EP1198820B1 - X-ray anode - Google Patents

X-ray anode Download PDF

Info

Publication number
EP1198820B1
EP1198820B1 EP00958290A EP00958290A EP1198820B1 EP 1198820 B1 EP1198820 B1 EP 1198820B1 EP 00958290 A EP00958290 A EP 00958290A EP 00958290 A EP00958290 A EP 00958290A EP 1198820 B1 EP1198820 B1 EP 1198820B1
Authority
EP
European Patent Office
Prior art keywords
ray
anode
diamond
ray anode
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00958290A
Other languages
German (de)
French (fr)
Other versions
EP1198820A1 (en
Inventor
Matthias Fryda
Lothar Schaefer
Thorsten Matthee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1198820A1 publication Critical patent/EP1198820A1/en
Application granted granted Critical
Publication of EP1198820B1 publication Critical patent/EP1198820B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating

Definitions

  • the invention relates to an x-ray anode.
  • the X-ray anode according to the invention is preferably used in X-ray apparatus in which the highest possible radiation intensity is required. Particularly preferred is the use in X-ray microscopes, in which a high radiation intensity ensures highest resolutions.
  • X-radiation In the generation of X-radiation is usually applied metallic anode material with electrons.
  • the radiation produced by characteristic electronic transitions leaves the apparatus through a transparent window for the X-ray radiation.
  • X-ray generation is carried out to avoid absorption at low gas pressures.
  • the transparent window serves to separate the low pressure area from the outside area.
  • US Pat. No. 5,173,612 proposes the use of a diamond window of a few 10 ⁇ m in thickness.
  • thicker diamond windows precipitate because of the increased absorption by diamond, these thin diamond windows are subject to considerable mechanical problems.
  • the thin diamond windows can barely withstand the pressure difference of approximately 10 5 Pa between the low-pressure area and the outside area and must be stabilized by appropriate webs.
  • microfocus sources in which the anode material is located as a layer on a Berylliumienster, and in which the anode is acted upon with a highly focused as possible electron beam.
  • the anode moves closer to the subject in optical imaging and the optical resolution can be increased. The resolution is all the better, the sharper the electron beam acting on the anode is focused on the anode. Neglecting diffraction phenomena, a pointy focus on the anode would be ideal. In the case of a punctiform focus, however, the problem arises that the energy coupled in by the electron bombardment leads to a melting and / or evaporation of the materials and thus to a decrease in their service life.
  • the anode To compensate for the evaporation of anode material, the anode must be made thicker. However, a thick anode causes the X-radiation to be absorbed by the anode material itself. The choice of a thicker beryllium window is eliminated for the same reason. In addition, this solution has the considerable disadvantage that it may come to mechanical problems due to the existing pressure differences, in which the microfocus source can easily burst. This is, however, with the toxic beryllium particularly disadvantageous and leads to a breakage of the microfocus source because of the then required safety measures to secure the staff to undesirable service life of the apparatus. For these reasons, a punctiform focus according to the prior art is only limited possible.
  • the invention is based on the technical problem of providing an X-ray anode which avoids the disadvantages of the prior art as far as possible.
  • the X-ray anode should be harmless to health and in particular allow to work with a much smaller focus than in the prior art.
  • diamond windows are also suitable from 50 microns to 1000 microns thick, and more preferably between 300 microns to 700 microns thick. With such thicknesses, efficient removal of heat and good mechanical stability is ensured.
  • a polycrystalline diamond substrate or diamond window and also a window made of a single crystal can be used.
  • a polycrystalline diamond substrate can be produced particularly easily by chemical vapor deposition (CVD), for example by hot-wire CVD or microwave CVD. This also allows the production of large diamond substrates at moderate prices.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the thickness of the anode material is preferably in the range between 1 ⁇ m and 25 ⁇ m, more preferably in the range between 3 ⁇ m and 12 ⁇ m, and best at 6 ⁇ m.
  • the layers do not have to have constant thicknesses. By this is meant that, for example, in the case of a disc-shaped microfocus source, the slice thickness need not be uniform. For example, the disc may have a greater thickness at the edges.
  • the thicknesses given above for the layers are therefore to be understood as being thicknesses in the focus area.
  • a temperature sensor can be provided for the X-ray anode according to the invention.
  • An elegant way to do this is to use the diamond window as a thermistor, i. in the exploitation of the temperature dependence of the electrical resistance of the diamond window. After appropriate calibration, the user then only has to set the optimum operating point with regard to the desired radiation intensity at the minimum evaporation rate. This makes it easier to avoid a thermally induced damage of the X-ray anode according to the invention.
  • the diamond window is still perfectly in tact as a thermally enormous stable material. In this case, during maintenance work, the remaining anode material can be removed chemically and the diamond window recoated.
  • the choice of diamond as a window material thus allows an inexpensive repair of the X-ray anode according to the invention with simultaneous reuse of the diamond window.
  • the anode material is located over the entire surface of the diamond substrate. Depending on the peculiarities of the production or the planned use of the microfocus source, it may be sufficient if only a part of the Diamond layer is covered with the anode material. Depending on the adhesion of the anode material to the diamond substrate, it may be sufficient to apply the anode material directly to the diamond layer. In the case of poorer adhesion, however, an adhesion-promoting intermediate layer may be advantageous. Likewise, an intermediate layer may be advantageous if as monochromatic radiation as possible should leave the X-ray anode. In this case, the intermediate layer performs the function of a radiation filter and / or monochromator.
  • a polycrystalline diamond layer (1) of 250 ⁇ m thickness is deposited on an auxiliary substrate by means of hot-wire CVD. After removal of the auxiliary substrate, a tungsten layer (2) of 6 ⁇ m thickness is deposited on this diamond layer by means of physical vapor deposition (PVD). The tungsten layer covers the diamond layer over its entire surface.
  • the X-ray source is installed by means of a clamping device (3) in the housing (4) of a commercial X-ray microscope, wherein to ensure a stable vacuum sealing rings (5) are used. The only Fig. 1 shows this microfocus source in the installed state. By punctual loading of the X-ray anode with electrons e - X-ray hv is generated.
  • the maximum achievable radiation density is measured. If the diamond layer is replaced by a 500 ⁇ m thick beryllium layer, the radiation density of the generated X-radiation is reduced under otherwise identical conditions a factor of 4. With a diamond layer thickness of likewise 500 .mu.m, the radiation density achievable with the X-ray anode according to the invention would be even better because of the then better heat dissipation.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention relates to an x-ray anode and a process for its manufacture. The x-ray anode is characterized in that the anode material is embodied as a layer on a diamond window. The x-ray anode is preferably used with x-ray units which require as selective as possible x-radiation production to achieve as high as possible radiation intensity. Use in x-ray microscopes in which a high radiation intensity guarantees the highest resolutions is particularly preferred.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Röntgenanode. Die erfindungsgemäße Röntgenanode wird bevorzugt bei Röntgenapparaturen eingesetzt, bei welchen eine möglichst hohe Strahlungsintensität erforderlich ist. Besonders bevorzugt ist der Einsatz bei Röntgenmikroskopen, bei denen eine hohe Strahlungsintensität höchste Auflösungen gewährleistet.The invention relates to an x-ray anode. The X-ray anode according to the invention is preferably used in X-ray apparatus in which the highest possible radiation intensity is required. Particularly preferred is the use in X-ray microscopes, in which a high radiation intensity ensures highest resolutions.

Stand der TechnikState of the art

Bei der Erzeugung von Röntgenstrahlung wird meist metallisches Anodenmaterial mit Elektronen beaufschlagt. Die durch charakteristische elektronische Übergänge entstehende Strahlung verlässt die Apparatur durch ein für die Röntgenstrahlung transparentes Fenster. Die Röntgenerzeugung erfolgt dabei zur Vermeidung von Absorption bei niedrigen Gasdrücken. Das transparente Fenster dient dazu, den Niederdruckbereich vom Aussenbereich abzutrennen.In the generation of X-radiation is usually applied metallic anode material with electrons. The radiation produced by characteristic electronic transitions leaves the apparatus through a transparent window for the X-ray radiation. X-ray generation is carried out to avoid absorption at low gas pressures. The transparent window serves to separate the low pressure area from the outside area.

Bekannt sind metallische Röntgenanoden, zum Beispiel aus Kupfer oder Molybdän, und ein Fenster aus Beryllium in einer Winkeltargetanordnung. Hierbei weisen Anode und das Berylliumfenster einen gewissen räumlichen Abstand auf und sind gegeneinander verkippt. Wird die erzeugte Röntgenstrahlung für röntgenmikroskopische Zwecke eingesetzt, so haftet dieser Lösung der Nachteil an, dass wegen der unvermeidlichen Strahldivergenz zwischen Anode und abzubildendem Objekt die Auflösung nur recht mäßig ist. Auch ist Beryllium hoch toxisch und sollte daher als Fenstermaterial möglichst vermieden werden.Known are metallic X-ray anodes, for example of copper or molybdenum, and a window of beryllium in an angle target. Here, the anode and the beryllium window have a certain spatial distance and are tilted against each other. Will the generated X-ray radiation for X-ray microscopic purposes used, so this solution has the disadvantage that because of the unavoidable beam divergence between the anode and imaged object, the resolution is only moderate. Also beryllium is highly toxic and should therefore be avoided as a window material as possible.

Aus US-A-4 622 688 ist eine Röntgenanode bekannt, bei der sich das Anodenmaterial auf einem Austrittsfenster (aus Beryllium) befindet.From US-A-4 622 688 an X-ray anode is known in which the anode material is on an exit window (made of beryllium).

Als Alternative zu Berylliumfenstern als Strahlaustrittsfenster von Röntgenapparaturen schlägt die US 5,173,612 den Einsatz eines Diamantfensters von wenigen 10 µm Dicke vor. Da dickere Diamantfenster wegen der erhöhten Absorption durch Diamant ausscheiden, kommt es bei diesen dünnen Diamantfenstern jedoch zu erheblichen mechanischen Problemen. Die dünnen Diamantfenster können den Druckunterschied von ungefähr 105 Pa zwischen Niederdruckbereich und Aussenbereich kaum standhalten und müssen durch entsprechende Stege aufwendig stabilisiert werden.As an alternative to beryllium windows as beam exit windows of X-ray apparatuses, US Pat. No. 5,173,612 proposes the use of a diamond window of a few 10 μm in thickness. However, since thicker diamond windows precipitate because of the increased absorption by diamond, these thin diamond windows are subject to considerable mechanical problems. The thin diamond windows can barely withstand the pressure difference of approximately 10 5 Pa between the low-pressure area and the outside area and must be stabilized by appropriate webs.

Bekannt sind ferner sogenannte Mikrofokusquellen, bei denen sich das Anodenmaterial als Schicht auf einem Berylliumienster befindet, und bei der die Anode mit einem möglichst stark fokussierten Elektronenstrahl beaufschlagt wird. Bei diesen Mikrofokusquellen rückt die Anode bei der optischen Abbildung näher zum Objekt und die optische Auflösung kann gesteigert werden. Die Auflösung fällt dabei um so besser aus, je schärfer der die Anode beaufschlagende Elektronenstrahl auf die Anode fokussiert wird. Unter Vernachlässigung von Beugungserscheinigungen wäre ein punktförmiger Fokus auf der Anode ideal. Bei einem punktförmigem Fokus tritt jedoch das Problem auf, dass die durch den Elektronenbeschuss eingekoppelte Energie zu einem Aufschmelzen und/oder Abdampfen der Materialien und damit zu einer Abnahme von deren Lebensdauer kommt. Um das Abdampfen von Anodenmaterial zu kompensieren muss die Anode dicker gewählt werden. Eine dicke Anode führt jedoch dazu, dass die Röntgenstrahlung durch das Anodenmaterial selbst absorbiert wird. Die Wahl eines dickeren Berylliumfensters scheidet aus dem gleichen Grund aus. Darüber hinaus weist diese Lösung den erheblichen Nachteil auf, dass es wegen der vorhandenen Druckunterschiede zu mechanischen Problemen kommen kann, bei der die Mikrofokusquelle leicht bersten kann. Dies ist bei dem toxischen Beryllium jedoch besonders nachteilig und führt bei einem Bruch der Mikrofokusquelle wegen der dann erforderlichen Sicherheitsmass-nahmen zur Sicherung des Personals zu unerwünschten Standzeiten der Apparatur. Aus diesen Gründen ist eine punktförmige Fokussierung nach dem Stand der Technik nur begrenzt möglich.Also known are so-called microfocus sources in which the anode material is located as a layer on a Berylliumienster, and in which the anode is acted upon with a highly focused as possible electron beam. In these microfocus sources, the anode moves closer to the subject in optical imaging and the optical resolution can be increased. The resolution is all the better, the sharper the electron beam acting on the anode is focused on the anode. Neglecting diffraction phenomena, a pointy focus on the anode would be ideal. In the case of a punctiform focus, however, the problem arises that the energy coupled in by the electron bombardment leads to a melting and / or evaporation of the materials and thus to a decrease in their service life. To compensate for the evaporation of anode material, the anode must be made thicker. However, a thick anode causes the X-radiation to be absorbed by the anode material itself. The choice of a thicker beryllium window is eliminated for the same reason. In addition, this solution has the considerable disadvantage that it may come to mechanical problems due to the existing pressure differences, in which the microfocus source can easily burst. This is, however, with the toxic beryllium particularly disadvantageous and leads to a breakage of the microfocus source because of the then required safety measures to secure the staff to undesirable service life of the apparatus. For these reasons, a punctiform focus according to the prior art is only limited possible.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt das technische Problem zugrunde, eine Röntgenanode bereitzustellen welche die Nachteile nach dem Stand der Technik weitestgehend vermeidet. Die Röntgenanode soll gesundheitlich unbedenklich sein und es insbesondere erlauben, mit einem wesentlich kleineren Fokus zu arbeiten als nach dem Stand der Technik.The invention is based on the technical problem of providing an X-ray anode which avoids the disadvantages of the prior art as far as possible. The X-ray anode should be harmless to health and in particular allow to work with a much smaller focus than in the prior art.

Die Lösung dieses technischen Problems wird durch die im Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.The solution to this technical problem is solved by the features specified in claim 1. Advantageous embodiments are specified in the subclaims.

Erfindungsgemäß wurde erkannt, dass sich die Probleme durch eine Röntgenanode lösen lassen, bei der sich das Anodenmaterial auf einem Diamantfenster befindet.According to the invention, it has been recognized that the problems can be solved by an X-ray anode in which the anode material is located on a diamond window.

Diamant scheint als Material für eine Mikrofokusquelle zunächst ungeeignet zu sein. Diamant absorbiert mit einer Kernladungszahl von Z=6 die Röntgenstrahlung stärker als Beryllium mit Z=4. Damit sollte zu erwarten sein, dass Diamantfenster eingesetzt werden müssen die dünner als Berylliumfenster sind, und dies mit den oben genannten mechanischen Problemen. Zudem kam bisher einzig Beryllium als Fenstermaterial in Betracht, da Beryllium ein gut wälzbares Metall ist, aus dem sich leicht Berylliumfenster herstellen lassen. Dieses Fenster dient nach dem Stand der Technik als Substrat für eine aufzubringende Metallanode.Diamond initially appears to be unsuitable as a material for a microfocus source. With a nuclear charge of Z = 6, diamond absorbs X-rays more than Beryllium with Z = 4. Thus, it should be expected that diamond windows must be used which are thinner than beryllium windows, and this with the mechanical problems mentioned above. In addition, so far only Beryllium was considered as a window material into consideration, since beryllium is a good rollable metal, from which can easily produce Berylliumfenster. This window is used in the prior art as a substrate for a metal anode to be applied.

Durch Experimente konnte jedoch nachgewiesen werden, dass diese Nachteile bei einem Substrat aus Diamant überkompensiert werden können. Entgegen allen Erwartungen ist es möglich, bei einer Röntgenanode auf einem Diamantfenster mit einem wesentlich kleineren Fokus zu arbeiten als bei einer Röntgenanode auf einem Berylliumfenster. Die Überkompensation liegt darin begründet, dass Diamant ein exzellenter Wärmeleiter ist, und dadurch die eingebrachte Wärmeenergie durch das Diamantsubstrat besonders effizient abtransportiert werden kann. Dadurch erwärmt sich der Fokusbereich weniger und es ist möglich stärker zu fokussieren. Dies führt wunschgemäß zu grösseren Strahlungsdichten. Umgekehrt erlaubt der Austausch des Berylliumfensters durch das Diamantsubstrat bei gleichbleibender Strahlungsdichte und Lebensdauer eine dünnere Anode mit geringerer Absorption von Röntgenstrahlung.However, experiments have shown that these disadvantages can be overcompensated for a diamond substrate. Contrary to all expectations, it is possible to work with an x-ray anode on a diamond window with a much smaller focus than with an x-ray anode on a beryllium window. The overcompensation is due to the fact that diamond is an excellent conductor of heat, and thus the introduced heat energy can be removed by the diamond substrate very efficient. As a result, the focus area heats less and it is possible to focus more. This leads, as desired, to greater radiation densities. Conversely, the replacement of the beryllium window by the diamond substrate allows a thinner anode with less absorption of X-radiation while maintaining the same radiation density and lifetime.

Es hat sich gezeigt, dass auch relativ dicke Diamantschichten mit sehr dünnen Anoden mit Vorteil eingesetzt werden können. In diesem Sinne eignen sich auch Diamantfenster von 50 µm bis 1000 µm Dicke, und noch besser zwischen 300 µm bis 700 µm Dicke. Bei derartigen Dicken ist ein effizienter Abtransport von Wärme und eine gute mechanische Stabilität gewährleistet.It has been found that even relatively thick diamond layers with very thin anodes can be used to advantage. In this sense, diamond windows are also suitable from 50 microns to 1000 microns thick, and more preferably between 300 microns to 700 microns thick. With such thicknesses, efficient removal of heat and good mechanical stability is ensured.

Im Sinne der vorliegenden Erfindung kann ein polykristallines Diamantsubstrat bzw. Diamantfenster und auch ein Fenster aus einem Einkristall eingesetzt werden. Ein polykristallines Diamantsubstrat kann dabei besonders einfach über chemische Gasphasenabscheidung (englisch CVD: chemical vapour deposition) hergestellt werden, so zum Beispiel über Heissdraht-CVD oder Mikrowellen-CVD. Dies erlaubt auch die Herstellung grosser Diamantsubstrate zu mässigen Preisen. Die Abscheidung des Anodenmaterials erfolgt durch ein anderes Abscheideverfahren, so zum Beispiel mittels physikalischer Gasphasenabscheidung (PVD).For the purposes of the present invention, a polycrystalline diamond substrate or diamond window and also a window made of a single crystal can be used. A polycrystalline diamond substrate can be produced particularly easily by chemical vapor deposition (CVD), for example by hot-wire CVD or microwave CVD. This also allows the production of large diamond substrates at moderate prices. The deposition of the anode material is carried out by a different deposition method, for example by means of physical vapor deposition (PVD).

Als Anodenmaterial kommen grundsätzlich Metalle, mehrere Lagen von Metall, oder Metalllegierungen in Betracht. Die Dicke des Anodenmaterials liegt bevorzugt im Bereich zwischen 1 µm und 25 µm, noch besser im Bereich zwischen 3 µm und 12 µm, und am besten bei 6 µm.In principle, metals, several layers of metal, or metal alloys come into consideration as the anode material. The thickness of the anode material is preferably in the range between 1 μm and 25 μm, more preferably in the range between 3 μm and 12 μm, and best at 6 μm.

Die Schichten müssen keine konstanten Dicken aufweisen. Darunter soll verstanden werden, dass zum Beispiel für den Fall einer scheibenförmigen Mikrofokusquelle die Scheibendicke nicht einheitlich sein muss. Die Scheibe kann zum Beispiel an den Rändern eine grössere Dicke aufweisen. Die oben angegebenen Dicken für die Schichten sind daher dahingehend zu verstehen, dass dies Dicken im Fokusbereich sind.The layers do not have to have constant thicknesses. By this is meant that, for example, in the case of a disc-shaped microfocus source, the slice thickness need not be uniform. For example, the disc may have a greater thickness at the edges. The thicknesses given above for the layers are therefore to be understood as being thicknesses in the focus area.

Um sicherzustellen dass stets ausreichend Anodenmaterial auf dem Diamant vorhanden ist und nicht nach einer entsprechenden Anzahl von Betriebsstunden verdampft ist, kann für die erfindungsgemäße Röntgenanode ein Temperatursensor vorgesehen sein. Eine elegante Möglichkeit hierzu besteht in der Verwendung des Diamantfensters als Thermistor, d.h. in der Ausnutzung der Temperaturabhängigkeit des elektrischen Widerstands des Diamantfensters. Der Anwender hat dann nach entsprechender Eichung nur noch den optimalen Arbeitspunkt hinsichtlich gewünschter Strahlungsintensität bei minimaler Verdampfungsrate einzustellen. Dies erleichtert es, eine thermisch bedingte Beschädigung der erfindungsgemäßen Röntgenanode zu vermeiden. Selbst für den Fall, dass nach einer entsprechenden Anzahl von Betriebsstunden ein Teil des Anodenmaterials verdampft ist, wird das Diamantfenster als thermisch ungemein stabiles Material meist noch vollkommen in Takt sein. Für diesen Fall kann im Rahmen von Wartungsarbeiten das restliche Anodenmaterial chemisch entfernt und das Diamantfenster neu beschichtet werden. Die Wahl von Diamant als Fenstermaterial erlaubt damit eine preiswerte Instandsetzung der erfindungsgemäßen Röntgenanode bei gleichzeitiger Wiederverwendung des Diamantfensters.To ensure that sufficient anode material is always present on the diamond and has not evaporated after a corresponding number of operating hours, a temperature sensor can be provided for the X-ray anode according to the invention. An elegant way to do this is to use the diamond window as a thermistor, i. in the exploitation of the temperature dependence of the electrical resistance of the diamond window. After appropriate calibration, the user then only has to set the optimum operating point with regard to the desired radiation intensity at the minimum evaporation rate. This makes it easier to avoid a thermally induced damage of the X-ray anode according to the invention. Even in the event that a part of the anode material is evaporated after a corresponding number of operating hours, the diamond window is still perfectly in tact as a thermally immensely stable material. In this case, during maintenance work, the remaining anode material can be removed chemically and the diamond window recoated. The choice of diamond as a window material thus allows an inexpensive repair of the X-ray anode according to the invention with simultaneous reuse of the diamond window.

In der einfachsten Ausführungsform befindet sich das Anodenmaterial vollflächig auf dem Diamantsubstrat. Je nach Besonderheiten der Herstellung oder des geplanten Einsatzes der Mikrofokusquelle kann es jedoch ausreichen, wenn nur ein Teil der Diamantschicht mit dem Anodenmaterial bedeckt ist. Abhängig von der Haftung des Anodenmaterials auf dem Diamantsubstrat kann es ausreichen, das Anodenmaterial direkt auf die Diamantschicht aufzubringen. Bei schlechterer Haftung kann jedoch eine haftungsvermittelnde Zwischenschicht vorteilhaft sein. Ebenso kann eine Zwischenschicht dann vorteilhaft sein, wenn möglichst monochromatische Strahlung die Röntgenanode verlassen soll. In diesem Fall übt die Zwischenschicht die Funktion eines Strahlungsfilters und/oder Monochromators aus.In the simplest embodiment, the anode material is located over the entire surface of the diamond substrate. Depending on the peculiarities of the production or the planned use of the microfocus source, it may be sufficient if only a part of the Diamond layer is covered with the anode material. Depending on the adhesion of the anode material to the diamond substrate, it may be sufficient to apply the anode material directly to the diamond layer. In the case of poorer adhesion, however, an adhesion-promoting intermediate layer may be advantageous. Likewise, an intermediate layer may be advantageous if as monochromatic radiation as possible should leave the X-ray anode. In this case, the intermediate layer performs the function of a radiation filter and / or monochromator.

Bei Untersuchungen hat sich ferner gezeigt, dass bei gleicher Strahlungsleistung mit der erfindungsgemäßen Röntgenanode temperaturempfindliche Proben besser untersucht werden können als mit dem Vergleichsanode mit Berylliumfenster. Wegen der exzellenten Wärmeleitung von Diamant liegen nämlich auf der dem Atmosphärenbereich zugewandten Seite geringere Temperaturen vor was es erlaubt, die Proben bei der Untersuchung näher am Fenster zu plazieren. Dies wiederum führt zu einer besseren optischen Auflösung.In investigations, it has also been found that with the same radiant power with the X-ray anode according to the invention temperature-sensitive samples can be better examined than with the comparative anode with Berylliumfenster. Because of the excellent heat conduction of diamond, lower temperatures are present on the side facing the atmosphere area, which makes it possible to place the samples closer to the window during the examination. This in turn leads to a better optical resolution.

Ein Ausführungsbeispiel der Erfindung wird im folgenden näher beschrieben.An embodiment of the invention will be described in more detail below.

Auf einem Hilfssubstrat wird mittels Heissdraht-CVD eine polykristalline Diamantschicht (1) von 250 µm Dicke abgeschieden. Nach dem Entfernen des Hilfssubstrats wird auf dieser Diamantschicht mittels physikalischer Gasphasenabscheidung (PVD) eine Wolframschicht (2) von 6 µm Dicke abgeschieden. Die Wolframschicht bedeckt die Diamantschicht vollflächig. Die Röntgenquelle wird mittels einer Klemmvorrichtung (3) in das Gehäuse (4) eines kommerziellen Röntgenmikroskops eingebaut, wobei zur Gewährleistung eines stabilen Vakuums Dichtringe (5) eingesetzt werden. Die einzige Fig. 1 zeigt diese Mikrofokusquelle in eingebauten Zustand. Durch punktuelle Beaufschlagung der Röntgenanode mit Elektronen e- wird Röntgenstrahlung hv erzeugt. Mit dieser Röntgenanode wird die maximal erreichbare Strahlungsdichte gemessen. Ersetzt man die Diamantschicht mit einer 500 µm dicken Berylliumschicht, so sinkt unter sonst gleichen Bedingungen die Strahlungsdichte der erzeugten Röntgenstrahlung um einen Faktor 4. Bei einer Diamantschichtdicke von ebenfalls 500 µm wäre die mit der erfindungsgemässen Röntgenanode erzielbare Strahlungsdichte wegen des dann noch besseren Wärmeabtransports noch besser.A polycrystalline diamond layer (1) of 250 μm thickness is deposited on an auxiliary substrate by means of hot-wire CVD. After removal of the auxiliary substrate, a tungsten layer (2) of 6 μm thickness is deposited on this diamond layer by means of physical vapor deposition (PVD). The tungsten layer covers the diamond layer over its entire surface. The X-ray source is installed by means of a clamping device (3) in the housing (4) of a commercial X-ray microscope, wherein to ensure a stable vacuum sealing rings (5) are used. The only Fig. 1 shows this microfocus source in the installed state. By punctual loading of the X-ray anode with electrons e - X-ray hv is generated. With this X-ray anode, the maximum achievable radiation density is measured. If the diamond layer is replaced by a 500 μm thick beryllium layer, the radiation density of the generated X-radiation is reduced under otherwise identical conditions a factor of 4. With a diamond layer thickness of likewise 500 .mu.m, the radiation density achievable with the X-ray anode according to the invention would be even better because of the then better heat dissipation.

Claims (15)

  1. X-ray anode, in which the anode material (2) is located on an exit window (1), characterized in that at least one interlayer, which serves as a radiation filter, is provided between the X-ray anode and the exit window, and the exit window comprises diamond.
  2. X-ray anode according to Claim 1, characterized in that the exit window (1) comprises polycrystalline diamond.
  3. X-ray anode according to Claim 1, characterized in that the exit window (1) comprises single-crystal diamond.
  4. X-ray anode according to one of Claims 1 to 3, characterized in that the thickness of the exit window (1) is in the range from 300 µm to 700 µm.
  5. X-ray anode according to one of Claims 1 to 4, characterized in that the anode material (2) comprises one or more layers of a metal or an alloy.
  6. X-ray anode according to one of Claims 1 to 5, characterized in that the anode material thickness is between 1 µm and 25 µm.
  7. X-ray anode according to Claim 6, characterized in that the anode material thickness is between 3 µm and 12 µm.
  8. X-ray anode according to Claim 7, characterized in that the anode material thickness is 6 µm.
  9. X-ray anode according to one of Claims 1 to 8, characterized in that the anode material (2) covers the entire surface of the exit window (1).
  10. X-ray anode according to one of Claims 1 to 8, characterized in that the anode material (2) partially covers the exit window (1).
  11. X-ray anode according to one of Claims 1 to 10, characterized in that at least one adhesion-promoting interlayer is provided.
  12. X-ray anode according to one of Claims 1 to 11, characterized in that a temperature sensor is provided.
  13. X-ray anode according to Claim 12, characterized in that the diamond window (1) is provided as the temperature sensor.
  14. Use of an X-ray anode according to one of Claims 1 to 13 for X-ray apparatus.
  15. Use of an X-ray anode according to one of Claims 1 to 13 for X-ray microscopes.
EP00958290A 1999-07-26 2000-07-24 X-ray anode Expired - Lifetime EP1198820B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934987A DE19934987B4 (en) 1999-07-26 1999-07-26 X-ray anode and its use
DE19934987 1999-07-26
PCT/EP2000/007076 WO2001008195A1 (en) 1999-07-26 2000-07-24 X-ray anode and method for the production thereof

Publications (2)

Publication Number Publication Date
EP1198820A1 EP1198820A1 (en) 2002-04-24
EP1198820B1 true EP1198820B1 (en) 2006-04-19

Family

ID=7916063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958290A Expired - Lifetime EP1198820B1 (en) 1999-07-26 2000-07-24 X-ray anode

Country Status (7)

Country Link
US (1) US6850598B1 (en)
EP (1) EP1198820B1 (en)
JP (1) JP2003505845A (en)
KR (1) KR100740266B1 (en)
AT (1) ATE323947T1 (en)
DE (2) DE19934987B4 (en)
WO (1) WO2001008195A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003214929B2 (en) * 2002-01-31 2006-07-13 The Johns Hopkins University X-ray source and method for producing selectable x-ray wavelength
US7280636B2 (en) * 2003-10-03 2007-10-09 Illinois Institute Of Technology Device and method for producing a spatially uniformly intense source of x-rays
WO2005098871A1 (en) * 2004-04-08 2005-10-20 Japan Science And Technology Agency X-ray-use target and device using it
DE202005017496U1 (en) * 2005-11-07 2007-03-15 Comet Gmbh Target for a microfocus or nanofocus X-ray tube
US20080075229A1 (en) * 2006-09-27 2008-03-27 Nanometrics Incorporated Generation of Monochromatic and Collimated X-Ray Beams
GB2453570A (en) * 2007-10-11 2009-04-15 Kratos Analytical Ltd Electrode for x-ray apparatus
JP5221215B2 (en) * 2008-06-13 2013-06-26 浜松ホトニクス株式会社 X-ray generator
JP5670111B2 (en) * 2009-09-04 2015-02-18 東京エレクトロン株式会社 X-ray generation target, X-ray generation apparatus, and method for manufacturing X-ray generation target
TWI555511B (en) 2010-12-07 2016-11-01 和鑫生技開發股份有限公司 A transmission tpye x-ray tube and a reflection type x-ray tube
JP5449118B2 (en) * 2010-12-10 2014-03-19 キヤノン株式会社 Transmission type radiation tube, radiation generator, and radiation imaging apparatus
EP2649634B1 (en) 2010-12-10 2018-07-04 Canon Kabushiki Kaisha Radiation generating apparatus and radiation imaging apparatus
JP2012256443A (en) 2011-06-07 2012-12-27 Canon Inc X-ray emission target and x-ray emission device
JP5812700B2 (en) 2011-06-07 2015-11-17 キヤノン株式会社 X-ray emission target, X-ray generator tube and X-ray generator
JP5875297B2 (en) * 2011-08-31 2016-03-02 キヤノン株式会社 Radiation generator tube, radiation generator using the same, and radiation imaging system
DE102012011309B4 (en) * 2011-10-28 2022-08-25 Gamc Biotech Development Co., Ltd. Transmission type X-ray tube and reflection type X-ray tube
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP5868670B2 (en) 2011-11-28 2016-02-24 ギガフォトン株式会社 Holder device, chamber device, and extreme ultraviolet light generation device
JP5911323B2 (en) * 2012-02-06 2016-04-27 キヤノン株式会社 Target structure, radiation generating apparatus including the target structure, and radiation imaging system
WO2014054497A1 (en) * 2012-10-04 2014-04-10 東京エレクトロン株式会社 Method for manufacturing target for x-ray generation and target for x-ray generation
JP6140983B2 (en) 2012-11-15 2017-06-07 キヤノン株式会社 Transmission target, X-ray generation target, X-ray generation tube, X-ray X-ray generation apparatus, and X-ray X-ray imaging apparatus
JP6253233B2 (en) 2013-01-18 2017-12-27 キヤノン株式会社 Transmission X-ray target, radiation generating tube including the transmission X-ray target, radiation generating device including the radiation generating tube, and radiation imaging apparatus including the radiation generating device
JP6116274B2 (en) 2013-02-13 2017-04-19 キヤノン株式会社 Radiation generator and radiation imaging apparatus including the radiation generator
JP6100036B2 (en) 2013-03-12 2017-03-22 キヤノン株式会社 Transmission type target, radiation generating tube including the transmission type target, radiation generation apparatus, and radiation imaging apparatus
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
WO2015084466A2 (en) 2013-09-19 2015-06-11 Sigray, Inc. X-ray sources using linear accumulation
US9390881B2 (en) 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
JP6338341B2 (en) 2013-09-19 2018-06-06 キヤノン株式会社 Transmission type radiation tube, radiation generator, and radiation imaging system
FR3012663B1 (en) * 2013-10-25 2015-12-04 Thales Sa X-RAY GENERATOR WITH INTEGRATED FLUX SENSOR
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
JP6335729B2 (en) 2013-12-06 2018-05-30 キヤノン株式会社 Transmission target and X-ray generating tube provided with the transmission target
JP6594479B2 (en) * 2013-12-06 2019-10-23 キヤノン株式会社 Transmission target and X-ray generating tube provided with the transmission target
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
JP6381269B2 (en) * 2014-04-21 2018-08-29 キヤノン株式会社 X-ray generator tube, X-ray generator, X-ray imaging system including the target and the target
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
JP6452334B2 (en) 2014-07-16 2019-01-16 キヤノン株式会社 Target, X-ray generator tube having the target, X-ray generator, X-ray imaging system
JP6700745B2 (en) 2014-11-28 2020-05-27 キヤノン株式会社 Powder, thermoplastic composition, and method for producing three-dimensional object
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
JP6937380B2 (en) 2017-03-22 2021-09-22 シグレイ、インコーポレイテッド Methods for performing X-ray spectroscopy and X-ray absorption spectroscopy systems
JP2017139238A (en) * 2017-05-02 2017-08-10 キヤノン株式会社 Transmission type target, method of manufacturing transmission type target, radiation generating tube, radiation generating device with radiation generating tube, and radiographic device with the radiation generating device
US10847336B2 (en) 2017-08-17 2020-11-24 Bruker AXS, GmbH Analytical X-ray tube with high thermal performance
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
DE112019002822T5 (en) 2018-06-04 2021-02-18 Sigray, Inc. WAVELENGTH DISPERSIVE X-RAY SPECTROMETER
WO2020023408A1 (en) 2018-07-26 2020-01-30 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
CN112638261A (en) 2018-09-04 2021-04-09 斯格瑞公司 System and method for utilizing filtered x-ray fluorescence
DE112019004478T5 (en) 2018-09-07 2021-07-08 Sigray, Inc. SYSTEM AND PROCEDURE FOR X-RAY ANALYSIS WITH SELECTABLE DEPTH
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
WO2023145101A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Inspection device and inspection method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US459437A (en) * 1891-09-15 bouchard
US458243A (en) * 1891-08-25 Knife
FR2355428A1 (en) * 1976-06-14 1978-01-13 Elf Aquitaine HIGH-EFFICIENCY IRRADIATION DEVICE CONTAINING AN X-RAY GENERATOR TUBE WITH WINDOW ANODE
NL8301838A (en) * 1983-05-25 1984-12-17 Philips Nv Roentgen tube for generating soft roentgen radiation.
NL8301839A (en) * 1983-05-25 1984-12-17 Philips Nv ROENTGEN TUBE WITH TWO CONSEQUENT LAYERS OF ANODE MATERIAL.
EP0432568A3 (en) * 1989-12-11 1991-08-28 General Electric Company X ray tube anode and tube having same
US5258091A (en) 1990-09-18 1993-11-02 Sumitomo Electric Industries, Ltd. Method of producing X-ray window
JP3026284B2 (en) * 1990-09-18 2000-03-27 住友電気工業株式会社 X-ray window material and method of manufacturing the same
GB9407073D0 (en) * 1994-04-09 1994-06-01 Atomic Energy Authority Uk X-Ray windows
JP3724848B2 (en) * 1995-07-14 2005-12-07 則夫 岡田 Optical window
DE19544203A1 (en) * 1995-11-28 1997-06-05 Philips Patentverwaltung X-ray tube, in particular microfocus X-ray tube
JP2948163B2 (en) * 1996-02-29 1999-09-13 株式会社東芝 X-ray equipment
US5984853A (en) * 1997-02-25 1999-11-16 Radi Medical Systems Ab Miniaturized source of ionizing radiation and method of delivering same
DE19821939A1 (en) * 1998-05-15 1999-11-18 Philips Patentverwaltung X-ray tube with a liquid metal target
US6366639B1 (en) * 1998-06-23 2002-04-02 Kabushiki Kaisha Toshiba X-ray mask, method of manufacturing the same, and X-ray exposure method
DE19905802A1 (en) * 1999-02-12 2000-08-17 Philips Corp Intellectual Pty X-ray tube

Also Published As

Publication number Publication date
WO2001008195A1 (en) 2001-02-01
DE50012611D1 (en) 2006-05-24
KR20020035111A (en) 2002-05-09
DE19934987B4 (en) 2004-11-11
JP2003505845A (en) 2003-02-12
ATE323947T1 (en) 2006-05-15
DE19934987A1 (en) 2001-05-03
US6850598B1 (en) 2005-02-01
KR100740266B1 (en) 2007-07-18
EP1198820A1 (en) 2002-04-24

Similar Documents

Publication Publication Date Title
EP1198820B1 (en) X-ray anode
DE69802898T2 (en) METHOD FOR PRODUCING CARBON NANO TUBES, METHOD FOR PRODUCING CARBON NANO TUBE FILM, AND STRUCTURE PROVIDED WITH CARBON NANO TUBE FILM
EP0931174B1 (en) Method to produce a heat insulating layer
AT504405B1 (en) METHOD FOR MANUFACTURING AN X-RAY GIFT ARGET
AT12494U9 (en) X ROTARY ANODE
DE102007053023A1 (en) Oxide compounds as a coating composition
DE3027572A1 (en) METHOD OF MAKING BERYLLIUM OXIDE FILM AND BERYLLIUM OXIDE FILM MADE BY THIS METHOD
DE69301070T2 (en) Rotating anode x-ray tube and manufacturing method therefor
DE112016006345T5 (en) Field emission electron source, process for their preparation and electron beam device
AT14991U1 (en) X-ray anode
EP1678733A1 (en) Method for production of a composite body by high temperature welding of a non-metallic component to a metallic or non-metallic component
DE69514221T2 (en) X-RAY TUBE AND ANODENTARGET THEREFOR
DE2816120C2 (en) Method of manufacturing a rotating anode for a rotating anode x-ray tube
DE3852529T2 (en) MEETING PLATE FOR AN X-RAY TUBE, METHOD FOR THEIR PRODUCTION AND X-RAY TUBE.
DE19523163A1 (en) Slide bearing part for liquid metal slide bearing used in rotary anode X-ray tube
DE69209139T2 (en) Rotating anode X-ray tube and manufacturing method therefor
AT391223B (en) METHOD FOR PRODUCING A ROTATING ANODE FOR X-RAY TUBES
DE2440988A1 (en) ROENTINE PIPE
EP0002688B1 (en) Apparatus for irradiation of a target with ions
DE19523162A1 (en) Slide bearing part for liquid metal slide bearing used in rotary anode X-ray tube
DE102005039187B4 (en) X-ray tube
EP3266034B1 (en) Component of an ion implanter
DE19521724A1 (en) Glowing cathode prodn. for use in electron tubes
EP0897189B1 (en) High pressure magnetron cathode and device comprising same
DE102018112335A1 (en) magnetron sputtering

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

17Q First examination report despatched

Effective date: 20050331

RTI1 Title (correction)

Free format text: X-RAY ANODE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50012611

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060919

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR

Effective date: 20070117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20070122

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060724

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100726

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100726

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100922

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012611

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110724