EP1204158B1 - Structure antenna for flying devices and aircrafts - Google Patents

Structure antenna for flying devices and aircrafts Download PDF

Info

Publication number
EP1204158B1
EP1204158B1 EP20010125860 EP01125860A EP1204158B1 EP 1204158 B1 EP1204158 B1 EP 1204158B1 EP 20010125860 EP20010125860 EP 20010125860 EP 01125860 A EP01125860 A EP 01125860A EP 1204158 B1 EP1204158 B1 EP 1204158B1
Authority
EP
European Patent Office
Prior art keywords
antenna
conductive
folded edge
aircraft
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010125860
Other languages
German (de)
French (fr)
Other versions
EP1204158A3 (en
EP1204158A2 (en
Inventor
Ludwig Mehltretter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10151288A external-priority patent/DE10151288B4/en
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1204158A2 publication Critical patent/EP1204158A2/en
Publication of EP1204158A3 publication Critical patent/EP1204158A3/en
Application granted granted Critical
Publication of EP1204158B1 publication Critical patent/EP1204158B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • H01Q1/287Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft integrated in a wing or a stabiliser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention relates to an aerodynamic active surface with integrated structure antenna for aircraft or aircraft, which has an approximately omnidirectional radiation pattern and which is arranged as a conductive element on the dielectrically active material of a non-conductive layer, which forms the base layer of the surface of the aerodynamic effective surface of the aircraft the radiating element is arranged around a folding edge of the aerodynamic working surface of the aircraft and the conductive surface is partially or completely surrounded by a region of the non-conductive layer and wherein the structural antenna is fed in the region of the conductive surface facing away from the folding edge.
  • Antennas to be used on aircraft or aircraft are subject to a number of requirements. If possible, the contour of the aircraft or aircraft should not be influenced so much that the aerodynamic conditions and thus the flight characteristics change significantly.
  • the arrangement and mounting of the antenna must be in line with the mechanical structure of the structural parts and the mechanical strength of the structure must not be impaired.
  • the Radar Wegstreuquerites should as little as possible be changed.
  • antennas Since the installation of antennas in aircraft or aircraft is very limited, the antennas are increasingly installed in wings, tail units or in the associated rudder flaps.
  • the use of antennas in these very narrow-structure elements is problematic because the radiating properties in the edge direction are severely limited because of the small aperture in this direction.
  • U.S. Patent 5,191,351 describes a series of folded broadband antennas having symmetrical radiation characteristics.
  • the proposed logarithmic periodic Antennas are basically suitable for installation at wing edges and their antenna diagrams meet the desired requirements.
  • the feeding of the antennas takes place at the folded edge, which results in design-related restrictions.
  • the leading edge of the wings and tail units are made of a sharp, continuous metal edge in order to provide a firm grip on the sharp edges required for low radar detection requirements and sufficient lightning protection for the antennas through a low resistance galvanic connection to the structure guarantee.
  • the antennas described in said document can not meet these requirements.
  • EP-A-0 996 191 describes a slot antenna suitable for attachment to aerodynamic surfaces.
  • a conductive surface of the antenna is arranged around the folding edge and lies on non-conductive material. The typical for Nutantennen feed takes place in a remote from the fold edge of the antenna.
  • US-A-2 614 219 discloses a folded monopole antenna positioned along the fold edge of an aerodynamic effective surface, the metallic fold edge being interrupted by a non-conducting insulator.
  • a metal surface which is arranged centrally within the structure of the antenna to the conductive surfaces, is connected to the outer conductor / zero potential of a balanced floating lead.
  • the metal surface extends either almost to the folding edge or it is conductively connected to the folding edge.
  • An advantageous embodiments can be seen in the fact that the conductive surface of the structure antenna at the folding edge is conductively connectable with a surrounding conductive surface of the aerodynamic active surface.
  • the structure antenna according to the invention has a number of advantages over the prior art.
  • the feeding does not take place at the fold edge, but away from the edge in a region of the wing or tail, in which due to the increasing thickness of the structure of the installation and connection of the structure antenna is facilitated.
  • the possibility of a conductive connection between the structural antenna and the folded edge associated with the structure proves to be a significant advantage because of the lightning protection and in the manufacture of aircraft, which must be equipped for reasons of strength with a metallic sharp edge.
  • the sharp edge includes favorable stealth characteristics as the radar flyer cross section is only slightly degraded.
  • an improvement can be achieved in this respect by providing the edges of the structure antenna consisting of metallic conductive surfaces at an angle to the main direction of the threat, which corresponds to the direction of flight, and the spaces between the structure antenna and the conductive surface layer of the aerodynamic effective area may be chosen very small.
  • FIG. Ia Based on the Fig. Ia and Fig. 4a, the basic structure of the structure of the invention antenna, which is arranged on an aerodynamic active surface 3, explained.
  • An aerodynamic active surface 3 in the form of a wing, a tail or a rudder flap belonging to an unmanned aerial vehicle or an aircraft, has a sharp folding edge 4, around which the structural antenna 1 is arranged.
  • 1 a shows a plan view of only one half of the structure antenna 1, the other half lies symmetrically to the folding edge 4 on the side of the aerodynamic active surface 3 which is not visible here.
  • FIG. 4 a shows the section through the structural antenna 1 belonging to FIG.
  • the aerodynamically effective surface has at least in the region of the structural antenna 1 a base layer 6, 12 of an electrically insulating material such as plastic or ceramic.
  • the conductive part of the structural antenna 1 consists of a conductive surface 9, 11 as can be generated for example by metallization of the surface of the non-conductive layer 6, 12 or in the form of a sheet metal part.
  • this conductive surface 9 is not electrically connected to the folding edge 4 passing along the active surface. However, it can, as shown in Fig. 1 b, 2b and 3b, be conductively connected to the folding edge 4 and thus also with the structure of the aircraft or -Zeugs. If, as shown in FIGS.
  • the structure antenna 1 is at least partially surrounded by a region of the structure non-conductive layer 6, 12 surround, which surrounds the conductive surface 9, 11 in the form of a strip in the embodiment. Outside the region of the non-conductive layer 6, 12, the structure antenna 1 is surrounded by a conductive surface 2, which rests on the non-conductive layer 6,12
  • the basic principle of the structure antenna used here is that a planar resonator with a side length of about 1/2 of the operating wavelength ⁇ on a non-conductive base material such as plastic or ceramic or over an air space is arranged.
  • the reference potential extends at an acute angle to the areal extent of the resonator.
  • the distance to this potential is reduced from the ends of the structure antenna 1 lying away from the folding edge 4 up to the folding edge 4 itself. As a consequence, the characteristic impedance in the region of the ends is large and very small in the region of the folding edge 4.
  • the current distribution across the structure antenna changes inversely proportional to the characteristic impedance.
  • the current flow 5 in the region of the folded edge 4, ie the center of the folded structure antenna, is larger than the conventional patch antennas according to the prior art. Therefore, there is also an increase in the small amount of radiation in the direction of the folding edge 4.
  • an omnidirectional characteristic is approximately achieved in an imaginary plane which lies transversely to the aerodynamically effective area in the direction of flight.
  • an increase in the current density in the region of the folding edge 4 can be achieved in that the area covered by the structure antenna 1 decreases in proportion to its width B as the distance from the edge 4 increases. Examples of these are shown in FIGS. 2a, 2b, 3a and 3b.
  • the structural antenna 1 is, as already described above, a design derived from the known microstrip patch antenna, which is shown schematically simplified in FIG. 1a. It is folded in its central region so that it encloses the edge of a wing, a tail or a rudder.
  • FIGS. 2a,..., 3b show different designs of such structure antennas 1 in plan view.
  • various structural antenna surface shapes such as square, rectangular, triangular, rhombic, circular, elliptical or the like can be used.
  • the edges of the existing essentially plastic wings, empennages or rudders are often reinforced with metal rails in aircraft. For reasons of strength, these metal rails must not be interrupted or replaced by non-conductive plastic elements. Thus, there is a conductive connection with the rest of the metallized structure via this edge. Since the inventive structure antenna 1 has a stress zero point in the region of the folded edge 4, a conductive connection between the structural antenna 1 and the metallic folding edge 4, as in the arrangements according to FIGS. 1 b, 2 b, 3 b, can be realized and is not disadvantageous. These embodiments are preferably used because they well meet the requirements for folding edge strength and lightning protection. With a grounding in the central region of the structure antenna 1, however, a floating input to avoid imbalances by the formation of ground loops is imperative.
  • the feed point lies in the region of the conductive surface 11 of the structure antenna 1 which is farthest from the folded edge 4.
  • the metallic folding edge 4 is insulated in this case from the conductive surface of the support surface, as shown in Fig. 1a, 2a and 3a.
  • a metal surface 14 In the interior of the structure antenna, there is a metal surface 14 extending almost to the folding edge 4, which is connected to the jacket of the coaxial feed line 15 and thus forms the electrical reference potential to the conductive surface 11.
  • the nonconductive layer 12 may be provided with a conductive coating 16 to the vicinity of the structure antenna, leaving a strip of the nonconductive layer 12 exposed.
  • FIG. 4b shows a preferred design with a symmetrical feed using the known Lindenblad ⁇ / 4 -Stopopf 17.
  • the grounding of the conductive surface of the structure antenna 11 at the folding edge 4 is not critical.
  • the feed takes place via the symmetrically arranged feed points 13 a and 13 b, which likewise lie in the region of the conductive surface 11 of the structure antenna 1, which is farthest from the folded edge 4.
  • the metallic folding edge 4 is forcibly symmetrized over the ⁇ / 4 locking pot 17.
  • the conductive surface 11 of the structure antenna is grounded or forcibly balanced at the metallic folding edge 4, since the feed through the ⁇ / 4 locking pot 17 is groundless.
  • Fig. 4c can also be dispensed with a metal surface 14 which extends in the embodiment of Fig. 4b of the folding edge 4 to the locking pot 17.
  • the feeding then takes place directly from the supply line 15 via the blocking pot 17 and the terminals 13a and 13b, which are also in the region of the conductive surface 11 of the structure antenna 1, which is farthest from the folding edge 4.
  • This is a particular advantage for the production achieved because this metal surface 14 is difficult to introduce in the wedge-shaped wing structure. Due to the floating supply and the grounding at the folding edge 4, a good symmetrization results automatically, since a zero potential forms within the structure in the region of the imaginary line of symmetry (represented by dot-dash lines). The reduction of the characteristic impedance towards the folded edge 4 results in the same manner as in the aforementioned examples.
  • FIGS. 1 b, 2 b and 3 b respectively show variants of the previously described designs, in which the conductive surface 9 extends at least with the metallic folding edge 4, which runs along the aerodynamic active surface 3, and also with the conductive surface 2 of the aerodynamically effective surface itself is connected. If the nonconductive layer 12 is not metallized around the structure antenna, then at least the conductive connection between the conductive surface 9 and the folded edge 4 given, which in turn is with the structure at the same potential.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Description

Die Erfindung betrifft eine aerodynamische Wirkfläche mit integrierter Strukturantenne für Fluggeräte oder Flugzeuge, die eine annähernd rundstrahlende Abstrahlcharakteristik aufweist und die als leitfähiges Element auf dem dielektrisch wirksamen Material einer nichtleitenden Schicht angeordnet ist, welche die Grundschicht der Oberfläche einer der aerodynamischen Wirkfläche des Fluggeräts bildet, wobei das strahlende Element um eine Faltkante der aerodynamischen Wirkfläche des Fluggeräts herum angeordnet ist und die leitfähige Fläche teilweise oder ganz von einem Bereich der nichtleitenden Schicht umgeben ist und wobei die Strukturantenne in dem der Faltkante abgewandten Bereich der leitenden Fläche gespeist wird.The invention relates to an aerodynamic active surface with integrated structure antenna for aircraft or aircraft, which has an approximately omnidirectional radiation pattern and which is arranged as a conductive element on the dielectrically active material of a non-conductive layer, which forms the base layer of the surface of the aerodynamic effective surface of the aircraft the radiating element is arranged around a folding edge of the aerodynamic working surface of the aircraft and the conductive surface is partially or completely surrounded by a region of the non-conductive layer and wherein the structural antenna is fed in the region of the conductive surface facing away from the folding edge.

Antennen, die an Fluggeräten oder Flugzeugen verwendet werden sollen, sind einer Reihe von Anforderungen unterworfen. Die Kontur des Fluggeräts oder Flugzeugs soll möglichst nicht so weit beeinflusst werden, dass sich die aerodynamischen Verhältnisse und damit die Flugeigenschaften wesentlich verändern. Die Anordnung und die Befestigung der Antenne muss im Einklang mit dem mechanischen Aufbau der Strukturteile sein und die mechanische Festigkeit der Struktur darf nicht beeinträchtigt werden. Der Radarrückstreuquerschnitt soll möglichst nur geringfügig verändert werden.Antennas to be used on aircraft or aircraft are subject to a number of requirements. If possible, the contour of the aircraft or aircraft should not be influenced so much that the aerodynamic conditions and thus the flight characteristics change significantly. The arrangement and mounting of the antenna must be in line with the mechanical structure of the structural parts and the mechanical strength of the structure must not be impaired. The Radarrückstreuquerschnitt should as little as possible be changed.

Da der Einbauort von Antennen bei Fluggeräten oder Flugzeugen sehr begrenzt ist, werden zunehmend die Antennen in Flügel, Leitwerke oder in die dazu gehörenden Ruderklappen eingebaut. Die Anwendung von Antennen in diesen sehr schmal bauenden Elementen ist problematisch, da die Abstrahleigenschaften in Kantenrichtung wegen der in dieser Richtung kleinen Apertur stark eingeschränkt sind.Since the installation of antennas in aircraft or aircraft is very limited, the antennas are increasingly installed in wings, tail units or in the associated rudder flaps. The use of antennas in these very narrow-structure elements is problematic because the radiating properties in the edge direction are severely limited because of the small aperture in this direction.

Die US-PS-5 191 351 beschreibt eine Reihe von gefalteten Breitbandantennen mit symmetrischer Strahlungscharakteristik. Die vorgeschlagenen logarithmisch-periodischen Antennen sind grundsätzlich zum Einbau an Flügelkanten geeignet und ihre Antennendiagramme entsprechen den gewünschten Anforderungen. Die Speisung der Antennen erfolgt an der Faltkante, wodurch sich bauartbedingte Einschränkungen ergeben. Bei modernen Flugzeugen besteht die Vorderkante von Tragflächen und Leitwerken aus einer scharfen durchgehenden Metallkante, um einerseits die scharfen Kanten festigkeitsmäßig zu beherrschen, die für die Anforderungen an geringe Radarerkennbarkeit erforderlich sind, und andererseits einen ausreichenden Blitzschutz der Antennen durch eine niederohmige galvanische Verbindung zur Struktur zu gewährleisten. Die in der genannten Druckschrift beschriebenen Antennen können diese Anforderungen nicht erfüllen.U.S. Patent 5,191,351 describes a series of folded broadband antennas having symmetrical radiation characteristics. The proposed logarithmic periodic Antennas are basically suitable for installation at wing edges and their antenna diagrams meet the desired requirements. The feeding of the antennas takes place at the folded edge, which results in design-related restrictions. In modern aircraft, the leading edge of the wings and tail units are made of a sharp, continuous metal edge in order to provide a firm grip on the sharp edges required for low radar detection requirements and sufficient lightning protection for the antennas through a low resistance galvanic connection to the structure guarantee. The antennas described in said document can not meet these requirements.

Die EP-A-0 996 191 beschreibt eine Nutantenne, die zur Anbringung an aerodynamischen Wirkflächen geeignet ist. Hierbei ist eine leitfähige Fläche der Antenne um die Faltkante herum angeordnet und liegt auf nichtleitendem Material. Die für Nutantennen typische Einspeisung erfolgt in einem von der Faltkante abgewandten Teil der Antenne.EP-A-0 996 191 describes a slot antenna suitable for attachment to aerodynamic surfaces. In this case, a conductive surface of the antenna is arranged around the folding edge and lies on non-conductive material. The typical for Nutantennen feed takes place in a remote from the fold edge of the antenna.

In der US-A-2 614 219 ist eine gefaltete Monopolantenne beschrieben, die entlang der Faltkante einer aerodynamischen Wirkfläche angeordnet ist, wobei die metallische Faltkante durch einen nichtleitenden Isolator unterbrochen ist.US-A-2 614 219 discloses a folded monopole antenna positioned along the fold edge of an aerodynamic effective surface, the metallic fold edge being interrupted by a non-conducting insulator.

Eine weitere Variante einer für aerodynamische Wirkflächen geeigneten Antenne zeigt die US-A-3 039 095. Die Wirkfläche darf in diesem Fall scharfe Kannten aufweisen. Da die Antennenelemente jeweils auf den Seitenflächen der aerodynamischen Wirkfläche angeordnet sind, ergeben sich hieraus Verluste bei der Abstrahlung in Richtung der Kanten.A further variant of an antenna suitable for aerodynamic active surfaces is shown in US Pat. No. 3,039,095. In this case, the active surface may have sharp edges. Since the antenna elements are each arranged on the side surfaces of the aerodynamic effective area, this results in losses in the radiation in the direction of the edges.

Es ist deshalb Aufgabe der Erfindung, eine Antennenbauform mit angenäherter Rundstrahlcharakteristik anzugeben, die für den Einbau an nicht scharfkantigen Tragflächen-, Leitwerks- oder Ruderkanten geeignet ist.It is therefore an object of the invention to provide an antenna design with an approximate omnidirectional characteristic which is suitable for installation on non-sharp-edged wing, tail or rudder edges.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine Metallfläche , die innerhalb der Strukturantenne mittig zu den leitenden Flächen angeordnet ist, mit dem Außenleiter/ Nullpotential einer symmetrischen erdfreien Zuleitung verbunden ist. Die Metallfläche reicht dabei entweder bis fast zur Faltkante oder sie ist mit der Faltkante leitend verbunden. Alternativ wird als Lösung der Aufgabe vorgeschlagen, dass die leitenden Flächen der Strukturantenne symmetrisch über zwei potentialführende Anschlüsse einer symmetrischen erdfreien Zuleitung gespeist werden. Eine vorteilhafte Ausgestaltungen ist darin zu sehen, dass die leitende Fläche der Strukturantenne an der Faltkante mit einer diese umgebenden leitfähigen Oberfläche der aerodynamischen Wirkfläche leitend verbindbar ist.The object is achieved in that a metal surface, which is arranged centrally within the structure of the antenna to the conductive surfaces, is connected to the outer conductor / zero potential of a balanced floating lead. The metal surface extends either almost to the folding edge or it is conductively connected to the folding edge. Alternatively, it is proposed as a solution to the problem that the conductive surfaces of the structure antenna are fed symmetrically via two potential-carrying terminals of a symmetrical floating supply line. An advantageous embodiments can be seen in the fact that the conductive surface of the structure antenna at the folding edge is conductively connectable with a surrounding conductive surface of the aerodynamic active surface.

Die erfindungsgemäße Strukturantenne weist gegenüber dem Stand der Technik eine Reihe von Vorteilen auf. Die Speisung erfolgt nicht an der Faltkante, sondern entfernt von der Kante in einem Bereich des Flügels oder Leitwerks, in dem aufgrund der zunehmenden Dicke der Struktur der Einbau und Anschluss der Strukturantenne erleichtert wird. Die Möglichkeit einer leitenden Verbindung zwischen der Strukturantenne und der mit der Struktur verbundenen Faltkante erweist sich als wesentlicher Vorteil wegen des Blitzschutzes und bei der Fertigung von Flugzeugen, die aus Festigkeitsgründen mit einer metallischen scharfen Kante ausgerüstet sein müssen. Die scharfe Kante beinhaltet günstige Stealth-Eigenschaften, da der Radarrückstreuquerschnitt nur wenig verschlechtert wird. Weiterhin kann diesbezüglich eine Verbesserung dadurch erzielt werden, dass die Kanten der aus metallisch leitenden Flächen bestehenden Strukturantenne schräg zur Hauptbedrohungsrichtung, die der Flugrichtung entspricht, gestellt werden und dadurch, dass die Zwischenräume zwischen der Strukturantenne und der leitenden Oberflächenschicht der aerodynamischen Wirkfläche sehr klein gewählt werden dürfen.The structure antenna according to the invention has a number of advantages over the prior art. The feeding does not take place at the fold edge, but away from the edge in a region of the wing or tail, in which due to the increasing thickness of the structure of the installation and connection of the structure antenna is facilitated. The possibility of a conductive connection between the structural antenna and the folded edge associated with the structure proves to be a significant advantage because of the lightning protection and in the manufacture of aircraft, which must be equipped for reasons of strength with a metallic sharp edge. The sharp edge includes favorable stealth characteristics as the radar flyer cross section is only slightly degraded. Furthermore, an improvement can be achieved in this respect by providing the edges of the structure antenna consisting of metallic conductive surfaces at an angle to the main direction of the threat, which corresponds to the direction of flight, and the spaces between the structure antenna and the conductive surface layer of the aerodynamic effective area may be chosen very small.

Einige Ausführungsbeispiele der erfindungsgemäßen Strukturantenne sind in der Zeichnung schematisch vereinfacht dargestellt und werden nachfolgend beschrieben. Es zeigen:

Fig.1a
eine Draufsicht auf eine rechteckförmige Strukturantenne, die an der Kante einer aerodynamischen Wirkfläche angeordnet ist,
Fig. 1b
eine Alternative zu Fig. 1 a,
Fig. 2a
eine rautenförmige Strukturantenne,
Fig. 2b
eine Alternative zu Fig. 2a,
Fig. 3a
eine kreisförmige Strukturantenne,
Fig. 3b
eine Alternative zu Fig. 3a,
Fig. 4a
eine asymmetrische Speisung einer Strukturantenne,
Fig. 4b
eine Speisung mit Zwangssymmetrierung,
Fig. 4c
eine Speisung ohne Zwangssymmetrierung.
Some embodiments of the structure antenna according to the invention are shown schematically simplified in the drawing and are described below. Show it:
1a
a plan view of a rectangular structure antenna, which is arranged at the edge of an aerodynamic active surface,
Fig. 1b
an alternative to FIG. 1 a,
Fig. 2a
a diamond-shaped structure antenna,
Fig. 2b
an alternative to Fig. 2a,
Fig. 3a
a circular structure antenna,
Fig. 3b
an alternative to Fig. 3a,
Fig. 4a
an asymmetric feed of a structural antenna,
Fig. 4b
a feed with forced symmetry,
Fig. 4c
a feed without forced symmetry.

Anhand der Fig. Ia und der Fig. 4a wird der grundsätzliche Aufbau der erfindungsgemäßen Strukturantenne, die auf einer aerodynamischen Wirkfläche 3 angeordnet ist, erläutert. Eine aerodynamische Wirkfläche 3 in Gestalt einer Tragfläche, eines Leitwerks oder einer Ruderklappe, die zu einem unbemannten Fluggerät oder einem Flugzeug gehören, weist eine scharfe Faltkante 4 auf, um die herum die Strukturantenne 1 angeordnet ist. Die Fig. Ia zeigt hierbei als Draufsicht nur eine Hälfte der Strukturantenne 1, die andere Hälfte liegt symmetrisch zur Faltkante 4 auf der hier nicht sichtbaren Seite der aerodynamischen Wirkfläche 3. Die Fig. 4a zeigt den zu Fig. 1a gehörenden Schnitt durch die Strukturantenne 1. Die aerodynamische Wirkfläche weist zumindest im Bereich der Strukturantenne 1 eine Grundschicht 6, 12 aus einem elektrisch isolierenden Material wie Kunststoff oder Keramik auf. Der leitende Teil der Strukturantenne 1 besteht aus einer leitfähigen Fläche 9, 11 wie sie beispielsweise durch Metallisierung der Oberfläche der nichtleitenden Schicht 6, 12 oder in Form eines Blechteils erzeugt werden kann. Diese leitfähige Fläche 9 ist im Ausführungsbeispiel nach Fig. Ia nicht mit der entlang der Wirkfläche durchlaufenden Faltkante 4 elektrisch verbunden. Sie kann aber, wie in Fig. 1 b, 2b und 3b dargestellt, mit der Faltkante 4 und damit auch mit der Struktur des Fluggeräts bzw. -Zeugs leitend verbunden sein. Wenn sie, wie in Fig. Ia, 2a und 3a dargestellt, von der Faltkante 4 isoliert ist, endet die leitfähige Fläche 9 in unmittelbarer Nähe der Faltkante 4. Die Speisung der Strukturantenne 1 ist in den Figuren 4a, 4b und 4c in verschiedenen Varianten dargestellt, sie erfolgt auf der der nichtleitenden Schicht 6 zugewandten Seite der leitfähigen Fläche 9, 11. Der Einspeisungsort ist bedarfsweise in der oberen oder unteren Hälfte des in Fig. 1a abgebildeten Teils der Strukturantenne 1. Die Strukturantenne 1 ist zumindest teilweise von einem Bereich der nichtleitenden Schicht 6, 12 um-geben, der im Ausführungsbeispiel die leitfähige Fläche 9, 11 in der Form eines Streifens umgibt. Außerhalb des Bereichs der nichtleitenden Schicht 6, 12 ist die Strukturantenne 1 von einer leitfähigen Oberfläche 2 umgeben, die auf der nichtleitenden Schicht 6,12 aufliegtBased on the Fig. Ia and Fig. 4a, the basic structure of the structure of the invention antenna, which is arranged on an aerodynamic active surface 3, explained. An aerodynamic active surface 3 in the form of a wing, a tail or a rudder flap belonging to an unmanned aerial vehicle or an aircraft, has a sharp folding edge 4, around which the structural antenna 1 is arranged. 1 a shows a plan view of only one half of the structure antenna 1, the other half lies symmetrically to the folding edge 4 on the side of the aerodynamic active surface 3 which is not visible here. FIG. 4 a shows the section through the structural antenna 1 belonging to FIG. 1 a The aerodynamically effective surface has at least in the region of the structural antenna 1 a base layer 6, 12 of an electrically insulating material such as plastic or ceramic. The conductive part of the structural antenna 1 consists of a conductive surface 9, 11 as can be generated for example by metallization of the surface of the non-conductive layer 6, 12 or in the form of a sheet metal part. In the exemplary embodiment according to FIG. 1a, this conductive surface 9 is not electrically connected to the folding edge 4 passing along the active surface. However, it can, as shown in Fig. 1 b, 2b and 3b, be conductively connected to the folding edge 4 and thus also with the structure of the aircraft or -Zeugs. If, as shown in FIGS. 1a, 2a and 3a, it is isolated from the folding edge 4, the conductive surface 9 ends in the immediate vicinity of the folding edge 4. The feeding of the structure antenna 1 is shown in FIGS. 4a, 4b and 4c in different variants it is effected on the side of the conductive surface 9, 11 facing the nonconducting layer 6. The infeed location is, if required, in the upper or lower half of the part of the structure antenna 1 depicted in FIG. 1a. The structure antenna 1 is at least partially surrounded by a region of the structure non-conductive layer 6, 12 surround, which surrounds the conductive surface 9, 11 in the form of a strip in the embodiment. Outside the region of the non-conductive layer 6, 12, the structure antenna 1 is surrounded by a conductive surface 2, which rests on the non-conductive layer 6,12

Das Grundprinzip der hier verwendeten Strukturantenne besteht darin, dass ein flächiger Resonator mit einer Seitenlänge von etwa 1/2 der Betriebswellenlänge λ auf einem nichtleitenden Basismaterial wie Kunststoff oder Keramik oder über einem Luftraum angeordnet ist. Für die Berechnung der Stromverteilung auf dem flächigen Resonator, die der Abstrahlcharakteristik zugrunde liegt, wird vorausgesetzt, dass das Bezugspotential in einem spitzen Winkel zur flächigen Ausdehnung des Resonators verläuft. Bei der vorliegenden Erfindung reduziert sich der Abstand zu diesem Potential von den entfernt zur Faltkante 4 liegenden Enden der Strukturantenne 1 bis hin zur Faltkante 4 selbst. Als Folge davon ist der Wellenwiderstand im Bereich der Enden groß und im Bereich der Faltkante 4 sehr klein. Damit ändert sich umgekehrt proportional zum Wellenwiderstand auch die Stromverteilung über der Strukturantenne. Der Stromfluss 5 im Bereich der Faltkante 4, d. h. der Mitte der gefalteten Strukturantenne, wird gegenüber den üblichen Patch-Antennen nach dem Stand der Technik größer. Deshalb verstärkt sich dort auch die an sich geringe Abstrahlung in Richtung der Faltkante 4. Somit wird in einer gedachten Ebene, die in Flugrichtung quer zur aerodynamischen Wirkfläche liegt, näherungsweise eine Rundstrahlcharakteristik erreicht. Zusätzlich kann eine Erhöhung der Stromdichte im Bereich der Faltkante 4 dadurch erreicht werden, dass sich die von der Strukturantenne 1 bedeckte Fläche proportional zu deren Breite B mit zunehmendem Abstand von der Kante 4 verkleinert. Beispiele hierfür sind in den Fig. 2a, 2b, 3a und 3b dargestellt.The basic principle of the structure antenna used here is that a planar resonator with a side length of about 1/2 of the operating wavelength λ on a non-conductive base material such as plastic or ceramic or over an air space is arranged. For the calculation of the current distribution on the laminar resonator, which is based on the emission characteristic, it is assumed that the reference potential extends at an acute angle to the areal extent of the resonator. In the present invention, the distance to this potential is reduced from the ends of the structure antenna 1 lying away from the folding edge 4 up to the folding edge 4 itself. As a consequence, the characteristic impedance in the region of the ends is large and very small in the region of the folding edge 4. Inversely, the current distribution across the structure antenna changes inversely proportional to the characteristic impedance. The current flow 5 in the region of the folded edge 4, ie the center of the folded structure antenna, is larger than the conventional patch antennas according to the prior art. Therefore, there is also an increase in the small amount of radiation in the direction of the folding edge 4. Thus, an omnidirectional characteristic is approximately achieved in an imaginary plane which lies transversely to the aerodynamically effective area in the direction of flight. In addition, an increase in the current density in the region of the folding edge 4 can be achieved in that the area covered by the structure antenna 1 decreases in proportion to its width B as the distance from the edge 4 increases. Examples of these are shown in FIGS. 2a, 2b, 3a and 3b.

Die Strukturantenne 1 ist, wie oben bereits beschrieben, eine aus der bekannten Microstrip-Patch-Antenne abgeleitete Bauform, die in Fig. 1 a schematisch vereinfacht dargestellt ist. Sie ist in ihrem Mittelbereich derart gefaltet, dass sie die Kante einer Tragfläche, eines Leitwerks oder eines Ruders umschließt. Die Fig. 2a,..., 3b zeigen verschiedene Bauformen derartiger Strukturantennen 1 in der Draufsicht. Wie bei derartigen Strukturantennen üblich, können dabei verschiedene Strukturantennenflächenformen wie quadratisch, rechteckig, drei-eckig, rautenförmig, kreisförmig, elliptisch oder ähnliche zum Einsatz kommen.The structural antenna 1 is, as already described above, a design derived from the known microstrip patch antenna, which is shown schematically simplified in FIG. 1a. It is folded in its central region so that it encloses the edge of a wing, a tail or a rudder. FIGS. 2a,..., 3b show different designs of such structure antennas 1 in plan view. As is usual with such structure antennas, various structural antenna surface shapes such as square, rectangular, triangular, rhombic, circular, elliptical or the like can be used.

Wird jedoch an die Strukturantenne die Anforderung der geringen Radarerkennbarkeit gestellt, werden Formen mit zur Flugrichtung schräg gestellten Rändern 7 der leitfähigen Flächen 9 der Strukturantenne 1 bevorzugt. Die Funktionalität dieser Anordnung ist durch gute Messergebnisse bestätigt worden.However, if the requirement of low radar detectability is imposed on the structure antenna, shapes with edges 7 inclined to the direction of flight become conductive Areas 9 of the structural antenna 1 is preferred. The functionality of this arrangement has been confirmed by good measurement results.

Aus konstruktiven Gründen werden bei Flugzeugen häufig die Kanten der im wesentlichen aus Kunststoff bestehenden Tragflächen, Leitwerke oder Ruder mit Metallschienen verstärkt. Diese Metallschienen dürfen aus Festigkeitsgründen nicht unterbrochen und auch nicht durch nichtleitende Kunststoffelemente ersetzt werden. Somit ist eine leitende Verbindung mit der übrigen metallisierten Struktur über diese Kante gegeben. Da die erfindungsgemäße Strukturantenne 1 im Bereich der Faltkante 4 eine Spannungsnullstelle aufweist, ist eine leitende Verbindung zwischen der Strukturantenne 1 und der metallischen Faltkante 4, wie in den Anordnungen gemäß der Figuren 1 b, 2b, 3b, realisierbar und auch nicht nachteilig. Diese Ausführungsformen werden bevorzugt verwendet, weil sie die Anforderungen an Festigkeit der Faltkante und an den Blitzschutz gut erfüllen. Bei einer Erdung im Mittelbereich der Strukturantenne 1 ist allerdings eine erdfreie Einspeisung zur Vermeidung von Unsymmetrien durch die Bildung von Erdschleifen zwingend erforderlich.For design reasons, the edges of the existing essentially plastic wings, empennages or rudders are often reinforced with metal rails in aircraft. For reasons of strength, these metal rails must not be interrupted or replaced by non-conductive plastic elements. Thus, there is a conductive connection with the rest of the metallized structure via this edge. Since the inventive structure antenna 1 has a stress zero point in the region of the folded edge 4, a conductive connection between the structural antenna 1 and the metallic folding edge 4, as in the arrangements according to FIGS. 1 b, 2 b, 3 b, can be realized and is not disadvantageous. These embodiments are preferably used because they well meet the requirements for folding edge strength and lightning protection. With a grounding in the central region of the structure antenna 1, however, a floating input to avoid imbalances by the formation of ground loops is imperative.

Die Fig. 4a zeigt den einfachsten Fall einer unsymmetrischen Speisung der metallischen flächenförmigen Strukturantenne 11 am Einspeisepunkt 13. Der Einspeisepunkt liegt hierbei in dem Bereich der leitenden Fläche 11 der Strukturantenne 1, der am weitesten von der Faltkante 4 entfernt ist. Die metallische Faltkante 4 ist in diesem Fall von der leitfähigen Oberfläche der Tragfläche isoliert, wie in Fig. 1a, 2a und 3a dargestellt. Im Innenbereich der Strukturantenne befindet sich eine bis fast in die Faltkante 4 reichende Metallfläche 14, die mit dem Mantel der koaxialen Zuleitung 15 verbunden ist und somit das elektrische Bezugspotential zur leitenden Fläche 11 bildet. Zusätzlich ist angedeutet, dass die nichtleitende Schicht 12 bis in die Nähe der Strukturantenne mit einer leitfähigen Beschichtung 16 versehen sein kann, wobei ein Streifen der nichtleitenden Schicht 12 freigelassen wird.4a shows the simplest case of an asymmetrical feeding of the metallic sheet-like structure antenna 11 at the feed point 13. In this case, the feed point lies in the region of the conductive surface 11 of the structure antenna 1 which is farthest from the folded edge 4. The metallic folding edge 4 is insulated in this case from the conductive surface of the support surface, as shown in Fig. 1a, 2a and 3a. In the interior of the structure antenna, there is a metal surface 14 extending almost to the folding edge 4, which is connected to the jacket of the coaxial feed line 15 and thus forms the electrical reference potential to the conductive surface 11. In addition, it is indicated that the nonconductive layer 12 may be provided with a conductive coating 16 to the vicinity of the structure antenna, leaving a strip of the nonconductive layer 12 exposed.

Die Fig. 4b zeigt eine bevorzugte Bauform mit einer symmetrischen Speisung unter Verwendung des an sich bekannten Lindenblad-λ/4 -Sperrtopfes 17. Durch diese Art der Einspeisung ist die Erdung der leitenden Fläche der Strukturantenne 11 an der Faltkante 4 unkritisch. Gemäß Fig. 4b erfolgt die Einspeisung über die symmetrisch angeordneten Einspeisepunkte 13a und 13b, die ebenfalls in dem Bereich der leitenden Fläche 11 der Strukturantenne 1 liegen, der am weitesten von der Faltkante 4 entfernt ist. Die metallische Faltkante 4 ist über den λ/4-Sperrtopf 17 zwangsweise symmetriert. Die leitfähige Fläche 11 der Strukturantenne wird an der metallischen Faltkante 4 geerdet bzw. zwangsweise symmetriert, da die Einspeisung durch den λ/4-Sperrtopf 17 erdfrei erfolgt.4b shows a preferred design with a symmetrical feed using the known Lindenblad λ / 4 -Stopopf 17. By this type of feed the grounding of the conductive surface of the structure antenna 11 at the folding edge 4 is not critical. According to FIG. 4 b, the feed takes place via the symmetrically arranged feed points 13 a and 13 b, which likewise lie in the region of the conductive surface 11 of the structure antenna 1, which is farthest from the folded edge 4. The metallic folding edge 4 is forcibly symmetrized over the λ / 4 locking pot 17. The conductive surface 11 of the structure antenna is grounded or forcibly balanced at the metallic folding edge 4, since the feed through the λ / 4 locking pot 17 is groundless.

Wie in Fig. 4c dargestellt, kann auf eine Metallfläche 14, die in dem Ausführungsbeispiel nach Fig. 4b von der Faltkante 4 zum Sperrtopf 17 verläuft, auch verzichtet werden. Die Speisung erfolgt dann direkt aus der Zuleitung 15 über den Sperrtopf 17 und die Anschlüsse 13a und 13b, die auch in dem Bereich der leitenden Fläche 11 der Strukturantenne 1 liegen, der am weitesten von der Faltkante 4 entfernt ist. Hiermit wird ein besonderer Vorteil für die Fertigung erzielt, da diese Metallfläche 14 schwierig in der keilförmigen Flügelstruktur einzubringen ist. Aufgrund der erdfreien Speisung und der Erdung an der Faltkante 4 ergibt sich von selbst eine gute Symmetrierung, da sich im Bereich der gedachten Symmetrielinie (strichpunktiert dargestellt) innerhalb der Struktur ein Nullpotential ausbildet. Die Reduzierung des Wellenwiderstandes zur Faltkante 4 hin ergibt sich in der gleichen Weise wie in den vorher genannten Beispielen.As shown in Fig. 4c, can also be dispensed with a metal surface 14 which extends in the embodiment of Fig. 4b of the folding edge 4 to the locking pot 17. The feeding then takes place directly from the supply line 15 via the blocking pot 17 and the terminals 13a and 13b, which are also in the region of the conductive surface 11 of the structure antenna 1, which is farthest from the folding edge 4. This is a particular advantage for the production achieved because this metal surface 14 is difficult to introduce in the wedge-shaped wing structure. Due to the floating supply and the grounding at the folding edge 4, a good symmetrization results automatically, since a zero potential forms within the structure in the region of the imaginary line of symmetry (represented by dot-dash lines). The reduction of the characteristic impedance towards the folded edge 4 results in the same manner as in the aforementioned examples.

In den Fig. 1b, 2b und 3b sind jeweils Varianten zu den bereits beschriebenen Bauformen dargestellt, bei denen die leitfähige Fläche 9 zumindest mit der metallischen Faltkante 4, die längs der aerodynamischen Wirkfläche 3 verläuft, und auch mit der leitfähigen Oberfläche 2 der aerodynamischen Wirkfläche selbst verbunden ist. Sollte die nichtleitende Schicht 12 um die Strukturantenne herum nicht metallisiert sein, so ist zumindest die leitende Verbindung zwischen der leitfähigen Fläche 9 und der Faltkante 4 gegeben, die ihrerseits mit der Struktur auf gleichem Potential liegt.FIGS. 1 b, 2 b and 3 b respectively show variants of the previously described designs, in which the conductive surface 9 extends at least with the metallic folding edge 4, which runs along the aerodynamic active surface 3, and also with the conductive surface 2 of the aerodynamically effective surface itself is connected. If the nonconductive layer 12 is not metallized around the structure antenna, then at least the conductive connection between the conductive surface 9 and the folded edge 4 given, which in turn is with the structure at the same potential.

Claims (4)

  1. Aerodynamic active surface having an integrated structural antenna (1) for aircraft or aeroplanes, which antenna has a substantially omnidirectional radiation characteristic and is disposed as a conductive surface (9, 11) on the dielectrically active material of a non-conductive layer which forms the base layer of the surface of the aerodynamic active surface (3) of the aircraft, wherein the conductive surface (9, 11) is disposed around a folded edge (4) of the aerodynamic active surface of the aircraft and is partly or completely surrounded by a region of the non-conductive layer (6, 12), and wherein the structural antenna (1) is fed in that region of the conductive surface (9, 11) that is remote from the folded edge (4), characterised in that a metal surface (14), which is arranged within the structural antenna (1) centrally with respect to the conductive surface (9, 11), is connected to the outer conductor of a symmetrical floating supply line (15), so that the current direction (5) runs perpendicular to the folded edge (4) and the characteristic impedance at the folded edge is much lower than in the region of the ends of the structural antenna (1) that are remote from the edge.
  2. Aerodynamic active surface having an integrated structural antenna according to claim 1, characterised in that the metal surface (14) is conductively connected to the folded edge (4).
  3. Aerodynamic active surface having an integrated structural antenna (1) for aircraft or aeroplanes, which antenna has a substantially omnidirectional radiation characteristic and is disposed as a conductive surface (9, 11) on the dielectrically active material of a non-conductive layer which forms the base layer of the surface of the aerodynamic active surface (3) of the aircraft, wherein the conductive surface (9, 11) is disposed around a folded edge (4) of the aerodynamic active surface of the aircraft and is partly or completely surrounded by a region of the non-conductive layer (6, 12), and wherein the structural antenna (1) is fed in that region of the conductive surface (9, 11) that is remote from the folded edge (4), characterised in that the conductive surface (9, 11) of the structural antenna is fed symmetrically via the potential-guiding connections (13a) and (13b) of the symmetrical floating supply line (15), so that the current direction (5) runs perpendicular to the folded edge (4) and the characteristic impedance at the folded edge is much lower than in the region of the ends of the structural antenna (1) that are remote from the edge.
  4. Aerodynamic active surface having an integrated structural antenna according to claim 1 or 3, characterised in that the conductive surface (9, 11) is conductively (8) connected at the folded edge (4) to a conductive surface (2) surrounding it.
EP20010125860 2000-11-02 2001-10-30 Structure antenna for flying devices and aircrafts Expired - Lifetime EP1204158B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10054332 2000-11-02
DE10054332 2000-11-02
DE10151288 2001-10-22
DE10151288A DE10151288B4 (en) 2000-11-02 2001-10-22 Structure antenna for aircraft or aircraft

Publications (3)

Publication Number Publication Date
EP1204158A2 EP1204158A2 (en) 2002-05-08
EP1204158A3 EP1204158A3 (en) 2003-12-10
EP1204158B1 true EP1204158B1 (en) 2006-08-30

Family

ID=26007550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010125860 Expired - Lifetime EP1204158B1 (en) 2000-11-02 2001-10-30 Structure antenna for flying devices and aircrafts

Country Status (2)

Country Link
EP (1) EP1204158B1 (en)
DE (1) DE50110862D1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614219A (en) * 1947-09-30 1952-10-14 Cary Rex Henry John Aerial system
DE2212647B2 (en) * 1972-03-16 1977-06-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München ANTENNA FOR THE FREQUENCY RANGE BETWEEN 2 AND 30 MHz WITH A GROOVE CUT IN A METALLIC STRUCTURE
US5191351A (en) * 1989-12-29 1993-03-02 Texas Instruments Incorporated Folded broadband antenna with a symmetrical pattern
US6097343A (en) * 1998-10-23 2000-08-01 Trw Inc. Conformal load-bearing antenna system that excites aircraft structure

Also Published As

Publication number Publication date
EP1204158A3 (en) 2003-12-10
DE50110862D1 (en) 2006-10-12
EP1204158A2 (en) 2002-05-08

Similar Documents

Publication Publication Date Title
DE10151288B4 (en) Structure antenna for aircraft or aircraft
DE3688588T2 (en) Shortened stripline antenna.
EP0594809B1 (en) Radio antenna arrangement located next to vehicle window panes
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
EP1759438B1 (en) Antenna
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE2014939A1 (en) Multi-element antenna
DE102009023514A1 (en) Antenna for circular polarization with a conductive base
EP3244483B1 (en) Screened casing for use in hf applications
DE202017104142U1 (en) Miniature broadband antenna with parasitic element
DE102004016158B4 (en) Antenna according to planar design
DE102011004478B4 (en) Substrate type antenna
EP1204158B1 (en) Structure antenna for flying devices and aircrafts
DE102021129242A1 (en) SINGLE GLASS ANTENNA STRUCTURE
DE1084331B (en) Antenna arrangement for aircraft
DE2521309C3 (en) High frequency antenna system for helicopters
DE102018116631A1 (en) Spiral antenna system
EP3827478B1 (en) Circuit board antenna
DD290304A5 (en) SPARK PLUG FOR COMBUSTION MOTORS
DE60037532T2 (en) ARRANGEMENT FOR THE PROTECTION OF AN ANTENNA
DE3302658C2 (en)
EP0304722B1 (en) Directional antenna for relay systems
DE102019208371A1 (en) Coated conformal omnidirectional antenna system for structural integration in vehicles
DE102010004503A1 (en) Antenna structure for a vehicle for multiple frequency bands
DE112013003272B4 (en) Inverted F-type antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040528

17Q First examination report despatched

Effective date: 20040624

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060830

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110862

Country of ref document: DE

Date of ref document: 20061012

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101025

Year of fee payment: 10

Ref country code: GB

Payment date: 20101021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 11

Ref country code: SE

Payment date: 20111021

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121030

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110862

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121030

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031