EP1189697A1 - Catalyst selectivation - Google Patents

Catalyst selectivation

Info

Publication number
EP1189697A1
EP1189697A1 EP00935926A EP00935926A EP1189697A1 EP 1189697 A1 EP1189697 A1 EP 1189697A1 EP 00935926 A EP00935926 A EP 00935926A EP 00935926 A EP00935926 A EP 00935926A EP 1189697 A1 EP1189697 A1 EP 1189697A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
agent
component
toluene
para
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00935926A
Other languages
German (de)
French (fr)
Inventor
John Ou
Youchang Xie
Xiangyun Long
Xiawan Yang
Lili Guan
Bieying Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/312,104 external-priority patent/US6388156B1/en
Priority claimed from US09/327,241 external-priority patent/US6613708B1/en
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Publication of EP1189697A1 publication Critical patent/EP1189697A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds

Definitions

  • the present invention relates to methods for modifying zeolite catalysts and catalysts so modified, and more particularly relates, in one embodiment, to methods for modifying zeolite catalysts to make them more selective to the synthesis of para-substituted dialkylbenzenes relative to other dialkylbenzene isomers, as well as useful in other reactions, and catalysts so modified.
  • para-xylene is of particular value as a large volume chemical intermediate in a number of applications being useful in the manufacture of terephthalates which are intermediates for the manufacture of polyethylene terephthalate (PET).
  • One source of feedstocks for manufacturing PX is by disproportionation of toluene into xylenes.
  • One of the disadvantages of this process is that large quantities of benzene are also produced.
  • Another source of feedstocks used to obtain PX involves the isomerization of a feedstream that contains non-equilibrium quantities of mixed ortho- and meta-xylene isomers (OX and MX, respectively) and is lean with respect to PX content.
  • a disadvantage of this process is that the separation of the PX from the other isomers is expensive.
  • Zeolites are known to catalyze the reaction of toluene with other reactants to make xylenes.
  • Some zeolites are silicate based materials which are comprised of a silica lattice and, optionally, alumina combined with exchangeable cations such as alkali or alkaline earth metal ions.
  • the term "zeolites" includes materials containing silica and optionally alumina, it is recognized that the silica and alumina portions may be replaced in whole or in part with other oxides.
  • germanium oxide, tin oxide, phosphorus oxide, and mixtures thereof can replace the silica portion.
  • Boron oxide, iron oxide, gallium oxide, indium oxide, and mixtures thereof can replace the alumina portion.
  • zeolite shall mean not only materials containing silicon and, optionally, aluminum atoms in the crystalline lattice structure thereof, but also materials which contain suitable replacement atoms for such silicon and aluminum, such as gallosilicates, borosilicates, ferrosilicates, and the like.
  • Aluminophosphate zeolites are made of alternating AIO 4 and PO 4 tetrahedra. Aluminophosphate-based materials have lower acidity compared to aluminosilicates. The lower acidity eliminates many side reactions, raises reactants' utilization, and extends catalyst life.
  • Aluminophosphate-based zeolites are often abbreviated as ALPO. Substitution of silicon for P and/or a P-AI pair produces silicoaluminophosphate zeolites, abbreviated as SAPO.
  • alkylaromatic compounds can be synthesized by reacting an aromatic compound such as toluene with a mixture of carbon dioxide (CO 2 ), and carbon monoxide (CO) and hydrogen (H 2 ) (synthesis gas) at alkylation conditions in the presence of a catalyst system, which comprises (1) a composite of oxides of zinc, copper, chromium, and/or cadmium; and (2) an aluminosilicate material, either crystalline or amorphous, such as zeolites or clays; as disclosed in U.S. Pat. Nos. 4,487,984 and 4,665,238.
  • a catalyst system which comprises (1) a composite of oxides of zinc, copper, chromium, and/or cadmium; and (2) an aluminosilicate material, either crystalline or amorphous, such as zeolites or clays; as disclosed in U.S. Pat. Nos. 4,487,984 and 4,665,238.
  • Such catalyst systems are not capable of producing greater than equilibrium concentrations of para- xylene (PX) in the xylene-fraction product.
  • the xylene-fraction product contains a mixture of xylene isomers at or near the equilibrium concentration, i.e., 24% PX, 54% MX, and 22% OX.
  • the lack of para- xylene selectivity in alkylation of toluene with syngas can be caused by (1 ) the acidic sites on the sur ace outside the zeolite channels, and/or (2) the channel structure not being able to differentiate para-xylene from its isomers.
  • zeolites can be modified to enhance their molecular-sieving or shape-selective capability. Such modification treatments are usually called zeolite selectivation.
  • Selectivated zeolites can more accurately differentiate molecules on the basis of molecular dimension or steric characteristics than the unselectivated precursors. For example, silanized ZSM-5 zeolites adsorbed PX much more preferentially over MX than untreated ZSM-5. It is believed that the deposition of silicon oxide onto zeolite surfaces from the silanization treatment has (1 ) passivated the active sites on the external surface of zeolite crystals, and (2) narrowed zeolitic pores to facilitate the passage of the smaller PX molecules and prevent the bigger MX and OX molecules from entering or exiting the pores.
  • para-alkyl selectivation refers to modifying a catalyst or catalytic reaction system so that it preferentially forms more para-substituted dialkylbenzenes than the expected equilibrium proportions relative to the other isomers.
  • Zeolite selectivation can be accomplished using many techniques. Reports of using compounds of silicon, phosphorous, boron, antimony, coke, magnesium, etc. for selectivation have been documented.
  • a method for modifying catalysts involving contacting first component, such as crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, crystalline or amorphous aluminophosphates, zeolite-bound zeolites, substituted aluminophosphates, and mixtures thereof with an agent which may be compounds of elements selected from Groups 1 through 16, and mixtures thereof.
  • first component such as crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, crystalline or amorphous aluminophosphates, zeolite-bound zeolites, substituted aluminophosphates, and mixtures thereof.
  • catalysts particularly zeolite catalysts
  • organometaUic compounds in such a way to enhance selectivity to para-substituted alkyl benzenes in the synthesis of alkyl benzenes. It will be appreciated that the modified catalysts of this invention will find utility in catalyzing other reactions.
  • the improvement in para-substituted selectivity is achieved by treating the catalysts with proper chemical compounds of elements selected from Groups 1-16, and mixtures thereof, to (1 ) inhibit the external acidic sites to minimize aromatic alkylation on the non-para positions, and/or the isomerization of the para-substituted compounds, and/or (2) impose more restrictions on the channel structure to facilitate the formation and transport of para-substituted aromatic compounds, in one non-limiting explanation of the mechanism of the invention. It must be understood that such treatment may be performed on aluminophosphate catalyst reaction systems of this invention, but that some aluminophosphate catalyst reaction systems do not require this para- substituted selectivation treatment to be effective at para-substituent selectivation.
  • the catalytic reaction systems suitable for this invention include (1 ) a first component of one or more than one silicate-based materials, including but not necessarily limited to, crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, zeolite- bound zeolites, and/or crystalline or amorphous aluminophosphates, and/or substituted aluminophosphates and mixtures thereof, and, optionally (2) a second component of one or more than one of the metals or oxides of the metals selected from Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and 16 (new IUPAC notation, e.g.
  • the first and second components may be chemically mixed, physically mixed, and combinations thereof, as will be described.
  • the composition of the proposed catalyst reaction systems may range from 95 wt.% silicate-based material or aluminophosphate-based material first component/5 wt.% metals or metal oxides second component, if present, to 5 wt.% silicate-based material or aluminophosphate-based material first component/95 wt.% metals or metal oxides second component, if present.
  • the selectivation techniques of this invention may be practiced before or after the silicate-based materials or aluminophosphate-based materials are mixed with or combined chemically or physically with metals or metal oxides, if used. That is, in some embodiments, the silicate-based materials and aluminophosphate-based materials may be selectivated before combination with metals or metal oxides. In other embodiments, silicate-based materials and aluminophosphate-based materials may be selectivated after combination with metals or metal oxides. The former process might be termed "pre- selectivation", while the latter process may be termed "post-selectivation".
  • zeolite materials such as silicate-based zeolites such as faujasites, morden ⁇ tes, pentasils, etc.
  • Zeolite materials suitable for this invention include silicate-based zeolites and amorphous compounds.
  • Silicate-based zeolites are made of alternating SiO 2 and MO x tetrahedra, where in the formula M is an element selected from the Groups 1 through 16 of the Periodic Table (new IUPAC). These types of zeolites have 8-, 10-, or 12-membered oxygen ring channels. Silicate-based materials are generally acidic.
  • the more preferred zeolites of this invention include 10- and 12-membered ring zeolites, such as ZSM-5, ZSM-11 , ZSM-22, ZSM-48, ZSM-57, etc.
  • silicate-based materials have one-dimensional channel structures, which are capable of generating higher-than-equilibrium PX selectivity. These materials may optionally be para-substituent selectivated. Other silicate-based materials having two- or three- dimensional channel structures are preferably para- substituent selectivated or modified to be more selective through the use of certain chemical compounds, as will be described, such as organometaUic compounds and compounds of elements selected from Groups 1-16.
  • the selectivation of the zeolite materials including the silicate-based materials can be accomplished using compounds including, but not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
  • silicate-based materials suitable for the second component include zeolite bound zeolites as described in WO 97/45387.
  • Zeolite bound zeolite catalysts useful in the present invention concern first crystals of an acidic intermediate pore size first zeolite and a binder comprising second crystals of a second zeolite.
  • the zeolite bound zeolite catalyst suitable for use in the present process does not contain significant amounts of non-zeolitic binders.
  • the first zeolite used in the zeolite bound zeolite catalyst is an intermediate pore size zeolite.
  • Intermediate pore size zeolites have a pore size from about 5 to about 7 A and include, for example, AEL, MFI, MEL, MFS, MEI, MTW, EUO, MTT, HEU, FER, and TON structure type zeolites. These zeolites are described in Atlas of Zeolite Structure Types, eds. W. H. Meier and D. H. Olson, Butterworth-Heineman, Third Edition, 1992.
  • Examples of specific intermediate pore size zeolites include, but are not limited to, ZSM-5, ZSM-11 , ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, ZSM-50, and ZSM-57.
  • Preferred first zeolites are galliumsilicate zeolites having an MFI structure and aluminosilicate zeolites having an MFR structure.
  • the second zeolite will usually have an intermediate pore size and have less activity than the first zeolite.
  • the second zeolite will be substantially non-acidic and will have the same structure type as the first zeolite.
  • the preferred second zeolites are aluminosilicate zeolites having a silica to alumina mole ratio greater than 100 such as low acidity ZSM-5. If the second zeolite is an aluminosilicate zeolite, the second zeolite will generally have a silica to alumina mole ratio greater than 200:1 , e.g., 500:1 ; 1 ,000:1 , etc., and in some applications will contain no more than trace amounts of alumina.
  • the second zeolite can also be silicalite, i.e., a MFI type substantially free of alumina, or silicalite 2, a MEL type substantially free of alumina.
  • the second zeolite is usually present in the zeolite bound zeolite catalyst in an amount in the range of from about 10% to 60% by weight based on the weight of the first zeolite and, more preferably, from about 20% to about 50% by weight.
  • the second zeolite crystals preferably have a smaller size than the first zeolite crystals and more preferably will have an average particle size from about 0.1 to about 0.5 microns.
  • the second zeolite crystals, in addition to binding the first zeolite particles and maximizing the performance of the catalyst will preferably intergrow and form an overgrowth which coats or partially coats the first zeolite crystals.
  • the crystals will be resistant to attrition.
  • the zeolite bound zeolite catalyst suitable for the process of the present invention is preferably prepared by a three step procedure. The first step involves the synthesis of the first zeolite crystals prior to converting it to the zeolite bound zeolite catalyst.
  • a silica-bound aluminosilicate zeolite can be prepared preferably by mixing a mixture comp ⁇ sing the aluminosilicate crystals, a silica gel or sol, water and optionally an extrusion aid and, optionally, the metal component until a homogeneous composition in the form of an extrudable paste develops.
  • the final step is the conversion of the silica present in the silica-bound catalyst to a second zeolite which serves to bind the first zeolite crystals together.
  • aluminophosphate-based materials may be used in conjunction with metal oxides for aromatic alkylation with syngas.
  • Aluminophosphate-based materials usually have lower acidity compared to silicate-based materials.
  • the lower acidity eliminates many side reactions, raises reactants' utilization, and extends catalyst life.
  • Further catalytic reaction systems suitable for this invention include aluminophosphate-based materials and amorphous compounds.
  • Aluminophosphate-based materials are made of alternating AIO 4 and PO 4 tetrahedra. Members of this family have 8- (e.g. AIPO 4 -12, -17, -21 , -25, - 34, -42, etc.), 10- (e.g. AIPO 4 -11 , 41 , etc.), or 12- (AIPO -5, -31 , etc.) membered oxygen ring channels. Although AIPO 4 s are neutral, substitution of Al and/or P by cations with lower charge introduces a negative charge in the framework, which is countered by cations imparting acidity.
  • substitution of silicon for P and/or a P-AI pair turns the neutral binary composition (i.e. Al, P) into a series of acidic-ternary- composition (Si, Al, P) based SAPO molecular sieves, such as SAPO-5, -
  • Acidic ternary compositions can also be created by substituting divalent metal ions for aluminum, generating the MeAPO materials.
  • Me is a metal ion which can be selected from the group consisting of, but not limited to, Mg, Co, Fe, Zn and the like. Acidic materials such as MgAPO (magnesium substituted), CoAPO
  • substitution can also create acidic quaternary-composition based materials such as the MeAPSO series, including FeAPSO (Fe, Al, P, and Si), MgAPSO (Mg, Al, P, Si), MnAPSO, CoAPSO, ZnAPSO (Zn, Al, P, Si), etc.
  • Some preferred aluminophosphate-based materials of this invention include 10- and 12-membered ring molecular sieves (SAPO-11 , -31 , -41 ; MeAPO-11 , -31 , -41 ; MeAPSO-11 , -31 , 41 ; EIAPO-11 , -31 , -41 ; EIAPSO-11 , -31 , -41 , etc.) which already have significant shape selectivity due to their narrow channel structure.
  • SAPO-11 , -31 , -41 10- and 12-membered ring molecular sieves
  • MeAPO-11 , -31 , -41 MeAPSO-11 , -31 , 41 ;
  • EIAPO-11 , -31 , -41 EIAPSO-11 , -31 , -41 , etc.
  • aluminophosphates may be para-alkyl selectivated or modified to be more selective through the use of certain chemical compounds, as will be described, such as organometaUic compounds and compounds of elements selected from Groups 1-16.
  • the para-alkyl selectivation of the zeolite materials including the aluminophosphate-based materials can be accomplished using compounds including, but not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
  • the preparation of the catalytic reaction systems can be accomplished with several techniques known to those skilled in the art. Some examples are given below.
  • Para-selectivation involves the treatment of the above mentioned catalytic reaction system materials with proper chemical compounds of elements selected from Groups 1-16, and mixtures thereof.
  • the composition of the selectivated catalyst may range from 1 wt.% of the seiectivating elements/99 wt.% of the first component to 99 wt.% of the selectivating elements/1 wt.% of the first component.
  • selectiveating elements is meant the elemental portion of the elemental form or elemental oxide form of the seiectivating chemical compounds.
  • Some para-substituent selectivation treatments are known, e.g. using silicon compounds. Other compounds that may be used include, but are not limited to compounds of phosphorus, boron, antimony, magnesium, and the like, and coke, and the like.
  • Para-substituent selectivation treatments of the mate ⁇ als of the above catalytic reaction systems can be carried out either prior to the selective formation of PX (ex situ) or during the PX formation (in situ), to use PX formation as a non- limiting example.
  • the seiectivating agents are added with the feed to the reactor containing a catalytic reaction system.
  • the technique for seiectivating the materials according to the method of this invention is based on the consideration that by depositing on a silicate-based material or aluminophosphate-based material one or more than one of the organometaUic compounds which are too bulky to enter the channels (or other seiectivating agent), one should be able to modify only the external surface and regions around channel mouth.
  • the fact that the selectivation agent does not enter the channels preserves the active sites inside the channels. Since the channel active sites account for more the majority of the total active sites, their remaining active prevents any significant loss of reactivity or conversion.
  • One type of the bulky organometaUic compounds suitable for seiectivating 10-member-ring zeolites, such the ZSM family (e.g. ZSM-5, - 11 , -22, -48, etc.), mordenite, etc., is the salts of large organic anions and metallic cations.
  • the organic anions can be selected from molecules containing carboxylic and/or phenolic functional groups, including but not limited to phthalate, ethylenediaminetetraacetic acid (EDTA), vitamin B-5, trihydroxy benzoic acid, pyrogallate, salicylate, sulfosalicylate, citrate, naphthalene dicarboxylate, anthradiolate, camphorate, and others.
  • the metallic cations can be selected from the element(s) of Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and 16 (new IUPAC notation).
  • Other compounds for seiectivating the silicate-based and aluminophosphate- based materials include, but are not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
  • Selectivation of silicate-based materials and aluminophosphate- based materials with the above-mentioned organometaUic salts can be accomplished by various means. For example, one can use impregnation of a solution of an organometaUic salt onto a silicate-based material or aluminophosphate-based material. Either water or any suitable organic solvent can be used. Addition of non-metallic salts and/or adjustments of pH to facilitate the treatment are optional. Heat will be provided to drive off the solvent, leaving behind a material coated homogeneously with the organometaUic salt.
  • Drying and calcination of the coated zeolite or aluminophosphate-based material at appropriate temperatures will turn the salt into metal oxide form or elemental metal form (agent derivative).
  • a dry-mix technique which involves mixing directly a zeolite in the form of powder or particles with an organometaUic salt also in the form of powder or particles without the use of any solvent.
  • the mixture will then be subjected to heat treatment, which facilitates the dispersion of the salt over the material and eventually turns the salt into elemental form or metal oxide form (agent derivative).
  • the catalytic reaction systems can be prepared by adding solutions of elemental metal salts either in series to or as a mixture with the fine powder or particles such as extrudates, spheres, etc. of the unselectivated silicate-based materials having one dimensional channel structures, or optionally ex situ selectivated silicate-based materials, unselectivated aluminophosphate-based materials, or optionally ex situ selectivated aluminophosphate-based materials, until incipient wetness is reached.
  • the solvent water or other solvents
  • the solvent can be evacuated under heat or vacuum using typical equipment such as a rotary evaporator.
  • the final product is dried, calcined, and pelletized, if necessary.
  • solutions of metal salts and the ex situ selectivated fine powder or particles such as extrudates, spheres, etc. of silicate-based and aluminophosphate-based materials are thoroughly mixed.
  • a dilute basic solution e.g. ammonia, sodium carbonate, potassium hydroxide, etc.
  • the precipitate is filtered and washed thoroughly with water.
  • the final product is dried, calcined, and pelletized, if necessary.
  • the catalytic reaction systems can also be prepared using physical mixing. Finely divided powders of metal(s) or metal oxide(s), or powders of metal(s) or metal oxide(s) supported on any inert materials, are mixed thoroughly with finely divided powder of the ex situ selectivated silicate- based materials, unselectivated aluminophosphate-based materials, or optionally ex situ selectivated aluminophosphate-based materials in a blending machine or a grinding mortar. The mixture is optionally pelletized before use.
  • an extrudable paste may be formed.
  • the resulting paste can be molded, e.g. extruded, and cut into small strands which can then be dried and calcined.
  • the catalytic reaction system can also be prepared by mixing physically the particles of silicate-based material or aluminophosphate- based materials components and the particles of the metal and/or metal oxide second components, if present.
  • the same metals and/or metal oxides can also be used alone or together to selectivate catalytic reaction systems and thus simultaneously catalyze syngas and/or other reactions.
  • the catalytic reaction system can also be formed by packing the first and the second components, if present, in a stacked-bed manner with some of the first component in front of the physical or chemical mixture of the first and second components.
  • the catalyst reaction systems Prior to exposing the catalysts to the feed components of toluene and/or benzene, H 2 , CO, and/or CO 2 and/or methanol, the catalyst reaction systems can optionally be activated under a reducing environment (e.g. 1-80% H 2 in N 2 ) at 150-500°C, and 1-200 atm (1.01 x 10 5 - 2.03 x 10 7 Pa) for 2-48 hours.
  • a reducing environment e.g. 1-80% H 2 in N 2
  • 1-200 atm (1.01 x 10 5 - 2.03 x 10 7 Pa
  • the average crystal size of the crystals in the silicate-based material or aluminophosphate-based materials is preferably from above
  • micron 0.1 micron to about 100 microns, more preferably from about 1 micron to about 100 microns.
  • crystal size may be determined directly by taking a suitable scanning electron microscope (SEM) picture of a representative sample of the crystals.
  • SEM scanning electron microscope
  • the catalysts of this invention may be used in a methylation process which can be carried out as a batch type, semi-continuous or continuous operation utilizing a fixed or moving bed catalyst system. Multiple injection of the methylating agent may be employed.
  • the methylating agent includes CO, CO 2 and H 2 and/or CH 3 OH and derivatives thereof.
  • the methylating agent reacts with benzene to form toluene.
  • Toluene reacts with the methylating agent to form a xylene, preferably PX in this invention.
  • Toluene and/or benzene and the methylating agent(s) are usually premixed and fed together into the reaction vessel to maintain the desired ratio between them with no local concentration of either reactant to disrupt reaction kinetics.
  • the catalytic reaction systems of this invention have the capability of preventing or reducing the side reactions of the methylating agents with themselves, and in particular that the para- substituent selectivated catalytic reaction systems function to catalyze more than one reaction, that is, that a syngas reaction is catalyzed to form methylating agents which react with benzene and/or toluene to produce PX, e.g.
  • a syngas reaction is catalyzed to form methylating agents which react with benzene and/or toluene to produce PX, e.g.
  • the methylating agent is produced on a local, molecular scale, its concentrations are very low (as contrasted with feeding a methylating agent as a co-reactant).
  • the catalyst activity decrease is less than 0.5% toluene and/or benzene conversion per day, preferably less than 0.1%
  • the feed mixtures can be co-fed into a reactor containing one of the above mentioned catalytic reaction systems.
  • the catalytic reaction system and reactants can be heated to reaction temperatures separately or together. Reaction can be carried out at a temperature from about 100-700°C, preferably from about 200-600°C; at a pressure from about 1-300 atm (1.01 x 10 5 -3.04 x 10 7
  • composition of the feed i.e. the mole ratio of H 2 /CO(and/or CO 2 )/aromatic can be from of about 0.01-10/0.01- 10/0.01-10, preferably from about 0.1-10/0.1-10/0.1-10.
  • typical methylating agents include or are formed from, but are not necessarily limited to hydrogen together with carbon monoxide and/or carbon monoxide, and/or methanol, but also dimethylether, methylchloride, methylbromide, and dimethylsulfide.
  • the toluene can be pure, or in a mixture with benzene.
  • the benzene may alkylate to toluene, and/or ultimately to PX, with or without recycle.
  • the presence of benzene may also enhance heat and/or selectivity control.
  • Unextracted toluene which is a mixture of toluene and similar boiling range olefins and paraffins, is preferred in one embodiment.
  • premium extracted toluene essentially pure toluene
  • extracted aromatics essentially a relatively pure mixture of toluene and benzene
  • Unextracted toluene and benzene which contains toluene, benzene, and olefins and paraffins that boil in a similar range to that of toluene or benzene, may also be employed.
  • the feed may contain one or more paraffins and/or olefins having at least 4 carbon atoms; the catalytic reaction systems have the dual function to crack the paraffins and/or olefins and methylate benzene or toluene to selectively produce PX.
  • some of the catalytic reaction systems of this invention may be multifunctional in some embodiments, catalyzing a reaction or reactions of CO, H 2 , and/or CO 2 and/or methanol to produce a methylating agent, catalyzing the selective methylation of toluene and/or benzene to produce PX, and catalyzing the cracking of paraffins and olefins into relatively lighter products.
  • the PX method is capable of producing mixtures of xylenes where PX comprises at least 30 wt.% of the mixture, preferably at least 36 wt.%, and most preferably at least 48 wt.%.
  • the method of this invention is also capable of converting at least 5 wt.% of the aromatic compound to a mixture of xylenes, preferably greater than 15 wt.%.
  • This example illustrates the lack of para-selectivity from an untreated ZSM-5 for toluene methylation with methanol.
  • the ZSM-5 zeolite had a SiO 2 /AI 2 O 3 ratio of 38. It was tested at the conditions of
  • This example illustrates the loss of zeolite activity or conversion from conventional selectivation techniques that use compounds which are small enough to enter the zeolite channels.
  • Toluene methylation results on this double-treated zeolite showed a toluene conversion of 18% and a PX concentration in the xylene-fraction product of 90%. Comparing Example II to Example I, it is apparent that an increase of PX selectivity from 24% to 90% lowered the conversion from 46% to 18%.
  • This example illustrates the use of bulky organometaUic salts for zeolite selectivation.
  • An aqueous solution of lanthanum nitrate was prepared by dissolving 18.0 gram of La(NO 3 ) 3 -6H 2 O in 80.0 cc of water. 60 cc of 25% ammonia solution was added to the lanthanum solution with stirring. The addition was completed in a period of 10 minutes. The precipitate of La(OH) 3 was filtered and suspended into 300 cc of water.
  • EDTA ethylenediaminetetraacetic acid
  • the La-treated zeolite was tested for toluene methylation with methanol at the same conditions as that in Examples I and II. Test results indicated a toluene conversion of 38% and a PX selectivity of 81 %.
  • This example illustrates the use of another bulky organometaUic salt for zeolite selectivation.
  • An aqueous solution of Mg(NO 3 ) 2 was prepared by mixing 128.35 g of Mg(NO 3 ) 2 -6H 2 O in 300 cc water. 60 cc of 25% ammonia solution was added to the Mg(NO 3 ) 2 solution with stirring in a 10 minutes period. The Mg(OH) 2 precipitate was filtered and suspended in 500 cc water. 66.36 g phthalic acid was deeded to the suspension with stirring and heating to obtain a clear solution, which was boiled and concentrated to 300 cc. It was cooled to room temperature and filtered to obtain a Mg-phthalate filtrate having a concentration of 0.017g Mg per cc of filtrate.
  • the catalyst comprises (1 ) Cr and Zn mixed metal oxides; and (2) H-ZSM- 5 zeolite with a SiO 2 /AI 2 O 3 molar ratio of 30 (obtained from PQ
  • the Cr and Zn mixed metal oxides were prepared by co-precipitation of Cr(NO 3 ) 3 and Zn(NO 3 ) 2 with NH OH. 7.22 grams of Cr(NO 3 ) 3 and 13.41 grams of Zn(NO 3 ) 2 were dissolved in 100 ml distilled water separately. The two solutions were then mixed together. NH 4 OH was slowly added into the mixed solution with stirring until the pH value of the solution reached about 8. The precipitate was filtered and recovered. This precipitate was dried at a temperature of 120°C for 12 hours, and then calcined in air at 500°C for 6 hours. These Cr/Zn mixed metal oxides were ground into powders.
  • the catalytic reaction system was prepared by physically mixing powders of a composition of 50% (w/w) Cr/Zn mixed metal oxides and 50% (w/w) H-ZSM-5 zeolite. Powders of 2.0 grams of Cr/Zn mixed metal oxides and 2.0 grams of H-ZSM-5 zeolite were mixed thoroughly in a grinding mortar. The mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles.
  • This example shows that the synthesis of xylenes with syngas alkylation of toluene can be achieved in a catalytic process as disclosed in a prior process. However, this example indicates that this process cannot achieve high para-xylene selectivity when the aluminosilicate component in the catalytic reaction system is not modified for shape selectivity.
  • the catalytic reaction system was prepared as in Example V. The catalyst was reduced at 350°C under 5% H 2 (balanced with 95% N 2 ) for 16 hours at 1 atm prior to reaction.
  • the catalytic reaction system was evaluated with co-feed of syngas (CO and H 2 ) and toluene with a composition of H 2 /CO/toluene of 2/1/0.5 (molar ratio), a temperature of about 450°C, and a pressure of about 18 atm (i.e., 250 psig, 2.53 x 10 7 Pa).
  • the WHSV Weight Hourly Space Velocity
  • Test results are given in Table 1. Similar to prior art reported, the selectivity of para-xylene in xylenes is about 25%, which is close to equilibrium, with toluene conversion of 28.6% and xylene selectivity of 71.1 %.
  • ZSM-5 zeolite with magnesium oxide as the seiectivating agent 11.68 grams of magnesium hydroxide was mixed with distilled water. To the solution was added 20.44 grams of ammonium nitrate and 33.54 grams of phthalic acid in sequence. The mixture was heated to obtain a clear solution, which was cooled to room temperature before use. 14.80 grams of the solution was mixed with 7.77 grams of a ZSM-5 zeolite (SiO 2 /AIO 2 of 50). The mixture was heated to evaporate the water solvent. The remaining solid was dried at 120°C for 12 hours and calcined at 500°C for 8 hours with air purge. The para-alkyl selectivated ZSM-5 zeolite contained approximately 9 wt.% of magnesium oxide. INVENTIVE EXAMPLE VIII
  • the catalytic reaction system comprises (1 ) Mn and Zn mixed metal oxides, and (2) MgO modified H-ZSM-5 zeolite with a SiO 2 /AIO 2 of 38.
  • the same preparation procedures as that given in Example VII were used.
  • the Mn and Zn mixed metal oxides were prepared by co-precipitation of Mn(NO 3 ) 2 and Zn(NO 3 ) 2 with NH 4 OH. 4.14 grams of Mn(NO 3 ) 2 and 13.44 grams of Zn(NO 3 ) 2 were dissolved in 100 ml distilled water separately. The two solutions were then mixed together.
  • the catalytic reaction system was prepared by physically mixing powders of a composition of 50% (w/w) Mn/Zn mixed metal oxides and 50% (w/w) MgO modified H-ZSM-5 zeolite. Powders of 2.0 grams of Mn/Zn mixed metal oxides and 2.0 grams of MgO modified H-ZSM-5 zeolite were mixed thoroughly in a grinding mortar. The mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles.
  • This example illustrates that metal oxides other than Cr/Zn mixed metal oxides are also suitable as one of the components in the catalytic reaction system used in the xylenes synthesis with syngas alkylation of toluene.
  • this example demonstrates that high para-xylene selectivity can be obtained when the aluminosilicate component in the catalytic reaction system is modified for shape selectivity.
  • the catalytic reaction system was prepared as in Example VIII. The catalytic reaction system was reduced at 350°C under 5% H 2 (balanced with 95% N 2 ) for 16 hours at 1 atm prior to reaction.
  • Example VI The reaction was conducted under similar conditions to those in Example VI. Test results are given in Table 2.
  • the para-xylene selectivity in xylenes is about 76.0% with toluene conversion of 10.9% and xylene selectivity of 85.4%.
  • the para-xylene selectivity is significantly enhanced when the aluminosilicate component is modified for shape selectivity.
  • the catalytic reaction system used in this example was comprised of a composition of (1 ) 50% (w/w) Cr, Zn, and Mg mixed metal oxides, and (2) 50% (w/w) MgO modified H-ZSM-5 zeolite with a SiO 2 /AIO 2 of 38.
  • the Cr, Zn, and Mg mixed metal oxides were prepared in a similar method as described in Example V with co- precipitation of Cr(NO 3 ) 3 , Zn(NO 3 ) 2 , and Mg(NO 3 ) 2 with NH 4 OH.
  • the magnesium oxide-modified ZSM zeolite was prepared as described in Example VIII.
  • the catalytic reaction system was prepared by physical mixing as described in Example V.
  • the catalytic reaction system was reduced at 350°C under 5% H 2 (balanced with 95% N 2 ) for 16 hours at 1 atm (1.01 x 10 5 Pa) prior to reaction.
  • the catalytic reaction system was evaluated with co-feed of syngas (CO and H 2 ) and toluene with a varied composition of H 2 /CO/toluene, a temperature from 450-490°C, and a pressure in the range of 18-28 atm (i.e. 250-390 psig, 2.53 x 10 7 -3.95 x 10 7 Pa).
  • the WHSV Weight Hourly Space Velocity
  • Table 3 Some of the test results are shown in Table 3. As shown in Table 3, a toluene conversion of 34% was achieved with a similar para-xylene selectivity when the reaction was operated at a temperature of ca. 460°C, a pressure of ca. 28 atm (390 psig.), and a WHSV of ca. 1.5 h " for toluene with respect to catalytic reaction system.
  • Feed Composition mole ratio 2/1/0.25 2/1/0.25 2/1/0.5 2/1/0.5
  • This example illustrates the problems of low methanol selectivity and fast catalytic reaction system deactivation associated with a low aromatic/methanol ratio and one-time methanol injection.
  • the catalytic reaction system was extrudates of SAPO-11 material obtained from UOP. The extrudates were ground and screened to 8-12 mesh (0.89-0.73 cm) and calcined at 550°C under air for 16 hours prior to use.
  • the catalytic reaction system was evaluated at 350°C, 25 atm (350 psig, 3.55 x 10 7 Pa), and 8 h " WHSV.
  • the feed was a mixture of toluene/methanol with a molar ratio of 3.6. Test results are given in Table 4.
  • This example demonstrates the problems of fast catalytic reaction system deactivation for MgO para-alkyl selectivated H-ZSM-5 in toluene methylation with low toluene/methanol ratio and one-time methanol injection.
  • the catalytic reaction system was MgO-para-alkyl selectivated H-ZSM-5 with a SiO 2 /AIO 2 ratio of 38.
  • the same preparation procedure as that given in Example VIII was used.
  • the catalytic reaction system was pelletized and screened to 40-60 mesh.
  • the catalytic reaction system was tested at 460°C, 1 atm, and 14 h "1 WHSV.
  • the feed was a mixture of toluene/methanol with a molar ratio of 1.0.
  • the Cr and Zn mixed metal oxides were prepared as described in Example I.
  • the magnesium oxide-modified ZSM zeolite was prepared as described in Example V.
  • the Cr/Zn mixed metal oxides were ground into powders.
  • the catalytic reaction system was prepared by physically mixing powders of a composition of (1 ) 34% (w/w) Cr and Zn mixed metal oxides, and (2) 66% MgO modified H-ZSM-5 zeolite.
  • the mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles.
  • the catalytic reaction system was reduced at 350°C under 5% H 2 (balanced with 95% N 2 ) for 16 hours at 1 atm (1.01 x 10 5 Pa) prior to reaction.
  • the organometaUic modifier was magnesium phthalate.
  • the catalytic reaction system was evaluated with similar operation conditions as those in Example II. Test results are given in Table 7. It is seen that the catalytic reaction system had a stable activity for toluene conversion with stable PX selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

It has been discovered that catalysts may be modified by depositing an agent derivative from an agent such as an organometallic compound upon them. Such a modification gives a catalyst useful in increased selectivity to para-substituted alkyl benzenes, such as para-xylene (PX), through reacting an aromatic compound such as toluene and/or benzene with a methylating agent from hydrogen and carbon monoxide and/or carbon dioxide and/or methanol. Using these selectivated catalysts, para-substituted alkyl benzenes can be recovered in a selectivity of 80 % or greater, significantly better than the equilibrium concentration of 24 %.

Description

CATALYST SELECTIVATION
FIELD OF THE INVENTION
The present invention relates to methods for modifying zeolite catalysts and catalysts so modified, and more particularly relates, in one embodiment, to methods for modifying zeolite catalysts to make them more selective to the synthesis of para-substituted dialkylbenzenes relative to other dialkylbenzene isomers, as well as useful in other reactions, and catalysts so modified.
BACKGROUND OF THE INVENTION
Of the para-substituted dialkylbenzenes, para-xylene (PX) is of particular value as a large volume chemical intermediate in a number of applications being useful in the manufacture of terephthalates which are intermediates for the manufacture of polyethylene terephthalate (PET). One source of feedstocks for manufacturing PX is by disproportionation of toluene into xylenes. One of the disadvantages of this process is that large quantities of benzene are also produced. Another source of feedstocks used to obtain PX involves the isomerization of a feedstream that contains non-equilibrium quantities of mixed ortho- and meta-xylene isomers (OX and MX, respectively) and is lean with respect to PX content. A disadvantage of this process is that the separation of the PX from the other isomers is expensive.
Zeolites are known to catalyze the reaction of toluene with other reactants to make xylenes. Some zeolites are silicate based materials which are comprised of a silica lattice and, optionally, alumina combined with exchangeable cations such as alkali or alkaline earth metal ions. Although the term "zeolites" includes materials containing silica and optionally alumina, it is recognized that the silica and alumina portions may be replaced in whole or in part with other oxides. For example, germanium oxide, tin oxide, phosphorus oxide, and mixtures thereof can replace the silica portion. Boron oxide, iron oxide, gallium oxide, indium oxide, and mixtures thereof can replace the alumina portion. Accordingly, the terms "zeolite", "zeolites" and "zeolite material", as used therein, shall mean not only materials containing silicon and, optionally, aluminum atoms in the crystalline lattice structure thereof, but also materials which contain suitable replacement atoms for such silicon and aluminum, such as gallosilicates, borosilicates, ferrosilicates, and the like.
The term "zeolite, "zeolites", and "zeolite materials" as used herein, besides encompassing the materials discussed above, shall also include aluminophosphate-based materials. Aluminophosphate zeolites are made of alternating AIO4 and PO4 tetrahedra. Aluminophosphate-based materials have lower acidity compared to aluminosilicates. The lower acidity eliminates many side reactions, raises reactants' utilization, and extends catalyst life. Aluminophosphate-based zeolites are often abbreviated as ALPO. Substitution of silicon for P and/or a P-AI pair produces silicoaluminophosphate zeolites, abbreviated as SAPO.
Processes have been proposed for the production of xylenes by the methylation of toluene using a zeolite catalyst. For instance, U.S. Pat. No. 3,965,207 involves the methylation of toluene using a zeolite catalyst such as a ZSM-5. U.S. Pat. No. 4,670,616 involves the production of xylenes by the methylation of toluene with methanol using a borosilicate zeolite which is bound by a binder such as alumina, silica, or alumina-silica. One of the disadvantages of such processes is that catalysts deactivate rapidly due to build up of carbonaceous material and heavy by-products. Another disadvantage is that methanol selectivity to para-xylene, the desirable product, has been low, in the range of 50 to 60%. The balance is wasted on the production of coke and other undesirable compounds.
It has been further demonstrated that alkylaromatic compounds can be synthesized by reacting an aromatic compound such as toluene with a mixture of carbon dioxide (CO2), and carbon monoxide (CO) and hydrogen (H2) (synthesis gas) at alkylation conditions in the presence of a catalyst system, which comprises (1) a composite of oxides of zinc, copper, chromium, and/or cadmium; and (2) an aluminosilicate material, either crystalline or amorphous, such as zeolites or clays; as disclosed in U.S. Pat. Nos. 4,487,984 and 4,665,238. Such catalyst systems, however, are not capable of producing greater than equilibrium concentrations of para- xylene (PX) in the xylene-fraction product. Typically, the xylene-fraction product contains a mixture of xylene isomers at or near the equilibrium concentration, i.e., 24% PX, 54% MX, and 22% OX. The lack of para- xylene selectivity in alkylation of toluene with syngas can be caused by (1 ) the acidic sites on the sur ace outside the zeolite channels, and/or (2) the channel structure not being able to differentiate para-xylene from its isomers. It would be desirable for the toluene alkylation to be more para- selective due to the much higher value of PX compared to that of MX and OX. Furthermore, such processes suffer from catalyst deactivation as well. In addition, the prior art disclosed neither syngas alkylation to alkyl aromatic compounds nor syngas selective alkylation to high purity PX using aluminophosphate-based mateπals.
It has been recognized that certain zeolites can be modified to enhance their molecular-sieving or shape-selective capability. Such modification treatments are usually called zeolite selectivation.
Selectivated zeolites can more accurately differentiate molecules on the basis of molecular dimension or steric characteristics than the unselectivated precursors. For example, silanized ZSM-5 zeolites adsorbed PX much more preferentially over MX than untreated ZSM-5. It is believed that the deposition of silicon oxide onto zeolite surfaces from the silanization treatment has (1 ) passivated the active sites on the external surface of zeolite crystals, and (2) narrowed zeolitic pores to facilitate the passage of the smaller PX molecules and prevent the bigger MX and OX molecules from entering or exiting the pores. In this application, the term "para-alkyl selectivation" refers to modifying a catalyst or catalytic reaction system so that it preferentially forms more para-substituted dialkylbenzenes than the expected equilibrium proportions relative to the other isomers.
Zeolite selectivation can be accomplished using many techniques. Reports of using compounds of silicon, phosphorous, boron, antimony, coke, magnesium, etc. for selectivation have been documented.
Unfortunately many, if not most of the zeolites used in the prior art have undesirably short active lifetimes before they deactivate and have to be reactivated or replaced.
There remains a need for still further improved processes for catalytic PX synthesis which minimizes or avoids the disadvantages of prior systems, which include low PX selectivity, low methanol selectivity, rapid catalyst deactivation, and the like.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for producing a modified catalyst capable of being more selective to para- substituted dialkyl benzenes in the synthesis of dialkylbenzenes.
Accordingly, it is another object of the present invention to provide a modified catalyst useful in a method for synthesizing para-substituted dialkyl benzenes in high product concentration via alkylation of toluene and/or benzene with a mixture of gases including H2, and CO and/or CO2 and/or methanol.
In carrying out these and other objects of the invention, there is provided, in one form, a method for modifying catalysts involving contacting first component, such as crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, crystalline or amorphous aluminophosphates, zeolite-bound zeolites, substituted aluminophosphates, and mixtures thereof with an agent which may be compounds of elements selected from Groups 1 through 16, and mixtures thereof. DETAILED DESCRIPTION OF THE INVENTION
It has been discovered that catalysts, particularly zeolite catalysts, may be modified using organometaUic compounds in such a way to enhance selectivity to para-substituted alkyl benzenes in the synthesis of alkyl benzenes. It will be appreciated that the modified catalysts of this invention will find utility in catalyzing other reactions.
The improvement in para-substituted selectivity is achieved by treating the catalysts with proper chemical compounds of elements selected from Groups 1-16, and mixtures thereof, to (1 ) inhibit the external acidic sites to minimize aromatic alkylation on the non-para positions, and/or the isomerization of the para-substituted compounds, and/or (2) impose more restrictions on the channel structure to facilitate the formation and transport of para-substituted aromatic compounds, in one non-limiting explanation of the mechanism of the invention. It must be understood that such treatment may be performed on aluminophosphate catalyst reaction systems of this invention, but that some aluminophosphate catalyst reaction systems do not require this para- substituted selectivation treatment to be effective at para-substituent selectivation.
The catalytic reaction systems suitable for this invention include (1 ) a first component of one or more than one silicate-based materials, including but not necessarily limited to, crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, zeolite- bound zeolites, and/or crystalline or amorphous aluminophosphates, and/or substituted aluminophosphates and mixtures thereof, and, optionally (2) a second component of one or more than one of the metals or oxides of the metals selected from Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and 16 (new IUPAC notation, e.g. zinc, copper, chromium, cadmium, palladium, ruthenium, manganese, etc.). The first and second components may be chemically mixed, physically mixed, and combinations thereof, as will be described. The composition of the proposed catalyst reaction systems may range from 95 wt.% silicate-based material or aluminophosphate-based material first component/5 wt.% metals or metal oxides second component, if present, to 5 wt.% silicate-based material or aluminophosphate-based material first component/95 wt.% metals or metal oxides second component, if present.
It will be understood that the selectivation techniques of this invention may be practiced before or after the silicate-based materials or aluminophosphate-based materials are mixed with or combined chemically or physically with metals or metal oxides, if used. That is, in some embodiments, the silicate-based materials and aluminophosphate-based materials may be selectivated before combination with metals or metal oxides. In other embodiments, silicate-based materials and aluminophosphate-based materials may be selectivated after combination with metals or metal oxides. The former process might be termed "pre- selectivation", while the latter process may be termed "post-selectivation".
One type of the zeolite materials would be silicate-based zeolites such as faujasites, mordenϊtes, pentasils, etc.
Zeolite materials suitable for this invention include silicate-based zeolites and amorphous compounds. Silicate-based zeolites are made of alternating SiO2 and MOx tetrahedra, where in the formula M is an element selected from the Groups 1 through 16 of the Periodic Table (new IUPAC). These types of zeolites have 8-, 10-, or 12-membered oxygen ring channels. Silicate-based materials are generally acidic. The more preferred zeolites of this invention include 10- and 12-membered ring zeolites, such as ZSM-5, ZSM-11 , ZSM-22, ZSM-48, ZSM-57, etc. One of the disadvantages to the use of many unselectivated silicate-based materials for such para-substituted synthesis systems is the lack of product selectivity (i.e. an undesirably broad product distribution results). The acidity of many aluminosilicates are sufficiently high that they often promote many undesirable side reactions (e.g. dealkylation, multi- alkylation, oligomerization, and condensation) which deactivate the catalysts and lower the product value. It follows that silicate-based materials are typically not capable of delivering the shape selectivity for increasing the yield for high-value products such as para-xylene (PX).
Some of the silicate-based materials have one-dimensional channel structures, which are capable of generating higher-than-equilibrium PX selectivity. These materials may optionally be para-substituent selectivated. Other silicate-based materials having two- or three- dimensional channel structures are preferably para- substituent selectivated or modified to be more selective through the use of certain chemical compounds, as will be described, such as organometaUic compounds and compounds of elements selected from Groups 1-16. In one embodiment, the selectivation of the zeolite materials including the silicate-based materials can be accomplished using compounds including, but not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
Other silicate-based materials suitable for the second component include zeolite bound zeolites as described in WO 97/45387. Zeolite bound zeolite catalysts useful in the present invention concern first crystals of an acidic intermediate pore size first zeolite and a binder comprising second crystals of a second zeolite. Unlike zeolites bound with amorphous material such as silica or alumina to enhance the mechanical strength of the zeolite, the zeolite bound zeolite catalyst suitable for use in the present process does not contain significant amounts of non-zeolitic binders. The first zeolite used in the zeolite bound zeolite catalyst is an intermediate pore size zeolite. Intermediate pore size zeolites have a pore size from about 5 to about 7 A and include, for example, AEL, MFI, MEL, MFS, MEI, MTW, EUO, MTT, HEU, FER, and TON structure type zeolites. These zeolites are described in Atlas of Zeolite Structure Types, eds. W. H. Meier and D. H. Olson, Butterworth-Heineman, Third Edition, 1992.
Examples of specific intermediate pore size zeolites include, but are not limited to, ZSM-5, ZSM-11 , ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, ZSM-50, and ZSM-57. Preferred first zeolites are galliumsilicate zeolites having an MFI structure and aluminosilicate zeolites having an MFR structure.
The second zeolite will usually have an intermediate pore size and have less activity than the first zeolite. Preferably, the second zeolite will be substantially non-acidic and will have the same structure type as the first zeolite. The preferred second zeolites are aluminosilicate zeolites having a silica to alumina mole ratio greater than 100 such as low acidity ZSM-5. If the second zeolite is an aluminosilicate zeolite, the second zeolite will generally have a silica to alumina mole ratio greater than 200:1 , e.g., 500:1 ; 1 ,000:1 , etc., and in some applications will contain no more than trace amounts of alumina. The second zeolite can also be silicalite, i.e., a MFI type substantially free of alumina, or silicalite 2, a MEL type substantially free of alumina. The second zeolite is usually present in the zeolite bound zeolite catalyst in an amount in the range of from about 10% to 60% by weight based on the weight of the first zeolite and, more preferably, from about 20% to about 50% by weight.
The second zeolite crystals preferably have a smaller size than the first zeolite crystals and more preferably will have an average particle size from about 0.1 to about 0.5 microns. The second zeolite crystals, in addition to binding the first zeolite particles and maximizing the performance of the catalyst will preferably intergrow and form an overgrowth which coats or partially coats the first zeolite crystals. Preferably, the crystals will be resistant to attrition. The zeolite bound zeolite catalyst suitable for the process of the present invention is preferably prepared by a three step procedure. The first step involves the synthesis of the first zeolite crystals prior to converting it to the zeolite bound zeolite catalyst. Next, a silica-bound aluminosilicate zeolite can be prepared preferably by mixing a mixture compπsing the aluminosilicate crystals, a silica gel or sol, water and optionally an extrusion aid and, optionally, the metal component until a homogeneous composition in the form of an extrudable paste develops. The final step is the conversion of the silica present in the silica-bound catalyst to a second zeolite which serves to bind the first zeolite crystals together.
As noted, aluminophosphate-based materials may be used in conjunction with metal oxides for aromatic alkylation with syngas.
Aluminophosphate-based materials usually have lower acidity compared to silicate-based materials. The lower acidity eliminates many side reactions, raises reactants' utilization, and extends catalyst life.
Further catalytic reaction systems suitable for this invention include aluminophosphate-based materials and amorphous compounds.
Aluminophosphate-based materials are made of alternating AIO4 and PO4 tetrahedra. Members of this family have 8- (e.g. AIPO4-12, -17, -21 , -25, - 34, -42, etc.), 10- (e.g. AIPO4-11 , 41 , etc.), or 12- (AIPO -5, -31 , etc.) membered oxygen ring channels. Although AIPO4s are neutral, substitution of Al and/or P by cations with lower charge introduces a negative charge in the framework, which is countered by cations imparting acidity.
By turn, substitution of silicon for P and/or a P-AI pair turns the neutral binary composition (i.e. Al, P) into a series of acidic-ternary- composition (Si, Al, P) based SAPO molecular sieves, such as SAPO-5, -
11 , -14, -17, -18, -20, -31 , -34, -41 , -46, etc. Acidic ternary compositions can also be created by substituting divalent metal ions for aluminum, generating the MeAPO materials. Me is a metal ion which can be selected from the group consisting of, but not limited to, Mg, Co, Fe, Zn and the like. Acidic materials such as MgAPO (magnesium substituted), CoAPO
(cobalt substituted), FeAPO (iron substituted), MnAPO (manganese substituted), ZnAPO (zinc substituted) etc. belong to this category. Substitution can also create acidic quaternary-composition based materials such as the MeAPSO series, including FeAPSO (Fe, Al, P, and Si), MgAPSO (Mg, Al, P, Si), MnAPSO, CoAPSO, ZnAPSO (Zn, Al, P, Si), etc. Other substituted aluminophosphate-based mateπals include EIAPO and EIAPSO (where El = B, As, Be, Ga, Ge, Li, Ti, etc.) As mentioned above, these materials have the appropriate acidic strength for syngas/aromatic alkylation. Some preferred aluminophosphate-based materials of this invention include 10- and 12-membered ring molecular sieves (SAPO-11 , -31 , -41 ; MeAPO-11 , -31 , -41 ; MeAPSO-11 , -31 , 41 ; EIAPO-11 , -31 , -41 ; EIAPSO-11 , -31 , -41 , etc.) which already have significant shape selectivity due to their narrow channel structure.
These aluminophosphates may be para-alkyl selectivated or modified to be more selective through the use of certain chemical compounds, as will be described, such as organometaUic compounds and compounds of elements selected from Groups 1-16. In one embodiment, the para-alkyl selectivation of the zeolite materials including the aluminophosphate-based materials can be accomplished using compounds including, but not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
The preparation of the catalytic reaction systems can be accomplished with several techniques known to those skilled in the art. Some examples are given below.
Para-selectivation involves the treatment of the above mentioned catalytic reaction system materials with proper chemical compounds of elements selected from Groups 1-16, and mixtures thereof. The composition of the selectivated catalyst may range from 1 wt.% of the seiectivating elements/99 wt.% of the first component to 99 wt.% of the selectivating elements/1 wt.% of the first component. By "seiectivating elements" is meant the elemental portion of the elemental form or elemental oxide form of the seiectivating chemical compounds.
Some para-substituent selectivation treatments are known, e.g. using silicon compounds. Other compounds that may be used include, but are not limited to compounds of phosphorus, boron, antimony, magnesium, and the like, and coke, and the like. Para-substituent selectivation treatments of the mateπals of the above catalytic reaction systems can be carried out either prior to the selective formation of PX (ex situ) or during the PX formation (in situ), to use PX formation as a non- limiting example. In the in situ embodiment, the seiectivating agents are added with the feed to the reactor containing a catalytic reaction system. In more detail, in one non-limiting embodiment, the technique for seiectivating the materials according to the method of this invention is based on the consideration that by depositing on a silicate-based material or aluminophosphate-based material one or more than one of the organometaUic compounds which are too bulky to enter the channels (or other seiectivating agent), one should be able to modify only the external surface and regions around channel mouth. The fact that the selectivation agent does not enter the channels preserves the active sites inside the channels. Since the channel active sites account for more the majority of the total active sites, their remaining active prevents any significant loss of reactivity or conversion. One type of the bulky organometaUic compounds suitable for seiectivating 10-member-ring zeolites, such the ZSM family (e.g. ZSM-5, - 11 , -22, -48, etc.), mordenite, etc., is the salts of large organic anions and metallic cations. The organic anions can be selected from molecules containing carboxylic and/or phenolic functional groups, including but not limited to phthalate, ethylenediaminetetraacetic acid (EDTA), vitamin B-5, trihydroxy benzoic acid, pyrogallate, salicylate, sulfosalicylate, citrate, naphthalene dicarboxylate, anthradiolate, camphorate, and others. The metallic cations can be selected from the element(s) of Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and 16 (new IUPAC notation). Other compounds for seiectivating the silicate-based and aluminophosphate- based materials include, but are not necessarily limited to silicon, phosphorus, boron, antimony, magnesium compounds, coke, and the like, and mixtures thereof.
Selectivation of silicate-based materials and aluminophosphate- based materials with the above-mentioned organometaUic salts can be accomplished by various means. For example, one can use impregnation of a solution of an organometaUic salt onto a silicate-based material or aluminophosphate-based material. Either water or any suitable organic solvent can be used. Addition of non-metallic salts and/or adjustments of pH to facilitate the treatment are optional. Heat will be provided to drive off the solvent, leaving behind a material coated homogeneously with the organometaUic salt. Drying and calcination of the coated zeolite or aluminophosphate-based material at appropriate temperatures will turn the salt into metal oxide form or elemental metal form (agent derivative). Alternatively, one can use a dry-mix technique, which involves mixing directly a zeolite in the form of powder or particles with an organometaUic salt also in the form of powder or particles without the use of any solvent.
The mixture will then be subjected to heat treatment, which facilitates the dispersion of the salt over the material and eventually turns the salt into elemental form or metal oxide form (agent derivative).
Known techniques for ex situ and in situ catalytic reaction system modification can be incorporated into producing the para-alkyl selectivated catalytic reaction systems of the present invention in addition to those herewith, such as those seen in U.S. Pat. Nos. 5,476,823 and 5,675,047. In one embodiment, the same elemental metals and/or metal oxide second components used in the catalytic reaction system can be used alone or together to selectivate the silicate-based material or aluminophosphate-based material components.
The catalytic reaction systems can be prepared by adding solutions of elemental metal salts either in series to or as a mixture with the fine powder or particles such as extrudates, spheres, etc. of the unselectivated silicate-based materials having one dimensional channel structures, or optionally ex situ selectivated silicate-based materials, unselectivated aluminophosphate-based materials, or optionally ex situ selectivated aluminophosphate-based materials, until incipient wetness is reached. The solvent (water or other solvents) can be evacuated under heat or vacuum using typical equipment such as a rotary evaporator. The final product is dried, calcined, and pelletized, if necessary. Alternatively, solutions of metal salts and the ex situ selectivated fine powder or particles such as extrudates, spheres, etc. of silicate-based and aluminophosphate-based materials are thoroughly mixed. A dilute basic solution (e.g. ammonia, sodium carbonate, potassium hydroxide, etc.) is used to adjust the pH value of the mixture to facilitate the precipitation of metal hydroxides and zeolites. The precipitate is filtered and washed thoroughly with water. The final product is dried, calcined, and pelletized, if necessary.
The catalytic reaction systems can also be prepared using physical mixing. Finely divided powders of metal(s) or metal oxide(s), or powders of metal(s) or metal oxide(s) supported on any inert materials, are mixed thoroughly with finely divided powder of the ex situ selectivated silicate- based materials, unselectivated aluminophosphate-based materials, or optionally ex situ selectivated aluminophosphate-based materials in a blending machine or a grinding mortar. The mixture is optionally pelletized before use.
If the catalytic reaction system is mixed with a binder, such as silica gel or sol or the like, an extrudable paste may be formed. The resulting paste can be molded, e.g. extruded, and cut into small strands which can then be dried and calcined.
The catalytic reaction system can also be prepared by mixing physically the particles of silicate-based material or aluminophosphate- based materials components and the particles of the metal and/or metal oxide second components, if present. The same metals and/or metal oxides can also be used alone or together to selectivate catalytic reaction systems and thus simultaneously catalyze syngas and/or other reactions.
The catalytic reaction system can also be formed by packing the first and the second components, if present, in a stacked-bed manner with some of the first component in front of the physical or chemical mixture of the first and second components.
Prior to exposing the catalysts to the feed components of toluene and/or benzene, H2, CO, and/or CO2 and/or methanol, the catalyst reaction systems can optionally be activated under a reducing environment (e.g. 1-80% H2 in N2) at 150-500°C, and 1-200 atm (1.01 x 105 - 2.03 x 107 Pa) for 2-48 hours.
The average crystal size of the crystals in the silicate-based material or aluminophosphate-based materials is preferably from above
0.1 micron to about 100 microns, more preferably from about 1 micron to about 100 microns.
Procedures to determine crystal size are known to persons skilled in the art. For instance, crystal size may be determined directly by taking a suitable scanning electron microscope (SEM) picture of a representative sample of the crystals.
The catalysts of this invention may be used in a methylation process which can be carried out as a batch type, semi-continuous or continuous operation utilizing a fixed or moving bed catalyst system. Multiple injection of the methylating agent may be employed. The methylating agent includes CO, CO2 and H2 and/or CH3OH and derivatives thereof. The methylating agent reacts with benzene to form toluene. Toluene reacts with the methylating agent to form a xylene, preferably PX in this invention. Toluene and/or benzene and the methylating agent(s) are usually premixed and fed together into the reaction vessel to maintain the desired ratio between them with no local concentration of either reactant to disrupt reaction kinetics. Individual feeds can be employed, however, if care is taken to insure good mixing of the reactant vapors in the reaction vessel. Optionally, instantaneous concentration of methylating agent can be kept low by staged additions thereof. By staged additions, the ratios of toluene and/or benzene to methylating agent concentrations can be maintained at optimum levels to give good toluene conversions. Hydrogen gas can also serve as an anticoking agent and diluent. The method of this invention, particularly when using para- substituent selectivated catalytic reaction systems, stabilizes catalytic reaction system performance and increases catalytic reaction system life. That is, catalytic reaction system deactivation is slowed and even prevented. With properly para- substituent selectivated catalytic reaction systems, it is expected that the catalytic reaction system may not have to be regenerated at all. This is in part due to the silicate-based materials and aluminophosphate-based materials being para- substituent selectivated. With production selective to PX, in one non-limiting instance, less by-products, such as heavy aromatics, are formed which would deactivate the catalytic reaction systems. This characteristic is not shown or taught by the prior art. Further, in one non-limiting embodiment of the invention, there is a belief that the catalytic reaction systems of this invention have the capability of preventing or reducing the side reactions of the methylating agents with themselves, and in particular that the para- substituent selectivated catalytic reaction systems function to catalyze more than one reaction, that is, that a syngas reaction is catalyzed to form methylating agents which react with benzene and/or toluene to produce PX, e.g. However, because the methylating agent is produced on a local, molecular scale, its concentrations are very low (as contrasted with feeding a methylating agent as a co-reactant). It has been demonstrated that feeding a blend of methylating agent and toluene to make PX increases coke build-up and hence catalytic reaction system deactivation. In one non-limiting embodiment of the invention, the catalyst activity decrease is less than 0.5% toluene and/or benzene conversion per day, preferably less than 0.1%, In carrying out the PX synthesis process, the feed mixtures can be co-fed into a reactor containing one of the above mentioned catalytic reaction systems. The catalytic reaction system and reactants can be heated to reaction temperatures separately or together. Reaction can be carried out at a temperature from about 100-700°C, preferably from about 200-600°C; at a pressure from about 1-300 atm (1.01 x 105-3.04 x 107
Pa), preferably from about 1-200 atm (1.01 x 105-2.03 x 107 Pa); and at a flow rate from about 0.01-100 h"1 LHSV, preferably from about 1-50 h"1 LHSV on a liquid feed basis. The composition of the feed, i.e. the mole ratio of H2/CO(and/or CO2)/aromatic can be from of about 0.01-10/0.01- 10/0.01-10, preferably from about 0.1-10/0.1-10/0.1-10.
As noted, typical methylating agents include or are formed from, but are not necessarily limited to hydrogen together with carbon monoxide and/or carbon monoxide, and/or methanol, but also dimethylether, methylchloride, methylbromide, and dimethylsulfide.
It is conceivable that in the scenarios described above, the toluene can be pure, or in a mixture with benzene. The benzene may alkylate to toluene, and/or ultimately to PX, with or without recycle. The presence of benzene may also enhance heat and/or selectivity control.
The PX method is expected to tolerate many different kinds of feed. Unextracted toluene, which is a mixture of toluene and similar boiling range olefins and paraffins, is preferred in one embodiment. For example, premium extracted toluene, essentially pure toluene, and extracted aromatics, essentially a relatively pure mixture of toluene and benzene, may also be used. Unextracted toluene and benzene which contains toluene, benzene, and olefins and paraffins that boil in a similar range to that of toluene or benzene, may also be employed. When unextracted feedstocks are used, it is important to crack the paraffins and olefins into lighter products that can be easily distilled. For example, the feed may contain one or more paraffins and/or olefins having at least 4 carbon atoms; the catalytic reaction systems have the dual function to crack the paraffins and/or olefins and methylate benzene or toluene to selectively produce PX.
Indeed, some of the catalytic reaction systems of this invention may be multifunctional in some embodiments, catalyzing a reaction or reactions of CO, H2, and/or CO2 and/or methanol to produce a methylating agent, catalyzing the selective methylation of toluene and/or benzene to produce PX, and catalyzing the cracking of paraffins and olefins into relatively lighter products. The PX method is capable of producing mixtures of xylenes where PX comprises at least 30 wt.% of the mixture, preferably at least 36 wt.%, and most preferably at least 48 wt.%. The method of this invention is also capable of converting at least 5 wt.% of the aromatic compound to a mixture of xylenes, preferably greater than 15 wt.%.
The following examples will serve to illustrate processes and some merits of the present invention. It is to be understood that these examples are merely illustrative in nature and that the present process is not necessarily limited thereto.
COMPARATIVE EXAMPLE I
This example illustrates the lack of para-selectivity from an untreated ZSM-5 for toluene methylation with methanol. The ZSM-5 zeolite had a SiO2/AI2O3 ratio of 38. It was tested at the conditions of
450°C, 1 atmospheric pressure (1.01 x 105 Pa), 7 WHSV (weight hourly space velocity), and a toluene to methanol molar ratio of 1. Test results indicated that one hour after cutting in the toluene/methanol feed, toluene conversion was at 46% and the PX concentration in the xylene-fraction product was at the equilibrium value of 24%, indicating the lack of selectivity toward PX.
COMPARATIVE EXAMPLE II
This example illustrates the loss of zeolite activity or conversion from conventional selectivation techniques that use compounds which are small enough to enter the zeolite channels. An aqueous solution of magnesium nitrate was prepared by mixing magnesium nitrate hexahydrate and water on the basis of 0.71 gram per gram of water. The solution was used to impregnate a ZSM-5 (SiO2/AI2O3 = 38) zeolite powder at a ratio of 1.35 cc solution to 1.50 g of zeolite. The mixture was heated at 75°C to evaporate the water. It was then dried at 120°C for 6 hours, at 250°C for 1/2 hour, and at 300°C for 1/2 hour, and then calcined at 500°C for 3 hours. Analysis of the zeolite sample indicated that 0.06 gram of magnesium oxide per gram of zeolite was deposited on the zeolite. A portion of the treated zeolite was tested for toluene methylation with methanol. The test was carried out at the same conditions as in Example I. Test results indicated that one hour after cutting in the feed, toluene conversion was 29% and PX concentration in the xylene-fraction product was 58%. The selectivation treatment was repeated on the remaining of the treated zeolite. This second treatment raised the MgO on zeolite from 0.06 g/g to 0.12 g/g. Toluene methylation results on this double-treated zeolite showed a toluene conversion of 18% and a PX concentration in the xylene-fraction product of 90%. Comparing Example II to Example I, it is apparent that an increase of PX selectivity from 24% to 90% lowered the conversion from 46% to 18%.
INVENTIVE EXAMPLE III
This example illustrates the use of bulky organometaUic salts for zeolite selectivation. An aqueous solution of lanthanum nitrate was prepared by dissolving 18.0 gram of La(NO3)3-6H2O in 80.0 cc of water. 60 cc of 25% ammonia solution was added to the lanthanum solution with stirring. The addition was completed in a period of 10 minutes. The precipitate of La(OH)3 was filtered and suspended into 300 cc of water.
13.7 gram of ethylenediaminetetraacetic acid (EDTA) was added to the suspension with stirring to obtain a solution, which was boiled and concentrated to obtain a La-EDTA solution with a concentration of 0.02 gram La per cc of solution. 11.4 cc of the La solution was used to impregnate 2.0 gram of
ZSM-5 zeolite (SiO2/AI2O3 = 38). The mixture was heated at 75°C to evaporate the water. It was then dried at 120°C overnight, and calcined at 500°C for 6 hours. Analysis of the zeolite sample indicated that 0.14 gram of La2O3 per gram of zeolite was deposited on the zeolite.
The La-treated zeolite was tested for toluene methylation with methanol at the same conditions as that in Examples I and II. Test results indicated a toluene conversion of 38% and a PX selectivity of 81 %.
Apparently, selectivation using a bulky organometaUic salt such as La- EDTA was able to increase para-selectivity significantly with only small loss in zeolite activity.
INVENTIVE EXAMPLE IV
This example illustrates the use of another bulky organometaUic salt for zeolite selectivation. An aqueous solution of Mg(NO3)2 was prepared by mixing 128.35 g of Mg(NO3)2-6H2O in 300 cc water. 60 cc of 25% ammonia solution was added to the Mg(NO3)2 solution with stirring in a 10 minutes period. The Mg(OH)2 precipitate was filtered and suspended in 500 cc water. 66.36 g phthalic acid was deeded to the suspension with stirring and heating to obtain a clear solution, which was boiled and concentrated to 300 cc. It was cooled to room temperature and filtered to obtain a Mg-phthalate filtrate having a concentration of 0.017g Mg per cc of filtrate.
2.05 cc of the Mg-phthalate solution was used to impregnate 2.01 g ZSM-5 zeolite (SiO2/AI2O3 = 38). The mixture was heated at 75°C to evaporate the water. It was then dried at 120°C for 6 hours and calcined at 500°C for 8 hours. This procedure was repeated twice to obtain a 3-time selectivated zeolite sample containing 0.075 g MgO per gram of zeolite. Results of toluene methylation test showed a toluene conversion of 39% and a PX selectivity of 84%, indicating again the effectiveness of bulky organometaUic salts for zeolite selectivation. COMPARATIVE EXAMPLE V
This example illustrates one of the methods in preparing a catalyst. The catalyst comprises (1 ) Cr and Zn mixed metal oxides; and (2) H-ZSM- 5 zeolite with a SiO2/AI2O3 molar ratio of 30 (obtained from PQ
Corporation, Valley Forge, PA). The Cr and Zn mixed metal oxides were prepared by co-precipitation of Cr(NO3)3 and Zn(NO3)2 with NH OH. 7.22 grams of Cr(NO3)3 and 13.41 grams of Zn(NO3)2 were dissolved in 100 ml distilled water separately. The two solutions were then mixed together. NH4OH was slowly added into the mixed solution with stirring until the pH value of the solution reached about 8. The precipitate was filtered and recovered. This precipitate was dried at a temperature of 120°C for 12 hours, and then calcined in air at 500°C for 6 hours. These Cr/Zn mixed metal oxides were ground into powders. The catalytic reaction system was prepared by physically mixing powders of a composition of 50% (w/w) Cr/Zn mixed metal oxides and 50% (w/w) H-ZSM-5 zeolite. Powders of 2.0 grams of Cr/Zn mixed metal oxides and 2.0 grams of H-ZSM-5 zeolite were mixed thoroughly in a grinding mortar. The mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles.
COMPARATIVE EXAMPLE VI
This example shows that the synthesis of xylenes with syngas alkylation of toluene can be achieved in a catalytic process as disclosed in a prior process. However, this example indicates that this process cannot achieve high para-xylene selectivity when the aluminosilicate component in the catalytic reaction system is not modified for shape selectivity. The catalytic reaction system was prepared as in Example V. The catalyst was reduced at 350°C under 5% H2 (balanced with 95% N2) for 16 hours at 1 atm prior to reaction. The catalytic reaction system was evaluated with co-feed of syngas (CO and H2) and toluene with a composition of H2/CO/toluene of 2/1/0.5 (molar ratio), a temperature of about 450°C, and a pressure of about 18 atm (i.e., 250 psig, 2.53 x 107 Pa). The WHSV (Weight Hourly Space Velocity) was about 3 h'1 for toluene with respect to the catalyst. Test results are given in Table 1. Similar to prior art reported, the selectivity of para-xylene in xylenes is about 25%, which is close to equilibrium, with toluene conversion of 28.6% and xylene selectivity of 71.1 %.
TABLE 1
Synthesis of PX using Zeolite not Selectivated
CO conv. % H? conv. % Toluene conv. % Xylene select. PX select. %
% 31.7 17.1 28.6 71.1 25.0
INVENTIVE EXAMPLE VII
This example illustrates the preparation of para-alkyl selectivated
ZSM-5 zeolite with magnesium oxide as the seiectivating agent. 11.68 grams of magnesium hydroxide was mixed with distilled water. To the solution was added 20.44 grams of ammonium nitrate and 33.54 grams of phthalic acid in sequence. The mixture was heated to obtain a clear solution, which was cooled to room temperature before use. 14.80 grams of the solution was mixed with 7.77 grams of a ZSM-5 zeolite (SiO2/AIO2 of 50). The mixture was heated to evaporate the water solvent. The remaining solid was dried at 120°C for 12 hours and calcined at 500°C for 8 hours with air purge. The para-alkyl selectivated ZSM-5 zeolite contained approximately 9 wt.% of magnesium oxide. INVENTIVE EXAMPLE VIII
This example illustrates the preparation of another type of the catalytic reaction system. The catalytic reaction system comprises (1 ) Mn and Zn mixed metal oxides, and (2) MgO modified H-ZSM-5 zeolite with a SiO2/AIO2 of 38. The same preparation procedures as that given in Example VII were used. The Mn and Zn mixed metal oxides were prepared by co-precipitation of Mn(NO3)2 and Zn(NO3)2 with NH4OH. 4.14 grams of Mn(NO3)2 and 13.44 grams of Zn(NO3)2 were dissolved in 100 ml distilled water separately. The two solutions were then mixed together. NH4OH was slowly added into the mixed solution with stirring until the pH value of the solution reached about 7.5. The precipitate was filtered and recovered. This precipitate was dried at a temperature of 120°C for 12 hours, and then calcined in air at 500°C for 6 hours. These Mn/Zn mixed metal oxides were ground into powders.
The catalytic reaction system was prepared by physically mixing powders of a composition of 50% (w/w) Mn/Zn mixed metal oxides and 50% (w/w) MgO modified H-ZSM-5 zeolite. Powders of 2.0 grams of Mn/Zn mixed metal oxides and 2.0 grams of MgO modified H-ZSM-5 zeolite were mixed thoroughly in a grinding mortar. The mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles.
INVENTIVE EXAMPLE IX
This example illustrates that metal oxides other than Cr/Zn mixed metal oxides are also suitable as one of the components in the catalytic reaction system used in the xylenes synthesis with syngas alkylation of toluene. In addition, this example demonstrates that high para-xylene selectivity can be obtained when the aluminosilicate component in the catalytic reaction system is modified for shape selectivity. The catalytic reaction system was prepared as in Example VIII. The catalytic reaction system was reduced at 350°C under 5% H2 (balanced with 95% N2) for 16 hours at 1 atm prior to reaction.
The reaction was conducted under similar conditions to those in Example VI. Test results are given in Table 2. The para-xylene selectivity in xylenes is about 76.0% with toluene conversion of 10.9% and xylene selectivity of 85.4%. Compared to Example VI, the para-xylene selectivity is significantly enhanced when the aluminosilicate component is modified for shape selectivity.
TABLE 2 Synthesis of PX using Zeolite Modified for Shape Selectivity
CO conv. % H? conv. % Toluene conv. % Xylene select. % PX select. % 11.7 5.6 10.9 85.4 76.0
INVENTIVE EXAMPLE X
This example illustrates that the toluene conversion can be increased with a similar high para-xylene selectivity when the reaction operation conditions are optimized. The catalytic reaction system used in this example was comprised of a composition of (1 ) 50% (w/w) Cr, Zn, and Mg mixed metal oxides, and (2) 50% (w/w) MgO modified H-ZSM-5 zeolite with a SiO2/AIO2 of 38. The Cr, Zn, and Mg mixed metal oxides were prepared in a similar method as described in Example V with co- precipitation of Cr(NO3)3, Zn(NO3)2, and Mg(NO3)2 with NH4OH. The magnesium oxide-modified ZSM zeolite was prepared as described in Example VIII. The catalytic reaction system was prepared by physical mixing as described in Example V. The catalytic reaction system was reduced at 350°C under 5% H2 (balanced with 95% N2) for 16 hours at 1 atm (1.01 x 105 Pa) prior to reaction.
The catalytic reaction system was evaluated with co-feed of syngas (CO and H2) and toluene with a varied composition of H2/CO/toluene, a temperature from 450-490°C, and a pressure in the range of 18-28 atm (i.e. 250-390 psig, 2.53 x 107-3.95 x 107 Pa). The WHSV (Weight Hourly Space Velocity) varied from 1.5-6 h"1 for toluene with respect to the catalytic reaction system. Some of the test results are shown in Table 3. As shown in Table 3, a toluene conversion of 34% was achieved with a similar para-xylene selectivity when the reaction was operated at a temperature of ca. 460°C, a pressure of ca. 28 atm (390 psig.), and a WHSV of ca. 1.5 h" for toluene with respect to catalytic reaction system.
TABLE 3
Synthesis of PX using Zeolite Modified for Shape Selectivity
Reaction Temperature, °C 460 460 460 475
Reaction Pressure, psig 250 390 250 250
Reaction Pressure, Pa 2.53 x 107 3.95 x 107 2.53 x 107 2.53 x 107
Feed Composition, mole ratio 2/1/0.25 2/1/0.25 2/1/0.5 2/1/0.5
WHSV, h"1 (Tol. /Catalyst) 1.5 1.5 3 3
CO conv. % 18.4 29.2 17.4 18.1
H2 conv. % 6.6 9.4 7.4 7.6
Toluene conv. % 26.0 34.7 13.6 15.5
Xylene select. % 84.2 80.1 82.4 86.3
PX select. % 74.5 75.2 88.0 85.1
COMPARATIVE EXAMPLE XI
This example illustrates the problems of low methanol selectivity and fast catalytic reaction system deactivation associated with a low aromatic/methanol ratio and one-time methanol injection. The catalytic reaction system was extrudates of SAPO-11 material obtained from UOP. The extrudates were ground and screened to 8-12 mesh (0.89-0.73 cm) and calcined at 550°C under air for 16 hours prior to use. The catalytic reaction system was evaluated at 350°C, 25 atm (350 psig, 3.55 x 107 Pa), and 8 h" WHSV. The feed was a mixture of toluene/methanol with a molar ratio of 3.6. Test results are given in Table 4. It is seen that the methanol selectivity decreased from 70.0% to 55.0 % over a test period of 24 hours. Furthermore, the system was experiencing a severe catalytic reaction system deactivation as indicated by the decreasing toluene conversion from 18.5% to 15.1 %.
TABLE 4 Synthesis of PX with Low Methanol Selectivity and Catalyst
Deactivation
Toluene/Methanol (mole) 3.6
Hours on Stream 2 24
Toluene Total Conversion 18.5 % 15.1 %
Toluene Conversion due to Disproportionation 0 % 0 %
Toluene Conversion due to Methylation 18.5 % 15.1 %
Methanol Total Conversion 100 % 97.0 %
Methanol consumed by mono- and multiple 70.0 % 55.0 % methylation of toluene
Methanol consumed by other Reactions 30.0 % 42.0 %
COMPARATIVE EXAMPLE XII
This example demonstrates the problems of fast catalytic reaction system deactivation for MgO para-alkyl selectivated H-ZSM-5 in toluene methylation with low toluene/methanol ratio and one-time methanol injection. The catalytic reaction system was MgO-para-alkyl selectivated H-ZSM-5 with a SiO2/AIO2 ratio of 38. The same preparation procedure as that given in Example VIII was used. The catalytic reaction system was pelletized and screened to 40-60 mesh. The catalytic reaction system was tested at 460°C, 1 atm, and 14 h"1 WHSV. The feed was a mixture of toluene/methanol with a molar ratio of 1.0. The results presented in Table 5 indicate that although MgO para-alkyl selectivation of H-ZSM-5 improves the para-xylene selectivity, this catalytic reaction system still exhibits serious catalytic reaction system deactivation as indicated by the decreasing toluene conversion from 20.5% to 8.5%.
TABLE 5
Synthesis of PX Showing Catalytic Reaction System Deactivation
Toluene/Methanol (molar ratio) 1/1
Hours on Stream 0.5 2 2 2.5
Toluene Conversion, % 19.3 19.8 20.5 8.5
Methanol Conversion, % 100 100 100 99.6
Xylene Selectivity, % 76.7 76.4 84.1 86.1
Para-Xylene Selectivity, % 83.3 83.3 86.5 76.3
EXAMPLE XIII
This example demonstrates that the catalytic reaction system would suffer from deactivation for syngas methylation of toluene if the aluminosilicate component in the catalytic reaction system is not properly para-alkyl selectivated. The test was conducted in the same manner as Example VI. The reaction was monitored as time-on-stream, and the results are shown in Table 6. The catalytic reaction system displays some deactivation over a period of 18 hours as indicated by the decreasing toluene conversion from 35.3% to 28.6%.
TABLE 6
Synthesis of PX Showing Catalytic Reaction System Deactivation
CO/Toluene (molar ratio) 2/1/0.5
Hours on Stream 2 9.5 18.2
Toluene Conversion, % 35.3 31.1 28.6
CO Conversion, % 33.6 31.4 31.7
H2 Conversion, % 17.8 16.4 17.1
Xylene Selectivity, % 67.4 69.8 71.1
Para-Xylene Selectivity, % 24.8 24.9 25.0
INVENTIVE EXAMPLE XIV
This example illustrates that the process disclosed in this invention has a much higher activity maintenance for PX synthesis than the conventional methanol-toluene methylation process. The catalytic reaction system used in this example comprised (1 )
Cr and Zn mixed metal oxides, and (2) MgO modified H-ZSM-5 zeolite with a SiO2/AIO2 of 38. The Cr and Zn mixed metal oxides were prepared as described in Example I. The magnesium oxide-modified ZSM zeolite was prepared as described in Example V. The Cr/Zn mixed metal oxides were ground into powders. The catalytic reaction system was prepared by physically mixing powders of a composition of (1 ) 34% (w/w) Cr and Zn mixed metal oxides, and (2) 66% MgO modified H-ZSM-5 zeolite. The mixed catalytic reaction system powders were pelletized and screened to 8-12 mesh (0.89-0.73 cm) particles. The catalytic reaction system was reduced at 350°C under 5% H2 (balanced with 95% N2) for 16 hours at 1 atm (1.01 x 105 Pa) prior to reaction. The organometaUic modifier was magnesium phthalate.
The catalytic reaction system was evaluated with similar operation conditions as those in Example II. Test results are given in Table 7. It is seen that the catalytic reaction system had a stable activity for toluene conversion with stable PX selectivity.
TABLE 7
Higher Activity Mail ntenance for Para -xylene Synthesis
H2/CO/Toluene (molar ratio) 2/1/0.5
Hours on Stream, h 5.5 24 91.5 120
Toluene Conversion, % 17.0 18.0 17.4 17.1
CO Conversion, % 20.5 20.7 17.9 17.8
H2 Conversion, % 8.5 9.3 9.1 9.1
Xylene Selectivity, % 76.5 80.2 80.6 80.5
Para-Xylene Selectivity, % 63.4 67.0 71.4 75.2
In the foregoing specification, the invention has been described with reference to specific embodiments thereof, and has been demonstrated as effective in providing methods for modifying catalyst reaction systems, and the catalyst reaction systems perse, which may be used for directly and selectively producing PX from benzene and/or toluene and hydrogen together with CO and/or CO2 and/or methanol, and for other reactions. However, it will be evident that various modifications and changes can be made thereto without departing from the broader spirit or scope of the invention as set forth in the appended claims.
Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of catalyst components, such as organometaUic compounds, other than those specifically tried, in other proportions or ratios or mixed in different ways, falling within the claimed parameters, but not specifically identified or tried in a particular example, are anticipated to be within the scope of this invention. Further, various combinations of reactants, catalytic reaction systems, and control techniques not explicitly described but nonetheless falling within the appended claims are understood to be included.

Claims

What is claimed is:
1. A method for modifying catalysts comprising contacting a first component selected from the group consisting of crystalline or amorphous aluminosilicates, substituted aluminosilicates, substituted silicates, crystalline or amorphous aluminophosphates, zeolite-bound zeolites, substituted aluminophosphates, and mixtures thereof with an agent selected from the group of compounds of elements selected from Groups 1 through 16, and mixtures thereof.
2. The method of claim 1 where the contacting further comprises contacting a second component of one or more than one of the metals or oxides of the metals selected from Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and 16.
3. The method of claim 2 where contacting the first component with the agent occurs prior to contacting the first component with the second component.
4. The method of claim 2 where contacting the first component with the second component occurs prior to contacting the first component with the agent.
5. The method of claim 1 or 2 further comprising: making a solution of the agent with a solvent; mixing the solution with the first component; removing the solvent; and converting the agent into elemental forms or oxide forms.
6. The method of claim 1 or 2 further comprising: mixing the agent with the first component in the absence of a solvent; and converting the agent into elemental forms or oxide forms.
7. The method of claim 6 where the converting is performed by heating the mixture at a temperature and for a time effective to convert the agent into metallic oxide.
8. The method of claim 1 where the agent is too bulky to enter channels in the first component.
9. The method of claim 1 where the agent is an organometaUic compound.
10. The method of claim 9 where the organometaUic compound is an organometaUic salt.
11. The method of claim 10 where the organometaUic salt comprises: an organic anion having functional groups selected from the group consisting of carboxylic groups, phenolic groups and mixtures thereof; and a metal cation selected from the group consisting of the element(s) of Groups 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, and
16 (new IUPAC notation).
12. The method of claim 1 where ratio of the wt.% of agent elements to wt.% of the first component ranges from 1/99 to 99/1.
13. A catalyst prepared according to the method of any preceding claim.
EP00935926A 1999-05-14 2000-05-11 Catalyst selectivation Withdrawn EP1189697A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US312104 1999-05-14
US09/312,104 US6388156B1 (en) 1999-05-14 1999-05-14 Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
US09/327,241 US6613708B1 (en) 1999-06-07 1999-06-07 Catalyst selectivation
US327241 1999-06-07
PCT/US2000/013003 WO2000074847A1 (en) 1999-05-14 2000-05-11 Catalyst selectivation

Publications (1)

Publication Number Publication Date
EP1189697A1 true EP1189697A1 (en) 2002-03-27

Family

ID=26978229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00935926A Withdrawn EP1189697A1 (en) 1999-05-14 2000-05-11 Catalyst selectivation

Country Status (5)

Country Link
EP (1) EP1189697A1 (en)
CN (1) CN1505546A (en)
CA (1) CA2371225A1 (en)
MX (1) MXPA01012623A (en)
WO (1) WO2000074847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003954A1 (en) * 2006-01-26 2007-08-02 Sick Ag light Curtain

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040097769A1 (en) 2002-11-14 2004-05-20 Ou John D. Y. Para-xylene production process employing in-situ catalyst selectivation
KR100638444B1 (en) 2004-10-18 2006-10-24 주식회사 엘지화학 Hydrocarbon Cracking Catalyst using Chemical Liquid Deposition and Method for Preparing the Same
CN102464540B (en) * 2010-11-17 2016-07-06 中国石油化工股份有限公司 For the method producing para-alkylated arene
CN105163851A (en) * 2013-04-29 2015-12-16 沙特基础工业公司 Catalytic methods for converting naphtha into olefins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034053A (en) * 1975-12-08 1977-07-05 Mobil Oil Corporation Selective production of para-xylene
SU1301485A1 (en) * 1985-04-02 1987-04-07 Институт общей и неорганической химии АН БССР Catalyst for isomerization of xylenes
FR2643830B1 (en) * 1989-03-03 1991-06-21 Inst Francais Du Petrole MORDENITE-BASED CATALYST CONTAINING AT LEAST ONE METAL FROM GROUPS IIA, IVB, IIB OR IVA AND ITS USE IN ISOMERIZATION OF AN AROMATIC C8 CUT
RU2119470C1 (en) * 1997-02-27 1998-09-27 Конструкторско-технологический институт каталитических и адсорбционных процессов на цеолитах "Цеосит" СО РАН Method of synthesis-gas alkylation of aromatic hydrocarbons
US5990032A (en) * 1997-09-30 1999-11-23 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0074847A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003954A1 (en) * 2006-01-26 2007-08-02 Sick Ag light Curtain

Also Published As

Publication number Publication date
WO2000074847A8 (en) 2001-05-03
CA2371225A1 (en) 2000-12-14
WO2000074847A1 (en) 2000-12-14
MXPA01012623A (en) 2002-06-21
CN1505546A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US6388156B1 (en) Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
US6459006B1 (en) Selective methylation to para-xylene using fuel syngas
US6613708B1 (en) Catalyst selectivation
US7902414B2 (en) Para-xylene production process employing in-situ catalyst selectivation
US7368410B2 (en) Zeolite catalyst and method of preparing and use of zeolite catalyst
JP4067122B2 (en) Aromatic conversion process and zeolite catalyst useful in this process
KR20080081025A (en) Bound phosphorus-modified zeolite catalyst, method of preparing and method of using thereof
WO2005068406A1 (en) Process for aromatic alkylation
EP2498907B1 (en) Phosphorus-containing zeolite catalysts and their method of preparation
WO2004045762A1 (en) Multi-component molecular sieve catalyst compositions, their preparation and their use in alkylation reactions
JP4823655B2 (en) Method for producing xylenes
EP1189697A1 (en) Catalyst selectivation
TW202124046A (en) Catalyst for producing c8 aromatic hydrocarbon having reduced ethylbenzene content and preparation method therefor
CA1090315A (en) Process for producing p-dialkyl substituted benzenes and catalyst therefor
KR20240054273A (en) Catalyst composition, preparation and use thereof
WO1997026990A1 (en) A catalyst for producing alkyl-benzene and method of producing alkyl-benzene using the catalyst
JPH05279272A (en) Method for isomerizing dialkylnaphthalene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030620

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031031