Vorrichtung zur Bestimmung der Position von Emissionsbereichen eines thermischen Prozesses mit lokal begrenzter Energieeinbringung
Die Erfindung betrifft eine Vorrichtung zur selektiven Bestimmung der Position von Bereichen mit unterschiedlichem Emissionsverhalten innerhalb und in der Umgebung derWechseiwirkungszone eines durch einen Laserstrahl bewirkten thermischen Prozesses mit lokal begrenzter Energieeinbringung in ein Werkstück.
Bei dem durch einen Laserstrahl bewirkten thermischen Prozeß kann es sich um einen Schweißprozeß, einen Schneidprozeß oder um ein Härten eines Werkstückes mittels eines Laserstrahles handeln. Derartige durch einen Laserstrahl bewirkte thermische Prozesse und insbesondere das
Laserstrahlschweißen ist ein Verfahren, das in Fertigungsprozessen vorteilhaft zur Anwendung gelangt. Beispielsweise wird das Laserstrahlschweißen in der Automobilindustrie zum Schweißen von Dachnähten o.dgl., im Schiffbau zum Schweißen von Sandwichpaneelen o.dgl., im Behälterbau usw. angewandt. Dabei ist es erforderlich, während des Bearbeitungs- d.h. Schweißprozesses den Abstand zwischen der Werkstückoberfläche und dem Fokus des Laserstrahles korrekt einzuhalten. Abweichungen dieses Abstandes von einigen 0,1 mm können in einer verringerten Einschweißtiefe resultieren und zusätzlich
durch eine entsprechende Änderung des Gesamtprozesses zu einer Verschlechterung der Produktionsqualität führen.
Zur Kontrolle der Fokuslage, d.h. des Abstandes zwischen der Werkstückoberfläche und dem Fokus des Laserstrahles sind verschiedene Sensorsysteme wie Systeme mit vorauseilenden Sensoren zur Messung der geometrischen Größe des Bearbeitungsabstandes zwischen dem Werkstück und dem Bearbeitungskopf (Düse), Systeme mit Sensoren zur Detektion der Intensität der Prozeßemission sowie Systeme mit Sensoren zur Aufnahme der Intensitätsverteilung der Prozeßemission am Bearbeitungsört bekannt.
Die zuerst erwähnten Systeme mit vorauseilenden Sensoren messen beispielsweise mit Hilfe von taktilen Sensoren durch Einsatz eines Tastfingers oder mit Hilfe optischer Sensoren auf Basis von Triangulation mit Meß- Laserstrahl oder Lichtschnitt mit beispielsweise einer oder mehreren Lichtlinien oder mit pendelndem Laserstrahl den Bearbeitungsabstand im Vorlauf. Prozeßrelevanter Parameter für das Bearbeitungsergebnis sind die Fokuslage und der Bearbeitungsabstand. Die Fokuslage beschreibt den Abstand des Fokus des Laserstrahls von der Werkstückoberfläche in Strahlrichtung. Eine direkte Messung während des Bearbeitungsprozesses ist nicht möglich. Da die Fokusposition relativ zum Bearbeitungskopf in der Regel konstant ist, wird über eine Messung des Abstandes zwischen dem Bearbeitungskopf (bzw. Düse) und der Werkstückoberfläche, d. h. über eine Messung des Bearbeitungsabstandes die Fokuslage indirekt ermittelt.
Diesen bekannten Systemen ist gemeinsam, daß sie nur im Vorlauf betrieben werden können, da am jeweiligen Bearbeitungsort zu hohe Temperaturen für den Tastfinger sowie zu hohe optische Prozeßemissionen für einen Meß-
Laserstrahl vorherrschen. Daraus folgt, daß Systeme mit taktilen Sensoren und derartigen optischen Sensoren nur sehr eingeschränkt einsetzbar sind, da z. B. beim dreidimensionalen Laserstrahlschweißen ein vorlaufender Sensor bei Kurven in der Bearbeitungsbahn einen falschen Meßwert liefert.
Zu den Systemen mit Sensoren zur Detektion der Prozeßemission zählen Systeme, die den zeitlichen Verlauf der Intensität der Prozeßemission mit Sensoren aufnehmen, bei denen es sich beispielsweise um Fotodioden, Mikrofone o.dgl. handelt. Aus dem mit den besagten Sensoren erfaßten zeitlichen Verlauf wird dann ein Zusammenhang mit der Fokuslage hergestellt. Die Systeme, die die Fokuslage auf diese Weise ermitteln, weisen den Nachteil auf, daß Änderungen der Intensität bzw. Änderungen des zeitlichen Verlaufes auf diverse Prozeßparameter zurückzuführen sind, was bedeutet, daß die besagten Änderungen nicht eindeutig der jeweiligen Fokuslage zugeordnet werden können. Die zuletzt genannten Systeme werden folglich im allgemeinen nur zur Prozeßbeobachtung eingesetzt, für Regel- bzw. Stellkreise sind sie nur bedingt bzw. nicht geeignet. Eine Ausnahme hiervon macht das aus der DE 195 16 376 C2 bekannte Verfahren zur Kontrolle und Regelung der Brennfleckposition, d.h. des Fokus des Laserstrahles bei der Lasermaterialbearbeitung, wobei auf den Laserstrahl eine geringe, die Prozeßstabilität und Bearbeitungsqualität nicht beeinträchtigende Fokuslagenoszillation in axialer Richtung aufgeprägt, das laserinduzierte Plasma mittels eines Sensors, der ein entsprechendes Sensorsignal generiert, detektiert, die für die Abweichung der Fokuslage von der Fokus-Optimallage repräsentative Amplitude der aufgrund der Brennfleckoszillation resultierenden Sensorsignaloszillation und Phasenbeziehung zwischen der Frequenz der Brennfleckoszillation und der daraus resultierenden Frequenz der Sensorsignaloszillation ermittelt und die Fokuslage entsprechend der
ermittelten Abweichung nachgeführt wird. Dieses bekannte System weist jedoch den Mangel auf, daß es aufgrund der störsicheren Meßmethode in Form einer Relativmessung nur auf die Fokuslage z = 0 mm regeln kann. In der Praxis werden jedoch üblicherweise andere Fokuslagen, d.h. z * 0 mm verlangt.
Bei den weiter oben erwähnten Systemen mit Sensoren zur Aufnahme der Intensitätsverteilung der Prozeßemission am Bearbeitungsort kommen CCD-, CMOS- oder Hochgeschwindigkeits-Kameras in on-axis oder off-axis Beobachtungsrichtung zur Anwendung. Diese bekannten Systeme bieten über eine digitale Bildverarbeitung die Möglichkeit, eine Vielzahl von Prozeßkenngrößen aufzunehmen und diese in einen Zusammenhang mit der jeweiligen Fokuslage zu bringen. Ein System der zuletzt genannten Art ist beispielsweise in der DE 197 16 293 A1 offenbart. Dort wird eine Vorrichtung zur Regelung von Schweißparametern beim Laserstrahlschweißen beschrieben, die eine CCD-Kamera zur Detektion der Geometrie eines beim Schweißprozeß gebildeten Schmelzbades umfaßt. Die Kamera ist an eine bilddatenverarbeitende Einheit angeschlossen. Die Regelung der Einschweißtiefe erfolgt in Abhängigkeit von der detektierten Schmelzbadlänge oder Schmelzbadfläche. Eine Regelung der Fokuslage des Laserstrahls erfolgt dort in Abhängigkeit eines geometrischen Ähnlichkeitsfaktors, der sich als Quotient der Schmelzbadfläche und dem Abstand zwischen dem geometrischen Schwerpunkt des Laserstrahl-Keyholes und dem geometrischen Schwerpunkt der Schmelzbadfläche berechnet. Mit Hilfe dieser bekannten Vorrichtung ist auch eine Detektion und Regelung von Spalten zwischen den jeweils zu verschweißenden Werkstücken, von einem Höhenversatz zwischen den Werkstücken und/oder einem lateralen Versatz des Laserstrahles möglich. Die CCD-Kamera ist an einem Bearbeitungskopf off-axis angebracht, sie weist
eine geeignete Optik auf, die den Bearbeitungsort abbildet und die ein Digital- Signal-Processing-Board (DSP-Board) aufweist. Durch leistungsfähige Bildverarbeitungs-Algorithmen können eine Vielzahl von Prozeßkenngrößen in Echtzeit abgeleitet werden. Der Zusammenhang der besagten Prozeßkenngrößen mit der jeweiligen Fokuslage ist nachgewiesen. Ein Mangel dieses zuletzt genannten Systemes besteht im relativ hohen systemtechnischen Aufwand bei gleichzeitig geringer Meßfrequenz. Die Meßfrequenz ist durch den Takt der CCD-Kamera und durch die Leistungsfähigkeit des DSP-Boards beschränkt. Die Taktfrequenz der CCD-Kamera beträgt beispielsweise 50 Hz. Der hohe systemtechnische Aufwand ist durch den Einsatz eines schnellen DSP-Boards bedingt.
Bei den weiter oben in Verbindung mit vorauseilenden Sensoren erwähnten optischen Triangulationsverfahren stellt die aktive Triangulation eine Variante dar. Dabei wird als Erzeugende für eine Lichtquelle auf einem Meßobjekt nicht ein Signallaser wie bei der Lasertriangulation verwendet, sondern die thermische Emission des Bearbeitungsortes. Dieses Verfahren wird für das Laserstrahlschweißen bislang nicht eingesetzt, da es als zu ungenau gilt:
Zum einen weist die Fläche des Schmelzbades in der Draufsicht im wesentlichen die Form eines langgestreckten Tropfens auf, wie beispielsweise in der oben erwähnten DE 197 16 293 A1 zeichnerisch verdeutlicht ist. Der Schwerpunkt der thermischen Emission liegt folglich nicht im Mittelpunkt der Laser-Werkstück-Wechselwirkungszone. Der Abstand zwischen dem Schwerpunkt der thermischen Emission des Schmelzbades und dem Schwerpunkt des Laserstrahl-Keyholes ändert sich mit der Beobachtungsrichtung des Sensors.
Zum zweiten befindet sich über der Dampfkapillare eine Metalldampffackel. Die optische Emission der Metalldampffackel verschiebt den Schwerpunkt der gesamten optischen Emission des Bearbeitungsortes in Richtung der Oberflächennormalen der Werkstückoberfläche von dieser weg. Der gemessene Abstand der Metalldampffackel von der Werkstückoberfläche ändert sich in Abhängigkeit von der optischen Emission der Metalldampffackel.
In Kenntnis dieser Gegebenheiten liegt der Erfindung die Aufgabe zugrunde, eine kostengünstige Vorrichtung zur Kontrolle des Bearbeitungsabstandes mit hoher Auflösung bei durch einen Laserstrahl bewirkten thermischen Prozessen mit lokal begrenzter Energieeinbringung in ein Werkstück zu schaffen, wobei die Vorrichtung auf einem zuverlässigen, d.h. betriebssicheren und robusten Meßverfahren basiert.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Bevorzugte Aus- bzw. Weiterbildungen der erfindungsgemäßen Vorrichtung sind in den Unteransprüchen gekennzeichnet.
Dadurch, daß erfindungsgemäß zur Bestimmung der Position des Schwerpunkts des jeweiligen Emissions-Bereiches eine positionsempfindliche optische Sensoreinrichtung vorgesehen ist, der eine optische Filtereinrichtung vorgeordnet ist, ist eine zuverlässige exakte Kontrolle des jeweiligen Intensitätsschwerpunktes der optischen Emission der durch den Laserstrahl bewirkten lokal begrenzten Energieeinbringung in ein Werkstück, bei der es sich beispielsweise um eine Schweißkapillare handelt, wenn es sich bei dem besagten thermischen Prozeß um einen Schweißprozeß handelt, mit einfachen Mitteln möglich. Die Position des Intensitätsschwerpunktes kann erfindungsgemäß durch die Abbildung der Schweiß- bzw. Dampfkapillare auf
mindestens eine Diodeneinrichtung detektiert werden. Erfindungsgemäß handelt es sich bei der Diodeneinrichtung um eine position sensitive diode (PSD). Vor der/jeder PSD, die ein- oder zweidimensional ausgebildet sein kann, ist erfindungsgemäß mindestens ein optisches wellenlängenselektives Filter in der optischen Filtereinrichtung angeordnet. Die Ermittlung des
Intensitätsschwerpunktes der optischen Emission der Dampfkapillare ist durch die mindestens eine PSD möglich. Es wurde gefunden, daß zwischen der Lage des Intensitätsschwerpunktes der optischen Emission der Dampfkapillare und des Bearbeitungsabstandes ein eindeutiger Zusammenhang besteht. Diese Relation wird erfindungsgemäß zur Kontrolle des Bearbeitungsabstandes und somit auch der Fokuslage des Laserstrahles genutzt. Daraus resultiert der Vorteil, daß die erfindungsgemäße Vorrichtung im Gegensatz zu den zuerst erwähnten Systemen mit taktilen Sensoren 3D-fähig ist, im Gegensatz zu Systemen mit Sensoren zum Erfassen des zeitlichen Verlaufes der Intensität der Prozeßemission beispielsweise mit Fotodioden, Mikrofonen o.dgl. auf einem sehr robusten Meßverfahren beruht, und im Gegensatz zu Systemen der oben ebenfalls erwähnten Art mit Sensoren zur Aufnahme der Intensitätsverteilung der Prozeßemission am Bearbeitungsort mit Hilfe von CCD-, CMOS- oder Hochgeschwindigkeitskameras keine aufwendige Bildverarbeitungsalgorithmen benötigt und hohe Meßfrequenzen ermöglicht. Durch geeignete Wahl der wellenlängenselektiven optischen Filter ist es möglich, die optischen Emissionen des Schmelzbades und der Metalldampffackel so abzuschwächen, daß der ermittelte Intensitätsschwerpunkt hinreichend genau in der Mitte der Austrittsöffnung der Dampfkapillare liegt. Hierdurch weist die erfindungsgemäße Vorrichtung im Vergleich mit der bekannten aktiven Triangulation eine erhöhte Meßgenauigkeit auf.
Die erfindungsgemäße Vorrichtung detektiert nicht exakt den Schwerpunkt z. B. der Metalldampffackel, vielmehr zeigt sie den gemeinsamen Schwerpunkt von Keyhole, Metallbad und Metalldampffackel. Durch den Einsatz optischer Filter kann jedoch ein Bereich bevorzugt und können andere Bereiche benachteiligt werden.
Weitere Einzelheiten, Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung des der Erfindung zugrundeliegenden Prinzips bzw. einer schematischen Darstellung der erfindungsgemäßen Vorrichtung. Es zeigen:
Figur 1 abschnittweise perspektivisch ein Werkstück sowie schematisch einen auf das Werkstück gerichteten Laserstrahl,
Figur 2 eine Diagrammdarstellung der spektralen Intensität der Keyhole- und Metallbademission in Abhängigkeit von der Wellenlänge,
Figur 3 einen Längsschnitt durch ein abschnittweise angedeutetes
Werkstück zur Verdeutlichung der Dampfkapillare im Werkstück und der Metalldampffackel auf dem Werkstück,
Figur 4 eine schematische Darstellung wesentlicher Teile der
Vorrichtung, die auf ein Werkstück gerichtet ist, und
Figur 5 eine schematische Blockdarstellung einer Ausbildung der
Vorrichtung sowie abschnittweise ein Werkstück und eine Laserstrahlquelle.
Figur 1 zeigt perspektivisch abgeschnitten ein Werkstück 10, das zur Bearbeitung mit einem Laserstrahl 12 vorgesehen ist. Bei dieser Bearbeitung handelt es sich beispielsweise um das Verschweißen zweier eng aneinander anliegender Teile des Werkstückes 10. Der Laserstrahl 12 erzeugt ein
Schmelzbad 14, das im wesentlichen die Form eines langgestreckten Tropfens besitzt. Der Intensitätsschwerpunkt des tropfenförmigen Schmelzbades 14 ist mit der Bezugsziffer 16 bezeichnet. Die Vorschubbewegung des Werkstückes 10 ist durch den Pfeil 18 verdeutlicht. Am breiten Kopfende 20 der tropfenförmigen Oberfläche des Schmelzbades 14 befindet sich der Einstrahlpunkt 22 des Laserstrahles 12 und das den Einstrahlpunkt 22 umgebende Keyhole 24, d.h. die Öffnung der Dampfkapillare 26 (sh. beispielsweise Figur 3). Das Keyhole 24 ist im wesentlichen kreisförmig und besitzt einen Durchmesser d. Der Intensitätsschwerpunkt des Keyholes 24 ist mit der Bezugsziffer 28 bezeichnet.
Das Schmelzbad 14 besteht aus flüssigem Werkstoff. Bei dem Werkstoff handelt es sich z.B. um Eisen mit einem Schmelzpunkt von 1535°C. Die Dampfkapillare 26 besteht aus dem entsprechenden Werkstoff im dampfförmigen Zustand, beispielsweise aus verdampftem Eisen, das einen Siedepunkt von 2880°C besitzt.
Auf einer x-Achse weist der Intensitätsschwerpunkt 16 des tropfenförmigen Schmelzbades 14 von einem Bezugspunkt einen Abstand xiβ und der Intensitätsschwerpunkt 28 der Dampfkapillare 26 einen Abstand x2s auf. Der Gesamt-Intensitätsschwerpunkt XQES auf der Verbindungslinie zwischen dem Intensitätsschwerpunkt 16 des Schmelzbades 14 und dem Intensitätsschwerpunkt 28 der Dampfkapillare 26 berechnet sich zu:
GES = (Xl6 .ll6+ 28-l2δ) / (llθ+ δ)
mit
6 = gesamte empfangene Strahlungsintensität des Schmelzbades 14, und
l28 = gesamte empfangene Strahlungsintensität des Keyholes 24 der Dampfkapillare 26.
Der Abstand zwischen dem Gesamt-Schwerpunkt XGES und dem Intensitätsschwerpunkt x28 der Öffnung der Dampfkapillare 26 ist in Figur 1 mit x bezeichnet. Dieser Abstand x wird umso kleiner, je geringer die empfangene Strahlungsintensität Ii6 des Schmelzbades 14 ist.
Diese Betrachtung, d.h. die obigen Ausführungen berücksichtigen lediglich die räumliche Verteilung der beiden, zum Phänomen beitragenden, Lichtquellen, d.h. des Schmelzbades 14 und der Dampfkapillare 16; zur Realisierung der erfindungsgemäßen Vorrichtung ist es jedoch erforderlich, zusätzlich die verschiedenen spektralen Intensitätsverteilungen zu berücksichtigen.
Wie bereits weiter oben ausgeführt worden ist, herrschen in den beiden Bereichen, d.h. im Schmelzbad 14 und in der Dampfkapillare 16, voneinander verschiedene Temperaturen vor. Dementsprechend ist die spektrale Intensitätsverteilung unterschiedlich. Die Gesamtintensität der Strahlung hängt von der Temperatur, der Emissivität des jeweiligen Werkstoffes und von der jeweiligen Strahlung emittierenden Fläche ab.
Figur 2 verdeutlicht beispielhaft die spektrale Intensitätsverteilung eines Schmelzbades 14 und einer entsprechenden Dampfkapillare 26, wobei auf der Abszisse die Wellenlänge in Nanometer (nm) und auf der Ordinate die spektrale Intensität in Watt (W) aufgetragen ist. Die Kurve 30 verdeutlicht die spektrale Intensität in Abhängigkeit von der Wellenlänge eines Schmelzbades 14 und die Kurve 32 verdeutlicht die Abhängigkeit der spektralen Intensität von der Wellenlänge der entsprechenden Dampfkapillare 26. Dabei sind der Figur 2 die folgenden Parameter beispielhaft zugrundegelegt:
Temperatur des Metalldampfes der Dampfkapillare 26 = 6000°C
Temperatur des Schmelzbades 14 = 1600°C
Fläche des Keyholes 24 = 0,28.10"6 mm2
Fläche des Schmelzbades 14 = 5.10"6 mm2
Emissionsgrad ε des Keyholes 24 = 1
Emissionsgrad e des Schmelzbades 14 = 0,67.
Figur 2 zeigt, daß das Schmelzbad 14 entsprechend der Kurve 30 unterhalb von 750 nm nahezu keine Strahlung emittiert. Die Strahlung der Dampfkapillare 26 besitzt im Bereich um 800 nm gemäß Kurve 32 ihr Strahlungsmaximum. Erfindungsgemäß wird ein wellenlängenselektives optisches Filter verwendet, das Strahlung oberhalb von 750 nm absorbiert oder reflektiert, um den Anteil der empfangenen Intensität l des Schmelzbades 14 zu verkleinern und den Abstand x (sh. Figur 1 ) entsprechend zu verringern.
Figur 3 verdeutlicht schematisch abschnittweise ein Werkstück 10 sowie den auf das Werkstück 10 gerichteten Laserstrahl 12, durch den im Werkstück 10 die Dampfkapillare 26 gebildet wird. Das Werkstück 10 wird während der Laserbearbeitung in der durch den Pfeil 18 verdeutlichten Vorschubrichtung bewegt. Die Figur 3 verdeutlicht außerdem über der Dampfkapillare 26 eine Metalldampffackel 34. Die Metalldampffackel 34 emittiert vor allem Strahlung, wenn durch die Laserstrahlung 12 ein Plasma 36, d.h. ein Metalldampfplasma, induziert wird. Die Strahlung der Metalldampffackel 34 bewirkt analog zur Strahlung des Schmelzbades 14 (sh. Figur 1 ) eine Verschiebung des Gesamtschwerpunktes der Strahlungsintensität in Richtung der Oberflächennormalen des Werkstückes 10. Der Schwerpunkt der optischen Emission der Dampfkapillare 26 ist auch in Figur 3 mit der Bezugsziffer 28 bezeichnet. Die Metalldampffackel 34 weist einen Emissionsschwerpunkt 38 auf; der Gesamtschwerpunkt 40 zwischen dem Intensitätsschwerpunkt 28 der Dampfkapillare 26 und dem Emissionsschwerpunkt 38 der Metalldampffackel 34 ist mit der Bezugsziffer 40 bezeichnet. Auf einer Ordinate z besitzt der Intensitätsschwerpunkt 28 der Dampfkapillare 26 von einem Bezugspunkt den Abstand z28, der Emissionsschwerpunkt 38 der Metalldampffackel 34 den Abstand z38 und der Gesamtschwerpunkt 40 den Abstand ZGES- Der Abstand zwischen ZGES und z28 ist mit z bezeichnet. Der Abstand z sollte möglichst klein sein. Zu diesem Zwecke wird ein wellenlängenselektives optisches Filter benutzt, das z.B. Strahlung unterhalb von 550 nm absorbiert oder reflektiert, um den Anteil der empfangenen Strahlungsintensität aus der Metalldampffackel 34 zu reduzieren.
Die Detektion des Gesamtschwerpunktes wird in vorteilhafter Weise mit Hilfe wenigstens eines PSD-Sensors durchgeführt, der beispielsweise derartig
beschaltet ist, daß er über eine Verstärkereinheit und eine digitale oder analoge Datenverarbeitungseinheit ein Spannungssignal ausgibt, das zur Position des Intensitätsschwerpunktes eines Lichtfleckes auf dem PSD proportional ist. Dieser Lichtfleck ist das Bild derWechseiwirkungszone nach dem Filter. Die Meßfrequenz der erfindungsgemäßen Vorrichtung ist im wesentlichen durch die Verstärker- und Datenverarbeitungseinheit bestimmt, sie kann problemlos im kHz-Bereich oder in einem noch höheren Frequenzbereich liegen. Die PSD besitzt nämlich nur eine Anstiegszeit von einigen 10 nsec.
Das erwähnte Bild der Wechselwirkungszone nach dem Filter wird erfindungsgemäß also durch ein optisches System erzeugt, das die Lage der Objektebene, der Bildebene und der Linsenhauptebene sowie die Brechkraft der optischen Elemente und die Anzahl und Position der Blenden festlegt. Erfindungsgemäß können zwei Varianten des optischen Systems zur Anwendung gelangen, wie sie nachfolgend in Verbindung mit den Figuren 4 und 5 schematisch verdeutlicht sind.
Figur 4 zeigt schematisch einen telezentrischen Aufbau des optischen Systemes. Hierbei ist die Ebene des Detektors 42 parallel zur Hauptebene des Linsensystemes 44, die zur Beobachtungsrichtung 46 senkrecht orientiert ist. Das Werkstück ist mit der Bezugsziffer 10 bezeichnet. Auf der vom Werkstück 10 abgewandten Rückseite des Linsensystemes 44 ist im rückwärtigen Brennpunkt eine Blende 48 vorgesehen, so daß eine telezentrische Abbildung gewährleistet ist. Diese Variante weist den Vorteil auf, daß die transmittierte Intensität von der Lage des Objektpunktes unabhängig und die Kennlinie des Detektors 42 linearisiert ist. Außerdem kann durch Veränderung der Öffnung der Blende 48 die transmittierte Intensität wunschgemäß eingestellt werden.
Anstelle des in Figur 4 schematisch angedeuteten Aufbaus ist beispielsweise auch ein Aufbau nach dem Hinge- und Scheimpflug-Prinzip möglich, wie es aus der GB 1 196 A aus dem Jahr 1904 bekannt ist. Dieses Prinzip verknüpft die Lage der optischen Ebenen wie der Gegenstandsebene und der Bildebene derart, daß über den gesamten Abbildungsbereich - im Gegensatz zum oben beschriebenen telezentrischen Aufbau - eine scharfe Abbildung ermöglicht wird. Der Vorteil dieser zuletzt genannten Variante besteht darin, daß während des thermischen Prozesses, beispielsweise während des Schweißprozesses über eine zusätzliche CCD-Kamera der Prozeß vom Anwender beobachtet und die Entfernungseinstellung des Sensors noch einfacher durchgeführt werden kann.
Figur 5 verdeutlicht schematisch eine Ausbildung der erfindungsgemäßen Vorrichtung 50, die eine Abbildungsoptik 52, eine der Abbildungsoptik 52 nachgeordnete Filtereinrichtung 54 und einen PSD-Sensor 56 aufweist, der der Filtereinrichtung 54 nachgeordnet ist. Der PSD-Sensor 56 dient zur Detektion des Gesamt-Intensitätsschwerpunktes, wie weiter oben beschrieben worden ist. Der PSD-Sensor ist auf das Keyhole 24 gerichtet, das mittels des Laserstrahles 12 im abschnittweise verdeutlichten Werkstück 10 erzeugt worden ist. Mit der Bezugsziffer 26 ist auch in Figur 5 die Dampfkapillare und mit der Bezugsziffer 34 die Metalldampffackel bezeichnet.
Der PSD-Sensor 56 ist an eine Verstärker- und Datenverarbeitungseinheit 58 angeschlossen. Die Verstärker- und Datenverarbeitungseinheit 58 ist mit einer Laseranlagensteuerung 60 verbunden, die selbst mit der
Strahlführungsmaschine 62 der Laserstrahlquelle für den Laserstrahl 12 verbunden ist.
Der PSD-Sensor 56 kann an einem nicht gezeichneten Gehäuse angebracht sein, an dem zusätzlich eine Kamera für einen Kontrollmonitor und/oder ein Videorecorder angeordnet sein kann. Hierdurch ist eine Detektion und eine Kontrolle des Bearbeitungsabstandes möglich.
Wie sich aus dem Obigen ergibt, eignet sich die erfindungsgemäße Vorrichtung 50 also vorteilhaft zur selektiven Bestimmung der Position von Bereichen mit unterschiedlichem Emissionsverhalten innerhalb und in der Umgebung der Wechselwirkungszone von thermischen Prozessen mit lokal begrenzter Energieeinbringung, wobei die Bestimmung der Position in Abhängigkeit von der Position des Schwerpunktes der entsprechenden optischen Emission erfolgt, die durch eine optische Filterung selektiv erfaßt wird. Die Vorrichtung 50 kann zur Prozeßüberwachung einen Sensor oder mehrere Sensoren mit verschiedenen optischen Filtern verwenden. Desgleichen ist es möglich, eine Anzahl Sensoren mit verschiedenen Beobachtungsrichtungen gleichzeitig einzusetzen. Auf diese Weise ist eine Prozeßkontrolle möglich. Dabei werden beispielsweise zwei positionsempfindliche Dioden benutzt, von welchen die eine den Wellenlängenbereich um 400 nm bis ca. 900 nm beobachtet und somit die Position der Keyhole an der Oberfläche des Werkstückes 10 detektiert. Die andere positionsempfindliche Diode kann beispielsweise mit einem Filter für den Wellenlängenbereich von ca. 200 nm bis 400 nm kombiniert sein, um die Position der Metalldampffackel 34, d.h. der Plasmafackel, zu beobachten.
Die Positionssignale der besagten Dioden können derartig verknüpft werden, daß das mindestens eine resultierende Signal vom Bearbeitungsabstand unabhängig ist. Bei diesem mindestens einen Signal handelt es sich folglich um ein relatives Signal.
Eine dritte Diode kann mit einem optischen Filter im Wellenlägenbereich von beispielsweise 1000 bis 1800 nm kombiniert sein, um die Position des Schmelzbades zu beobachten.
Die oben beschriebenen beiden positionsempfindlichen Dioden geben je ein Positionssignal aus. Durch die zuletzt erwähnte Verknüpfung kann der relative Abstand zwischen den beiden Punkten in der Wechseiwirkungszone berechnet und die absolute Position eliminiert werden. Daraus resultiert der Vorteil, daß eine Aussage über die Stabilität des Prozesses ohne Kenntnis der Kontur des Werkstückes 10 erzielt werden kann.
Zweckmäßig kann es sein, wenn die Beobachtungsrichtungen der Sensoren voneinander verschieden ist, um eine sogenannte Kreuzortung zu erzielen und die laterale und die axiale Lage des Intensitätsschwerpunktes getrennt zu erfassen. Nach allgemeiner Vorstellung liegt der Wechselwirkungsort symmetrisch um den Einstrahlpunkt des Laserstrahles 12. Tatsächlich gibt es jedoch beispielsweise beim Laserstrahlschweißen einer Stumpfnaht eine Verzerrung der Dampfkapillare 26 in die zur Schweißrichtung entgegengesetzte Richtung, beim Laserstrahischweißen einer Kehlnaht eine Verzerrung der Dampfkapillare 26 senkrecht zur Vorschubrichtung und beim
Laserstrahlschweißen eines sogenannten verdeckten T-Stoßes eine Verzerrung der Dampfkapillare 26 in den Randbereichen des Stegbleches und gegebenenfalls eine nach unten geöffnete Dampfkapillare 26. Beim Laserstrahlhärten ist ein Nachfolgen der Glühzone im rückwärtigen Drittel des eigentlichen Brennflecks möglich.
Durch geeignete Wahl der Beobachtungsrichtung und/oder durch den Einsatz einer geeigneten Blende ist eine Abschattung von Störsignalen möglich. Beim
Einsatz von Zusatzwerkstoffen wie beispielsweise eines Drahtes kann die Position des Sensors relativ zum besagten Draht eine wichtige Rolle spielen.