EP1195513A2 - Gehäusesystem für eine Saugrohranlage - Google Patents

Gehäusesystem für eine Saugrohranlage Download PDF

Info

Publication number
EP1195513A2
EP1195513A2 EP02001234A EP02001234A EP1195513A2 EP 1195513 A2 EP1195513 A2 EP 1195513A2 EP 02001234 A EP02001234 A EP 02001234A EP 02001234 A EP02001234 A EP 02001234A EP 1195513 A2 EP1195513 A2 EP 1195513A2
Authority
EP
European Patent Office
Prior art keywords
air
aperture
housing
flange
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02001234A
Other languages
English (en)
French (fr)
Other versions
EP1195513A3 (de
Inventor
Jeffrey Joseph Powell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Tire Canada Inc
Original Assignee
Siemens Canada Ltd
Siemens VDO Automotive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/336,081 external-priority patent/US6192849B1/en
Application filed by Siemens Canada Ltd, Siemens VDO Automotive Inc filed Critical Siemens Canada Ltd
Priority claimed from EP99928949A external-priority patent/EP1090223B1/de
Publication of EP1195513A2 publication Critical patent/EP1195513A2/de
Publication of EP1195513A3 publication Critical patent/EP1195513A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/04Air cleaners specially arranged with respect to engine, to intake system or specially adapted to vehicle; Mounting thereon ; Combinations with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10288Air intakes combined with another engine part, e.g. cylinder head cover or being cast in one piece with the exhaust manifold, cylinder head or engine block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10314Materials for intake systems
    • F02M35/10321Plastics; Composites; Rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1034Manufacturing and assembling intake systems
    • F02M35/10354Joining multiple sections together
    • F02M35/1036Joining multiple sections together by welding, bonding or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10111Substantially V-, C- or U-shaped ducts in direction of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the present invention relates generally to a manifold for motor vehicles.
  • the present invention relates to a manifold system to provide combustion air and combustion fuel to a cylinder head of an internal combustion engine.
  • Such known air cleaners typically include a filter disposed in a housing.
  • An air exhaust of the air cleaner typically leads to the separate intake manifold.
  • such known air cleaners provide for the intake of raw air, the purification of the raw air and the routing of the purified air to the air exhaust; such known intake manifolds provide for the routing of the purified air and the combustion fuel to the cylinder head of the engine.
  • a problem with such known air cleaners and intake manifolds is that such components are separate and distinct. Such separateness and distinctness can result in mechanical incompatibility between such components, the need for additional hoses and tubes to connect such components, decreased accessibility to such components for servicing and a reduction in the physical underhood space available for accessory components.
  • the present invention relates to a field replaceable unitary manifold housing for providing combustion air and combustion fuel to an internal combustion engine.
  • the housing includes an air purification cavity having a spaced apart air intake and air discharge.
  • the housing also includes a filter for purifying air disposed in the air purification cavity intermediate the air intake and the air discharge.
  • the housing also includes a hollow elongate member having a first end coupled to the filter and a second end coupled to a plenum chamber for directing the air, the plenum chamber being integral with the air purification cavity.
  • the housing also includes a plurality of channels, each channel integral with the housing and having a first end integral with the plenum chamber and a second end coupled to a cylinder head of the engine.
  • the air intake induces air into the air purification cavity, the induced air is purified by the filter, the hollow elongate member directs the air from the filter to the plenum chamber, and the plurality of channels direct the air from the plenum chamber to the cylinder head.
  • the present invention further relates to a field replaceable unitary manifold housing for providing combustion air and combustion fuel to an internal combustion engine of an automobile.
  • the housing includes an air purification cavity having a spaced apart intake means for inducing air into the air purification cavity and a discharge means for venting air from the housing.
  • the housing also includes means for purifying the induced air being disposed in the air purification cavity intermediate the air intake means and the air discharge means.
  • the housing also includes means for directing air from the air purification cavity to a plenum means for directing the air, the plenum means being integral with the air purification cavity.
  • the housing also includes means for providing fuel to the channel means.
  • the housing also includes channel means for directing air from the plenum means to a cylinder head of the internal combustion engine.
  • the present invention further relates to a method for coupling a first molded flange of a manifold for providing combustion air and combustion fuel to a cylinder of a vehicular internal combustion engine to a second molded flange of an extension of the manifold.
  • the method includes molding the first flange of the manifold and the second flange of the extension.
  • the method also includes molding an alignment member integral with the second flange.
  • the method also includes forming a first aperture in the first flange.
  • the method also includes forming a second aperture in the alignment member.
  • the method also includes positioning the first flange and the second flange such that the first aperture is generally aligned with the second aperture.
  • the method also includes inserting a threaded insert in the first aperture and at least partially in the second aperture.
  • the method also includes inserting a threaded fastener into the threaded insert such that the fastener is circumscribed by the insert and extends into the first flange and at least partially into the second flange.
  • FIGURE 1 shows a manifold or housing system 10 for providing a mixture of combustion fuel 134 and purified combustion air 42 to a cylinder head 180 of an internal combustion engine (not shown) according to a preferred embodiment of the present invention.
  • System 10 includes an air induction system 20 mounted to a manifold assembly 100.
  • Air induction system 20 purifies raw air (e.g., atmospheric, ambient, unpurified, dirty air, etc.) and includes an air intake or air induction tube (shown as a dirty air tube 12) partially disposed within a housing 16.
  • An air filter assembly 30 is provided within the interior of housing 16.
  • a hose (shown as an airflow tube 70) is mounted to a filter assembly 30 and serves to direct purified air 42 from filter assembly 30 to a throttle assembly 80.
  • Purified air 42 flows through throttle assembly 80 to a reservoir or plenum chamber (shown as a cavity 22).
  • a system of hollow tubes or channels (shown as manifold runners 122) direct purified air 42 from housing 16 through manifold assembly 100 and a manifold extension 160 to cylinder head 180 of the engine.
  • System 10 is selectively removable from cylinder head 180 for rapid repair, servicing or replacement.
  • air induction system 20 includes an air induction reservoir or air purification cavity (shown as a cavity 18) and cavity 22 for purified air 42.
  • a partition shown as a wall 26) separates cavity 18 from cavity 22 such that the raw, dirty or unpurified air stored in cavity 18 is generally sealed or separated from cavity 22.
  • Dirty air tube 12 includes an inlet 14 to direct the raw air from the exterior of housing 16 into cavity 18 of housing 16.
  • An outlet shown as a tuning tube 58 mounted to dirty air tube 12 further directs the raw air from inlet 14 to cavity 18 of housing 16.
  • the center of tuning tube 58 is narrower than the end (e.g., crimped or horn-shaped with a trumpet-shaped portion).
  • the shape of the outlet may provide an overall noise reduction by matching the natural frequency of the raw air to the frequency of the engine.
  • the purified air reservoir may include a number of baffles into which the raw air is directed (i.e., the baffles may further serve to reduce the overall noise level of the manifold system).
  • Filter assembly 30 is disposed within cavity 18 of housing 16 and may be supported by wall 26.
  • Filter assembly 30 includes a generally circular-shaped air filter element (shown as a canister 32).
  • Canister 32 includes an air receiving surface (shown as an outer wall 36) and an air-emitting surface (shown as an inner wall 46).
  • Raw air stored in cavity 18 enters canister 32 through outer wall 36 and is directed through a filter media (not shown) such as a pretreated or pleated corrugated paper.
  • impurities e.g., debris, particulates, gasses, dirt, pollution, etc.
  • Purified air 42 exits the filter media through inner wall 46 of canister 32.
  • a covering circumscribes and surrounds a lower end 28 of canister 32. End cap 34 promotes the entry of raw air through outer wall 36 by covering or blocking lower end 28 of canister 32.
  • a generally flexible; compressible seal 44 is mounted to an upper end 48 of canister 32. Seal 44 extends radially around canister 32 beyond the periphery of an aperture 192 having a diameter 190.
  • a fastener (not shown), such as an adhesive or glue, may secure seal 44 to canister 32. Such fastener may also secure a left end 38 of the filter media to a right end 40 of the filter media.
  • the seal may be integrally molded to the filter element or the seal may be removably coupled to the filter element.
  • Airflow tube 70 is generally U-shaped and engages upper end 48 of canister 32 to provide a conduit for directing purified air 42 from canister 32 to throttle assembly 80.
  • An end portion 72 of airflow tube 70 is provided at least partially within canister 32. (End portion 72 has a diameter 188 less than a diameter 186 of an inlet 74 of airflow tube 70 and less than diameter 190 of aperture 192 of canister 32.)
  • purified air 42 is directed from canister 32 through end portion 72 to inlet 74 of airflow tube 70.
  • Throttle assembly 80 regulates the amount of purified air 42 directed from air induction system 20 to cylinder head 180 of the engine.
  • a fastener shown as a capture clamp 88 mounts a throttle valve 90 of throttle assembly 80 to an outlet 76 of airflow tube 70.
  • the diameter of outlet 76 is greater than the diameter of throttle valve 90 such that throttle valve 90 may be inserted into outlet 76 and secured by a capture clamp 88.
  • Throttle assembly 80 includes a choke assembly 82 providing a flap 84 controlled by a lever 86 to regulate the amount of purified air 42 that passes through choke assembly 82. After passing through throttle assembly 80, purified air 42 is directed into cavity 22 of housing 16, and ultimately to cylinder head 180 of the engine.
  • the flap of the choke assembly may be controlled by a computer system.
  • manifold assembly 100 includes a service plenum 114 mounted to a manifold extension 160 by a fastener assembly 170 (see FIGURE 6).
  • Manifold assembly 100 includes runners 122 to direct purified air 42 from cavity 22 to cylinder head 180 of the engine. Runners 122 span manifold assembly 100 and manifold extension 160.
  • the manifold system may contain any number of channels or runners in any configuration (e.g., a manifold system adapted to provide combustion air and combustion fuel to the cylinder head of a V-8 or straight-6 internal combustion engine as is known in the automotive arts).
  • Manifold assembly 100 is selectively removable from manifold extension 160 such that manifold system 10 may be easily accessed for repair or replacement.
  • manifold assembly 100 includes upper plenum 112, service plenum 114 having a service flange 124 and a common fuel source or fuel conduit (shown as a fuel rail 130).
  • a weld joint (shown as a flange 24) integrally connects the upper end of upper plenum 112 to housing 16.
  • the lower end of upper plenum 112 is integrally connected to the upper end of service plenum 114 by a weld joint (shown as a flange 116).
  • the weld joint between the upper plenum and the service plenum is flared outwardly such that the interior of the runner is generally smooth for optimum airflow through the runner.
  • fastener assembly 170 connects service flange 124 of service plenum 114 to a service flange 162 of manifold extension 160.
  • an aperture shown as a bore 198
  • a protrusion or alignment pin shown as a post 1748
  • An aperture shown as an inner bore 196 having a slight outward flare is provided within the interior of post 178 and extends into the interior of service flange 162.
  • a spacer (shown as a generally circular-shaped, hollow, threaded insert 176) is inserted into bore 198 of service flange 124 and extends into bore 196 of post 178 such that threaded insert 176 is generally flush with the surface of service flange 124.
  • a fastener (shown as a threaded, hexagonal-headed, machine screw 172), the head of which is circumscribed by a spacer (shown as a washer 174), is inserted into threaded insert 176.
  • a seal (shown as an O-ring 168) is provided in a groove 166 of service flange 162 to inhibit purified air 42 from leaking from manifold system 10.
  • the protrusions may be molded to the service flange by any known method such as blow molding, vibration welding, friction welding, etc. Any known method such as boring, drilling, molding, etc. may form the apertures.
  • the inner bore of the service flange is a "blind" bore such that the aperture of the bore does not extend all the way through the service flange of the manifold assembly.
  • a suitable fastener mounts fuel rail 130 to service plenum 114.
  • a fastener (shown as a capture clamp 138) connects fuel rail 130 to a duct (shown as a hose 136) of a fuel source 132 (see FIGURE 4).
  • a control device (shown as a fuel regulator 140) controls the amount of fuel 134 provided to fuel rail 130.
  • fuel regulator 140 may be a returnless fuel regulator (as is known in the automotive arts) that inhibits the "back flow" of fuel 134 from fuel rail 130 back into to fuel source 132.
  • An aperture 142 provides a passage for fuel 134 to be directed from fuel rail 130 to a conduit (as shown best in FIGURE 4 as a top feed fuel injector 150).
  • fuel 134 is directed from fuel rail 130, through aperture 142 and to an inlet 152 of injector 150.
  • Fuel 134 flows from inlet 152 to a passageway 154 of injector 150, and end exits injector 150 through an outlet 156 to an injector bore 158 of manifold extension 160.
  • Fuel 134 is dispersed from injector bore 158 as a fuel spray 128.
  • fuel spray 128 and purified air 42 are mixed at cylinder head 180.
  • a fastener (shown as a hexagonal-headed machine screw 194) is inserted through an aperture 182 to mount a cylinder flange 164 of manifold extension 160 to cylinder head 180 of the engine.
  • a seal e.g., O-ring
  • the fuel rail may be molded to the service flange of the manifold assembly.
  • a locking mechanism selectively connects filter assembly 30 to airflow tube 70 such that filter assembly 30 may be readily removed from cavity 18 of housing 16.
  • airflow tube 70 is rotated about ninety degrees.
  • Twist lock system 50 includes a tube connector system 52 and a housing connector system 60.
  • Housing connector system 60 includes a number of outwardly extending protrusions (shown as a finger 62) and a number of inwardly extending indentations (shown as finger 64) spaced generally evenly about the periphery of an aperture 184 of cavity 18.
  • Tube connector system 52 includes reciprocal outwardly extending protrusions (shown as a finger 54) and inwardly extending indentations (not shown) spaced generally evenly about the periphery of a flange 56 of airflow tube 70.
  • a compressive force is applied to airflow tube 70 to compress seal 44 (which may be a flexible seal) between a seal engaging surface of flange 56 and canister 32.
  • a stop mechanism 144 applies an opposite force to end cap 34 of filter assembly 30.
  • Finger 54 of tube connector system 52 is aligned with and inserted into finger 64 of housing connector system 60.
  • Finger 54 is rotated relative to housing 16 (or vice versa) such that finger 54 is aligned with finger 62 of housing connector system 60 (i.e., the finger of the housing connector system and the tube connector system are rotated until they are intertwined and interconnected).
  • the compression of seal 44 and the interconnection of finger 54 and finger 62 maintain such compressive force.
  • an indexing system may be provided to inhibit further rotation of the airflow tube relative to the housing (i.e., such rotation may cause a disconnection between the outwardly extending protrusion of the housing connector system and the outwardly extending protrusion of the tube connector system).
  • a locking mechanism 92 may connect throttle assembly 80 to cavity 22 housing 16.
  • a locking assembly 94 may connect throttle assembly 80 to cavity 22 of housing 16.
  • Locking assembly 94 includes an aperture 148 circumscribed by a flexible tapered portion 96 and adapted to receive throttle valve 90.
  • a flexible seal 98 may be positioned between cavity 22 and throttle assembly 80 to inhibit purified air 42 from leaking from throttle assembly 80 to the exterior of housing 16.
  • the air induction tube may be connected to the housing by a locking mechanism similar to twist lock system 50 shown in FIGURE 2.
  • the manifold system purifies raw air before the raw air is routed to the cylinders of an automotive or vehicular engine.
  • the air induction housing, the plenum assembly, the manifold assembly and the fuel rail are preferably constructed of plastic.
  • the plenum assembly is vibration welded to the housing, and the upper plenum is vibration welded to the service plenum.
  • the vibration welding operation is conducted at about 120 hertz.
  • the fuel rail is molded to the upper plenum and has a diameter of about one inch.
  • the filter element holds about one quart of purified air and the filter media is preferably constructed of paper folded in a zigzag configuration.
  • the cover of the filter assembly is preferably constructed of aluminum metal and is encapsulated in urethane.
  • the seal of the filter assembly is preferably generally "V"-shaped and constructed of urethane rubber.
  • the height of each of the protrusions of the fastener assembly is substantially identical to the thickness of the service flange of the manifold assembly.
  • the aperture of the protrusion of the fastener assembly is preferably deeper than the length of the threaded insert, which is preferably constructed of brass.
  • the O-ring seals are preferably constructed of urethane rubber.
  • the fuel rail may be molded or integral with the service flange of the manifold assembly.
  • the fuel rail may be mounted to either the upper plenum or to the manifold assembly.
  • the regulator of the fuel rail may be positioned within the housing. Any suitable fastening device (e.g., welding, ultrasonic welding, vibration welding, molding, glue, screws, rivets, clamps or other conventional methods) may attach the housing to the plenum assembly and may attach the upper plenum to the service plenum.
  • the filter element may be disposable.
  • the filter material may be constructed of a porous material (e.g., cardboard, corrugated paper, carbon block, etc.) or a natural or synthetic fibrous material (e.g., spun polyethylene, glass wool, microbial filter, etc.).
  • the effective closure or seal between the tube connector system and the housing connector system may be formed by any known connection system (such as a bayonet connector system, a threaded connection, a clamp, etc.) and may be maintained by any locking mechanism (e.g., a detent, a tumbler lock, a tacky adhesive, etc.).
  • the seal of the filter assembly may be round-shaped, V-shaped, diamond-shaped or any other shape or configuration.
  • the seal of the filter assembly may be mounted to the housing, fixed to a rigid or semi-rigid framework that also extends about the periphery of the filter element, or detached from both the housing and the filter element.
  • the seal of the filter assembly may be positioned between the filter element and the airflow tube or between the airflow tube and the housing.
  • a panel-type filter assembly may be mounted directly to the plenum.
  • conduit is not meant as a term of limitation, insofar as any valve, hose, tube, passage or like structure providing a channel or passageway through which air may flow is intended to be included in the term.
  • directed is not meant as a term of limitation, insofar as any routing or leading of raw air, purified air or fuel into, through and out of the air induction system and the manifold system is intended to be included in the term.
  • engine is not meant as a term of limitation, insofar as any "engine” or like machine for using fuel to produce motion is intended to be included in the term.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
EP02001234A 1998-06-24 1999-06-25 Gehäusesystem für eine Saugrohranlage Withdrawn EP1195513A3 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US9051298P 1998-06-24 1998-06-24
US90512P 1998-06-24
US336081 1999-06-18
US09/336,081 US6192849B1 (en) 1999-06-18 1999-06-18 Manifold housing system
EP99928949A EP1090223B1 (de) 1998-06-24 1999-06-25 Gehäusesystem für eine saugrohranlage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP99928949A Division EP1090223B1 (de) 1998-06-24 1999-06-25 Gehäusesystem für eine saugrohranlage

Publications (2)

Publication Number Publication Date
EP1195513A2 true EP1195513A2 (de) 2002-04-10
EP1195513A3 EP1195513A3 (de) 2002-05-15

Family

ID=27240326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02001234A Withdrawn EP1195513A3 (de) 1998-06-24 1999-06-25 Gehäusesystem für eine Saugrohranlage

Country Status (1)

Country Link
EP (1) EP1195513A3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764991A (zh) * 2011-11-10 2014-04-30 爱信精机株式会社 进气歧管的树脂成型模具、进气歧管和进气歧管的树脂成型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280122A2 (de) * 1987-02-24 1988-08-31 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Sauganlage für Brennkraftmaschinen
EP0527683A1 (de) * 1991-08-13 1993-02-17 Regie Nationale Des Usines Renault S.A. Einlasssystem für Brennkraftmaschinen
US5275135A (en) * 1992-05-20 1994-01-04 Ford Motor Company Fastener for a molded workpiece
DE9416059U1 (de) * 1994-10-05 1994-12-01 Hahn, Karlheinz, 94315 Straubing Vergasergehäuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280122A2 (de) * 1987-02-24 1988-08-31 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Sauganlage für Brennkraftmaschinen
EP0527683A1 (de) * 1991-08-13 1993-02-17 Regie Nationale Des Usines Renault S.A. Einlasssystem für Brennkraftmaschinen
US5275135A (en) * 1992-05-20 1994-01-04 Ford Motor Company Fastener for a molded workpiece
DE9416059U1 (de) * 1994-10-05 1994-12-01 Hahn, Karlheinz, 94315 Straubing Vergasergehäuse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764991A (zh) * 2011-11-10 2014-04-30 爱信精机株式会社 进气歧管的树脂成型模具、进气歧管和进气歧管的树脂成型方法
EP2778384A1 (de) * 2011-11-10 2014-09-17 Aisin Seiki Kabushiki Kaisha Form zur harzformung für einen ansaugkrümmer, ansaugkrümmer und verfahren zur harzformung für einen ansaugkrümmer
EP2778384A4 (de) * 2011-11-10 2014-09-17 Aisin Seiki Form zur harzformung für einen ansaugkrümmer, ansaugkrümmer und verfahren zur harzformung für einen ansaugkrümmer
CN103764991B (zh) * 2011-11-10 2016-02-24 爱信精机株式会社 进气歧管的树脂成型模具和进气歧管的树脂成型方法
US9617957B2 (en) 2011-11-10 2017-04-11 Aisin Seiki Kabushiki Kaisha Resin molding mold for intake manifold, intake manifold and method of resin molding for intake manifold

Also Published As

Publication number Publication date
EP1195513A3 (de) 2002-05-15

Similar Documents

Publication Publication Date Title
US6286471B1 (en) Method for coupling a manifold housing system
US11346310B2 (en) Aircharger air intake system and method
US6024066A (en) Air-intake module for internal combustion engine
US7219648B2 (en) Working tool
US6178939B1 (en) Housing system
US20200132025A1 (en) Multiple Inlet Vehicle Air Filtration System
EP1090223B1 (de) Gehäusesystem für eine saugrohranlage
US7806953B2 (en) Manually guided implement
US20040025827A1 (en) Air cleaner systemwith clear covers for internal combustion engines
US6227159B1 (en) Air pipe line distribution system
JPH08334070A (ja) 内燃機関の吸気装置
EP1195513A2 (de) Gehäusesystem für eine Saugrohranlage
KR100604013B1 (ko) 공기 안내 시스템, 특히 내연 기관의 흡기 시스템
US6161514A (en) Air intake module for an internal combustion engine
US6089202A (en) Air-supply module for internal combustion engine
US7080621B2 (en) Air cleaner unit for combustion engine
US20040074466A1 (en) Integrated intake manifold and air cleaner for engine without a throttle
JPH0526124A (ja) 自動二・三輪車用エアクリーナ
KR200343813Y1 (ko) 차량용 연료절감기
JP2579898B2 (ja) エアクリーナ
JPH08210204A (ja) 内燃機関の吸気装置
JPH08210199A (ja) 内燃機関の吸気装置
JPH1162738A (ja) 内燃機関の吸気装置
JPH11107867A (ja) 内燃機関の吸気装置およびサージタンク
KR19990003241U (ko) 엘보우 호스 길이 변환이 가능한 엔진 에어 흡입장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20020117

AC Divisional application: reference to earlier application

Ref document number: 1090223

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VDO AUTOMOTIVE INC.

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20030313

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031114