EP1204076A2 - Verfahren und Vorrichtung zum Überwachen des Betriebes einer Gasturbine - Google Patents

Verfahren und Vorrichtung zum Überwachen des Betriebes einer Gasturbine Download PDF

Info

Publication number
EP1204076A2
EP1204076A2 EP01307221A EP01307221A EP1204076A2 EP 1204076 A2 EP1204076 A2 EP 1204076A2 EP 01307221 A EP01307221 A EP 01307221A EP 01307221 A EP01307221 A EP 01307221A EP 1204076 A2 EP1204076 A2 EP 1204076A2
Authority
EP
European Patent Office
Prior art keywords
engine
parameters
model
trend
trend parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01307221A
Other languages
English (en)
French (fr)
Other versions
EP1204076A3 (de
Inventor
Sridhar Adibhatla
Malcolm John Ashby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1204076A2 publication Critical patent/EP1204076A2/de
Publication of EP1204076A3 publication Critical patent/EP1204076A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/82Forecasts

Definitions

  • This application relates generally to gas turbine engines and, more particularly, to methods and apparatus for trending gas turbine engine operation.
  • the engines may become less efficient due to a combination of factors including wear and damage. Because the rate at which engines deteriorate depends on several operational factors, the rate is difficult to predict, and as such, engine components are typically scheduled for maintenance based on a pre-selected number of hours or cycles. The pre-selected number is typically conservatively selected based on a number of factors including past component experience and past engine health estimates. If a component fails, a predetermined diagnosis routine is followed to identify and replace the failed component.
  • engine parameters are sensed and monitored to estimate an overall loss in engine performance.
  • rotor speeds, exhaust gas temperatures, and fuel flows are corrected or normalized for variations in operating conditions, and these normalized parameters are trended, i.e., their changes over short and long periods of time are plotted, and used to forecast when engine refurbishment is required. Additionally, immediate engine repairs may be scheduled if comparing current trending values to prior trending values illustrates abrupt changes, or step changes.
  • engine models and parameter estimation algorithms are used to track engine health and provide "health estimates" of engine components.
  • Known trending estimation algorithms account for variations in operating conditions, but do not account for engine quality and engine deterioration effects. More specifically, because of the complexity of the computations, known correction factors and parameter estimation algorithms do not provide reliable estimations and trend parameters during real-time engine operation.
  • a model-based trending process for a gas turbine engine generates, in real-time, engine trend parameters from engine sensor data and ambient flight condition data to assess engine condition.
  • the engine includes a plurality of sensors that are responsive to engine operations.
  • the trending process is implemented using a commercially available processor coupled to the engine to monitor the engine operations, and having the desired processing speed and capacity.
  • the trending process estimates engine health parameters for use in a model for component diagnostics and fault detection and isolation.
  • the interactions and physical relationships of trend parameters within the engine cycle are retained to permit substantially all sensed and model-generated virtual parameters for trending to be generated simultaneously.
  • the trending process accounts for engine quality and deterioration effects and provides engine health estimates that facilitate improving estimates of performance parameters or "virtual sensors" for use in trending engine operation.
  • Figure 1 is a flow chart illustrating an exemplary embodiment of a model-based normalization process 10.
  • Figure 2 is a schematic diagram of an engine model 12 that may be used to estimate sensed parameters with a model-based normalization process, such as process 10 shown in Figure 1.
  • engine 14 is a commercial engine such as a CFM56, CF6, or GE90 engine commercially available from General Electric Company, Cincinnati, Ohio.
  • engine 14 is an industrial aeroderivative engine such as the LM6000 engine commercially available from General Electric Company, Cincinnati, Ohio.
  • engine 14 is a military engine such as the F110 or F414 engine commercially available from General Electric Company, Cincinnati, Ohio.
  • System 10 could be implemented using, for example, a commercially available processor (not shown) having the desired processing speed and capacity.
  • System 10 includes a memory coupled to the processor, and is coupled to engine 14 to monitor engine operations.
  • Engine 14 includes a plurality of sensors (not shown) which monitor engine operation and input 20 real-time actual engine sensor data during engine operation to engine model 12.
  • the sensors monitor engine rotor speeds, engine temperatures, and engine pressures.
  • Ambient flight condition data is also input 24 to engine model 12.
  • ambient flight condition data input 24 includes, but is not limited to, ambient temperature, ambient pressure, aircraft mach number, and engine power setting parameters such as fan speed or engine pressure ratio. Collecting ambient flight condition data and actual engine sensor data is known in the art.
  • Engine model 12 is used to estimate sensed parameters, such as rotor speeds, temperatures, and pressures, as well as computed parameters such as thrust, airflows, stall margins, and turbine inlet temperature, based on environmental conditions, power setting parameters, and actuator positions input into engine model 12.
  • engine model 12 is a physics-based aero-thermodynamic model 26.
  • engine model 12 is a regression-fit model.
  • engine model 12 is a neural-net model.
  • Physics-based engine model 26 includes a core engine 28 including in serial, axial flow relationship, a low pressure compressor or booster compressor 30, a high pressure compressor 32, a combustor or burner 34, a high pressure turbine 36 and a low pressure turbine 38.
  • Core engine 28 is downstream from an inlet 40 and a fan 42.
  • Fan 42 is in serial, axial flow relationship with core engine 28 and a bypass duct 44 and a bypass nozzle 50.
  • Fan 42, compressor 30, and low pressure turbine 38 are coupled by a first shaft 52, and compressor 32 and turbine 36 are coupled with a second shaft 54.
  • a portion of airflow 58 entering inlet 40 is channeled through bypass duct 44 and is exhausted through bypass nozzle 50, and remaining airflow 58 passes through core engine 28 and is exhausted through a core engine nozzle 60.
  • Engine model 12 is known as a Component Level Model, CLM, because each component, 28, 44, 50, 42, 60, and 40 within engine model 12 is individually modeled and then assembled into a specific engine model, such as physics-based engine model 26.
  • Engine model 12 is programmed to represent a fast-running transient engine cycle that accounts for flight conditions, control variable inputs, and high-pressure compressor bleed. Further, engine model 12 includes tunable parameters such as engine component efficiencies and flows. These parameters can be modified using a parameter estimation algorithm, thereby modifying the model of a nominal or average engine to the model of a specific engine.
  • model-based trending process 10 executes 68 engine model 12 at actual trend conditions using energy and mass balance calculations and a steady-state trim process.
  • the parameter estimation (or tracking) algorithm uses actual sensor data input 20 from the engine sensors and model-computed sensor data input after nominal engine model 12 is executed 68 to estimate 70 engine component efficiencies and flow functions.
  • the parameter estimation algorithm provides component health parameter estimates in real-time, i.e., on-board engine 14 and during operation.
  • the parameter estimation algorithm is known in the art and may include, but is not limited to a linear regressor or a Kalman filter.
  • Model-based trending process 10 then adjusts or fixes 72 component efficiencies and flow functions in engine model 12 to represent the actual engine component health.
  • the component efficiencies and flow functions relate to gas turbine engine major rotating assemblies including fans, compressors, and turbines.
  • reference trend conditions e.g. takeoff operating condition
  • model-based normalization process 10 utilizes model-computed corrected sensor parameters and virtual sensors such as thrust, airflows, stall margins, and turbine inlet temperature
  • trending parameters are facilitated to be more accurately estimated using process 10 than normalized parameters obtained using known trending estimation techniques that perform simple empirical corrections to sensed parameters.
  • model-computed trend alerts such as threshold exceedences, sudden shifts, or slow drifts are facilitated to be more accurate and more representative of actual changes in engine health using process 10 than are obtainable using other known trending estimation algorithms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)
EP01307221A 2000-11-02 2001-08-24 Verfahren und Vorrichtung zum Überwachen des Betriebes einer Gasturbine Withdrawn EP1204076A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/705,131 US6466858B1 (en) 2000-11-02 2000-11-02 Methods and apparatus for monitoring gas turbine engine operation
US705131 2000-11-02

Publications (2)

Publication Number Publication Date
EP1204076A2 true EP1204076A2 (de) 2002-05-08
EP1204076A3 EP1204076A3 (de) 2005-09-14

Family

ID=24832175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01307221A Withdrawn EP1204076A3 (de) 2000-11-02 2001-08-24 Verfahren und Vorrichtung zum Überwachen des Betriebes einer Gasturbine

Country Status (3)

Country Link
US (2) US6466858B1 (de)
EP (1) EP1204076A3 (de)
JP (1) JP2002180851A (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1260690A2 (de) * 2001-05-18 2002-11-27 General Electric Company Anlage und Methode zur Überwachung der Startsysteme einer Gasturbine
EP1418312A2 (de) * 2002-11-06 2004-05-12 General Electric Company Verfahren zur Oxidationsüberwachung und Vorhersage der Lebensdauer einer Turbinenschaufel, die ein neuronales Netzwerk in Verbindung mit Pyrometersignalen verwendet
EP1457855A1 (de) * 2003-02-28 2004-09-15 General Electric Company Verfahren und Gerät zur Beurteilung von Gasturbinenschäden
US7280941B2 (en) 2004-12-29 2007-10-09 General Electric Company Method and apparatus for in-situ detection and isolation of aircraft engine faults
EP2175336A1 (de) * 2008-10-10 2010-04-14 General Electric Company Adaptives Leistungsmodell und Verfahren zur Systemwartung
FR2939928A1 (fr) * 2008-12-15 2010-06-18 Snecma Standardisation de donnees utilisees pour la surveillance d'un moteur d'aeronef
CN102866014A (zh) * 2011-07-07 2013-01-09 中国国际航空股份有限公司 辅助动力单元的性能检测方法
EP2241726A3 (de) * 2009-04-09 2013-09-18 General Electric Company Reparaturverfahren von einem Triebwerk und entsprechende Anordnungen zum Überwachen dieses Triebwerkes
EP2239441A3 (de) * 2009-03-31 2014-02-26 General Electric Company Verfahren und Systeme zur virtuellen Sensorauswahl und Mischung
US8862433B2 (en) 2010-05-18 2014-10-14 United Technologies Corporation Partitioning of turbomachine faults
CN104343476A (zh) * 2013-07-24 2015-02-11 中国国际航空股份有限公司 飞机辅助动力单元涡轮效率监控方法和装置
EP1746271A3 (de) * 2005-07-18 2015-04-22 General Electric Company Vorrichtung und Verfahren zur Bestimmung eines Trends der Abgastemperatur einer Gasturbine
EP1656597B1 (de) * 2003-08-22 2017-04-12 Honeywell International Inc. Verfahren und Flugverwaltungssystemaircraft zur mathematischen Leistungsmodellierung eines Flugzeuges
EP3182342A1 (de) * 2015-12-15 2017-06-21 General Electric Company Gleichzeitige datenaufzeichnung und zuverlässigkeitsmodellierung mit turbomaschinendienstausfall
CN110391840A (zh) * 2019-09-17 2019-10-29 中国人民解放军国防科技大学 太阳同步轨道卫星遥测参数异常判断方法和系统
EP3591172A1 (de) * 2018-07-03 2020-01-08 United Technologies Corporation Flugzeugkomponentenqualifikationssystem und -verfahren

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020595B1 (en) * 1999-11-26 2006-03-28 General Electric Company Methods and apparatus for model based diagnostics
US6917839B2 (en) * 2000-06-09 2005-07-12 Intellectual Assets Llc Surveillance system and method having an operating mode partitioned fault classification model
US6845306B2 (en) * 2000-11-09 2005-01-18 Honeywell International Inc. System and method for performance monitoring of operational equipment used with machines
US20030176954A1 (en) * 2001-10-12 2003-09-18 Jaw Link C. Tracking and control of gas turbine engine component damage/life
US7618712B2 (en) * 2002-09-23 2009-11-17 Siemens Energy, Inc. Apparatus and method of detecting wear in an abradable coating system
US7582359B2 (en) * 2002-09-23 2009-09-01 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
US7572524B2 (en) * 2002-09-23 2009-08-11 Siemens Energy, Inc. Method of instrumenting a component
US8151623B2 (en) 2002-09-23 2012-04-10 Siemens Energy, Inc. Sensor for quantifying widening reduction wear on a surface
US20050198967A1 (en) * 2002-09-23 2005-09-15 Siemens Westinghouse Power Corp. Smart component for use in an operating environment
US6898540B2 (en) * 2002-11-12 2005-05-24 General Electric Company System and method for displaying real-time turbine corrected output and heat rate
US6823675B2 (en) * 2002-11-13 2004-11-30 General Electric Company Adaptive model-based control systems and methods for controlling a gas turbine
US6924628B2 (en) * 2003-02-24 2005-08-02 Siemens Westinghouse Power Corporation Method and system for operating a generator using a dynamic capability curve
US20050043870A1 (en) * 2003-08-22 2005-02-24 General Electric Company Method and apparatus for recording and retrieving maintenance, operating and repair data for turbine engine components
US7072797B2 (en) * 2003-08-29 2006-07-04 Honeywell International, Inc. Trending system and method using monotonic regression
US20050102303A1 (en) * 2003-11-12 2005-05-12 International Business Machines Corporation Computer-implemented method, system and program product for mapping a user data schema to a mining model schema
US7689383B2 (en) * 2003-11-20 2010-03-30 The Boeing Company Component health assessment for reconfigurable control
US7349919B2 (en) * 2003-11-21 2008-03-25 International Business Machines Corporation Computerized method, system and program product for generating a data mining model
US20050114277A1 (en) * 2003-11-21 2005-05-26 International Business Machines Corporation Method, system and program product for evaluating a data mining algorithm
US7523106B2 (en) * 2003-11-24 2009-04-21 International Business Machines Coporation Computerized data mining system, method and program product
JP4555562B2 (ja) * 2003-12-09 2010-10-06 ゼネラル・エレクトリック・カンパニイ 航空機用ガスタービンのモデル予測制御のための方法及び装置
US7580812B2 (en) * 2004-01-28 2009-08-25 Honeywell International Inc. Trending system and method using window filtering
US7062370B2 (en) * 2004-03-30 2006-06-13 Honeywell International Inc. Model-based detection, diagnosis of turbine engine faults
CA2563817C (en) * 2004-04-23 2018-07-10 Yoram Palti Treating a tumor or the like with electric fields at different frequencies
US7487029B2 (en) * 2004-05-21 2009-02-03 Pratt & Whitney Canada Method of monitoring gas turbine engine operation
US8742944B2 (en) * 2004-06-21 2014-06-03 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
US8004423B2 (en) 2004-06-21 2011-08-23 Siemens Energy, Inc. Instrumented component for use in an operating environment
US8942882B2 (en) 2004-07-02 2015-01-27 The Boeing Company Vehicle health management systems and methods
US20060129301A1 (en) * 2004-12-14 2006-06-15 General Electric Company Method and apparatus for assessing gas turbine acceleration capability
US7286923B2 (en) * 2005-09-30 2007-10-23 General Electric Company System and method for estimating turbine engine deterioration rate with noisy data
US7603222B2 (en) * 2005-11-18 2009-10-13 General Electric Company Sensor diagnostics using embedded model quality parameters
US7505844B2 (en) * 2005-11-18 2009-03-17 General Electric Company Model-based iterative estimation of gas turbine engine component qualities
US10180074B2 (en) * 2005-12-16 2019-01-15 Mehmet Arik Wireless monitoring system
US20070245746A1 (en) * 2006-04-21 2007-10-25 Mollmann Daniel E Methods and systems for detecting rotor assembly speed oscillation in turbine engines
US20070260424A1 (en) * 2006-05-05 2007-11-08 Harold Brown Methods and apparatus for estimating engine thrust
US7368827B2 (en) * 2006-09-06 2008-05-06 Siemens Power Generation, Inc. Electrical assembly for monitoring conditions in a combustion turbine operating environment
US7969323B2 (en) * 2006-09-14 2011-06-28 Siemens Energy, Inc. Instrumented component for combustion turbine engine
US7472100B2 (en) * 2006-09-29 2008-12-30 United Technologies Corporation Empirical tuning of an on board real-time gas turbine engine model
US7739004B2 (en) * 2006-11-29 2010-06-15 The Boeing Company Automatic engine fuel flow monitoring and alerting fuel leak detection method
US7496475B2 (en) * 2006-11-30 2009-02-24 Solar Turbines Incorporated Maintenance management of a machine
US7481100B2 (en) * 2006-12-05 2009-01-27 General Electric Company Method and apparatus for sensor fault detection and compensation
US20090048730A1 (en) * 2007-08-17 2009-02-19 General Electric Company Method and system for planning repair of an engine
US8103462B2 (en) * 2007-10-25 2012-01-24 United Technologies Corporation Oil consumption monitoring for aircraft engine
US20090112519A1 (en) * 2007-10-31 2009-04-30 United Technologies Corporation Foreign object/domestic object damage assessment
US8797179B2 (en) * 2007-11-08 2014-08-05 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US9071888B2 (en) * 2007-11-08 2015-06-30 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US8519866B2 (en) 2007-11-08 2013-08-27 Siemens Energy, Inc. Wireless telemetry for instrumented component
US20100017092A1 (en) * 2008-07-16 2010-01-21 Steven Wayne Butler Hybrid fault isolation system utilizing both model-based and empirical components
US8478473B2 (en) * 2008-07-28 2013-07-02 General Electric Company Method and systems for controlling gas turbine engine temperature
US7861578B2 (en) * 2008-07-29 2011-01-04 General Electric Company Methods and systems for estimating operating parameters of an engine
US8280834B2 (en) * 2008-11-10 2012-10-02 General Electric Company Systems and methods involving rule engines
US20100161196A1 (en) * 2008-12-23 2010-06-24 Honeywell International Inc. Operations support systems and methods with engine diagnostics
US7801695B2 (en) * 2008-12-23 2010-09-21 Honeywell International Inc. Operations support systems and methods with model-based torque estimates
US8321118B2 (en) * 2008-12-23 2012-11-27 Honeywell International Inc. Operations support systems and methods with power assurance
US8417410B2 (en) * 2008-12-23 2013-04-09 Honeywell International Inc. Operations support systems and methods with power management
US8401760B2 (en) * 2009-07-07 2013-03-19 Honeywell International Inc. Gas turbine engine oil consumption monitoring system and method
US8290683B2 (en) * 2010-02-16 2012-10-16 Telectro-Mek, Inc. Apparatus and method for reducing aircraft fuel consumption
US8571813B2 (en) * 2010-03-16 2013-10-29 Siemens Energy, Inc. Fiber optic sensor system for detecting surface wear
US20120134783A1 (en) 2010-11-30 2012-05-31 General Electric Company System and method for operating a compressor
US8909454B2 (en) * 2011-04-08 2014-12-09 General Electric Company Control of compression system with independently actuated inlet guide and/or stator vanes
RU2481564C1 (ru) * 2011-12-29 2013-05-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Турбореактивный двигатель, способ испытания турбореактивного двигателя, способ производства партии турбореактивных двигателей (варианты), способ эксплуатации турбореактивного двигателя
US20130219913A1 (en) * 2012-02-28 2013-08-29 Michael E. McCune Geared turbofan gas turbine engine with reliability check on gear connection
ITCO20120008A1 (it) * 2012-03-01 2013-09-02 Nuovo Pignone Srl Metodo e sistema per monitorare la condizione di un gruppo di impianti
RU2484441C1 (ru) * 2012-04-12 2013-06-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Газотурбинный двигатель. способ испытания газотурбинного двигателя. способ производства партии газотурбинных двигателей (варианты). способ эксплуатации газотурбинного двигателя
US9325388B2 (en) 2012-06-21 2016-04-26 Siemens Energy, Inc. Wireless telemetry system including an induction power system
US9243970B2 (en) 2012-11-30 2016-01-26 Pratt & Whitney Canada Corp. Method and system for integrating gas turbine trim balancing system into electronic engine controls
US9376983B2 (en) 2012-11-30 2016-06-28 Honeywell International Inc. Operations support systems and methods with acoustics evaluation and control
US9317249B2 (en) * 2012-12-06 2016-04-19 Honeywell International Inc. Operations support systems and methods for calculating and evaluating turbine temperatures and health
US20140244518A1 (en) * 2013-02-26 2014-08-28 Solar Turbines Incorporated Ambient conditions monitoring system for machinery
US9091616B2 (en) 2013-06-06 2015-07-28 Honeywell International Inc. Engine operations support systems and methods for reducing fuel flow
US9420356B2 (en) 2013-08-27 2016-08-16 Siemens Energy, Inc. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine
FR3010200B1 (fr) * 2013-09-05 2015-09-18 Snecma Procede et dispositif de normalisation de valeurs de parametres de fonctionnement d'un moteur d'aeronef
EP2905666A1 (de) 2014-02-07 2015-08-12 Siemens Aktiengesellschaft Schätzung von Gesundheitsparametern in industriellen Gasturbinen
CN106257019B (zh) * 2015-06-17 2020-08-25 A.S.En.安萨尔多开发能源有限责任公司 燃气轮机的自学习控制系统和用于控制燃气轮机的方法
US10466661B2 (en) 2015-12-18 2019-11-05 General Electric Company Model-based performance estimation
US10012566B2 (en) 2016-11-14 2018-07-03 United Technologies Corporation Parametric trending architecture concept and design
US10641185B2 (en) * 2016-12-14 2020-05-05 General Electric Company System and method for monitoring hot gas path hardware life
US11514056B2 (en) 2017-01-23 2022-11-29 Raytheon Technologies Corporation Data request workflow system
US11036883B2 (en) 2017-01-23 2021-06-15 Raytheon Technologies Corporation Data filtering for data request workflow system
US10378455B2 (en) * 2017-08-28 2019-08-13 United Technologies Corporation Method for selection of optimal engine operating conditions for generating linearized models for on-board control and estimation
FR3101669B1 (fr) * 2019-10-07 2022-04-08 Safran Dispositif, procédé et programme d’ordinateur de suivi de moteur d’aéronef
US11719170B2 (en) * 2020-02-14 2023-08-08 Gulfstream Aerospace Corporation Method for monitoring engine health of aircraft
JP2021144415A (ja) 2020-03-11 2021-09-24 本田技研工業株式会社 情報処理方法、情報処理装置、異常判定システム、異常判定装置、異常判定方法、及びプログラム
KR102419795B1 (ko) 2021-01-14 2022-07-12 인천대학교 산학협력단 가상센서를 이용한 진단과 제어가 가능한 난방 시스템 및 이를 이용한 진단 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215412A (en) * 1978-07-13 1980-07-29 The Boeing Company Real time performance monitoring of gas turbine engines
EP0516534A1 (de) * 1991-05-28 1992-12-02 European Gas Turbines Sa Verfahren und Vorrichtung zur Überwachung eines unter variablen Bedingungen laufenden Apparates
US5309379A (en) * 1989-02-07 1994-05-03 Smiths Industries Public Limited Company Monitoring
EP0858017A2 (de) * 1997-02-04 1998-08-12 The Secretary Of State For Defence Mittel und Verfahren zur Überwachung der Leistung eines Systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080496A (en) 1990-06-25 1992-01-14 General Electric Company Method and apparatus for compensated temperature prediction
JP3196390B2 (ja) 1992-12-25 2001-08-06 富士電機株式会社 パラメータ同定器
US5726891A (en) 1994-01-26 1998-03-10 Sisson; Patterson B. Surge detection system using engine signature
US5689066A (en) 1995-08-15 1997-11-18 Stevenson; Dennis B. Method and apparatus for analyzing gas turbine pneumatic fuel system
US6226974B1 (en) 1999-06-25 2001-05-08 General Electric Co. Method of operation of industrial gas turbine for optimal performance
US7020595B1 (en) 1999-11-26 2006-03-28 General Electric Company Methods and apparatus for model based diagnostics
US6502085B1 (en) 1999-12-18 2002-12-31 General Electric Company Methods and systems for estimating engine faults

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215412A (en) * 1978-07-13 1980-07-29 The Boeing Company Real time performance monitoring of gas turbine engines
US5309379A (en) * 1989-02-07 1994-05-03 Smiths Industries Public Limited Company Monitoring
EP0516534A1 (de) * 1991-05-28 1992-12-02 European Gas Turbines Sa Verfahren und Vorrichtung zur Überwachung eines unter variablen Bedingungen laufenden Apparates
EP0858017A2 (de) * 1997-02-04 1998-08-12 The Secretary Of State For Defence Mittel und Verfahren zur Überwachung der Leistung eines Systems

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1260690A3 (de) * 2001-05-18 2004-12-08 General Electric Company Anlage und Methode zur Überwachung der Startsysteme einer Gasturbine
EP1260690A2 (de) * 2001-05-18 2002-11-27 General Electric Company Anlage und Methode zur Überwachung der Startsysteme einer Gasturbine
EP1418312A2 (de) * 2002-11-06 2004-05-12 General Electric Company Verfahren zur Oxidationsüberwachung und Vorhersage der Lebensdauer einer Turbinenschaufel, die ein neuronales Netzwerk in Verbindung mit Pyrometersignalen verwendet
EP1418312A3 (de) * 2002-11-06 2005-09-21 General Electric Company Verfahren zur Oxidationsüberwachung und Vorhersage der Lebensdauer einer Turbinenschaufel, die ein neuronales Netzwerk in Verbindung mit Pyrometersignalen verwendet
EP1457855A1 (de) * 2003-02-28 2004-09-15 General Electric Company Verfahren und Gerät zur Beurteilung von Gasturbinenschäden
US7065468B2 (en) * 2003-02-28 2006-06-20 General Electric Company Methods and apparatus for assessing gas turbine engine damage
EP1656597B1 (de) * 2003-08-22 2017-04-12 Honeywell International Inc. Verfahren und Flugverwaltungssystemaircraft zur mathematischen Leistungsmodellierung eines Flugzeuges
US7280941B2 (en) 2004-12-29 2007-10-09 General Electric Company Method and apparatus for in-situ detection and isolation of aircraft engine faults
EP1746271A3 (de) * 2005-07-18 2015-04-22 General Electric Company Vorrichtung und Verfahren zur Bestimmung eines Trends der Abgastemperatur einer Gasturbine
EP2175336A1 (de) * 2008-10-10 2010-04-14 General Electric Company Adaptives Leistungsmodell und Verfahren zur Systemwartung
CN101726416A (zh) * 2008-10-10 2010-06-09 通用电气公司 用于系统维护的自适应性能模型和方法
FR2939928A1 (fr) * 2008-12-15 2010-06-18 Snecma Standardisation de donnees utilisees pour la surveillance d'un moteur d'aeronef
CN102246110A (zh) * 2008-12-15 2011-11-16 斯奈克玛 用于监测航空发动机的数据标准化方法
US8484145B2 (en) 2008-12-15 2013-07-09 Snecma Standardizing data used for monitoring an aeroengine
WO2010076468A1 (fr) * 2008-12-15 2010-07-08 Snecma Standardisation de données utilisées pour la surveillance d'un moteur d'aéronef.
CN102246110B (zh) * 2008-12-15 2014-12-03 斯奈克玛 用于监测航空发动机的数据标准化方法和系统
EP2239441A3 (de) * 2009-03-31 2014-02-26 General Electric Company Verfahren und Systeme zur virtuellen Sensorauswahl und Mischung
EP2241726A3 (de) * 2009-04-09 2013-09-18 General Electric Company Reparaturverfahren von einem Triebwerk und entsprechende Anordnungen zum Überwachen dieses Triebwerkes
US8862433B2 (en) 2010-05-18 2014-10-14 United Technologies Corporation Partitioning of turbomachine faults
EP2543852A3 (de) * 2011-07-07 2013-08-07 Air China Limited Verfahren zur Bemessung der Leistung eines Hilfsgenerators
AU2012204020B2 (en) * 2011-07-07 2015-02-05 Air China Limited Method for detecting the performance of auxiliary power unit
CN102866014B (zh) * 2011-07-07 2016-02-10 中国国际航空股份有限公司 辅助动力单元的性能检测方法
CN102866014A (zh) * 2011-07-07 2013-01-09 中国国际航空股份有限公司 辅助动力单元的性能检测方法
CN102866014B8 (zh) * 2011-07-07 2017-04-12 中国国际航空股份有限公司 辅助动力单元的性能检测方法
CN104343476A (zh) * 2013-07-24 2015-02-11 中国国际航空股份有限公司 飞机辅助动力单元涡轮效率监控方法和装置
EP3182342A1 (de) * 2015-12-15 2017-06-21 General Electric Company Gleichzeitige datenaufzeichnung und zuverlässigkeitsmodellierung mit turbomaschinendienstausfall
EP3591172A1 (de) * 2018-07-03 2020-01-08 United Technologies Corporation Flugzeugkomponentenqualifikationssystem und -verfahren
US11755791B2 (en) 2018-07-03 2023-09-12 Rtx Corporation Aircraft component qualification system and process
CN110391840A (zh) * 2019-09-17 2019-10-29 中国人民解放军国防科技大学 太阳同步轨道卫星遥测参数异常判断方法和系统

Also Published As

Publication number Publication date
JP2002180851A (ja) 2002-06-26
US6466858B1 (en) 2002-10-15
EP1204076A3 (de) 2005-09-14
US6532412B2 (en) 2003-03-11
US20020193933A1 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
US6466858B1 (en) Methods and apparatus for monitoring gas turbine engine operation
CA2558919C (en) Model-based iterative estimation of gas turbine engine component qualities
US7020595B1 (en) Methods and apparatus for model based diagnostics
US6502085B1 (en) Methods and systems for estimating engine faults
EP2149824B1 (de) Verfahren und Systeme zur Schätzung der Betriebsparameter eines Motors
EP2900986B1 (de) Echtzeit-modellbasierte verdichtersteuerung
EP1811133B1 (de) Steuerungssystem mit Sensordiagnose mittels eines Qualitätsparametermodells
EP2388672B1 (de) Identifikation von Turbomaschinen-Fehlern
EP3705726B1 (de) Anwendung von maschinenlernen zum verarbeiten hochfrequenter sensorsignale eines turbinenmotors
WO2014105232A2 (en) Model based engine inlet condition estimation
JP6342529B2 (ja) エンジン試験セル解析および診断を生成するための自動化されたシステムおよび方法
JP2009041565A (ja) モデルベースのセンサ障害検出及び分離用システム及び方法
CN110647052B (zh) 一种变循环发动机模式切换自适应身份证模型构建方法
Kim et al. Diagnostics using a physics-based engine model in aero gas turbine engine verification tests
CN110362065B (zh) 一种航空发动机防喘控制系统的状态诊断方法
JP5845705B2 (ja) ガスタービン性能推定装置
Goebel Decision forgetting and decision smoothing for diagnostic decision fusion in systems with redundant information
Xia Engine health monitoring based on remote diagnostics
CN117540246A (zh) 涡扇发动机执行机构故障诊断和识别方法及装置
Indarti et al. Integration of Technology Capability for Performance Diagnostics of MS7001EA Using PYTHIA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02C 9/00 B

Ipc: 7G 05B 23/02 B

Ipc: 7G 07C 3/00 A

17P Request for examination filed

Effective date: 20060314

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060817

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090630