EP1200724B1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine Download PDF

Info

Publication number
EP1200724B1
EP1200724B1 EP00951259A EP00951259A EP1200724B1 EP 1200724 B1 EP1200724 B1 EP 1200724B1 EP 00951259 A EP00951259 A EP 00951259A EP 00951259 A EP00951259 A EP 00951259A EP 1200724 B1 EP1200724 B1 EP 1200724B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal combustion
speed
changeover
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00951259A
Other languages
German (de)
French (fr)
Other versions
EP1200724A1 (en
Inventor
Michael Oder
Werner Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1200724A1 publication Critical patent/EP1200724A1/en
Application granted granted Critical
Publication of EP1200724B1 publication Critical patent/EP1200724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the invention relates to a method for operating a Internal combustion engine, in particular of a motor vehicle, at the fuel in at least one first operating mode during a suction phase or in a second operating mode directly into a combustion chamber during a compression phase is injected and depending on the Operating mode controlled and / or regulated differently becomes. Furthermore, the invention relates to a device for operating an internal combustion engine, in particular one Motor vehicle, with means in at least a first Operating mode during a suction phase or in a second Operating mode during a compression phase fuel inject directly into a combustion chamber and other means, which depending on the operating mode Control and / or regulate the internal combustion engine differently.
  • the first operating mode is a so-called Shift operation and as a second operating mode a so-called Differentiated homogeneous operation.
  • the shift operation is used especially for small to medium loads, during the homogeneous operation at larger, at the Internal loads applied to the internal combustion engine.
  • the internal combustion engine is with an injector, with the fuel either in a first operating mode during a compression phase or in a second operating mode during an intake phase can be injected directly into a combustion chamber. Furthermore is a control device is provided for switching between the two operating modes and for different control and / or regulation in the two operating modes of the actual moment the operating variables influencing the internal combustion engine depending on a target torque. A change in the actual moment during a switchover process, the Control unit is determined and depending on it at least one of the operating variables from the control unit affected.
  • the present invention is based on the object To create methods of the generic type with which the Switching process between the operating modes is improved.
  • the particularly great advantage of the present invention lies in that a smooth switchover with simple means between the operating modes over the entire service life an internal combustion engine is reached.
  • Figure 1 shows a schematic representation of a Internal combustion engine with a control unit.
  • FIG. 2 shows a block diagram of a Embodiment of an inventive Speed control.
  • Figure 3 shows an embodiment in more detail a speed control according to the invention.
  • the 1 shows an internal combustion engine 1, in which a piston 2 in a cylinder 3 back and forth is movable.
  • the cylinder 3 has a combustion chamber 4 provided, on the valves 5, an intake pipe 6 and a Exhaust pipe 7 are connected.
  • the Combustion chamber 4 can be controlled with a signal TI Injector 8 and a controllable with a signal ZW Associated with spark plug 9.
  • the intake pipe 6 is with an air mass sensor 10 and that Exhaust pipe 7 can be provided with a lambda sensor 11.
  • the air mass sensor 10 measures the air mass of the Intake pipe 6 supplied fresh air and generated in Depending on this, a signal LM.
  • the lambda sensor 11 measures the oxygen content of the exhaust gas in the exhaust pipe 7 and generates a signal ⁇ depending on this.
  • a throttle valve 12 is accommodated in the intake pipe 6, whose rotary position is adjustable by means of a signal DK.
  • the throttle valve 12 becomes wide open.
  • the fuel is supplied from the injection valve 8 during one caused by the piston 2 Compression phase injected into the combustion chamber 4. Then it will be using the spark plug 9 ignites the fuel so that the piston 2 in the now following work phase by the Expansion of the ignited fuel is driven.
  • the homogeneous operation of the Internal combustion engine 1 the throttle valve 12 in Dependence on the desired air mass supplied partially opened or closed.
  • the fuel is from the injection valve 8 during a through the piston 2 induced suction phase injected into the combustion chamber 4.
  • the air sucked in at the same time injected fuel swirled and thus in the Combustion chamber 4 is distributed substantially uniformly.
  • the fuel-air mixture during the compression phase compressed to be ignited by the spark plug 9. Due to the expansion of the ignited fuel Piston 2 driven.
  • the driven piston In shift operation as well as in homogeneous operation, the driven pistons a crankshaft 14 in a Rotational movement over which ultimately the wheels of the Motor vehicle are driven.
  • the crankshaft 14 is assigned a speed sensor 15 which is a function of the rotational movement of the crankshaft 14 generates a signal N.
  • Fuel mass is in particular from a control unit 16 with a view to low fuel consumption and / or controlled low pollutant development and / or regulated.
  • the control unit 16 is equipped with a Microprocessor provided in a storage medium, a program in particular in a read-only memory (ROM) stored, which is suitable for the entire Control and / or regulation to perform.
  • ROM read-only memory
  • the control unit 16 is acted upon by input signals, the operating variables measured by sensors Represent internal combustion engine.
  • the operating variables measured by sensors Represent internal combustion engine For example, that is Control unit 16 with the air mass sensor 10, the lambda sensor 11 and the speed sensor 15 connected.
  • the a signal FP generates the position one of one Driver actuated accelerator pedal and thus that of the driver indicates requested moment.
  • the control unit 16 generates Output signals with which the behavior of the Internal combustion engine 1 according to the desired control and / or regulation can be influenced.
  • Block 16 represents schematically the control unit of the internal combustion engine 1.
  • the inside of the blocks shown in block 16 are usually in the Control unit implemented as software functions.
  • Block 19 is also at its input by one Speed signal N applied.
  • the exit of block 19 acts on a comparison body 21.
  • the comparison body 21 is also acted upon by the speed signal N.
  • the speed difference ⁇ N is made the target speed N_SOLL and the actual speed N are formed.
  • the output of the comparator 19 becomes the speed controller 20 fed.
  • the output of the speed controller 20 applies a block 22 for torque coordination and implementation.
  • Other functions not shown here can also the receipt of the moment coordination and implementation 22 apply.
  • the output impacts one Accelerator pedal 17 also the block torque coordination and - implementation 22.
  • the output signals of block 22 are as Control variables supplied directly to the internal combustion engine 1.
  • the target speed N_SOLL predicts that during the switching process is used as a reference variable for speed control.
  • the target speed N_SOLL can, for example, from the Speed curve before the switchover N0 and from the current course of the target torque M of the internal combustion engine 1 are formed.
  • Control difference ⁇ N between from the predicted speed N_SOLL and the current speed N formed and the Speed controller 20 supplied.
  • the speed controller 20 has the Task, the deviations between the target speed N_SOLL and the actual speed N by forming a corresponding one Output variable or torque requirement for the Minimize internal combustion engine MU.
  • the moment request MU will be 22 in moment coordination and implementation further processed.
  • the moment coordination and implementation 22 has the task the different moment requests of the individual consumers and coordinate functions to get the required Derive control interventions for the internal combustion engine, wherein the main control variables are preferably the ignition angle ZW Throttle valve position DK and the injection time TI To be available.
  • the advantage of this approach is in that the individual power consumers regardless of current operating state of the internal combustion engine 1 their Requests for moments in moment coordination and implementation 22 can express. You do not need to intervene to take care of and don't need any information about the State of other functions. So that's a mutual Influencing the individual functions at the level of Command values excluded.
  • FIG. 3 shows the invention in more detail Speed control.
  • a block 15 for speed detection simultaneously applies a block 23 for differentiation of the speed signal and a block 24 for linear Extrapolation. With the help of blocks 23 and 24 Prediction of the target speed N_SOLL carried out.
  • the Output of the block linear extrapolation 24 acts on the Comparison point 21, which is simultaneously from the speed signal N is applied. In the comparison point 21 Speed difference ⁇ N formed.
  • the exit of the Comparison point 21 acts on an amplifier 25 which the speed difference ⁇ N amplified by a factor K.
  • the Output of the amplifier 25 becomes a switch at the same time 27 and a block 26 for ramp-off fed.
  • Block 27 is also added to block 18 applied.
  • the output of block 27 acts on the Moment coordination and implementation 22.
  • the speed controller 20 shown in Figure 2 is in this embodiment with the help of the reinforcement block 25, the block ramp down 26 and the block Switch 27 realized.
  • the blocks are the blocks 18 linear extrapolation 24 and switch 27 activated.
  • the ones from Speed sensor 15 detected speed N is in block 23 differentiated, creating a measure of the change in speed or the gradient of the speed dN at the output of block 23 is applied.
  • block 24 with the help of the detected change the speed dN by linear extrapolation from past Values of the speed N a future value of the speed N_SOLL formed.
  • the slope of the Extrapolation line through the gradient of the speed dN and the initial value of the extrapolation line for Switching time is with the help of past Speed values formed.
  • the torque to be output by the internal combustion engine 1 is constant is. This assumption is permissible here because the Switching processes usually only last a very short time.
  • the difference ⁇ N from the estimated speed N_SOLL and the speed sensor 15 currently determined speed N is formed.
  • the speed difference ⁇ N is then an amplifier 25 fed, which represents the ordinary speed controller.
  • a P controller has been selected here.
  • the determined speed difference ⁇ N is in the amplifier 25 strengthened.
  • the increased speed difference ⁇ N is in the case a switching process with the help of the switch 17 Moment coordination and implementation 22 as Torque request MU supplied.
  • the switch 17 is located during the switching process in the in FIG. 3 shown first position. After the switching process the switch 27 from the first to the second switching position brought, whereby block 26 is activated. With the help of Blocks 26 the ramped speed difference is ramped moved to zero. This prevents after the switching process by a hard shutdown of the Speed control causes a jerk or a jump in speed becomes. Before and after the switching process, the switch 17 brought into the second switching position, whereby reached is that the speed control is not during this time is active.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in wenigstens einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Kompressionsphase direkt in einen Brennraum eingespritzt wird und die in Abhängigkeit von der Betriebsart unterschiedlich gesteuert und/oder geregelt wird. Desweiteren betrifft die Erfindung eine Vorrichtung zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit Mitteln, die in wenigstens einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Kompressionsphase Kraftstoff direkt in einen Brennraum einspritzen und weiteren Mitteln, die in Abhängigkeit von der Betriebsart die Brennkraftmaschine unterschiedlich steuern und/oder regeln.The invention relates to a method for operating a Internal combustion engine, in particular of a motor vehicle, at the fuel in at least one first operating mode during a suction phase or in a second operating mode directly into a combustion chamber during a compression phase is injected and depending on the Operating mode controlled and / or regulated differently becomes. Furthermore, the invention relates to a device for operating an internal combustion engine, in particular one Motor vehicle, with means in at least a first Operating mode during a suction phase or in a second Operating mode during a compression phase fuel inject directly into a combustion chamber and other means, which depending on the operating mode Control and / or regulate the internal combustion engine differently.

Derartige Systeme zur direkten Einspritzung von Kraftstoff in den Brennraum einer Brennkraftmaschine sind allgemein bekannt. Es wird dabei als erste Betriebsart ein sog. Schichtbetrieb und als zweite Betriebsart ein sog. Homogenbetrieb unterschieden. Der Schichtbetrieb wird insbesondere bei kleinen bis mittleren Lasten verwendet, während der Homogenbetrieb bei größeren, an der Brennkraftmaschine anliegenden Lasten zur Anwendung kommt. Such systems for the direct injection of fuel in the combustion chamber of an internal combustion engine are general known. The first operating mode is a so-called Shift operation and as a second operating mode a so-called Differentiated homogeneous operation. The shift operation is used especially for small to medium loads, during the homogeneous operation at larger, at the Internal loads applied to the internal combustion engine.

Aus der noch unveröffentlichten Patentanmeldung DE 198 133 77 wird eine Brennkraftmaschine insbesondere für ein Kraftfahrzeug beschrieben. Die Brennkraftmaschine ist mit einem Einspritzventil versehen, mit dem Kraftstoff entweder in einer ersten Betriebsart während einer Verdichtungsphase oder in einer zweiten Betriebsart während einer Ansaugphase direkt in einen Brennraum einspritzbar ist. Desweiteren ist ein Steuergerät vorgesehen zur Umschaltung zwischen den beiden Betriebsarten und zur unterschiedlichen Steuerung und/oder Regelung in den beiden Betriebsarten der das Ist-Moment der Brennkraftmaschine beeinflussenden Betriebsgrößen in Abhängigkeit von einem Sollmoment. Eine Änderung des Ist-Moments während eines Umschaltvorgangs wird von dem Steuergerät ermittelt und in Abhängigkeit davon wird zumindest eine der Betriebsgrößen von dem Steuergerät beeinflußt.From the as yet unpublished patent application DE 198 133 77 becomes an internal combustion engine especially for a Motor vehicle described. The internal combustion engine is with an injector, with the fuel either in a first operating mode during a compression phase or in a second operating mode during an intake phase can be injected directly into a combustion chamber. Furthermore is a control device is provided for switching between the two operating modes and for different control and / or regulation in the two operating modes of the actual moment the operating variables influencing the internal combustion engine depending on a target torque. A change in the actual moment during a switchover process, the Control unit is determined and depending on it at least one of the operating variables from the control unit affected.

Beim Umschalten zwischen den beschriebenen Betriebsarten ist ein Rucken infolge einer Drehmomentenänderung der Brennkraftmaschine über die gesamte Lebensdauer der Brennkraftmaschine nicht ganz zu vermeiden. Insbesondere im unteren Drehzahl-/Lastbereich und im "kleinen Gang" ist ein Umschaltruck deutlich vom Fahrer spürbar, besonders, wenn durch die Momentenänderung der Brennkraftmaschine eine Schwingung im Antriebsstrang des Kraftfahrzeugs angeregt wird.When switching between the described operating modes a jerk due to a change in torque of the Internal combustion engine over the entire life of the Internal combustion engine cannot be avoided entirely. Especially in lower speed / load range and in "low gear" is a Switching jerk clearly noticeable by the driver, especially when by changing the torque of the internal combustion engine Vibrations in the drive train of the motor vehicle are excited becomes.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der gattungsgemäßen Art zu schaffen, mit dem der Umschaltvorgang zwischen den Betriebsarten verbessert wird.The present invention is based on the object To create methods of the generic type with which the Switching process between the operating modes is improved.

Die Aufgabe der vorliegenden Erfindung wird mit den Merkmalen des Anspruchs 1, 11 und 12 gelöst. The object of the present invention is achieved with the Features of claims 1, 11 and 12 solved.

Vorteile der ErfindungAdvantages of the invention

Der besonders große Vorteil der vorliegenden Erfindung liegt darin, daß mit einfachen Mitteln ein ruckfreies Umschalten zwischen den Betriebsarten über die gesamte Lebensdauer einer Brennkraftmaschine erreicht wird.The particularly great advantage of the present invention lies in that a smooth switchover with simple means between the operating modes over the entire service life an internal combustion engine is reached.

Weitere Vorteile der Erfindung ergeben sich in Verbindung mit den Unteransprüchen aus der nachfolgenden Beschreibung von Ausführungsbeispielen.Further advantages of the invention result in connection with the subclaims from the description below of embodiments.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are in the drawing shown and in the description below explained.

Die Figur 1 zeigt schematisch eine Darstellung einer Brennkraftmaschine mit einem Steuergerät.Figure 1 shows a schematic representation of a Internal combustion engine with a control unit.

Die Figur 2 zeigt ein Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Drehzahlregelung.FIG. 2 shows a block diagram of a Embodiment of an inventive Speed control.

Die Figur 3 zeigt detaillierter ein Ausführungsbeispiel einer erfindungsgemäßen Drehzahlregelung. Figure 3 shows an embodiment in more detail a speed control according to the invention.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der Figur 1 ist eine Brennkraftmaschine 1 dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, an den über Ventile 5 ein Ansaugrohr 6 und ein Abgasrohr 7 angeschlossen sind. Desweiteren sind dem Brennraum 4 ein mit einem Signal TI ansteuerbares Einspritzventil 8 und eine mit einem Signal ZW ansteuerbare Zündkerze 9 zugeordnet.1 shows an internal combustion engine 1, in which a piston 2 in a cylinder 3 back and forth is movable. The cylinder 3 has a combustion chamber 4 provided, on the valves 5, an intake pipe 6 and a Exhaust pipe 7 are connected. Furthermore, the Combustion chamber 4 can be controlled with a signal TI Injector 8 and a controllable with a signal ZW Associated with spark plug 9.

Das Ansaugrohr 6 ist mit einem Luftmassensensor 10 und das Abgasrohr 7 kann mit einem Lambdasensor 11 versehen sein. Der Luftmassensensor 10 mißt die Luftmasse der dem Ansaugrohr 6 zugeführten Frischluft und erzeugt in Abhängigkeit davon ein Signal LM. Der Lambdasensor 11 mißt den Sauerstoffgehalt des Abgases in dem Abgasrohr 7 und erzeugt in Abhängigkeit davon ein Signal λ.The intake pipe 6 is with an air mass sensor 10 and that Exhaust pipe 7 can be provided with a lambda sensor 11. The air mass sensor 10 measures the air mass of the Intake pipe 6 supplied fresh air and generated in Depending on this, a signal LM. The lambda sensor 11 measures the oxygen content of the exhaust gas in the exhaust pipe 7 and generates a signal λ depending on this.

In dem Ansaugrohr 6 ist eine Drosselklappe 12 untergebracht, deren Drehstellung mittels eines Signals DK einstellbar ist.A throttle valve 12 is accommodated in the intake pipe 6, whose rotary position is adjustable by means of a signal DK.

In einer ersten Betriebsart, dem Schichtbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 12 weit geöffnet. Der Kraftstoff wird von dem Einspritzventil 8 während einer durch den Kolben 2 hervorgerufenen Verdichtungsphase in den Brennraum 4 eingespritzt. Dann wird mit Hilfe der Zündkerze 9 der Kraftstoff entzündet, so daß der Kolben 2 in der nunmehr folgenden Arbeitsphase durch die Ausdehnung des entzündeten Kraftstoffs angetrieben wird.In a first operating mode, the shift operation of the Internal combustion engine 1, the throttle valve 12 becomes wide open. The fuel is supplied from the injection valve 8 during one caused by the piston 2 Compression phase injected into the combustion chamber 4. Then it will be using the spark plug 9 ignites the fuel so that the piston 2 in the now following work phase by the Expansion of the ignited fuel is driven.

In einer zweiten Betriebsart, dem Homogenbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 12 in Abhängigkeit von der erwünschten, zugeführten Luftmasse teilweise geöffnet bzw. geschlossen. Der Kraftstoff wird von dem Einspritzventil 8 während einer durch den Kolben 2 hervorgerufenen Ansaugphase in den Brennraum 4 eingespritzt. Durch die gleichzeitig angesaugte Luft wird der eingespritzte Kraftstoff verwirbelt und damit in dem Brennraum 4 im wesentlich gleichmäßig verteilt. Danach wird das Kraftstoff-Luft-Gemisch während der Verdichtungsphase verdichtet, um dann von der Zündkerze 9 entzündet zu werden. Durch die Ausdehnung des entzündeten Kraftstoffs wird der Kolben 2 angetrieben.In a second operating mode, the homogeneous operation of the Internal combustion engine 1, the throttle valve 12 in Dependence on the desired air mass supplied partially opened or closed. The fuel is from the injection valve 8 during a through the piston 2 induced suction phase injected into the combustion chamber 4. The air sucked in at the same time injected fuel swirled and thus in the Combustion chamber 4 is distributed substantially uniformly. After that the fuel-air mixture during the compression phase compressed to be ignited by the spark plug 9. Due to the expansion of the ignited fuel Piston 2 driven.

Im Schichtbetrieb wie auch im Homogenbetrieb wird durch den angetriebenen Kolben eine Kurbelwelle 14 in eine Drehbewegung versetzt, über die letztendlich die Räder des Kraftfahrzeugs angetrieben werden. Der Kurbelwelle 14 ist ein Drehzahlsensor 15 zugeordnet, der in Abhängigkeit von der Drehbewegung der Kurbelwelle 14 ein Signal N erzeugt.In shift operation as well as in homogeneous operation, the driven pistons a crankshaft 14 in a Rotational movement over which ultimately the wheels of the Motor vehicle are driven. The crankshaft 14 is assigned a speed sensor 15 which is a function of the rotational movement of the crankshaft 14 generates a signal N.

Die im Schichtbetrieb und im Homogenbetrieb von dem Einspritzventil 8 in den Brennraum 4 eingespritzte Kraftstoffmasse wird von einem Steuergerät 16 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 16 mit einem Mikroprozessor versehen, der in einen Speichermedium, insbesondere in einem Read-Only-Memory (ROM) ein Programm abgespeichert hat, das dazu geeignet ist, die gesamte Steuerung und/oder Regelung durchzuführen.The in the shift operation and in the homogeneous operation of the Injection valve 8 injected into the combustion chamber 4 Fuel mass is in particular from a control unit 16 with a view to low fuel consumption and / or controlled low pollutant development and / or regulated. For this purpose, the control unit 16 is equipped with a Microprocessor provided in a storage medium, a program in particular in a read-only memory (ROM) stored, which is suitable for the entire Control and / or regulation to perform.

Das Steuergerät 16 ist von Eingangssignalen beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine darstellen. Beispielsweise ist das Steuergerät 16 mit dem Luftmassensensor 10, dem Lambdasensor 11 und dem Drehzahlsensor 15 verbunden. Desweiteren ist das Steuergerät 16 mit einem Fahrpedalsensor 17 verbunden, der ein Signal FP erzeugt, daß die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das von dem Fahrer angeforderte Moment angibt. Das Steuergerät 16 erzeugt Ausgangssignale, mit denen über Aktoren das Verhalten der Brennkraftmaschine 1 entsprechend der erwünschten Steuerung und/oder Regelung beeinflußt werden kann. Beispielsweise ist das Steuergerät 16 mit dem Einspritzventil 8, der Zündkerze 9 und der Drosselklappe 12 verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale TI, ZW und DK.The control unit 16 is acted upon by input signals, the operating variables measured by sensors Represent internal combustion engine. For example, that is Control unit 16 with the air mass sensor 10, the lambda sensor 11 and the speed sensor 15 connected. Furthermore, that is Control unit 16 connected to an accelerator pedal sensor 17, the a signal FP generates the position one of one Driver actuated accelerator pedal and thus that of the driver indicates requested moment. The control unit 16 generates Output signals with which the behavior of the Internal combustion engine 1 according to the desired control and / or regulation can be influenced. For example the control unit 16 with the injection valve 8, the spark plug 9 and the throttle valve 12 connected and generates the their control required signals TI, ZW and DK.

Die Figur 2 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Block 16 stellt schematisch das Steuergerät der Brennkraftmaschine 1 dar. Die innerhalb des Blocks 16 dargestellten Blöcke werden i.d.R. im Steuergerät als Softwarefunktionen realisiert. Üblicherweise sind eine Vielzahl mehr an Softwarefunktionen in einem Steuergerät 16 realisiert, der Übersicht halber sind hier nur einige erfindungswesentliche Funktionen dargestellt. Prinzipiell ist es auch möglich die dargestellten Funktionen als reine Hardware zu realisieren.Figure 2 shows an embodiment of the inventive method. Block 16 represents schematically the control unit of the internal combustion engine 1. The inside of the blocks shown in block 16 are usually in the Control unit implemented as software functions. Usually are a multitude of more software functions in one Control unit 16 realized, for the sake of clarity are here only some functions essential to the invention are shown. In principle, the functions shown are also possible to be implemented as pure hardware.

Ein Block 18 zur Erkennung eines Umschaltvorgangs beaufschlagt, bzw. aktiviert einen Block 19 zur Prädiktion der Soll-Drehzahl N_SOLL und einen Block 20 zur Regelung der Drehzahl N. Block 19 wird an seinem Eingang auch von einem Drehzahlsignal N beaufschlagt. Der Ausgang des Blocks 19 beaufschlagt eine Vergleichsstelle 21. Die Vergleichsstelle 21 wird zusätzlich auch vom Drehzahlsignal N beaufschlagt. In der Vergleichsstelle 19 wird die Drehzahldifferenz ΔN aus der Soll-Drehzahl N_SOLL und der Ist-Drehzahl N gebildet. Der Ausgang der Vergleichsstelle 19 wird dem Drehzahlregler 20 zugeführt. Der Ausgang des Drehzahlreglers 20 beaufschlagt einen Block 22 zur Momentenkoordination und - umsetzung. Weitere hier nicht dargestellte Funktionen können auch den Eingang der Momentenkoordination und -umsetzung 22 beaufschlagen. Beispielsweise beaufschlagt der Ausgang eines Fahrpedals 17 auch den Block Momentenkoordination und - umsetzung 22. Die Ausgangssignale des Blocks 22 werden als Stellgrößen direkt der Brennkraftmaschine 1 zugeführt.A block 18 to detect a switchover acted upon or activated a block 19 for prediction the target speed N_SOLL and a block 20 for controlling the Speed N. Block 19 is also at its input by one Speed signal N applied. The exit of block 19 acts on a comparison body 21. The comparison body 21 is also acted upon by the speed signal N. In the comparison point 19, the speed difference ΔN is made the target speed N_SOLL and the actual speed N are formed. The output of the comparator 19 becomes the speed controller 20 fed. The output of the speed controller 20 applies a block 22 for torque coordination and implementation. Other functions not shown here can also the receipt of the moment coordination and implementation 22 apply. For example, the output impacts one Accelerator pedal 17 also the block torque coordination and - implementation 22. The output signals of block 22 are as Control variables supplied directly to the internal combustion engine 1.

Wird ein Umschaltvorgang von einer Betriebsart in die andere erkannt, so erzeugt Block 18 ein Signal, wodurch die Blöcke 19 und 20 aktiviert werden. Im Block 19 wird die Soll-Drehzahl N_SOLL prädiziert, die während des Umschaltvorgangs als Führungsgröße für die Drehzahlregelung verwendet wird. Die Soll-Drehzahl N_SOLL kann beispeilsweise aus dem Drehzahlverlauf vor der Umschaltung N0 sowie aus dem aktuellen Verlauf des Sollmomentes M der Brennkraftmaschine 1 gebildet werden. In der Vergleichssstelle 21 wird die Regeldifferenz ΔN zwischen aus der prädizierten Drehzahl N_SOLL und der aktuellen Drehzahl N gebildet und dem Drehzahlregler 20 zugeführt. Der Drehzahlregler 20 hat die Aufgabe, die Abweichungen zwischen der Soll-Drehzahl N_SOLL und der Ist-Drehzahl N durch Bilden einer entsprechenden Ausgangsgröße bzw. Momentenanforderung an die Brennkraftmaschine MU zu minimieren. Die Momentenanforderung MU wird in der Momentenkoordination und -umsetzung 22 weiterverarbeitet.Will a switch from one mode to another detected, block 18 generates a signal, causing the blocks 19 and 20 can be activated. In block 19, the target speed N_SOLL predicts that during the switching process is used as a reference variable for speed control. The target speed N_SOLL can, for example, from the Speed curve before the switchover N0 and from the current course of the target torque M of the internal combustion engine 1 are formed. In the comparison point 21 Control difference ΔN between from the predicted speed N_SOLL and the current speed N formed and the Speed controller 20 supplied. The speed controller 20 has the Task, the deviations between the target speed N_SOLL and the actual speed N by forming a corresponding one Output variable or torque requirement for the Minimize internal combustion engine MU. The moment request MU will be 22 in moment coordination and implementation further processed.

Die Momentenkoordination und -umsetzung 22 hat die Aufgabe, die verschiedenen Momentenwünsche der einzelnen Verbraucher und Funktionen zu koordinieren, um daraus die erforderlichen Stelleingriffe für die Brennkraftmaschine abzuleiten, wobei als Hauptstellgrößen vorzugsweise der Zündwinkel ZW, die Drosselklappenstellung DK und die Einspritzzeit TI zur Verfügung stehen. Der Vorteil dieser Vorgehensweise liegt darin, daß die einzelnen Leistungsverbraucher unabhängig vom aktuellen Betriebszustand der Brennkraftmaschine 1 ihren Momentenwunsch an die Momentenkoordination und -umsetzung 22 äußern können. Sie brauchen sich um den Stelleingriff nicht zu kümmern und benötigen auch keine Informationen über den Zustand anderer Funktionen. Damit ist eine gegenseitige Beeinflussung der einzelnen Funktionen auf Ebene der Stellgrößen ausgeschlossen.The moment coordination and implementation 22 has the task the different moment requests of the individual consumers and coordinate functions to get the required Derive control interventions for the internal combustion engine, wherein the main control variables are preferably the ignition angle ZW Throttle valve position DK and the injection time TI To be available. The advantage of this approach is in that the individual power consumers regardless of current operating state of the internal combustion engine 1 their Requests for moments in moment coordination and implementation 22 can express. You do not need to intervene to take care of and don't need any information about the State of other functions. So that's a mutual Influencing the individual functions at the level of Command values excluded.

Die Figur 3 stellt detaillierter die erfindungsgemäße Drehzahlregelung dar. Ein Block 15 zur Drehzahlerfassung beaufschlagt gleichzeitig einen Block 23 zur Differenzierung des Drehzahlsignals und einen Block 24 zur linearen Extrapolation. Mit Hilfe der Blöcke 23 und 24 wird die Prädiktion der Soll-Drehzahl N_SOLL durchgeführt. Der Ausgang des Blocks lineare Extrapolation 24 beaufschlagt die Vergleichsstelle 21, die gleichzeitig vom Drehzahlsignal N beaufschlagt wird. In der Vergleichsstelle 21 wird die Drehzahldifferenz ΔN gebildet. Der Ausgang der Vergleichsstelle 21 beaufschlagt einen Verstärker 25, der die Drehzahldifferenz ΔN um einen Faktor K verstärkt. Der Ausgang des Verstärkers 25 wird gleichzeitig einem Schalter 27 und einem Block 26 zum rampenförmigen Abschalten zugeführt. Der Block 27 wird zusätzlich von Block 18 beaufschlagt. Der Ausgang des Blocks 27 beaufschlagt die Momentenkoordination und -umsetzung 22.Figure 3 shows the invention in more detail Speed control. A block 15 for speed detection simultaneously applies a block 23 for differentiation of the speed signal and a block 24 for linear Extrapolation. With the help of blocks 23 and 24 Prediction of the target speed N_SOLL carried out. The Output of the block linear extrapolation 24 acts on the Comparison point 21, which is simultaneously from the speed signal N is applied. In the comparison point 21 Speed difference ΔN formed. The exit of the Comparison point 21 acts on an amplifier 25 which the speed difference ΔN amplified by a factor K. The Output of the amplifier 25 becomes a switch at the same time 27 and a block 26 for ramp-off fed. Block 27 is also added to block 18 applied. The output of block 27 acts on the Moment coordination and implementation 22.

Der in der Figur 2 dargestellte Drehzahlregler 20 wird in diesem Ausführungsbeispiel mit Hilfe des Verstärkungsblocks 25, des Blocks rampenförmiges Abschalten 26 und des Blocks Schalter 27 realisiert.The speed controller 20 shown in Figure 2 is in this embodiment with the help of the reinforcement block 25, the block ramp down 26 and the block Switch 27 realized.

Wird zu einem bestimmten Zeitpunkt ein Umschaltvorgang eingeleitet, so werden mit Hilfe des Blocks 18 die Blöcke lineare Extrapolation 24 und Schalter 27 aktiviert. Die vom Drehzahlsensor 15 erfaßte Drehzahl N wird im Block 23 differenziert, wodurch ein Maß für die Änderung der Drehzahl bzw. des Gradienten der Drehzahl dN am Ausgang des Blocks 23 anliegt. Im Block 24 wird mit Hilfe der erfaßten Änderung der Drehzahl dN durch lineare Extrapolation von vergangenen Werten der Drehzahl N ein zukünftiger Wert der Drehzahl N_SOLL gebildet. Hierbei wird die Steigung der Extrapolationsgeraden durch den Gradienten der Drehzahl dN und der Ausgangswert der Extrapolationsgeraden zum Umschaltzeitpunkt wird mit Hilfe von vergangenen Drehzahlwerten gebildet. Hierbei wird jedoch angenommen, daß das von der Brennkraftmaschine 1 abzugebende Moment konstant ist. Diese Annahme ist hier zulässig, da die Umschaltvorgänge i.d.R. nur eine sehr kurze Zeit andauern.Becomes a switching operation at a certain time initiated, so the blocks are the blocks 18 linear extrapolation 24 and switch 27 activated. The ones from Speed sensor 15 detected speed N is in block 23 differentiated, creating a measure of the change in speed or the gradient of the speed dN at the output of block 23 is applied. In block 24 with the help of the detected change the speed dN by linear extrapolation from past Values of the speed N a future value of the speed N_SOLL formed. Here, the slope of the Extrapolation line through the gradient of the speed dN and the initial value of the extrapolation line for Switching time is with the help of past Speed values formed. However, it is assumed that the torque to be output by the internal combustion engine 1 is constant is. This assumption is permissible here because the Switching processes usually only last a very short time.

In der Vergleichsstelle 21 wird die Differenz ΔN aus der geschätzten Drehzahl N_SOLL und die vom Drehzahlsensor 15 aktuell ermittelte Drehzahl N gebildet. Die Drehzahldifferenz ΔN wird anschließend einem Verstärker 25 zugeführt, der den eingentlichen Drehzahlregler darstellt. Hier ist beispielsweise ein P-Regler gewählt worden.In the comparison point 21, the difference ΔN from the estimated speed N_SOLL and the speed sensor 15 currently determined speed N is formed. The The speed difference ΔN is then an amplifier 25 fed, which represents the ordinary speed controller. For example, a P controller has been selected here.

Im Verstärker 25 wird die ermittelte Drehzahldifferenz ΔN verstärkt. Die verstärkte Drehzahldifferenz ΔN wird im Falle eines Umschaltvorganges mit Hilfe des Schalters 17 der Momentenkoordination und -umsetzung 22 als Momentenanforderung MU zugeführt. Der Schalter 17 befindet sich während des Umschaltvorgangs in der in Figur 3 dargestellten ersten Stellung. Nach dem Umschaltvorgang wird der Schalter 27 von der ersten in die zweite Schaltstellung gebracht, wodurch Block 26 aktiviert wird. Mit Hilfe des Blocks 26 wird die verstärkte Drehzahldifferenz rampenförmig auf den Wert Null gefahren. Hierdurch wird verhindert, daß nach des Umschaltvorgangs durch eine harte Abschaltung der Drehzahlregelung ein Ruck bzw. ein Drehzahlsprung verursacht wird. Vor und nach dem Umschaltvorgang wird der Schalter 17 in die zweite Schaltstellung gebracht, wodurch erreicht wird, daß die Drehzahlregelung während dieser Zeit nicht aktiv ist.The determined speed difference ΔN is in the amplifier 25 strengthened. The increased speed difference ΔN is in the case a switching process with the help of the switch 17 Moment coordination and implementation 22 as Torque request MU supplied. The switch 17 is located during the switching process in the in FIG. 3 shown first position. After the switching process the switch 27 from the first to the second switching position brought, whereby block 26 is activated. With the help of Blocks 26 the ramped speed difference is ramped moved to zero. This prevents after the switching process by a hard shutdown of the Speed control causes a jerk or a jump in speed becomes. Before and after the switching process, the switch 17 brought into the second switching position, whereby reached is that the speed control is not during this time is active.

Claims (12)

  1. Method for operating an internal combustion engine (1), in particular of a motor vehicle, in which fuel is injected directly into a combustion space (4) during an intake phase in at least one first operating mode or during a compression phase in a second operating mode, the internal combustion engine being controlled and/or regulated differently as a function of the operating mode, characterized in that, during a changeover operation between two operating modes, the rotational speed N of the internal combustion engine (1) is regulated.
  2. Method according to Claim 1, characterized in that, during the changeover operation, a desired rotational speed N_SOLL is determined from the profile of an actual rotational speed prior to the changeover operation NO and from the profile of desired torque M_SOLL.
  3. Method according to Claim 2, characterized in that the desired torque M_SOLL is assumed to be constant (M_SOLL = const.).
  4. Method according to Claim 3, characterized in that the desired rotational speed N_SOLL is determined by linear extrapolation of the actual rotational speed prior to the changeover operation N0.
  5. Method according to Claim 4, characterized in that the slope of an extrapolation straight line is formed by a rotational-speed gradient dN prior to the changeover, and the initial value of the extrapolation straight line at the changeover point is formed with the aid of past rotational speed values.
  6. Method according to Claim 1, characterized in that the rotational speed N of the internal combustion engine (1) is regulated with the aid of a proportional controller (20).
  7. Method according to Claim 6, characterized in that the rotational-speed controller (20) is switched on at the commencement of a changeover and is switched off after the end of the changeover, as soon as stationary conditions prevail.
  8. Method according to Claim 7, characterized in that the manipulated variable at the rotational-speed controller output is moved in the form of a ramp to zero after the rotational-speed controller (20) is switched off.
  9. Method according to Claim 6, characterized in that the manipulated variable or output variable of the rotational-speed controller (20) is supplied as a torque requirement to a torque coordination and changeover (22).
  10. Method according to Claim 9, characterized in that the torque coordination and changeover (22) converts the torque requirement MU into corresponding values of the influencing variables (TI,ZW,DK) of the internal combustion engine (1) as a function of the current operating mode.
  11. Computer program for use in a method according to one of Claims 1 to 10, which, during a run-off on a computer, can execute at least one of the steps according to Claims 1 to 9.
  12. Device for operating an internal combustion engine (1), in particular of a motor vehicle, with means which inject fuel directly into a combustion space (4) during an intake phase in at least one first operating mode or during a compression phase in a second operating mode, and with further means which control and/or regulate the internal combustion engine (1) differently as a function of the operating mode, characterized in that, during a changeover operation between two operating modes, means regulate the rotational speed N of the internal combustion engine (1).
EP00951259A 1999-07-08 2000-07-05 Method for controlling an internal combustion engine Expired - Lifetime EP1200724B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19931826A DE19931826B4 (en) 1999-07-08 1999-07-08 Method for controlling an internal combustion engine
DE19931826 1999-07-08
PCT/DE2000/002198 WO2001004482A1 (en) 1999-07-08 2000-07-05 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1200724A1 EP1200724A1 (en) 2002-05-02
EP1200724B1 true EP1200724B1 (en) 2004-05-19

Family

ID=7914081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951259A Expired - Lifetime EP1200724B1 (en) 1999-07-08 2000-07-05 Method for controlling an internal combustion engine

Country Status (4)

Country Link
EP (1) EP1200724B1 (en)
DE (2) DE19931826B4 (en)
ES (1) ES2221621T3 (en)
WO (1) WO2001004482A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038991A1 (en) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Method and device for controlling an operating variable of an internal combustion engine
DE10232327A1 (en) * 2002-05-17 2003-11-27 Daimler Chrysler Ag Motor vehicle operating method for vehicle drive unit uses a first differential speed fed to a control unit as an input value and a pilot value added to an output value
DE102005046751B4 (en) * 2005-09-29 2009-04-16 Continental Automotive Gmbh Method and device for controlling an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039435C2 (en) * 1980-10-18 1984-03-22 Robert Bosch Gmbh, 7000 Stuttgart Device for regulating the idling speed of internal combustion engines
JPH04370343A (en) * 1991-06-19 1992-12-22 Fuji Heavy Ind Ltd Idle rotation speed control device for two-cycle engine
DE19631986A1 (en) * 1996-08-08 1998-02-12 Bosch Gmbh Robert Control unit for vehicle direct injection IC petrol engine
DE19751100A1 (en) * 1996-11-20 1998-06-04 Hitachi Ltd Torque fluctuations suppression arrangement for combustion engine
DE19719760A1 (en) * 1997-05-10 1998-11-12 Bosch Gmbh Robert System for operating a direct-injection internal combustion engine, in particular a motor vehicle
JP3541661B2 (en) * 1997-12-17 2004-07-14 日産自動車株式会社 Engine torque control device
DE19813377A1 (en) * 1998-03-26 1999-10-07 Bosch Gmbh Robert Method for operating an internal combustion engine
JP3654010B2 (en) * 1998-10-19 2005-06-02 日産自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
DE19931826A1 (en) 2001-01-18
DE50006516D1 (en) 2004-06-24
ES2221621T3 (en) 2005-01-01
WO2001004482A1 (en) 2001-01-18
EP1200724A1 (en) 2002-05-02
DE19931826B4 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
DE19728112A1 (en) System for operating an internal combustion engine, in particular a motor vehicle
EP1015749B1 (en) Method for operating an internal combustion engine
EP0953103B1 (en) Method for starting an internal combustion engine
DE19813381A1 (en) Method for operating an internal combustion engine, in particular a motor vehicle
EP1066458B1 (en) Method of operation for an internal combustion engine
EP0995026B1 (en) Method for operating an internal combustion engine
WO2007036411A1 (en) Process and device for controlling an internal combustion engine
EP1003960B1 (en) Method for operating an internal combustion engine
EP1200724B1 (en) Method for controlling an internal combustion engine
EP1099051B1 (en) Method for operating an internal combustion engine
DE19741565A1 (en) Internal combustion engine control method
EP1099052B1 (en) Method for operating an internal combustion engine
DE102014220400B4 (en) Method and control device for determining a torque reserve
EP1184557B1 (en) Method for operating an internal combustion engine of a motor vehicle
EP1300574A2 (en) Method and Apparatus for Controlling an Internal Combustion Engine during Changeover between two Combustion Modes
EP1184553B1 (en) Method and apparatus to operate an internal combustion engine with direct injection
EP1032757B1 (en) Method for operating an internal combustion engine, especially an internal combustion engine in a motor vehicle
EP1186765B1 (en) Method for controlling an engine during a regeneration cycle
DE19751928A1 (en) Operating method for internal combustion engine, especially vehicle engine
EP1325221B1 (en) Method for controlling or regulating the behaviour of an internal combustion engine
DE102006020523A1 (en) Method for operating internal combustion engine in at least two different operating modes entails controlling internal combustion engine in dependence upon recorded actual torque at least during change into another operating mode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006516

Country of ref document: DE

Date of ref document: 20040624

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2221621

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130926

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006516

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140705

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006516

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140706