 B (38 ° C, 50% RH) is 24,000 g / m2 per 24 hours.
  • the semi-permeable membrane is base of a poly (ether-block-amide) consisting of 50% by weight PA-12 blocks and 50% by weight of PEG blocks and its thickness is 25 ⁇ m.
  • the water vapor permeability of this complexed membrane measured according to the method described in ASTM E 96 B (38 ° C, 50% RH), is 200 g / m2 per 24 hours.
  • Clothes should be maintained and stored with a humidity level of 45 to 55% to avoid the appearance of mold if they are too wet or the alteration of the fibers if they are not sufficiently wet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Drying Of Solid Materials (AREA)
  • Detergent Compositions (AREA)
  • Drying Of Gases (AREA)

Abstract

The invention concerns a method for drying moisture-sensitive substances with a solvent which mainly consists in separating said substances from an ambient atmosphere wherein said solvent is present by hermetically sealing said substances in an envelope having advantageously a wall zone non-adherent to said substances wherein said envelope consists essentially of a polymer membrane selectively permeable to the moisturising solvent vapour except to said solvent in liquid state. The inventive method is also useful for preventive treatment of dry substances against moisture.

Description

La présente invention concerne les techniques de séparation extractive, parmi lesquelles figurent en particulier les techniques de séchage, qui consistent à amener et/ou maintenir un produit dans un état de siccité déterminé, en termes de sa teneur en un solvant d'humidification déterminé. L'invention vise particulièrement la mise à disposition des industries pharmaceutiques, chimiques, cosmétiques et agro-alimentaires d'une nouvelle technique membranaire de séparation solide/liquide ou liquide/liquide en alternative aux appareillages de concentration, de séchage et de conservation au sec déjà existants.The present invention relates to the techniques of extractive separation, among which are in especially drying techniques, which consist of bring and / or maintain a product in a dry state determined, in terms of its solvent content humidification determined. The invention aims particularly the provision of industries pharmaceutical, chemical, cosmetic and agro-food of a new membrane separation technique solid / liquid or liquid / liquid as an alternative to concentration, drying and already existing dry storage.

Pour définir et décrire l'invention dans son contexte privilégié, il sera souvent plus commode, dans un souci de clarté, de se placer dans le cas spécifique d'un séchage, c'est-à-dire d'un procédé impliquant l'extraction d'un solvant responsable d'un état dit humide à éviter. Parmi les moins coûteux et les plus classiques des appareillages industriels pour sécher des produits en les débarrassant d'eau présente, indépendamment de l'eau de structure, on trouve des récipients auxquels on apporte de la chaleur et/ou du vide, telles que les étuves, éventuellement agitées, tels que les sécheurs à tambour ou à palettes. D'autres appareillages plus coûteux, comme les lyophilisateurs qui subliment l'eau ou les micro-ondes sous vide, permettent également le séchage de produits. Dans le cas de produits à point de fusion peu élevé, les industriels utilisent généralement des appareillages permettant de sécher sur lit fluidisé.To define and describe the invention in its privileged context, it will often be more convenient, in a for the sake of clarity, to place oneself in the specific case of a drying, i.e. a process involving extraction a solvent responsible for a so-called wet state to avoid. Among the least expensive and most classic of industrial equipment for drying products by ridding of water present, regardless of the water of structure, there are containers to which we bring heat and / or vacuum, such as ovens, possibly agitated, such as drum or pallets. Other more expensive devices, such as freeze dryers that sublimate water or microwaves under vacuum, also allow drying of products. In the case of products with low melting point, manufacturers generally use equipment allowing dry on a fluidized bed.

Toutefois, tous ces appareillages peuvent se trouver chroniquement surchargés, ce qui implique un certain temps d'attente des produits à sécher à l'extérieur des appareillages, pendant lequel des quantités non négligeables de solvant sont émises dans l'environnement. De plus, ces appareillages nécessitent souvent beaucoup de moyens de maintenance, de nettoyage et de validation. Pourtant, l'étape du séchage, bien qu'elle soit celle qui pose le plus de problèmes en termes de faisabilité, de coûts et de délais par rapport aux opérations qui la précèdent, est essentielle à l'issue de la fabrication d'un produit, car la forme sèche est la forme majeure de transport et de commercialisation.However, all of these devices can be found chronically overloaded, which involves some time waiting for products to dry outside equipment, during which significant quantities solvent are released to the environment. In addition, these equipment often requires a lot of resources maintenance, cleaning and validation. However, the drying stage, although it is the one that poses the most problems in terms of feasibility, costs and deadlines compared to the above operations, is essential at the end of the manufacturing of a product, because the dry form is the major form of transportation and marketing.

Aussi, pour répondre au mieux aux besoins des industriels, l'invention a pour objet un nouveau procédé de séchage de matières sensibles à l'humidification par un solvant, qui a notamment pour avantages de pouvoir être mis en oeuvre sans nécessiter d'apport d'énergie, et notamment d'énergie fossile, et d'être utilisable aussi bien en laboratoire qu'au sein des sites de production industriels.Also, to best meet the needs of industrial, the invention relates to a new process for drying of materials sensitive to humidification by a solvent, which has the particular advantage of being able to be put implemented without requiring any energy input, and in particular of fossil energy, and to be usable both in laboratory than within industrial production sites.

Ce procédé de séchage est caractérisé en ce qu'il consiste principalement à séparer lesdites matières d'une atmosphère environnante dans laquelle ledit solvant est présent en enfermant hermétiquement lesdites matières dans une enveloppe présentant avantageusement une zone de paroi non adhérente auxdites matières dans laquelle ladite enveloppe est essentiellement constituée par une membrane en matériau polymère sélectivement perméable à la vapeur du solvant d'humidification desdites matières à éliminer en présence dudit solvant à l'état liquide, en opérant sous l'effet d'une pression osmotique différentielle entre les deux faces de ladite membrane, par une migration des molécules gazeuses dudit solvant au sein dudit matériau polymère qui est assurée grâce à la mobilité de sites vacants intra-moléculaires du matériau polymère.This drying process is characterized in that it mainly consists in separating said materials from a surrounding atmosphere in which said solvent is present by hermetically enclosing said materials in an envelope advantageously having a wall zone not adherent to said materials in which said envelope is essentially constituted by a membrane in selectively vapor permeable polymeric material of the humidification solvent for said materials to be removed presence of said solvent in the liquid state, operating under the effect of differential osmotic pressure between two faces of said membrane, by a migration of gaseous molecules of said solvent within said material polymer which is ensured thanks to the mobility of sites vacant intra-molecular polymer material.

En pratique, le procédé suivant l'invention met donc en oeuvre une membrane semi-perméable que l'on peut dire intègre, car continue, dépourvue de perforations et non poreuse, qui est néanmoins conçue pour se laisser traverser par des molécules individualisées comme le sont les molécules à l'état gazeux contrairement aux molécules non différentiées des liquides non vaporisés. De telles membranes sont préférentiellement du type de celles qui sont décrites dans la demande de brevet internationale déposée le même jour que la présente sous bénéfice de la priorité de même date relevant de la demande de brevet français 99 10850 aux noms des mêmes inventeurs.In practice, the method according to the invention therefore puts using a semi-permeable membrane that we can say integrates, because continuous, without perforations and not porous, which is nonetheless designed to pass through by individualized molecules as are molecules in the gaseous state unlike molecules not differentiated from non-vaporized liquids. Such membranes are preferably of the type of those which are described in the international patent application filed on same day as this under the priority of same date covered by French patent application 99 10850 in the names of the same inventors.

Le procédé suivant l'invention implique donc de préférence, conformément au contenu de cette dernière, diverses caractéristiques secondaires qui concernent la composition polymère servant à constituer la membrane semi-perméable. En particulier, la membrane, avantageusement continue, sans perforations ni porosité, est de préférence réalisée en un copolymère formé de séquences rigides assurant la résistance mécanique de ladite membrane et de séquences souples à base d'un oligomère élastomère assurant la perméabilité de la membrane sélectivement pour les molécules gazeuses dudit solvant par la mobilité des sites vacants et présentant une affinité préférentielle pour les molécules dudit solvant.The process according to the invention therefore involves preferably, according to the content of the latter, various secondary characteristics which concern the polymer composition used to form the semi-permeable membrane. In particular, the membrane, advantageously continuous, without perforations or porosity, is preferably made of a copolymer formed of rigid blocks ensuring the mechanical strength of said membrane and flexible sequences based on an elastomeric oligomer ensuring membrane permeability selectively for gaseous molecules of said solvent by site mobility vacant and with a preferential affinity for molecules of said solvent.

Quand on indique ci-dessus que la membrane semi-perméable n'adhère pas aux matières à sécher, il ne s'agit pas pour autant de maintenir un large espace entre leurs surfaces respectives. En général, il existe un espace naturel suffisant entre des matières à l'état solide, en blocs ou en poudre, et la membrane, et même des matières à l'état pâteux ou liquide peuvent être traitées par le procédé de l'invention.When we indicate above that the semi-permeable membrane does not adhere to the materials to be dried, it is not not to maintain a large space between their respective surfaces. In general, there is a space sufficient natural between materials in the solid state, blocks or powder, and the membrane, and even materials to the pasty or liquid state can be treated by the method of the invention.

Les matières sensibles à l'humidification par un solvant, visées par l'invention, correspondent soit à des matières contenant un solvant qu'il s'agit d'éliminer pour obtenir des matières sèches et pures, soit à des matières déjà sèches, mais qui reprennent facilement l'humidité si elles ne sont pas séparées de l'atmosphère environnante dans laquelle le solvant auquel elles sont sensibles est présent. Il convient de préciser que le solvant d'humidification n'est pas nécessairement de nature aqueuse et que par conséquent, l'humidité en question peut être due à tout solvant autre que l'eau.Materials sensitive to humidification by a solvent, targeted by the invention, correspond either to materials containing a solvent which must be eliminated for obtain dry and pure materials, i.e. already dry, but can easily regain moisture if they are not separated from the surrounding atmosphere in which the solvent to which they are sensitive is present. It should be noted that the humidification solvent is not necessarily aqueous in nature and that by therefore, the moisture in question may be due to any solvent other than water.

La mise en oeuvre du procédé de séchage selon l'invention est explicitée ci-après en se plaçant dans le cas de matières dites humides car humidifiées par un solvant dont elles doivent être débarrassées. Ce solvant est supposé être de l'eau, encore que le procédé s'applique sans modification importante et à l'aide des mêmes exemples de membranes à tout solvant même non aqueux mais polaire. Il suffit en effet qu'un tel solvant bénéficie de la part du matériau polymère du même type d'affinité physico-chimique que les molécules de vapeur d'eau. Or une telle affinité se réalise par des liaisons polaires mettant en oeuvre des forces de Van der Waals, comme il est bien connu des composés hydrophiles.The implementation of the drying process according to the invention is explained below by placing itself in the case of so-called wet materials because moistened with a solvent which they must be rid of. This solvent is assumed be water, although the process is applied without significant modification and using the same examples of membranes with any solvent, even non-aqueous but polar. he It suffices for such a solvent to benefit from the polymer material with the same type of physico-chemical affinity as molecules of water vapor. Now such an affinity is produced by polar connections using Van der Waals forces, as is well known to hydrophilic compounds.

Le procédé de séchage de l'invention est basé sur un phénomène se rapprochant de l'osmose. Il exploite le fait qu'à l'intérieur de l'enveloppe renfermant les matières humides, il se crée une surpression de type osmotique due à une augmentation de la pression partielle du solvant d'humidification à éliminer. Dans de telles conditions, les lois thermodynamiques prévoient que les pressions de vapeur s'équilibrent de part et d'autre de la paroi de l'enveloppe. Suivant l'invention, et grâce à cet équilibrage des pressions, entre le milieu intérieur et le milieu extérieur de l'enveloppe, le séchage s'établit progressivement par évaporation du solvant au-dessus de la matière à sécher à l'intérieur de l'enveloppe, puis par diffusion et transfert de la vapeur du solvant d'humidification au travers de la paroi de l'enveloppe. Pour des produits en solutions liquides, le séchage par la membrane hermétiquement fermée implique qu'une évaporation partielle du solvant s'effectue également au voisinage immédiat de la face interne de la membrane en contact avec ledit solvant, et comme le solvant est présent en grande quantité, la cinétique globale du séchage est considérablement améliorée.The drying method of the invention is based on a phenomenon approaching osmosis. He exploits the fact inside the envelope containing the materials humid, an osmotic type overpressure is created due to an increase in the partial pressure of the solvent humidification to be eliminated. Under such conditions, thermodynamic laws provide that vapor pressures balance on either side of the wall of the envelope. According to the invention, and thanks to this balancing of pressures, between the interior environment and the exterior environment of the envelope, drying is gradually established by solvent evaporation above the material to be dried at inside the envelope, then by diffusion and transfer vapor of the humidifying solvent through the envelope wall. For products in solutions liquids, drying by the hermetically closed membrane implies that partial evaporation of the solvent takes place also in the immediate vicinity of the internal face of the membrane in contact with said solvent, and as the solvent is present in large quantities, the global kinetics of drying is improved considerably.

Il est clair que les molécules gazeuses du solvant d'humidification diffusent par migration au travers l'épaisseur de la membrane dans un sens unidirectionnel, uniquement de l'intérieur vers l'extérieur de la membrane, jusqu'à ce que l'équilibre thermodynamique soit établi. Il est clair également que l'évaporation du solvant contenu dans la matière renfermée dans l'enveloppe suppose que ledit solvant à éliminer de la matière dispose d'une tension de vapeur saturante non négligeable aux conditions de température, de pression et d'humidité relative extérieures.It is clear that the gaseous molecules of the solvent humidification diffuses by migration through the thickness of the membrane in a unidirectional direction, only from the inside to the outside of the membrane, until thermodynamic equilibrium is established. he is also clear that the evaporation of the solvent contained in the material contained in the envelope assumes that said solvent to be removed from the material has a voltage of non-negligible saturation vapor at the conditions of outdoor temperature, pressure and relative humidity.

Au fur et à mesure que le solvant s'évapore et que les molécules gazeuses dudit solvant diffusent au travers de l'enveloppe, la matière s'appauvrit en solvant liquide et par conséquent sèche. La surpression de type osmotique est maintenue à l'intérieur de l'enveloppe tant que la matière est humide. Le séchage s'arrête lorsque l'équilibre thermodynamique, à savoir l'égalité des pressions partielles du solvant à éliminer de part et d'autre de la membrane, est atteint. Sur le plan thermodynamique, l'activité du solvant à éliminer, définie comme étant égale au rapport de la pression partielle de la vapeur du solvant considérée au-dessus du produit à sécher sur la pression partielle de la vapeur du solvant pur à la même température, diminue tant qu'il subsiste une surpression, puis elle reste constante une fois que l'égalisation des pressions est établie.As the solvent evaporates and the gaseous molecules of said solvent diffuse through the envelope, the material becomes depleted in liquid solvent and therefore dry. The osmotic type overpressure is maintained inside the envelope as long as the material is wet. The drying stops when the thermodynamic equilibrium, namely the equality of the partial pressures of the solvent to be removed on either side of the membrane, is reached. Thermodynamically, the activity of the solvent to be eliminated, defined as being equal to the ratio of the partial pressure of the vapor of the solvent considered above the product to be dried to the partial pressure of the vapor of the pure solvent at the same temperature decreases so that there remains an excess pressure, then it remains constant after the pressure equalization is established.

D'après ce qui a été dit ci-dessus, il apparaít donc que le séchage de la matière humide enfermée hermétiquement dans l'enveloppe est régi par deux phénomènes thermodynamiques qui conjuguent leurs effets, à savoir d'une part l'évaporation du solvant s'extrayant ainsi du produit à sécher, avantageusement au voisinage d'une zone de paroi écartée de la matière humide, du moins quand celle-ci est à l'état solide, et d'autre part la diffusion de la vapeur du solvant au sein de la membrane entraínant sa migration à travers son épaisseur. Compte tenu des phénomènes engagés, le séchage s'effectue dès lors que la cinétique d'évaporation du solvant dans l'enveloppe est plus rapide que la cinétique de diffusion au travers de l'épaisseur de la membrane. Toutefois, il est souhaitable que la cinétique de diffusion ne soit pas trop lente pour que le séchage soit efficace. Il va de soi que les molécules gazeuses diffusent d'autant plus vite que l'épaisseur de la membrane à traverser est plus faible. On voit donc ici une manière de contrôler la vitesse de séchage d'une matière humide, par modification de l'épaisseur de la couche membranaire de l'enveloppe.From what has been said above, it appears therefore that the drying of the hermetically sealed moist material in the envelope is governed by two phenomena thermodynamics which combine their effects, namely of a share the evaporation of the solvent thus extracting from the product to dry, preferably in the vicinity of a wall area away from the wet material, at least when it is the solid state, and on the other hand the diffusion of the vapor of the solvent within the membrane causing its migration to through its thickness. Given the phenomena involved, drying takes place as soon as the kinetics solvent evaporation in the envelope is faster that the kinetics of diffusion across the thickness of the membrane. However, it is desirable that the kinetics diffusion is not too slow for drying to be effective. It goes without saying that the gaseous molecules diffuse the faster the thickness of the membrane cross is weaker. So here we see a way of control the drying rate of a wet material, by modification of the thickness of the membrane layer of the envelope.

Comme il ressort aussi de la demande de brevet précitée, la membrane semi-perméable utilisée pour le séchage est préférentiellement transparente, ou du moins translucide, et la transparence au rayonnement visible, ou plus généralement au rayonnement solaire, est particulièrement avantageuse dans la plupart des applications pratiques de l'invention, conformément à des caractéristiques secondaires de l'invention qui impliquent que la paroi comportant la membrane semi-perméable soit exposée extérieurement à un tel rayonnement. D'une manière générale de ce point de vue, l'invention prévoit d'opérer le séchage à travers une membrane semi-perméable qui, du moins en sa partie active, est transparente à des ondes électromagnétiques dont les longueurs d'onde peuvent notamment varier de 10 nm à 0.1 m, autrement dit des rayonnements allant de l'ultraviolet aux micro-ondes.As is also apparent from the patent application mentioned above, the semi-permeable membrane used for the drying is preferably transparent, or at least translucent, and transparency to visible radiation, or more generally to solar radiation, is particularly advantageous in most practical applications of the invention, in accordance with secondary features of the invention which involve that the wall comprising the semi-permeable membrane is externally exposed to such radiation. In a way general from this point of view, the invention provides for operating the drying through a semi-permeable membrane which, at least in its active part, is transparent to waves electromagnetic whose wavelengths can in particular vary from 10 nm to 0.1 m, in other words radiation ranging from ultraviolet to microwave.

Ceci permet de provoquer un échauffement de l'atmosphère contenant les matières à sécher, du côté interne de la membrane, grâce à un confinement des rayons extérieurs l'ayant traversée. This will cause heating of the atmosphere containing the materials to be dried, on the side internal membrane, thanks to ray confinement having crossed it.

En effet, lorque la membrane active est hermétiquement close et exposée à une source de rayonnements, la température à l'intérieur du contenant va augmenter par établissement d'un phénomène de confinement des radiations analogue à ce que l'on appelle communément l'effet de serre. Les rayonnements électromagnétiques incidents perdent une partie de leur énergie en traversant la membrane, si bien que le spectre s'en trouve modifié. Du côté interne au film, on y trouve des rayonnements capables de traverser la membrane dans l'autre sens, qui sont donc ré-émis vers l'extérieur, et des rayonnements qui ne peuvent que se réfléchir sur la membrane et restent confinés du côté intérieur.When the active membrane is tightly closed and exposed to a source of radiation, the temperature inside the container will increase by establishing a confinement phenomenon radiation similar to what is commonly called the greenhouse effect. Electromagnetic radiation incidents lose some of their energy while crossing the membrane, so that the spectrum is changed. Of internal side of the film, there are radiations capable to cross the membrane in the other direction, which are therefore re-emitted to the outside, and radiation that cannot that reflect on the membrane and remain confined to the side inside.

Les rayonnements ainsi confinés provoquent une augmentation significative de la température régnant dans l'atmosphère close par la membrane. De plus, la membrane elle-même s'échauffe. Il est avantageux suivant l'invention, d'ajouter à la composition du film des constituants aptes à améliorer un tel effet de confinement lors de sa mise en oeuvre du film, par addition de différentes molécules. Ainsi, selon un mode de réalisation préféré de la membrane objet de l'invention, l'incorporation de particules de silice de faible granulométrie (de l'ordre du nanomètre par exemple) avantageusement comprise entre 2 % à 20 % en poids dans la composition de polymères la constituant, permet d'améliorer sensiblement l'élévation de température à l'intérieur de la membrane, et par là même la vitesse de séchage par diffusion à travers la membrane en augmentant la pression partielle du solvant. (L'additivation de la silice dans le polymère est réalisée selon les méthodes classiques connues de l'homme de l'art.)The radiation thus confined causes a significant increase in temperature prevailing in the atmosphere closed by the membrane. In addition, the membrane itself heats up. It is advantageous according to the invention, to add to the composition of the film constituents capable of improve such a confining effect during its implementation film work, by adding different molecules. Thus, according to a preferred embodiment of the membrane object of the invention, the incorporation of particles of silica of small particle size (of the order of a nanometer by example) advantageously between 2% to 20% by weight in the composition of polymers constituting it, allows significantly improve the temperature rise to the interior of the membrane, and thereby the speed of diffusion drying through the membrane increasing the partial pressure of the solvent. (Addition of silica in the polymer is carried out according to conventional methods known to those skilled in the art.)

Dans ces conditions, l'invention apporte un moyen économique d'opérer le séchage, en exploitant l'énergie naturelle du rayonnement solaire, aisément disponible et non polluante, à l'exclusion de toute énergie, et notamment d'énergie fossile. Un avantage complémentaire de l'effet de confinement du rayonnement est lié à l'augmentation de la température interne de la membrane, dans la mesure où cela favorise la mobilité des chaínes macromoléculaires, et donc la diffusion des molécules gazeuses à travers la membrane.Under these conditions, the invention provides a means economical to operate drying, using energy natural solar radiation, readily available and not polluting, excluding all energy, and in particular fossil fuel. An additional benefit of the effect of confinement of radiation is linked to the increase in internal membrane temperature, as far as this promotes the mobility of macromolecular chains, and therefore the diffusion of gas molecules through the membrane.

Dans tous les cas, l'évaporation du solvant et la migration des molécules de solvant en phase vapeur se poursuivent tant que la quantité de solvant, en masse par unité de volume, qui est présente dans l'atmosphère à l'intérieur de la membrane, au-dessus du produit à sécher, reste supérieure à la quantité de matière de solvant par unité de volume présente à l'extérieur de la membrane, provoquant ainsi le rééquilibrage thermodynamique qui fait migrer les molécules à travers la membrane. On comprend bien ici que plus la température à l'intérieur de la membrane est importante, plus le solvant tend à se vaporiser au-dessus du produit à sécher, et donc plus les molécules migreront rapidement au travers la membrane.In all cases, the evaporation of the solvent and the migration of solvent molecules in the vapor phase continue as long as the quantity of solvent, by mass per unit of volume, which is present in the atmosphere at inside the membrane, above the product to be dried, remains greater than the amount of solvent material per volume unit present outside the membrane, thus causing the thermodynamic rebalancing which makes migrate molecules across the membrane. We understand well here that the higher the temperature inside the membrane is important, the more the solvent tends to vaporize above the product to dry, and therefore more molecules will migrate quickly through the membrane.

Sans vouloir être limitatif de la réalité des phénomènes en cause, on peut expliquer le fonctionnement de la membrane et sa perméabilité sélective aux vapeurs, par un transfert exclusif de ces vapeurs au travers de la membrane, directement lié à la structure inhérente des chaínes macromoléculaires du matériau copolymérisé. Ce transfert des vapeurs s'opère par migration des molécules à travers toute l'épaisseur de la membrane suivant un mode de fonctionnement qui peut s'analyser plus en détail comme expliqué ci-après.Without wishing to be limiting of the reality of phenomena involved, we can explain how the membrane and its selective vapor permeability, by a exclusive transfer of these vapors through the membrane, directly linked to the inherent structure of the chains macromolecular of the copolymerized material. This transfer of vapors operate by migration of molecules throughout the thickness of the membrane according to an operating mode which can be analyzed in more detail as explained below.

Le transfert par migration des molécules gazeuses de solvant est rendu possible grâce à l'existence au sein même du matériau polymère et à l'échelle microscopique d'espaces ou sites vacants intra-moléculaires qui constituent globalement ce que l'on appelle le volume libre. Dans un matériau polymère, en effet, le volume total occupé par le polymère comprend un premier volume correspondant au volume qu'occuperait le polymère s'il était condensé et un second volume correspondant aux espaces non occupés par le polymère et qui est connu sous le nom de volume libre.The transfer by migration of gas molecules from solvent is made possible by the existence within of polymeric material and at the microscopic scale of spaces or intra-molecular vacant sites that constitute globally what is called free volume. In one polymer material, in fact, the total volume occupied by the polymer includes a first volume corresponding to the volume what would the polymer occupy if it was condensed and a second volume corresponding to spaces not occupied by the polymer and which is known as free volume.

Conformément à l'invention, on exploite la capacité des sites vacants à assurer sélectivement la migration des molécules gazeuses à travers l'épaisseur du matériau polymère, à l'exclusion du même solvant à l'état liquide, en constituant le polymère de la membrane de sorte que, de préférence par des séquences souples, il présente une affinité chimique sélective avec lesdites molécules gazeuses du solvant, lesquelles sont avantageusement peu encombrées et peuvent ainsi migrer librement dans les sites vacants du matériau.In accordance with the invention, the capacity is exploited vacant sites to selectively ensure the migration of gas molecules through the thickness of the material polymer, excluding the same solvent in the liquid state, constituting the polymer of the membrane so that from preferably by flexible sequences, it presents a selective chemical affinity with said gas molecules solvent, which are advantageously compact and can thus freely migrate to vacant sites in the material.

La mise en oeuvre optimale du procédé selon l'invention demande donc que la membrane semi-perméable puisse établir des interactions physico-chimiques avec lesdites molécules, et qu'elle dispose d'une quantité de volume libre disponible suffisante, les sites vacants étant à cet effet suffisamment gros et suffisamment mobiles pour accueillir les molécules de vapeur et les entraíner à travers toute l'épaisseur de la membrane.Optimal implementation of the process according to the invention therefore requires that the semi-permeable membrane can establish physico-chemical interactions with said molecules, and that it has a quantity of sufficient free volume available, vacant sites being for this purpose sufficiently large and sufficiently mobile to welcome the steam molecules and train them to across the entire thickness of the membrane.

Il convient de préciser que la taille des sites vacants est avantageusement de l'ordre de l'angstrôm (10-10 m), rendant uniquement possible le transfert des molécules dissociées par migration à travers l'épaisseur de la membrane qui est de l'ordre de quelques dizaines de micromètres. Les molécules de liquide étant non-individualisées ne peuvent traverser la membrane par l'intermédiaire des sites vacants.It should be noted that the size of the sites vacancies is advantageously of the order of angstroms (10-10 m), making it only possible to transfer molecules dissociated by migration across the thickness of the membrane which is on the order of a few tens of micrometers. The liquid molecules being non-individualized cannot cross the membrane by through vacant sites.

Dans les modes de mise en oeuvre préférés de l'invention, le matériau polymère est un copolymère formé de séquences rigides plutôt cristallines, assurant la résistance mécanique du matériau, et de séquences souples d'élastomère plutôt amorphes, assurant la perméabilité du matériau aux vapeurs de solvant par la mobilité des sites vacants. La nature chimique des séquences souples est choisie de telle sorte que lesdites séquences présentent une affinité sélective à l'égard des molécules gazeuses de solvant, sans possibilité d'interaction avec les autres constituants de la matière.In the preferred embodiments of the invention, the polymer material is a copolymer formed of rather crystalline rigid sequences, ensuring the mechanical resistance of the material, and flexible sequences rather amorphous elastomer, ensuring the permeability of the solvent vapor material by site mobility vacant. The chemical nature of the flexible sequences is chosen so that said sequences have a selective affinity for gaseous molecules of solvent, without possibility of interaction with others constituents of matter.

Dans la réalisation d'un film à membrane semi-perméable convenant à enfermer des matières à sécher par le procédé suivant l'invention, on peut associer la membrane polymère avec une couche support de renforcement mécanique dont elle est avantageusement rendue solidaire par adhérence, avec ou sans utilisation d'un adhésif en couche intermédiaire dans le film ainsi constitué. Cette couche support peut être notamment réalisée en une matière textile ou analogue faite notamment de fibres non tissées, dont la nature est choisie de telle sorte qu'elle ne perturbe pas les capacités de la membrane. Un tel non-tissé est par exemple à base de fibres de résines de polypropylène ou de résines de polyester.In the production of a film with a semi-permeable membrane suitable for enclosing material to be dried by the process according to the invention, the membrane can be combined polymer with a mechanical reinforcement support layer which it is advantageously made integral by adhesion, with or without the use of a layer adhesive intermediary in the film thus formed. This layer support may in particular be made of a textile material or the like made in particular of nonwoven fibers, the nature is chosen so that it does not disturb the capabilities of the membrane. Such a nonwoven is by example based on polypropylene resin fibers or polyester resins.

Il joue le rôle d'armature ou de couche-support venant renforcer la tenue mécanique de l'enveloppe, notamment quand elle est essentiellement constituée d'une membrane très peu résistante mécaniquement en raison de l'importance massique des séquences souples. Il n'est pas exclu de combiner à la membrane active en semi-perméabilité plusieurs couches de renforcement, qui par exemple l'encadrent.It plays the role of reinforcement or support layer reinforcing the mechanical strength of the envelope, especially when it is essentially made up of a very mechanically weak membrane due to the mass importance of flexible sequences. He is not excluded from combining with the active membrane in semi-permeability several layers of reinforcement, which for example surround.

Une couche-support similaire, à base d'un feutre perméable de fibres non tissées, peut être réalisée avec d'autres matériaux, comme les papiers. On choisit notamment ceux destinés à l'emballage de denrées alimentaires, présentant avantageusement une perméabilité à l'eau comprise entre 50.000 et 100.000 g/m2 par 24 heures et un grammage compris entre 26 g/m2 et 100 g/m2. Leur transparence à la lumière visible est suffisante pour préserver l'effet de serre favorisant la vitesse de séchage. A similar backing layer, based on a felt permeable non-woven fibers, can be made with other materials, such as paper. We choose in particular those intended for the packaging of foodstuffs, advantageously having a permeability to water included between 50,000 and 100,000 g / m2 per 24 hours and a grammage between 26 g / m2 and 100 g / m2. Their transparency to the visible light is sufficient to preserve the effect of greenhouse favoring the drying speed.

En fonction des circonstances propres à chaque application particulière, on peut également préférer choisir une membrane polymère suffisamment épaisse et résistante pour représenter le seul constituant d'un film monocouche, auquel cas on peut prévoir de supporter la membrane, sur le lieu d'utilisation, sur une plaque micro-perforée par exemple. Il convient évidemment, à chaque fois, de choisir une couche support qui n'altère pas les propriétés semi-perméables de la membrane. Pour cela, il est avantageux que le matériau constituant ladite couche-support présente une structure ajourée. Il convient également de s'assurer, avant de fixer la membrane à la couche-support, que la composition chimique du matériau de ladite couche-support soit compatible avec celle de la membrane pour que l'adhérence entre la membrane et la couche support soit facilitée. Un film multi-couches convenant à la mise en oeuvre du procédé de séchage suivant l'invention est avantageusement réalisé par calandrage à chaud du polymère approprié, sous contrôle de l'épaisseur de la membrane.Depending on the circumstances of each particular application, we may also prefer to choose a sufficiently thick and resistant polymer membrane to represent the only constituent of a monolayer film, in which case we can plan to support the membrane, on the place of use, on a micro-perforated plate by example. It is obviously advisable, each time, to choose a support layer which does not alter the semi-permeable properties of the membrane. For this, it is advantageous that the material constituting said support layer has a openwork structure. It is also advisable to make sure, before to fix the membrane to the support layer, that the composition chemical of the material of said support layer either compatible with that of the membrane so that the adhesion between the membrane and the support layer is facilitated. A multi-layer film suitable for carrying out the process drying according to the invention is advantageously carried out by hot calendering of the appropriate polymer, under control the thickness of the membrane.

S'agissant d'une membrane à base d'un copolymère formé de séquences rigides et de séquences souples, la proportion respective de chacun des chaínons dans le matériau polymère détermine le degré de perméabilité de la membrane. Vu ce qui a été dit précédemment sur la faisabilité de la migration des molécules gazeuses au travers de la membrane, on comprend qu'un matériau polymère intrinsèquement de nature hydrophile, c'est-à-dire dans lequel les séquences souples sont celles d'un oligomère hydrophile et sont en proportion fonctionnellement majoritaire par rapport aux séquences rigides, autorise essentiellement le transfert de vapeur d'eau. Toutefois, l'hydrophilie étant une conséquence directe de la présence de groupes polaires, ledit oligomère hydrophile peut établir également des interactions de type polaire avec un solvant organique polaire et par conséquent le procédé selon l'invention permet de sécher des matières humidifiées par de l'eau ou par tout autre solvant organique polaire à comportement analogue, tels que le méthanol, l'éthanol, l'acétone qui sont fréquemment employés en synthèse organique.Being a membrane based on a copolymer formed of rigid sequences and flexible sequences, the respective proportion of each of the links in the polymer material determines the degree of permeability of the membrane. Given what has been said previously on the feasibility of the migration of gas molecules to across the membrane, we understand that a polymer material intrinsically hydrophilic in nature, i.e. in which the flexible sequences are those of an oligomer hydrophilic and are proportionally functionally majority compared to rigid sequences, authorizes essentially the transfer of water vapor. However, hydrophilicity being a direct consequence of the presence of polar groups, said hydrophilic oligomer can establish also polar-type interactions with a solvent polar organic and therefore the process according to the invention makes it possible to dry materials moistened with water or any other polar organic solvent to analogous behavior, such as methanol, ethanol, acetone which are frequently used in synthesis organic.

Dans ces conditions, on a constaté que les polymères du type poly(éther-blocs-amide) conviennent particulièrement à la mise en oeuvre du procédé réalisant le séchage conformément à l'invention. Un poly(éther-blocs-amide) est un copolymère à blocs dont les chaínes macromoléculaires sont constituées d'enchaínements successifs de blocs polyéther représentant les séquences souples et de blocs polyamide représentant les séquences rigides. Un tel copolymère résulte de la polycondensation de chaínes oligomères polyamide à bouts de chaínes dicarboxyliques avec des chaínes oligomères polyéther-diol. Un poly(éther-blocs-amide) particulier comprend un seul type de blocs polyamide et un seul type de blocs polyéther. On utilise notamment dans le cadre de la présente invention des séquences polyamide formées uniquement de polyamide 12, noté PA-12 (-(CH2)11-CO-NH-), et des séquences polyéther-diol formées soit de polyéthylène glycol, noté PEG (-O-(CH2)2-), soit de polytétraméthylène glycol, noté PTMG (-O-(CH2)4-).Under these conditions, it has been found that polymers of the poly (ether-block-amide) type are particularly suitable for carrying out the process carrying out the drying in accordance with the invention. A poly (ether-block-amide) is a block copolymer, the macromolecular chains of which consist of successive sequences of polyether blocks representing the flexible sequences and of polyamide blocks representing the rigid sequences. Such a copolymer results from the polycondensation of polyamide oligomer chains with ends of dicarboxylic chains with polyether-diol oligomer chains. A particular poly (ether-block-amide) comprises a single type of polyamide block and a single type of polyether block. In particular, in the context of the present invention, polyamide blocks formed solely of polyamide 12, denoted PA-12 (- (CH 2 ) 11 -CO-NH-), and polyether-diol sequences formed either of polyethylene glycol, denoted PEG (-O- (CH 2 ) 2 -), or polytetramethylene glycol, noted PTMG (-O- (CH 2 ) 4 -).

En se plaçant dans le cas particulier où la membrane est ainsi à base d'un poly(éther-blocs-amide), on présente ci-dessous une explication fonctionnelle non limitative des propriétés de perméabilité sélective de la membrane à l'égard de l'eau, d'un solvant aqueux ou d'un solvant organique à comportement polaire analogue.By placing itself in the particular case where the membrane is thus based on a poly (ether-blocks-amide), we present below a non-limiting functional explanation of selective permeability properties of the membrane to with respect to water, an aqueous solvent or a solvent organic with similar polar behavior.

Les blocs PA-12 du poly(éther-blocs-amide) sont cristallins et plutôt hydrophobes. Intrinsèquement, ils ont donc tendance à un effet plutôt répulsif à l'égard des solvants polaires. En revanche, ils apportent les propriétés mécaniques nécessaires à la membrane pour résister à certains usages industriels auxquels elle est destinée. Les blocs polyéther sont au contraire amorphes plutôt hydrophiles. Ils présentent donc, au sein de la membrane sélectivement perméable à des molécules en phase gazeuse, une affinité sélective pour les molécules se prêtant, par attraction polaire, à des interactions physico-chimiques spécifiques avec les chaínes macromoléculaires. Ce sont alors les blocs polyéther qui, en raison de leur affinité avec les molécules polaires diffusantes, assurent le transfert de la vapeur d'eau et des vapeurs de solvants polaires par l'intermédiaire des sites vacants disponibles.The PA-12 blocks of poly (ether-block-amide) are crystalline and rather hydrophobic. Inherently, they have therefore tend to have a rather repulsive effect with regard to polar solvents. On the other hand, they bring the properties mechanical elements necessary for the membrane to resist certain industrial uses for which it is intended. The polyether blocks are rather amorphous rather hydrophilic. They therefore present, within the membrane selectively permeable to molecules in the gas phase, a selective affinity for molecules which lend themselves, by polar attraction, to physico-chemical interactions specific with macromolecular chains. Those are then the polyether blocks which, due to their affinity with polar diffusing molecules, ensure the transfer of water vapor and solvent vapors polar through vacant sites available.

Dans le cas spécifique d'un poly(éther-blocs-amide), les fonctions éthers des blocs polyéthers permettent de conférer aux chaínes macromoléculaires de la membrane des rotations supplémentaires autour de l'atome d'oxygène. Cette mouvance des chaínes apportée par les atomes d'oxygène des blocs polyéthers génère une plus grande quantité de volume libre disponible et donc une meilleure perméabilité de la membrane.In the specific case of a poly (ether-block-amide), the ethers functions of polyether blocks allow to give the macromolecular chains of the membrane additional rotations around the oxygen atom. This movement of the chains brought by the oxygen atoms of polyether blocks generates a greater amount of volume free available and therefore better permeability of the membrane.

Les masses moléculaires moyennes en nombre des séquences polyéther et des séquences PA-12 sont choisies de telle sorte qu'elles ne soient pas trop élevées pour que les capacités de perméabilité de la membrane soient optimales. En effet, la quantité de volume libre disponible augmente lorsque la masse moléculaire moyenne en nombre des blocs polyéthers diminue. La masse moléculaire moyenne en nombre des séquences PA-12 est avantageusement comprise entre 1500 et 5000 et celle des séquences polyéther entre 650 et 2000.The number-average molecular masses of polyether sequences and PA-12 sequences are chosen from so that they are not too high for the membrane permeability capacities are optimal. Indeed, the amount of free volume available increases when the number-average molecular mass of the blocks polyethers decreases. Number average molecular weight PA-12 sequences is advantageously between 1500 and 5000 and that of the polyether sequences between 650 and 2000.

Les proportions de chacun des blocs polyamide et polyéther sont choisies de manière à obtenir un matériau intrinsèquement de nature hydrophile. Avantageusement, le poly(éther-blocs-amide) utilisé pour la mise en oeuvre du procédé comprend de 30 à 60 % en poids de blocs polyéther et de 70 à 40 % en poids de blocs polyamide.The proportions of each of the polyamide blocks and polyether are chosen so as to obtain a material inherently hydrophilic in nature. Advantageously, the poly (ether-blocks-amide) used for the implementation of the process comprises from 30 to 60% by weight of polyether blocks and from 70 to 40% by weight of polyamide blocks.

En s'exprimant de manière plus générale, on peut dire ici que suivant l'invention, il est préférable que la composition polymère du matériau de la membrane comporte une majorité de séquences d'oligomère souple caractérisées par les sites à affinité hydrophiles qu'elles comportent, et pour une minorité de séquences d'oligomère rigide dont le comportement propre est plutôt hydrophobe.Speaking more generally, we can say here that according to the invention it is preferable that the polymer composition of the membrane material has a majority of flexible oligomer sequences characterized by the hydrophilic affinity sites which they comprise, and for a minority of rigid oligomer sequences, the proper behavior is rather hydrophobic.

Il n'est pas inutile de rappeler ici que la cinétique de séchage est d'autant plus rapide que les séquences polyéther sont en quantité importante. Par ailleurs, le PTMG, en raison de ces quatre groupes CH2, est moins polaire que le PEG et par conséquent la cinétique de séchage d'une matière humidifiée par de l'eau ou un solvant polaire est plus lente lorsque les séquences polyéther du poly(éther-blocs-amide) sont à base de PTMG. Pour les produits devant conserver une quantité résiduelle de solvant, il est donc préférable d'utiliser le PTMG comme blocs polyéther. Toutefois ceci n'est nullement limitatif des différentes formes de mise en oeuvre du procédé de objet de l'invention.It is worth remembering here that the drying kinetics are all the faster the polyether sequences are in large quantity. Furthermore, PTMG, because of these four CH 2 groups, is less polar than PEG and therefore the drying kinetics of a material moistened with water or a polar solvent is slower when the polyether sequences of the poly (ether-blocks-amide) are based on PTMG. For products that must retain a residual amount of solvent, it is therefore preferable to use PTMG as polyether blocks. However, this is in no way limiting on the various forms of implementation of the method which is the subject of the invention.

Bien que la membrane qui vient d'être décrite en exemple soit tout particulièrement adaptée au séchage de matières contenant de l'eau ou un quelconque solvant polaire à comportement analogue, il convient de souligner qu'on ne sortirait pas du cadre du procédé de l'invention si les matières contenaient un solvant d'humidification de nature apolaire, auquel cas il faudrait bien évidemment prévoir une membrane de nature plutôt hydrophobe, par exemple une membrane constituée de polyoléfines, de manière à ce qu'elle présente une affinité sélective à l'égard des molécules gazeuses dudit solvant apolaire.Although the membrane which has just been described in example is particularly suitable for drying materials containing water or any polar solvent with similar behavior, it should be emphasized that would not go beyond the scope of the process of the invention if the materials contained a nature wetting solvent apolar, in which case it would obviously be necessary to provide a rather hydrophobic in nature, for example a membrane made of polyolefins, so that it exhibits selective affinity for molecules gaseous of said non-polar solvent.

Quelle que soit la composition chimique de la membrane utilisée pour la mise en oeuvre du procédé selon l'invention, ladite membrane est choisie continue, c'est-à-dire dépourvue de toutes micro-perforations, donc imperméable aux bactéries et aux micro-organismes. Elle est éventuellement stérilisée. La stérilisation peut être réalisée par les techniques habituelles de stérilisation telles que par autoclavage (120°C), par rayons β ou γ ou par oxyde d'éthylène. L'utilisation d'une membrane préalablement stérilisée permet de conserver les matières en milieu stérile. La membrane est bien évidemment inerte chimiquement vis-à-vis du solvant à éliminer. Ses propriétés lui permettent aussi de résister, pendant plusieurs heures, à la chaleur, au moins jusqu'à 80°C, ce qui rend possible l'introduction éventuelle de l'enveloppe renfermant les matières dans une étuve, l'apport de chaleur par l'étuve accélérant le séchage. Dans ce cas, le nettoyage et la validation des étuves ne sont pas nécessaires entre deux séchages.Whatever the chemical composition of the membrane used for implementing the process according to the invention, said membrane is chosen to be continuous, that is to say devoid of any micro-perforations, therefore impermeable to bacteria and microorganisms. She is possibly sterilized. Sterilization can be performed by usual sterilization techniques such as by autoclaving (120 ° C), by β or γ rays or by ethylene oxide. The use of a membrane beforehand sterilized keeps materials in the middle sterile. The membrane is obviously chemically inert vis-à-vis the solvent to be removed. Its properties also make it possible to resist, for several hours, the heat, at least up to 80 ° C, making it possible the possible introduction of the envelope containing the materials in an oven, the supply of heat by the oven accelerating drying. In this case, cleaning and validation of the ovens is not necessary between two drying.

L'épaisseur de la membrane est choisie de façon à ce que la migration de la vapeur ne soit pas trop lente. Elle est en pratique supérieure à 2 µm mais inférieure à 1000 µm afin de se trouver dans les ordres de grandeur d'un film globalement souple pouvant être lové en rouleaux. De préférence, l'épaisseur propre de la membrane semi-perméable est comprise entre 10 et 100 µm, et avantageusement comprise entre 10 et 60 µm.The thickness of the membrane is chosen so that that the vapor migration is not too slow. She is in practice greater than 2 µm but less than 1000 µm in order to be in the orders of magnitude of a film generally flexible which can be coiled in rolls. Of preferably the thickness of the semi-permeable membrane is between 10 and 100 μm, and advantageously between between 10 and 60 µm.

Les membranes utilisées ont avantageusement une perméabilité à la vapeur d'eau comprise entre 7 000 et 20 000 g/m2/24 h (selon la norme ASTM E 96 B, à 38°C et 50%HR), une perméabilité à l'oxygène de 6 500 à 18 500 cm3/m2/24 h/bar et une perméabilité au gaz carbonique comprise entre 72 000 et 177 000 cm3/m2/24 h/bar. Lesdites membranes présentent une densité de 1,02 à 1,07 g/cm3 et une dureté Shore de 25 à 75 D. L'allongement à la rupture est voisin de 365 % et la charge à la rupture proche de 3,9 daN/mm2.The membranes used advantageously have a permeability to water vapor of between 7,000 and 20,000 g / m2 / 24 h (according to standard ASTM E 96 B, at 38 ° C and 50% RH), a permeability to oxygen from 6,500 to 18,500 cm 3 / m2 / 24 h / bar and a permeability to carbon dioxide of between 72,000 and 177,000 cm3 / m2 / 24 h / bar. Said membranes have a density of 1.02 to 1.07 g / cm3 and a Shore hardness of 25 to 75 D. The elongation at break is close to 365% and the load at break close to 3.9 daN / mm2.

Selon une caractéristique avantageuse du procédé de l'invention, la matière, une fois sèche, ne reprend pas l'humidité si elle est gardée à l'intérieur de l'enveloppe hermétiquement close. En effet, comme nous l'avons exposé plus haut, une fois que l'équilibre thermodynamique est atteint, plus aucun transfert de vapeur ne peut se produire au travers de l'épaisseur de la membrane polymère. Celle-ci étant de plus imperméable aux liquides, la reprise d'humidité par le produit n'est plus possible. Par conséquent, la conservation au sec de la matière est assurée. Si l'on place une matière sèche, mais sensible à l'humidité et en particulier à l'humidité de l'air, dans une enveloppe hermétiquement close constituée d'une membrane possédant les caractéristiques décrites précédemment, ladite matière reste sèche. Il est donc clair que l'introduction d'une matière sèche, mais sensible à l'humidification, dans ladite enveloppe constitue un traitement préventif contre l'humidification.According to an advantageous characteristic of the process of the invention, the material, once dry, does not resume moisture if kept inside the envelope hermetically sealed. Indeed, as we have exposed above, once the thermodynamic equilibrium is reached, no more vapor transfer can occur through the thickness of the polymer membrane. This one being more impermeable to liquids, the recovery moisture from the product is no longer possible. Through therefore, the dry storage of the material is assured. If you place a dry material, but sensitive to humidity and in particular air humidity, in a hermetically sealed envelope consisting of a membrane having the characteristics described above, said material remains dry. It is therefore clear that the introduction dry matter, but sensitive to humidification, in said envelope constitutes a preventive treatment against humidification.

Avantageusement, l'enveloppe renfermant les matières à sécher se présente soit sous forme de film plan obturant un système clos sur les lieux habituels de stockage ou de production, soit sous forme de sacs hermétiquement clos convenant particulièrement au séchage de produits en laboratoire. La fermeture hermétique des sacs est réalisée par des moyens connus en eux-mêmes, tels que par soudure à chaud ou aux ultra-sons ou par adhésivité. Dans d'autres cas, l'enveloppe sous forme de film plan déployable à partir de rouleaux est disposée en "tunnel" recouvrant des plantes en plein champ. Les matières à sécher peuvent y être déposées sur un film imperméable ou non représentant la base de l'espace clos à l'intérieur de la membrane. Elles peuvent aussi être posées sur des grilles ou dans des cagettes à légumes qui elles-mêmes sont posées sur ledit film. On recouvre le tout, avec ou sans arceaux, au moyen de la membrane semi-perméable, éventuellement complexée à une couche support. Une étanchéité suffisante peut être réalisée sur les bords de la membrane que l'on plaque au sol.Advantageously, the envelope containing the materials to be dried is either in the form of a flat sealing film a closed system at the usual places of storage or production, either in the form of hermetically sealed bags particularly suitable for drying products in laboratory. The bags are hermetically sealed by means known in themselves, such as by welding hot or ultrasonic or by adhesiveness. In other case, the envelope as a flat film deployable from of rollers is arranged in a "tunnel" covering plants in the open field. Materials to be dried can be stored there deposited on a waterproof film or not representing the base of the enclosed space inside the membrane. They can also be placed on racks or in crates vegetables which themselves are laid on said film. We cover everything, with or without poles, using the semi-permeable membrane, possibly complexed with a support layer. Sufficient sealing can be achieved on the edges of the membrane that is placed on the ground.

Afin de promouvoir la vitesse et le degré de séchage, on peut poser les matières humides à sécher sur une grille, ce qui permet d'augmenter la surface active de la membrane. Pour les mêmes raisons, la matière à sécher est avantageusement à l'état divisé, sous forme de cristaux ou de particules de faible taille. Pour des matières solides en blocs de taille supérieure à quelques millimètres, il est avantageux de procéder à leur broyage avant emballage dans l'enveloppe.In order to promote the speed and the degree of drying, wet materials to be dried can be placed on a grid, which increases the active surface of the membrane. For the same reasons, the material to be dried is advantageously in the divided state, in the form of crystals or small particles. For solid materials in blocks larger than a few millimeters it's advantageous to grind them before packaging in the envelope.

Le procédé selon l'invention convient au séchage de produits solides, de produits pâteux ou poudreux ainsi que de produits liquides. Les produits pâteux ou poudreux particulièrement visés par l'invention sont les poudres pharmaceutiques, les produits chimiques solides et spécifiques tels que les produits thixotropes, le matériel biologique d'origine agricole, animale et végétale. Comme produits solides pouvant être séchés et conservés secs par le procédé de l'invention, on peut citer par exemple les objets mécaniques et électroniques, les pièces à conviction des procédures judiciaires, les textiles tels que les vêtements ou le linge domestique. Concernant les produits constitués de solutions liquides, le séchage se traduit par une augmentation de la concentration de la solution, de la même manière que les produits dans lesquels la matière humide reste majoritairement solide. Des liquides tels que le sang, les jus de fruit, les vins, le lait, ou les déchets liquides comme les liquides d'épuration, peuvent être concentrés au moyen du procédé de l'invention.The process according to the invention is suitable for drying solid products, pasty or powdery products as well as of liquid products. Pasty or powdery products particularly targeted by the invention are the powders pharmaceuticals, solid chemicals and specific such as thixotropic products, material organic from agricultural, animal and vegetable origin. As solid products that can be dried and kept dry by the process of the invention, mention may, for example, be made of mechanical and electronic objects, exhibits legal proceedings, textiles such as clothes or household linen. About the products made up of liquid solutions, drying results in an increase in the concentration of the solution, same way as the products in which the material moist remains mostly solid. Liquids such as blood, fruit juices, wines, milk, or waste liquids such as sewage liquids, can be concentrated using the process of the invention.

Selon une variante de l'invention, le procédé est utilisé non plus pour une séparation solide/liquide, mais pour une séparation liquide/liquide. Il s'agit alors de séparer de façon sélective un liquide contenu dans un mélange liquide formé d'au moins deux liquides de nature chimique différente. Cette séparation est basée sur le même principe de fonctionnement que la séparation solide/liquide, à savoir évaporation d'un solvant liquide puis diffusion des vapeurs correspondantes au travers d'une membrane présentant une affinité sélective à l'égard dudit solvant à éliminer. L'un des liquides du mélange est compatible avec la composition chimique de la membrane, donc notamment de nature hydrophile dans le cas d'exemple préféré considéré ici, tandis que l'autre est relativement incompatible avec elle, dont de nature hydrophobe dans les mêmes conditions. La membrane est sélectivement perméable aux vapeurs du solvant compatible, avec lequel elle établit des interactions chimiques facilitant la migration des molécules vaporisées à travers l'épaisseur de la membrane. Le solvant dit incompatible, qui ne présente pas d'interactions avec le polymère de la membrane, est progressivement débarrassé du solvant compatible, et il se concentre ainsi jusqu'à devenir pur.According to a variant of the invention, the method is no longer used for solid / liquid separation, but for liquid / liquid separation. It is then about to selectively separate a liquid contained in a liquid mixture formed from at least two liquids in nature different chemical. This separation is based on the same operating principle as solid / liquid separation, namely evaporation of a liquid solvent then diffusion of corresponding vapors through a membrane having a selective affinity with respect to said solvent to be eliminated. One of the liquids in the mixture is compatible with the chemical composition of the membrane, therefore in particular of hydrophilic nature in the case of the preferred example considered here while the other is relatively inconsistent with it, of which hydrophobic in nature under the same conditions. The membrane is selectively permeable to vapor from compatible solvent, with which it establishes chemical interactions facilitating the migration of molecules vaporized through the thickness of the membrane. The solvent said to be incompatible, which does not exhibit interactions with the membrane polymer, is gradually freed from compatible solvent, and it thus concentrates until it becomes pure.

Un tout premier avantage de l'invention réside dans le fait que la membrane polymère protège le produit qu'elle renferme des agressions du milieu extérieur. En particulier, elle empêche les risques de contaminations croisées de se produire et les micro-organismes de pénétrer dans l'enveloppe, ce qui permet un séchage aseptique très peu coûteux.A very first advantage of the invention resides in the fact that the polymer membrane protects the product it contains aggressions from the outside environment. In particular, it prevents the risks of cross-contamination from produce and microorganisms to enter the envelope, which allows very little aseptic drying expensive.

Un autre avantage de la présente invention réside dans le fait que la qualité du séchage de produits fragiles ou difficiles à sécher est optimale. En effet, pour les produits sensibles aux températures élevées, tels que les produits chimiques à point de fusion en-dessous de 40°C, les protéines ou les produits et extraits naturels, le procédé de séchage évite toute dénaturation.Another advantage of the present invention lies in the fact that the quality of drying of fragile products or difficult to dry is optimal. Indeed, for products sensitive to high temperatures, such as chemicals with a melting point below 40 ° C, proteins or natural products and extracts, the process drying prevents any denaturation.

Un autre avantage réside dans le fait que le procédé selon l'invention permet de parfaire le séchage de produits, partiellement séchés avec une autre technique, par simple emballage des produits dans un sac, hermétiquement clos, laissé à température et pression ambiante.Another advantage is that the process according to the invention makes it possible to perfect the drying of products, partially dried with another technique, by simple packaging of products in a hermetically sealed bag, left at room temperature and pressure.

Un autre avantage réside dans le fait que les produits, même dits hygroscopiques, séchés selon le procédé de l'invention ne reprennent pas l'humidité, à température et pression ambiante, lorsqu'ils sont enfermés hermétiquement dans une enveloppe constituée d'un matériau intrinsèquement de nature hydrophile.Another advantage is that the products, even so-called hygroscopic, dried according to the process of the invention do not absorb moisture, at temperature and ambient pressure, when locked up hermetically in an envelope made of a material inherently hydrophilic in nature.

Un autre avantage de l'invention réside dans une élimination des risques de toxicité pour les opérateurs. En effet, les produits à sécher étant introduits dans une enveloppe hermétiquement close, les opérateurs ne sont plus en contact avec des produits toxiques ou potentiellement toxiques.Another advantage of the invention resides in a elimination of risks of toxicity for operators. In effect, the products to be dried being introduced into a hermetically sealed envelope, operators are no longer in contact with toxic or potentially toxic products toxic.

Un autre avantage enfin de l'invention est la possibilité de réaliser un séchage à froid dans une chambre fermée à purification d'air évitant la pollution de l'environnement par les solvants en effluents gazeux rejetés à l'atmosphère.Another advantage finally of the invention is the possibility of cold drying in a room closed to air purification avoiding pollution of the environment by solvents in exhaust gases to the atmosphere.

On décrira maintenant l'invention dans le cadre d'exemples particuliers de mise en oeuvre et d'application du procédé.The invention will now be described in the context specific examples of implementation and application of the process.

Exemple 1 :Example 1:

Des granulés hygroscopiques contenant 79 % d'eau sont réduits sous forme de poudre par simple broyage. On introduit ensuite 100 g de cette poudre dans deux enveloppes distinctes, dont la surface totale est de 962 cm2. Les enveloppes utilisées sont constituées d'une membrane semi-perméable formée d'un matériau polymère à base d'un poly(éther-blocs-amide) composé de 40 % en poids de séquences PTMG et de 60 % en poids de séquences PA-12. L'épaisseur de la paroi de l'enveloppe est de 25 µm. Chaque enveloppe est soudée à chaud de façon à obtenir un sac. On utilise, en tant que témoin, un récipient plat contenant la poudre laissée à l'air libre.Hygroscopic granules containing 79% water are reduced to powder form by simple grinding. 100 g of this powder are then introduced into two separate envelopes, the total area of which is 962 cm 2 . The envelopes used consist of a semi-permeable membrane formed of a polymer material based on a poly (ether-block-amide) composed of 40% by weight of PTMG sequences and 60% by weight of PA- sequences 12. The thickness of the wall of the envelope is 25 µm. Each envelope is heat sealed so as to obtain a bag. As a control, a flat container containing the powder left in the open air is used.

Les échantillons dans les sacs ont été placés sur des clayettes à température ambiante, d'une part, et dans une étuve à 50°C, d'autre part. The samples in the bags were placed on shelves at room temperature, on the one hand, and in an oven at 50 ° C, on the other hand.

On a étudié la cinétique de séchage, pendant 70 heures, du produit témoin et des granulés placés dans les enveloppes à température ambiante et à 50°C. On constate que le poids de l'échantillon de témoin ne varie pratiquement pas. En revanche, la perte de poids est significative pour les produits contenus dans chacune des deux enveloppes. L'évolution de la perte de poids en fonction du temps est sensiblement identique pour chacune des deux enveloppes, mais le degré de séchage est meilleur lorsque l'enveloppe est introduite dans l'étuve.We studied the drying kinetics, for 70 hours, control product and granules placed in the envelopes at room temperature and 50 ° C. We observe that the weight of the control sample hardly varies not. In contrast, weight loss is significant for the products contained in each of the two envelopes. The evolution of weight loss over time is substantially identical for each of the two envelopes, but the degree of drying is better when the envelope is introduced into the oven.

Pour chacune des deux enveloppes, le poids du produit ne varie pratiquement plus au bout de 50 heures. Au bout de 70 heures, le poids du produit introduit dans l'enveloppe placée dans l'étuve est de 20 g tandis que celui introduit dans l'enveloppe laissée à température ambiante est de 35 g.For each of the two envelopes, the weight of the product hardly changes after 50 hours. At after 70 hours, the weight of the product introduced into the envelope placed in the oven is 20 g while that introduced into the envelope left at room temperature is 35 g.

Exemple 2:Example 2:

Des plantes peu ligneuses sont récoltées par temps frais et pluvieux. On répartit 175 g de l'échantillon de plante, que l'on a coupée grossièrement, dans une enveloppe fermée hermétiquement. La surface totale de l'enveloppe est de 1500 cm2. Les enveloppes utilisées sont constituées d'une membrane semi-perméable formée d'un matériau polymère à base d'un poly(éther-blocs-amide) composé de 40 % en poids de séquences PTMG et de 60 % en poids de séquences PA-12. L'épaisseur de la paroi de l'enveloppe est de 25 µm. Un sac de congélation pour aliments est utilisé comme témoin.Low woody plants are harvested in good time cool and rainy. 175 g of the sample of plant, which has been roughly cut, in an envelope hermetically closed. The total surface of the envelope is 1500 cm2. The envelopes used consist of a semi-permeable membrane formed from a polymeric material based a poly (ether-block-amide) composed of 40% by weight of PTMG sequences and 60% by weight of PA-12 sequences. The thickness of the envelope wall is 25 µm. A bag freezer is used as a control.

L'enveloppe et le sac de congélation sont suspendus dans une pièce sans ventilation mécanique. La température est maintenue autour de 19 °C et l'humidité relative à 70 %.The envelope and the freezer bag are hanging in a room without mechanical ventilation. Temperature is maintained around 19 ° C and relative humidity at 70%.

On constate que de la buée se forme très rapidement sur la face interne du sac témoin. Des taches brunes se développent dès le quatrième jour sur l'échantillon pour l'envahir ensuite. Des odeurs de fermentation se dégagent à l'ouverture du sac en fin d'essai. On pèse régulièrement le sac témoin durant toute la durée de l'essai et on remarque qu'il n'y a aucune variation de poids.We see that fogging forms very quickly on the inside of the sample bag. Brown spots develop from the fourth day on the sample for then invade it. Fermentation odors emanate from the opening of the bag at the end of the test. We regularly weigh the control bag for the duration of the test and we notice that there is no variation in weight.

L'échantillon introduit dans l'enveloppe se comporte différemment. La plante conserve sa couleur verte, et une odeur caractéristique de plante sèche se dégage au cours de l'essai. A l'ouverture de l'enveloppe, la plante s'effrite sous les doigts.The sample introduced into the envelope behaves differently. The plant retains its green color, and a characteristic odor of dry plant is released during test. When the envelope is opened, the plant crumbles under the fingers.

On pèse régulièrement l'enveloppe afin d'évaluer la cinétique de séchage. La perte d'humidité est notable dès que la plante est introduite dans l'enveloppe. Au bout du quatrième jour, l'échantillon de plante pèse 90 g. A partir du sixième jour, la perte de poids est beaucoup moins importante. Au dixième jour, l'échantillon ne pèse plus que 55 g et est totalement débarrassé de l'humidité qu'il contenait.The envelope is weighed regularly to assess the drying kinetics. The loss of humidity is noticeable from that the plant is introduced into the envelope. At the end of fourth day, the plant sample weighs 90 g. From from the sixth day the weight loss is much less important. On the tenth day, the sample weighs only 55 g and is completely rid of the moisture it contained.

Exemple 3 :Example 3:

Un produit chimique présentant un point de fusion voisin de 40°C et contenant 20 % d'eau est introduit dans une enveloppe scellée hermétiquement. L'enveloppe est constituée d'une membrane semi-perméable formée d'un matériau polymère à base de poly(éther-blocs-amide) composée de 40 % en poids de séquences PTMG et de 60 % en poids de séquences PA-12. L'épaisseur de la paroi de l'enveloppe est de 25 µm et la surface totale de l'enveloppe est de 2184 cm2. Le produit chimique n'établit pas d'interactions physico-chimiques avec le poly(éther-blocs-amide). On introduit également le produit dans un récipient plat ouvert, pour comparaison de l'efficacité de séchage, dans une étuve à 40 °C.A chemical with a melting point close to 40 ° C and containing 20% water is introduced into a hermetically sealed envelope. The envelope is consisting of a semi-permeable membrane formed of a polymer material based on poly (ether-block-amide) composed 40% by weight of PTMG sequences and 60% by weight of PA-12 sequences. The thickness of the envelope wall is 25 µm and the total envelope surface is 2184 cm2. The chemical does not establish interactions physico-chemical with poly (ether-blocks-amide). We also introduces the product in a flat container open, for comparison of drying efficiency, in an oven at 40 ° C.

Dans ces conditions, le produit se sublime et la perte constatée, en fin de séchage, est de 15 % de la masse totale. Under these conditions, the product sublimates and the loss observed, at the end of drying, is 15% of the mass total.

Dans le cas du séchage du produit placé dans l'enveloppe, le produit se sublime à l'intérieur de l'enveloppe mais ses vapeurs ne traversent pas la paroi en raison de l'incompatibilité chimique du produit à sécher avec le poly(éther-blocs-amide). Seules les molécules de vapeur d'eau diffusent au travers de la paroi. Le rendement calculé pour cette phase de séchage est proche de 99,5 %.In the case of drying of the product placed in the envelope, the product sublimates inside the envelope but its vapors do not pass through the wall in due to chemical incompatibility of the product to be dried with poly (ether-block-amide). Only the molecules of water vapor diffuses through the wall. The yield calculated for this drying phase is close to 99.5%.

Exemple 4Example 4 ::

Des plantes médicinales fraíchement coupées et posées à même le sol sont recouvertes par une membrane semi-perméable associée à un non-tissé de polyester formant un film. La membrane est à base d'un poly(éther-blocs-amide) constitué de 50 % en poids de blocs PA-12 et de 50 % en poids de blocs PEG. L'épaisseur de la membrane active est de 18 µm. Le grammage du non-tissé est de 30 g/m2 et son épaisseur de 0,13 mm. La perméabilité à la vapeur d'eau de ce film, mesurée selon la méthode décrite dans la norme ASTM E 96 B (38 °C, 50 % HR) est de 24 000 g/m2 par 24 heures.Freshly cut medicinal plants and laid on the ground are covered by a semi-permeable membrane combined with a polyester nonwoven forming a movie. The membrane is based on a poly (ether-blocks-amide) consisting of 50% by weight of PA-12 blocks and 50% by weight of PEG blocks. The thickness of the active membrane is 18 µm. The grammage of the nonwoven is 30 g / m2 and its thickness of 0.13 mm. The water vapor permeability of this film, measured according to the method described in the ASTM standard E 96 B (38 ° C, 50% RH) is 24,000 g / m2 per 24 hours.

On réalise l'étanchéité sur les côtés et aux extrémités du film avec de la terre pour que le "tunnel" ainsi construit à l'air libre soit hermétiquement clos. Les plantes ainsi recouvertes sèchent en 48 heures sans apport d'énergie, et notamment sans consommation d'énergie fossile. La qualité des plantes est comparable à celle d'échantillons de contrôle séchés par air chaud.Sealing is done on the sides and at ends of the film with earth so that the "tunnel" thus constructed in the open air is hermetically sealed. The covered plants dry in 48 hours without adding energy, and in particular without fossil fuel consumption. Plant quality is comparable to that of samples hot air dried control panels.

Exemple 5Example 5 ::

On introduit des vêtements anciens dans une enveloppe formée par une membrane semi-perméable complexée à un film de polyéthylène souple et micro-perforé présentant un grammage de 43 g/m2. La membrane semi-perméable est à base d'un poly(éther-blocs-amide) constitué de 50 % en poids de blocs PA-12 et 50 % en poids de blocs PEG et son épaisseur est de 25 µm. La perméabilité à la vapeur d'eau de cette membrane complexée, mesurée selon la méthode décrite dans la norme ASTM E 96 B (38 °C, 50 %HR), est de 200 g/m2 par 24 heures.We introduce old clothes in a envelope formed by a semi-permeable membrane complexed with a flexible and micro-perforated polyethylene film having a grammage of 43 g / m2. The semi-permeable membrane is base of a poly (ether-block-amide) consisting of 50% by weight PA-12 blocks and 50% by weight of PEG blocks and its thickness is 25 µm. The water vapor permeability of this complexed membrane, measured according to the method described in ASTM E 96 B (38 ° C, 50% RH), is 200 g / m2 per 24 hours.

Les vêtements doivent être maintenus et conservés avec un taux d'humidité de 45 à 55 % pour éviter l'apparition de moisissures s'ils sont trop humides ou l'altération des fibres s'ils ne sont pas suffisamment humides.Clothes should be maintained and stored with a humidity level of 45 to 55% to avoid the appearance of mold if they are too wet or the alteration of the fibers if they are not sufficiently wet.

On introduit également des vêtements anciens dans une simple housse de polyéthylène, présentant une perméabilité à la vapeur d'eau de 18 g/m2 par 24 heures, pour étudier l'influence de la membrane semi-perméable sur la conservation des vêtements.We also introduce old clothes into a simple polyethylene cover, presenting a water vapor permeability of 18 g / m2 per 24 hours, to study the influence of the semi-permeable membrane on the preservation of clothing.

On constate lorsque les vêtements sont protégés par la membrane complexée que leur aspect reste intact même si l'humidité relative extérieure est proche de 100 %, alors que dans de telles conditions, les vêtements protégés par la simple housse de polyéthylène reprennent l'humidité et moisissent, ce qui entraíne leur dégradation progressive.You can see when the clothes are protected by the complexed membrane that their appearance remains intact even if the outdoor relative humidity is close to 100%, then that under such conditions, clothing protected by the simple polyethylene cover take up moisture and become moldy, which leads to their gradual deterioration.

Naturellement, et comme il résulte déjà de tout ce qui précède, l'invention n'est pas limitée aux conditions ou grandeurs qui ont été précisées à propos d'exemples choisis pour illustrer l'invention dans ses modes de mise en oeuvre préférés.Naturally, and as it already results from all that above, the invention is not limited to the conditions or quantities which have been specified in relation to selected examples to illustrate the invention in its modes of implementation preferred.

Claims (11)

  1. A method of drying materials sensitive to being humidified bya solvent and/or of keeping said materials in the dry state, characterized in that it consists mainly in separating said materials from a surrounding atmosphere in which said solvent is present, by hermetically sealing said materials in an envelope essentially consisting of a semipermeable membrane made of a polymer material which is selectively permeable to the vapor of the solvent humidifying said materials in the presence of said. solvent in the liquid state, effective under a differential osmotic pressure between the two sides of said membrane, by migration of the gas molecules of said solvent within said polymer material, which migration is due to the mobility of intramolecular vacant sites in the polymer material.
  2. The drying method as claimed in claim 1, characterized in that said membrane is continuous, nonporous and made of a copolymer formed from hard blocks providing said membrane with mechanical strength and from soft blocks, based on an elastomer oligomer, providing the membrane with selective permeability towards the gas molecules of said solvent, by the mobility of the vacant sites, and exhibiting preferential affinity for the molecules of said solvent.
  3. The drying method as claimed in claim 2, characterized in that said soft blocks have hydrophilic sites which provide said affinity with the gas molecules of said solvent by forming polar bonds and in that said soft blocks are functionally in a predominant proportion compared with the hard blocks, the copolymer being overall hydrophilic in nature so that the membrane is selectively permeable for water vapor or for the vapor of polar solvents exhibiting similar behavior.
  4. The drying method as claimed in any one of claims 1 to 3, characterized in that said membrane has, in its active regions, a thickness of 2 to 1,000 µm, preferably between 10 and 100 µm.
  5. The drying method as claimed in any one of the preceding claims, characterized in that the polymer membrane is fastened to a mechanically reinforcing support layer advantageously made of nonwoven fibers.
  6. The drying method as claimed in any one of the preceding claims, characterized in that said envelope has a wall region which does not adhere to said materials, especially when they are in the solid state.
  7. The drying method as claimed in any one of the preceding claims, characterized in that said envelope is transparent, or at least translucent, to radiation to which it is exposed externally, so that the drying rate is improved thereby, especially by establishing a greenhouse effect.
  8. The drying method as claimed in any one of the preceding claims, applied to the concentration of solutions in said solvent in the liquid state.
  9. The drying method as claimed in any one of the preceding claims, characterized in that the material constituting the polymer membrane is a copolymer of the poly(ether-block-amide) type having polyamide-based hard blocks and polyether-based soft blocks with hydrophilic sites, especially ones based on polyethylene glycol or polytetramethylene glycol.
  10. The drying method as claimed in any one of the preceding claims, characterized in that said materials to be dried are either covered with a flat film closing off a hermetically sealed system or hermetically packaged in a bag, the film and the bag essentially being formed from the semipermeable polymer membrane, optionally complexed to at least one support layer.
  11. The drying method as claimed in any one of the preceding claims, characterized in that said materials being in the solid state, they are laid on a grid and/or presented in divided form.
EP00958753A 1999-08-27 2000-08-28 Drying and/or dry process preservation method using semi-permeable membrane Expired - Lifetime EP1206671B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9910849A FR2797781B1 (en) 1999-08-27 1999-08-27 SEMI-PERMEABLE MEMBRANE DRYING PROCESS
FR9910849 1999-08-27
PCT/FR2000/002389 WO2001016542A1 (en) 1999-08-27 2000-08-28 Drying and/or dry process preservation method using semi-permeable membrane

Publications (2)

Publication Number Publication Date
EP1206671A1 EP1206671A1 (en) 2002-05-22
EP1206671B1 true EP1206671B1 (en) 2004-06-16

Family

ID=9549381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958753A Expired - Lifetime EP1206671B1 (en) 1999-08-27 2000-08-28 Drying and/or dry process preservation method using semi-permeable membrane

Country Status (11)

Country Link
EP (1) EP1206671B1 (en)
JP (1) JP3643985B2 (en)
CN (1) CN1143118C (en)
AT (1) ATE269527T1 (en)
AU (1) AU764170B2 (en)
CA (1) CA2383070A1 (en)
DE (1) DE60011632T2 (en)
ES (1) ES2223573T3 (en)
FR (1) FR2797781B1 (en)
PT (1) PT1206671E (en)
WO (1) WO2001016542A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050021123A1 (en) 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US6939352B2 (en) 2001-10-12 2005-09-06 Cordis Corporation Handle deployment mechanism for medical device and method
JP2009504345A (en) 2005-08-17 2009-02-05 シー・アール・バード・インコーポレーテッド Variable speed stent delivery system
EP1971299B1 (en) 2006-01-13 2014-07-16 C.R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
JP5001197B2 (en) * 2007-03-29 2012-08-15 富士フイルム株式会社 Film drying method and apparatus, and solution casting method
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
JP5173912B2 (en) * 2009-03-31 2013-04-03 富士フイルム株式会社 Method for drying polymer membrane and method for producing water vapor barrier polymer membrane
GB201017834D0 (en) 2010-10-21 2010-12-01 Angiomed Ag System to deliver a bodily implant
FR2969932A1 (en) * 2011-01-03 2012-07-06 Isaac Behar Vapor phase osmosis module useful in e.g. system to dry humid biomass, comprises double envelope of which internal envelope is constituted of polymer film and external envelope, which is impermeable to water that is in gaseous/liquid state
KR102408787B1 (en) * 2015-08-03 2022-06-15 젠-프로브 인코포레이티드 Apparatus for maintaining a controlled environment
CN109060466A (en) * 2018-10-30 2018-12-21 中国气象局气象探测中心 Sample gas processing method and device for greenhouse gases background online observation
US20220023148A1 (en) * 2018-11-26 2022-01-27 Hoffmann-La Roche Inc. Lyophilisate container and infusion kit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724818B2 (en) * 1986-06-19 1998-03-09 昭和電工株式会社 Producing ham
US5363568A (en) * 1992-11-20 1994-11-15 Cornelia Textiles, Inc. Method of inhibiting lumber checking
GB2273761B (en) * 1992-12-18 1996-07-31 Gore & Ass Dryer

Also Published As

Publication number Publication date
DE60011632T2 (en) 2005-07-28
WO2001016542A1 (en) 2001-03-08
AU7017800A (en) 2001-03-26
JP3643985B2 (en) 2005-04-27
AU764170B2 (en) 2003-08-14
FR2797781B1 (en) 2002-11-08
EP1206671A1 (en) 2002-05-22
FR2797781A1 (en) 2001-03-02
ATE269527T1 (en) 2004-07-15
JP2003511214A (en) 2003-03-25
CN1371463A (en) 2002-09-25
CA2383070A1 (en) 2001-03-08
CN1143118C (en) 2004-03-24
ES2223573T3 (en) 2005-03-01
PT1206671E (en) 2004-10-29
DE60011632D1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1206671B1 (en) Drying and/or dry process preservation method using semi-permeable membrane
JP5213785B2 (en) Manufacturing method of composite sheet
BE898675A (en) DEVICE FOR SANITIZING AMBIENT AIR AND CLOSED ENCLOSURES
FR3122870A1 (en) Packaging containing water-soluble capsules
Guo et al. Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane
US20020124431A1 (en) Method for drying substances and/or preserving dryness by means of a semipermeable membrane
OA10199A (en) Process for producing a water-soluble and transparent biodegradable film and film thus obtained
EP3083410B1 (en) Use of a polymeric film for the packaging of a culture medium
FR2890576A1 (en) CASSETTE FOR TREATING A GAS
WO2001015893A1 (en) Semi-permeable membrane film, in particular selectively permeable to water vapour
EP1690806B1 (en) Cooling packaging
CH688612A5 (en) polyvinylidene fluoride membrane.
EP3083412B1 (en) Use of a polymeric film for the packaging of a culture medium
FR2739862A1 (en) MIXTURES OF POLYMER AND ZEOLITE-LIKE MOLECULAR SIEVES USED IN PACKAGING ELEMENTS
FR3122869A1 (en) Packaging containing water-soluble capsules
EP2739313A1 (en) Packaged dianhydrohexitols having high chemical stability
WO2004014522A2 (en) Impermeable device for absorbing humidity
FR3123058A1 (en) Packaging containing water-soluble capsules
FR3122868A1 (en) Packaging containing water-soluble capsules
FR3124062A1 (en) REMOVABLE LID FOR COOKING OR HEATING FOOD IN A MICROWAVE OVEN
WO2002085512A1 (en) Method for making a device capable of modifying the gaseous atmosphere prevailing in a sealed or controlled-permeability chamber
FR3141949A1 (en) Process for manufacturing a flexible support coated with a heat-sealing film-forming polymer
SG195402A1 (en) Method for preserving and conserving fibrous materials against deterioration caused by acid, insect infestation, oxidation and moisture
FR2744878A1 (en) Marine fishing worm container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020226

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60011632

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040719

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BIOTEL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE BREITER + WIEDMER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BIOTEL

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040817

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2223573

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050812

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050816

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20050818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050825

Year of fee payment: 6

Ref country code: NL

Payment date: 20050825

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050907

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050909

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20051005

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051021

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BIOTEL

Free format text: BIOTEL#24 RUE DE LA BATAILLE#95240 CORMEILLES-EN-PARISIS (FR) -TRANSFER TO- BIOTEL#24 RUE DE LA BATAILLE#95240 CORMEILLES-EN-PARISIS (FR)

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060828

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060828

BERE Be: lapsed

Owner name: *BIOTEL

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070828