EP1187987A1 - Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine - Google Patents

Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine

Info

Publication number
EP1187987A1
EP1187987A1 EP00949547A EP00949547A EP1187987A1 EP 1187987 A1 EP1187987 A1 EP 1187987A1 EP 00949547 A EP00949547 A EP 00949547A EP 00949547 A EP00949547 A EP 00949547A EP 1187987 A1 EP1187987 A1 EP 1187987A1
Authority
EP
European Patent Office
Prior art keywords
chamber
measuring
measurement chamber
piston
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00949547A
Other languages
German (de)
French (fr)
Other versions
EP1187987B1 (en
Inventor
François SCHMIDT
Pierre Eynard
Bernard Maurin
Christian Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFS SA
Original Assignee
EFS SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EFS SA filed Critical EFS SA
Publication of EP1187987A1 publication Critical patent/EP1187987A1/en
Application granted granted Critical
Publication of EP1187987B1 publication Critical patent/EP1187987B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector

Definitions

  • the present invention relates to a device for instantaneously analyzing the injection rate blow by blow supplied by an injection system used in a heat engine.
  • the injection systems concerned are also those found on vehicles equipped with a diesel engine, a petrol engine, an engine running on LPG (liquefied petroleum gas), or any other type of engine.
  • Injection systems typically include one or more injection pumps responsible for putting fuel under pressure which can currently range from 100 to 2,500 bar, one or more pressurized fuel tanks, one or even several injectors per cylinder of the engine to be supplied and a control system, more and more often electronic, responsible for controlling the value of the masses or volumes of fuel injected as a function of the engine's environmental conditions, the characteristics of the fuel and the requirements of driving the engine .
  • Measuring devices have been designed to allow manufacturers of injection systems and heat engines to carry out the development of the injectors as well as the adjustments and conformity checks during manufacture and during installation for end use.
  • the known measuring devices are used in conjunction with a specific test bench whose role is essentially to ensure the rotation of an injection pump and the fixing of the various elements of the injection system under test. These devices cannot be used on an injection combustion engine in nominal operation.
  • the measurements are Often do this by using a fluid other than the fuel for the injection of which the injection system is designed. This fluid is chosen to have hydraulic characteristics close to those of fuel but with a higher flash point temperature in order to minimize the risk of fire and explosion.
  • the term fuel will also be used to designate the fluid used to carry out flow measurements.
  • the measuring device includes a mechanical section as well as an electronic section.
  • the mechanical section includes a fastening system for receiving one or more injectors, a measuring cell per injector for developing an electrical image of the quantity of fluid injected and a fluid evacuation system.
  • the electronic section generally has the form of a box equipped with various means of interface with the operator such as a screen and a keyboard as well as other external processing systems.
  • the electronic section processes an electrical signal supplied by the mechanical section, controls and controls various elements of service contributing to the measurement process.
  • the basic technique used for the production of these measuring devices is based on the measurement of the displacement of a piston sliding in a jacket, the assembly delimiting a deformable measurement volume in which the injected fuel is directed. Any amount of fuel added to this volume causes displacement of the piston which can be easily converted into an electrical signal by the use of one of the many types of sensor available for this use. It is a volume measurement. Conversion to mass measurement is done by calculation using the value of the fuel density. To ensure an accurate calculation, the fuel temperature is measured in the measurement volume.
  • the known measuring devices therefore make it possible either to know precisely the quantity of fuel injected by an injector or to know the shape of the flow curve as a function of time. There is not yet a measuring device making it possible to know both precisely the values of the volumes injected and the times / angles of injection.
  • the present invention therefore aims to provide such a measuring device which therefore makes it possible to carry out these two different measurements at the same time.
  • the device which it offers is a device for measuring a quantity of fuel injected by an injector used in a heat engine comprising a first measurement chamber into which the fuel is injected, a pressure sensor and a sensor. temperature measuring respectively the pressure and the temperature prevailing in the first measurement chamber as well as means making it possible to at least partially drain this measurement chamber, an electronic section controlling the system and analyzing information received by the sensors.
  • this device comprises downstream of the first measurement chamber a second measurement chamber into which the fuel drained is sent out of the first measurement chamber, and the volume of the second measurement chamber is variable according to the displacement a piston whose displacement is measured using a displacement sensor.
  • an injection is carried out.
  • This causes an increase in pressure in the first measurement chamber, linked to the quantity of fluid injected, the characteristics of the fluid, the environmental conditions, in particular the temperature, the initial pressure and the volume of the chamber.
  • the fluid that has been injected is discharged to the second measurement chamber.
  • the pressure in the first measurement chamber is thus brought back to its initial value and this first chamber is ready to receive a second injection.
  • the fluid which arrives in the second measurement chamber increases the volume of this chamber by pushing the piston. This displacement is measured and, knowing the diameter of the piston, part of the electronic section calculates the exact volume of fluid. This measurement allows the electronic section to calibrate, at all times, very exactly, the measurements that are made by the first measurement chamber.
  • the first measurement chamber therefore makes it possible to supply the "shape" of the injection with precision, while the second allows the quantity of fuel injected to be measured.
  • the processing carried out by the electronic section makes it possible to compensate for the defects of each of the measurements by the qualities of the other.
  • the mechanical design of the device is more robust than the devices of the existing prior art. In particular, it is not necessary to use a pressure balancing device in the second measurement chamber. The back pressure is directly provided by the injection pressure in the first cell by playing on its emptying. The piston can then be simply returned by a spring.
  • the constraints in the second measurement chamber being significantly less than in a chamber of the same type of the prior art, this chamber resists much better and wears out much less quickly.
  • a rapid solenoid valve controlled by a part of the electronic section and a spillway are arranged between the two measurement chambers to partially empty the first measurement chamber after an injection until it finds in the first measurement chamber the pressure prevailing therein before this injection.
  • the electronic section advantageously includes a compensation device making it possible to take into account any pressure difference in the first measurement chamber after two successive empties.
  • a rapid drain solenoid valve is advantageously provided downstream of the second measurement chamber. .
  • the piston can be prestressed for example by a spring towards the second measurement chamber.
  • the piston moves in a cylinder with a smooth wall and has an annular groove open towards the wall of the cylinder.
  • This groove makes it possible to trap any gas or fluid leaks while preventing these leaks from disturbing the measurement. It also makes it possible to lighten the piston. It also makes it possible to limit the surface area of the piston which must be run in and paired. Finally, it increases the flexibility of the piston, which makes it less difficult to slide it in the cylinder.
  • the piston displacement sensor used is for example an inductive sensor, but any other type of sensor can be used here. It is also possible, for example, to use an optical sensor, of the interferometric type. Such a sensor is more precise, linear and does not add any moving mass to the mass of the piston. On the other hand, its cost is higher and its implementation more delicate.
  • the measuring device can advantageously include a cooling system for cooling the injector, the first measuring chamber, the piston and the piston displacement sensor.
  • a cooling system for cooling the injector, the first measuring chamber, the piston and the piston displacement sensor.
  • the single figure very schematically shows the mechanical part of a device for measuring the quantity of fuel injected by an injector according to the invention.
  • the single figure represents an injector 2 mounted on an injector support 4.
  • This injector 2 comprises an injection nozzle 6 which is located in a first measurement chamber 8.
  • This measurement chamber is a chamber of constant volume. It is filled with a fluid which has hydraulic characteristics close to those of a fuel but with a flash point temperature much higher than a fuel in order to minimize the risk of fire and explosion.
  • This fluid is also the fluid which is used in the injector 2.
  • a reservoir 10 of this fluid is provided in the device shown in the drawing.
  • the first measurement chamber 8 has several inputs and several outputs. It firstly has a filling inlet 1 2, a purge outlet 14, a rapid drain outlet 1 6, and an outlet 18 to a second measurement chamber 20.
  • fluid is pumped into the reservoir 10 using a pump 22 actuated by a motor 24.
  • a fast filling solenoid valve 26 is mounted between the pump 22 and the inlet of filling 12 in order to control the filling of the first measurement chamber 8.
  • a solenoid valve 28 is also provided at the outlet 14 for purging.
  • a rapid emptying solenoid valve 30 is provided for the emptying of the chamber 8. It can be noted here that the rapid drain outlet 1 6 is advantageously placed at a low point of the first measurement chamber 8, while the purge outlet 14 is placed at a high point of this chamber 8.
  • a drain solenoid valve 32 and an adjustable pressure relief valve 34 are disposed between the first measurement chamber 8 and the second measurement chamber 20.
  • the second measurement chamber 20 has a variable volume. It is produced in a cylinder 36 in which a piston 38 moves.
  • This piston 38 has a bottom 40 and a skirt 42.
  • the bottom 42 is curved and forms a wall closing the measurement chamber 20.
  • a spring 44 comes to bear on the bottom 40, on the side opposite to the measurement chamber 20. It is equally possible to have a piston with a convex, convex or concave bottom, as well as a piston with a flat bottom.
  • the displacement of the measurement piston 38 is provided by a displacement sensor 46, engaged by a contact point 48 with the face of the bottom 40 opposite the measurement chamber 20.
  • This displacement sensor 46 is for example an inductive sensor.
  • the second measurement chamber 20 also includes a drain channel 50, the opening and closing of which are controlled by a drain solenoid valve 52 associated with an overflow valve 54.
  • the drained fluid returns to the reservoir 10.
  • the wall of the cylinder 36 along from which the piston 38 moves is a smooth wall. This cylinder may or may not be lined.
  • the skirt 42 has on its outer face an annular groove 56. This groove extends over substantially half the height of the piston 38 and is centered relative to the height of the latter. Two annular guide surfaces 58 are thus produced.
  • This mechanical device described above is associated with an electronic device not shown here and which receives information from two temperature sensors 60, each chamber being equipped with a quick response temperature sensor 60 as well as a pressure sensor. 62 located at the level of the first measurement chamber 8.
  • a cooling system is also provided in the measuring device.
  • the cooling fluid is the same as that which is injected at the level of the injector 2. Downstream of the pump 22, there is a heat exchanger 64. The same reservoir 10 therefore serves for the injected fluid and for the cooling.
  • This cooling fluid is sent to the injector support 4 and then around the first measurement chamber 8, at the displacement sensor 46 and at the piston 38.
  • An annular chamber 66 surrounds the displacement sensor 46 and comprises a cooling fluid supply channel and a channel for the return of this fluid to the reservoir 10.
  • a groove 68 is provided in the injector support 4 to allow the circulation of the coolant around it. This groove 36 is supplied with coolant through a pipe and the coolant, after leaving the groove 36, passes into an annular chamber 70 situated around the first measurement chamber 8 before returning to the reservoir 10.
  • the annular groove 56 of the piston 38 is also supplied with cooling fluid.
  • a supply channel is provided for this purpose in the cylinder 36.
  • Another channel is also provided for the return of the coolant to the reservoir 10. This return channel is advantageously offset in height with respect to the feed channel and is preferably located above the latter diametrically opposite to the latter.
  • the first measurement chamber is firstly filled with fluid pumped into the reservoir 10 using the pump 22 and by opening the solenoid valve 26. Once the chamber is filled, it is purged using the solenoid valve 28 to ensure that no air bubbles or other gases are inside it. To fill the second measurement chamber, it is possible, during this filling, to open the solenoid valve 32 to the second measurement chamber 20.
  • fluid is injected through the injector 2 into the first measurement chamber 8 until a pressure is obtained above the set pressure.
  • the drain solenoid valve 32 and the overflow valve 34 the pressure in the first measurement chamber is reduced to the set pressure.
  • the actual measurement can then begin.
  • the injector 2 then injects fluid into the first measurement chamber 8. Thanks to the sensors, in particular the pressure sensor 62, it is thus possible to determine the curve of flow rate of injected fluid as a function of time. This injection in fact causes an increase in the pressure in the first measurement chamber. When the pressure in this chamber no longer increases, we deduce that the injection is finished.
  • the solenoid valve 32 then opens and remains open until the pressure in the first measurement chamber substantially regains the initial set pressure.
  • the overflow valve 34 makes it possible to maintain this residual set pressure in the first measurement chamber 8.
  • the fluid which leaves the first measurement chamber 8 is sent to the second measurement chamber 20.
  • the volume of this second measurement chamber 20 increases therefore, which causes a displacement of the piston 38.
  • the displacement sensor 46 measures this displacement of the piston 38, and by knowing by means of the temperature sensor 60 the temperature of the fluid being in the chamber 20, it is possible to determine the quantity of fluid which has been introduced into the second measurement chamber 20.
  • the main data are the initial pressure in the first measurement chamber, the final pressure in this chamber, and the pressure difference during injection, as well as the displacement of the piston 38.
  • Using a method of so-called "crossed matrix" treatment we then obtain the results of the measurement. These results are obtained already before a second injection. Indeed, during the first injection the fluid is injected into the first measurement chamber. Then the fluid is transferred to the second measurement chamber 20. A second injection can then take place in the first measurement chamber 8. The results are obtained as soon as the transfer from the first measurement chamber 8, to the second measurement chamber 20 is finished, ie just before the second injection.
  • the second measurement chamber is drained by means of the solenoid valve 52.
  • the second overflow valve 54 makes it possible to maintain in the second measurement chamber 20 a second set pressure.
  • the relationship between the increase in pressure and the volume injected is not linear. It depends in particular on the characteristics of the fluid, the temperature and the pressure. This pressure varies during the injection, and this phenomenon is used for the measurement.
  • the calibration is carried out by injecting small volumes, but not too small in order to maintain a precision on the measurement, 10 mm 3 for example for a measurement scale of 200 mm 3 .
  • Several injections are carried out successively, starting the injection at different pressures, chosen to cover the entire range of pressures encountered during nominal operation. Each injection is precisely measured by the second chamber 20. A series of correspondence points between a starting pressure in the chamber, a small variation in pressure due to the injection and the volume injected is obtained, at the nominal temperature of the measurements with the actual test fluid, in its current state.
  • the calculation unit stores, periodically, a table of values making it possible to linearize and correct in real time the subsequent measurements.
  • the advantage of this procedure is that it does not use any external device.
  • the exploration of the different starting pressures is done simply by accumulating a few injections without opening the transfer solenoid valve to the second chamber which has the effect of gradually increasing the pressure in the first chamber 8 to the surroundings of each desired value to store a linearization curve.
  • This calibration method is given by way of example and other methods can be envisaged here.
  • This measuring device makes it possible to precisely obtain the quantity of fluid injected by the injector and also provides precisely the flow curve as a function of time.
  • An electronic compensation device is provided to take account of a possible imperfection in the emptying phase of the first measurement chamber 8 and to provide precise measurement results even if the final pressure in this chamber, after emptying, is not not strictly equal to the nominal initial pressure.
  • the system is capable of accounting for relatively large variations in this parameter. This compensation function is important because, among other factors, the response times for closing and opening the solenoid valve are not absolutely stable or predictable, even if their average value is taken into account by the system in the control sequence of this solenoid valve.
  • the displacement of the piston measured by the displacement sensor 46 makes it possible, knowing the exact diameter of the piston, to calculate the volume injected. This measurement allows the electronic section to calibrate, at all times, very exactly the measurements that are made by the first cell.
  • the groove 56 made in the piston provides several advantages. First of all, it traps any gas or fluid leaks, preventing them from disturbing the measurement. It also makes it possible to lighten the piston and therefore to limit the undesirable effects due to its mechanical inertia. Finally, it makes it possible to reduce the surface of the piston which must be perfectly run in and matched with the internal surface of the cylinder by limiting this guide surface to two rings located at the ends of the piston.
  • the piston in particular at the level of its skirt, has a greater flexibility than that of the pistons used in the devices of the prior art thanks to the thinning of the skirt. All this is achieved without making it more difficult to produce the piston and, in addition, making it possible to reduce the stresses which hamper the sliding of the piston 38 in the cylinder 36.
  • this system it is unnecessary to provide a counter pressure on the measuring piston using pressurized nitrogen. We This avoids any risk of leakage of this gas.
  • the volume and mass of fuel injected at the injector 2 are measured at stabilized temperature. This brings reliability and precision to the measurement made.
  • the processing carried out by the electronic section brings together the information obtained at the level of the two measurement chambers and makes it possible to compensate for the faults of each with the qualities of the other.
  • the results provided to the operator or to external connected data processing systems are completely preprocessed by the electronic section and include all compensations.
  • this measuring device is much more robust than in the systems of the prior art.
  • it is no longer necessary to use the pressure balancing device in the first measurement chamber.
  • This back pressure is provided directly by the injection pressure in this chamber by playing on its emptying.
  • the second piston measurement chamber no longer needs to be particularly "rapid” since it is filled by the solenoid drain valve of the first measurement chamber, the operation of which is controlled. It no longer requires working with a back pressure and a simple spring is therefore sufficient to ensure its return.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The measuring device includes a first measuring chamber (8) into which fuel is injected, pressure sensor (62) and a temperature sensor (60) respectively measuring pressure and temperature in the first measuring chamber (8), devices enabling the measuring chamber to be at least partially drained, an electronic section controlling the system and analyzing information received from the sensors (46, 60, 62). The device also includes a second measuring chamber (20) arranged downstream from the first measuring chamber (8). Fuel which is drained from the first measuring chamber (8) is sent to said second chamber. The volume of the second measuring chamber (20) can vary according to the displacement of a piston (38). The displacement is measured with the aid of a displacement sensor (46).

Description

Dispositif permettant d'analyser instantanément le débit d'injection coup par coup fourni par un système d'injection utilisé dans un moteur thermique. Device allowing instantaneous analysis of the injection rate blow by blow provided by an injection system used in a heat engine.
La présente invention concerne un dispositif permettant d'analyser instantanément le débit d'injection coup par coup fourni par un système d'injection utilisé dans un moteur thermique. Les systèmes d'injection concernés sont aussi bien ceux que l'on retrouve sur des véhicules équipés d'un moteur Diesel, d'un moteur essence, d'un moteur fonctionnant au GPL (gaz de pétrole liquéfié), ou tout autre type de moteur.The present invention relates to a device for instantaneously analyzing the injection rate blow by blow supplied by an injection system used in a heat engine. The injection systems concerned are also those found on vehicles equipped with a diesel engine, a petrol engine, an engine running on LPG (liquefied petroleum gas), or any other type of engine.
Les systèmes d'injection comportent typiquement une ou plusieurs pompes à injection chargée de mettre du carburant sous une pression qui peut aller actuellement de 100 à 2 500 bars, un ou plusieurs réservoirs de carburant sous pression, un, voire plusieurs, injecteurs par cylindre du moteur à alimenter et un système de pilotage, de plus en plus souvent électronique, chargé de commander la valeur des masses ou volumes de carburant injecté en fonction des conditions d'environnement du moteur, des caractéristiques du carburant et des nécessités de la conduite du moteur.Injection systems typically include one or more injection pumps responsible for putting fuel under pressure which can currently range from 100 to 2,500 bar, one or more pressurized fuel tanks, one or even several injectors per cylinder of the engine to be supplied and a control system, more and more often electronic, responsible for controlling the value of the masses or volumes of fuel injected as a function of the engine's environmental conditions, the characteristics of the fuel and the requirements of driving the engine .
L'évolution actuelle des systèmes d'injection va vers l'augmentation de la pression du carburant et de la précision du contrôle des quantités injectées. On essaie d'optimiser tout paramètre qui permet d'améliorer le rendement du moteur et de diminuer l'impact de son fonctionnement sur l'environnement, notamment sous forme de pollutions gazeuses et sonores.The current evolution of the injection systems goes towards the increase of the fuel pressure and the precision of the control of the quantities injected. We try to optimize any parameter that improves engine performance and reduces the impact of its operation on the environment, especially in the form of gas and noise pollution.
Des dispositifs de mesure ont été conçus pour permettre aux constructeurs de systèmes d'injection et de moteurs thermiques, d'effectuer la mise au point des injecteurs ainsi que les réglages et les vérifications de conformité en cours de fabrication et lors de l'installation pour l'utilisation finale.Measuring devices have been designed to allow manufacturers of injection systems and heat engines to carry out the development of the injectors as well as the adjustments and conformity checks during manufacture and during installation for end use.
Les dispositifs de mesure connus sont utilisés en conjonction avec un banc d'essai spécifique dont le rôle est essentiellement d'assurer la rotation d'une pompe d'injection et la fixation des différents éléments du système d'injection sous test. Ces dispositifs ne sont pas utilisables sur un moteur thermique à injection en fonctionnement nominal. Les mesures se font souvent en utilisant un fluide différent du carburant pour l'injection duquel le système d' injection est conçu. Ce fluide est choisi pour présenter des caractéristiques hydrauliques proches de celles du carburant mais avec une température de point d 'éclair plus élevée afin de minimiser les risques d'incendie et d'explosion. Ainsi, par la suite, le terme carburant sera également utilisé pour désigner le fluide utilisé pour réaliser des mesures de débit.The known measuring devices are used in conjunction with a specific test bench whose role is essentially to ensure the rotation of an injection pump and the fixing of the various elements of the injection system under test. These devices cannot be used on an injection combustion engine in nominal operation. The measurements are Often do this by using a fluid other than the fuel for the injection of which the injection system is designed. This fluid is chosen to have hydraulic characteristics close to those of fuel but with a higher flash point temperature in order to minimize the risk of fire and explosion. Thus, subsequently, the term fuel will also be used to designate the fluid used to carry out flow measurements.
L'appareil de mesure comprend une section mécanique ainsi qu'une section électronique. La section mécanique comprend un système de fixation pour recevoir un ou plusieurs injecteurs, une cellule de mesure par injecteur pour l'élaboration d'une image électrique de la quantité de fluide injecté et un système d'évacuation de fluide.The measuring device includes a mechanical section as well as an electronic section. The mechanical section includes a fastening system for receiving one or more injectors, a measuring cell per injector for developing an electrical image of the quantity of fluid injected and a fluid evacuation system.
La section électronique présente généralement la forme d'un coffret équipé de différents moyens d'interface avec l'opérateur tels un écran et un clavier ainsi que d'autres systèmes de traitement extérieur. La section électronique traite un signal électrique fourni par la section mécanique, contrôle et pilote différents éléments de servitude concourant au processus de mesure.The electronic section generally has the form of a box equipped with various means of interface with the operator such as a screen and a keyboard as well as other external processing systems. The electronic section processes an electrical signal supplied by the mechanical section, controls and controls various elements of service contributing to the measurement process.
La technique de base utilisée pour la réalisation de ces appareils de mesure repose sur la mesure du déplacement d'un piston coulissant dans une chemise, l'ensemble délimitant un volume de mesure déformable dans lequel est dirigé le carburant injecté. Toute quantité de carburant ajoutée dans ce volume provoque un déplacement du piston qui peut être facilement converti en signal électrique par l'utilisation d'un des nombreux types de capteur disponible pour cet usage. Il s'agit d'une mesure volumique. La conversion en mesure massique se fait par calcul en utilisant la valeur de la densité du carburant. Pour garantir un calcul précis, la température du carburant est mesurée dans le volume de mesure.The basic technique used for the production of these measuring devices is based on the measurement of the displacement of a piston sliding in a jacket, the assembly delimiting a deformable measurement volume in which the injected fuel is directed. Any amount of fuel added to this volume causes displacement of the piston which can be easily converted into an electrical signal by the use of one of the many types of sensor available for this use. It is a volume measurement. Conversion to mass measurement is done by calculation using the value of the fuel density. To ensure an accurate calculation, the fuel temperature is measured in the measurement volume.
D'autres méthodes sont utilisées pour obtenir des informations de type temporel, lorsqu'on se réfère à une échelle temporelle, ou angulaire lorsqu'on se réfère à une échelle liée à la rotation de l'arbre moteur. Deux méthodes sont principalement utilisées. Elles sont fondées sur une mesure de variation de pression instantanée et sont mises en œuvre dans des appareils de mesure de structure géométrique différentes de celles mettant en œuvre un piston. La méthode dite de "Bosch" utilise un long tube enroulé et celle dite de "Zuech" un volume de quelques centaines de mm3. Ces méthodes permettent de savoir à quel instant précis du carburant est injecté mais elles apportent une mauvaise précision quant à l'amplitude du débit de carburant. Ces méthodes ne permettent donc pas de connaître précisément la quantité de carburant injectée. Les dispositifs de mesure connus permettent donc soit de connaître précisément la quantité de carburant injectée par un injecteur soit de connaître l'allure de la courbe du débit en fonction du temps. Il n'existe pas encore d'appareil de mesure permettant de connaître à la fois précisément les valeurs des volumes injectés et les temps/angles d'injection.Other methods are used to obtain information of the temporal type, when reference is made to a temporal scale, or angular when reference is made to a scale linked to the rotation of the motor shaft. Two methods are mainly used. They are based on an instantaneous pressure variation measurement and are used in measuring devices with a geometric structure different from those using a piston. The so-called "Bosch" method uses a long coiled tube and the so-called "Zuech" method a volume of a few hundred mm 3 . These methods make it possible to know at what precise time the fuel is injected, but they provide poor precision as to the amplitude of the fuel flow. These methods therefore do not make it possible to know precisely the quantity of fuel injected. The known measuring devices therefore make it possible either to know precisely the quantity of fuel injected by an injector or to know the shape of the flow curve as a function of time. There is not yet a measuring device making it possible to know both precisely the values of the volumes injected and the times / angles of injection.
La présente invention a alors pour but de fournir un tel appareil de mesure qui permet donc d'effectuer à la fois ces deux mesures différentes.The present invention therefore aims to provide such a measuring device which therefore makes it possible to carry out these two different measurements at the same time.
A cet effet, le dispositif qu'elle propose est un dispositif de mesure d'une quantité de carburant injectée par un injecteur utilisé dans un moteur thermique comportant une première chambre de mesure dans laquelle est injecté le carburant, un capteur de pression et un capteur de température mesurant respectivement la pression et la température régnant dans la première chambre de mesure ainsi que des moyens permettant de vidanger au moins partiellement cette chambre de mesure, une section électronique pilotant le système et analysant des informations reçues par les capteurs.To this end, the device which it offers is a device for measuring a quantity of fuel injected by an injector used in a heat engine comprising a first measurement chamber into which the fuel is injected, a pressure sensor and a sensor. temperature measuring respectively the pressure and the temperature prevailing in the first measurement chamber as well as means making it possible to at least partially drain this measurement chamber, an electronic section controlling the system and analyzing information received by the sensors.
Selon l'invention, ce dispositif comporte en aval de la première chambre de mesure une seconde chambre de mesure dans laquelle est envoyé le carburant vidangé hors de la première chambre de mesure, et le volume de la seconde chambre de mesure est variable selon le déplacement d'un piston dont le déplacement est mesuré à l'aide d'un capteur de déplacement.According to the invention, this device comprises downstream of the first measurement chamber a second measurement chamber into which the fuel drained is sent out of the first measurement chamber, and the volume of the second measurement chamber is variable according to the displacement a piston whose displacement is measured using a displacement sensor.
De cette manière, on obtient un dispositif qui permet de connaître le débit de fluide en fonction du temps ainsi que la quantité précise de fluide injecté. Le fonctionnement de ce dispositif est alors par exemple celui décrit dans le paragraphe ci-après.In this way, a device is obtained which makes it possible to know the flow rate of fluid as a function of time as well as the precise quantity of fluid injected. The operation of this device is then for example that described in the paragraph below.
Lorsque le dispositif est prêt à réaliser une mesure, c'est à dire lorsque du fluide se trouve dans les première et seconde chambres de mesure et qu'une pression de consigne prédéterminée est établie dans la première chambre de mesure, une injection est réalisée. Celle-ci provoque une augmentation de pression dans la première chambre de mesure, liée à la quantité de fluide injecté, aux caractéristiques du fluide, aux conditions d 'environnement, notamment la température, la pression initiale et au volume de la chambre. A la fin de l'injection, le fluide qui a été injecté est vidangé vers la seconde chambre de mesure. La pression dans la première chambre de mesure est ainsi ramenée à sa valeur initiale et cette première chambre est prête à recevoir une seconde injection. Le fluide qui arrive dans la seconde chambre de mesure fait augmenter le volume de cette chambre en poussant le piston. Ce déplacement est mesuré et, connaissant le diamètre du piston, une partie de la section électronique calcule le volume exact de fluide. Cette mesure permet à la section électronique de calibrer, à tout instant, très exactement, les mesures qui sont faites par la première chambre de mesure.When the device is ready to carry out a measurement, that is to say when the fluid is in the first and second measurement chambers and a predetermined set pressure is established in the first measurement chamber, an injection is carried out. This causes an increase in pressure in the first measurement chamber, linked to the quantity of fluid injected, the characteristics of the fluid, the environmental conditions, in particular the temperature, the initial pressure and the volume of the chamber. At the end of the injection, the fluid that has been injected is discharged to the second measurement chamber. The pressure in the first measurement chamber is thus brought back to its initial value and this first chamber is ready to receive a second injection. The fluid which arrives in the second measurement chamber increases the volume of this chamber by pushing the piston. This displacement is measured and, knowing the diameter of the piston, part of the electronic section calculates the exact volume of fluid. This measurement allows the electronic section to calibrate, at all times, very exactly, the measurements that are made by the first measurement chamber.
La première chambre de mesure permet donc de fournir avec précision la "forme" de l'injection, tandis que la seconde permet de mesurer la quantité de carburant injecté. Le traitement effectué par la section électronique permet de compenser les défauts de chacune des mesures par les qualités de l'autre. La conception mécanique du dispositif est plus robuste que les dispositifs de l'art antérieur existant. Il n'est pas nécessaire notamment d'utiliser de dispositif d'équilibrage de pression dans la seconde chambre de mesure. La contre pression est directement fournie par la pression d'injection dans la première cellule en jouant sur sa vidange. Le piston peut alors être simplement rappelé par un ressort. Les contraintes dans la seconde chambre de mesure étant sensiblement moindres que dans une chambre de même type de l'art antérieur, cette chambre résiste beaucoup mieux et s'use bien moins rapidement.The first measurement chamber therefore makes it possible to supply the "shape" of the injection with precision, while the second allows the quantity of fuel injected to be measured. The processing carried out by the electronic section makes it possible to compensate for the defects of each of the measurements by the qualities of the other. The mechanical design of the device is more robust than the devices of the existing prior art. In particular, it is not necessary to use a pressure balancing device in the second measurement chamber. The back pressure is directly provided by the injection pressure in the first cell by playing on its emptying. The piston can then be simply returned by a spring. The constraints in the second measurement chamber being significantly less than in a chamber of the same type of the prior art, this chamber resists much better and wears out much less quickly.
Dans une forme de réalisation avantageuse du dispositif de mesure, une électrovanne rapide pilotée par une partie de la section électronique et un déverseur sont disposés entre les deux chambres de mesure pour vidanger partiellement la première chambre de mesure après une injection jusqu'à retrouver dans la première chambre de mesure la pression régnant dans celle-ci avant cette injection.In an advantageous embodiment of the measurement device, a rapid solenoid valve controlled by a part of the electronic section and a spillway are arranged between the two measurement chambers to partially empty the first measurement chamber after an injection until it finds in the first measurement chamber the pressure prevailing therein before this injection.
Dans ce cas, la section électronique comporte avantageusement un dispositif de compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure après deux vidanges successives. Pour pouvoir réaliser une vidange de la seconde chambre de mesure après chaque déplacement du piston, et ainsi effectuer les mesures en partant toujours sensiblement de la même position initiale du piston, une électrovanne de vidange rapide est avantageusement prévue en aval de la seconde chambre de mesure.In this case, the electronic section advantageously includes a compensation device making it possible to take into account any pressure difference in the first measurement chamber after two successive empties. In order to be able to drain the second measurement chamber after each displacement of the piston, and thus to carry out the measurements always starting from substantially the same initial position of the piston, a rapid drain solenoid valve is advantageously provided downstream of the second measurement chamber. .
Comme déjà évoqué plus haut, le piston peut être précontraint par exemple par un ressort vers la seconde chambre de mesure.As already mentioned above, the piston can be prestressed for example by a spring towards the second measurement chamber.
Dans une forme de réalisation avantageuse, le piston se déplace dans un cylindre à paroi lisse et comporte une gorge annulaire ouverte vers la paroi du cylindre. Cette gorge permet de piéger d'éventuelles fuites de gaz ou de fluide en évitant que ces fuites ne viennent perturber la mesure. Elle permet également d'alléger le piston. Elle permet aussi de limiter la surface du piston qui doit être rodée et appairée. Enfin, elle augmente la flexibilité du piston, ce qui permet de moins gêner le glissement de celui-ci dans le cylindre.In an advantageous embodiment, the piston moves in a cylinder with a smooth wall and has an annular groove open towards the wall of the cylinder. This groove makes it possible to trap any gas or fluid leaks while preventing these leaks from disturbing the measurement. It also makes it possible to lighten the piston. It also makes it possible to limit the surface area of the piston which must be run in and paired. Finally, it increases the flexibility of the piston, which makes it less difficult to slide it in the cylinder.
Le capteur de déplacement du piston utilisé est par exemple un capteur inductif, mais tout autre type de capteur peut être utilisé ici. On peut par exemple aussi utiliser un capteur optique, de type interférométrique. Un tel capteur est plus précis, linéaire et n'ajoute pas de masse mobile à la masse du piston. Par contre son coût est plus élevé et sa mise en œuvre plus délicate.The piston displacement sensor used is for example an inductive sensor, but any other type of sensor can be used here. It is also possible, for example, to use an optical sensor, of the interferometric type. Such a sensor is more precise, linear and does not add any moving mass to the mass of the piston. On the other hand, its cost is higher and its implementation more delicate.
Le dispositif de mesure selon l'invention peut avantageusement comporter un système de refroidissement pour refroidir l'injecteur, la première chambre de mesure, le piston et le capteur de déplacement du piston. Ainsi, la température dans le dispositif de mesure est uniformisée et ses variations sont limitées, ce qui permet d'augmenter la précision des mesures effectuées. On utilise alors avantageusement dans le système de refroidissement le même fluide que celui qui est utilisé pour réaliser les injections. De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence à la figure unique ci-jointe représentant à titre d'exemple non limitatif une forme de réalisation d'un appareil de mesure selon l'invention.The measuring device according to the invention can advantageously include a cooling system for cooling the injector, the first measuring chamber, the piston and the piston displacement sensor. Thus, the temperature in the measuring device is uniform and its variations are limited, which makes it possible to increase the precision of the measurements carried out. The same fluid is then advantageously used in the cooling system as that which is used to carry out the injections. In any case, the invention will be clearly understood with the aid of the description which follows, with reference to the attached single figure representing by way of nonlimiting example an embodiment of a measuring device according to the invention.
L'unique figure montre de manière très schématique la partie mécanique d'un appareil de mesure de quantité de carburant injectée par un injecteur selon l'invention. L'unique figure représente un injecteur 2 monté sur un support d'injecteur 4. Cet injecteur 2 comporte une buse d'injection 6 qui se trouve dans une première chambre de mesure 8. Cette chambre de mesure est une chambre de volume constant. Elle est remplie d 'un fluide qui présente des caractéristiques hydrauliques proches de celles d'un carburant mais avec une température de point d'éclair bien plus élevée qu'un carburant afin de minimiser les risques d'incendie et d'explosion. Ce fluide est également le fluide qui est utilisé dans l'injecteur 2. Un réservoir 10 de ce fluide est prévu dans le dispositif représenté au dessin. La première chambre de mesure 8 présente plusieurs entrées et plusieurs sorties. Elle présente tout d'abord une entrée de remplissage 1 2, une sortie de purge 14, une sortie de vidange rapide 1 6, et une sortie 18 vers une seconde chambre de mesure 20.The single figure very schematically shows the mechanical part of a device for measuring the quantity of fuel injected by an injector according to the invention. The single figure represents an injector 2 mounted on an injector support 4. This injector 2 comprises an injection nozzle 6 which is located in a first measurement chamber 8. This measurement chamber is a chamber of constant volume. It is filled with a fluid which has hydraulic characteristics close to those of a fuel but with a flash point temperature much higher than a fuel in order to minimize the risk of fire and explosion. This fluid is also the fluid which is used in the injector 2. A reservoir 10 of this fluid is provided in the device shown in the drawing. The first measurement chamber 8 has several inputs and several outputs. It firstly has a filling inlet 1 2, a purge outlet 14, a rapid drain outlet 1 6, and an outlet 18 to a second measurement chamber 20.
Pour remplir la première chambre de mesure 8, du fluide est pompé dans le réservoir 1 0 à l'aide d'une pompe 22 actionnée par un moteur 24. Une électrovanne 26 de remplissage rapide est montée entre la pompe 22 et l'entrée de remplissage 12 afin de commander le remplissage de la première chambre de mesure 8. Une électrovanne 28 est également prévue au niveau de la sortie 14 de purge. Pour la vidange de la chambre 8, une électrovanne de vidange rapide 30 est prévue. On peut remarquer ici que la sortie de vidange rapide 1 6 est avantageusement placée en un point bas de la première chambre de mesure 8, tandis que la sortie de purge 14 est placée en un point haut de cette chambre 8.To fill the first measurement chamber 8, fluid is pumped into the reservoir 10 using a pump 22 actuated by a motor 24. A fast filling solenoid valve 26 is mounted between the pump 22 and the inlet of filling 12 in order to control the filling of the first measurement chamber 8. A solenoid valve 28 is also provided at the outlet 14 for purging. For the emptying of the chamber 8, a rapid emptying solenoid valve 30 is provided. It can be noted here that the rapid drain outlet 1 6 is advantageously placed at a low point of the first measurement chamber 8, while the purge outlet 14 is placed at a high point of this chamber 8.
Entre la première chambre de mesure 8 et la seconde chambre de mesure 20 sont disposés une électrovanne de vidange 32 et un déverseur à pression réglable 34.Between the first measurement chamber 8 and the second measurement chamber 20 are disposed a drain solenoid valve 32 and an adjustable pressure relief valve 34.
La seconde chambre de mesure 20 présente un volume variable. Elle est réalisée dans un cylindre 36 dans lequel se meut un piston 38. Ce piston 38 présente un fond 40 et une jupe 42. Le fond 42 est bombé et forme une paroi fermant la chambre de mesure 20. Pour maintenir le piston 38 en équilibre, un ressort 44 vient en appui sur le fond 40, du côté opposé à la chambre de mesure 20. On peut aussi bien avoir un piston à fond bombé, convexe ou concave, qu'un piston à fond plat.The second measurement chamber 20 has a variable volume. It is produced in a cylinder 36 in which a piston 38 moves. This piston 38 has a bottom 40 and a skirt 42. The bottom 42 is curved and forms a wall closing the measurement chamber 20. To keep the piston 38 in equilibrium , a spring 44 comes to bear on the bottom 40, on the side opposite to the measurement chamber 20. It is equally possible to have a piston with a convex, convex or concave bottom, as well as a piston with a flat bottom.
Le déplacement du piston de mesure 38 est fourni par un capteur de déplacement 46, en prise par une pointe de contact 48 avec la face du fond 40 opposée à la chambre de mesure 20. Ce capteur de déplacement 46 est par exemple un capteur inductif.The displacement of the measurement piston 38 is provided by a displacement sensor 46, engaged by a contact point 48 with the face of the bottom 40 opposite the measurement chamber 20. This displacement sensor 46 is for example an inductive sensor.
La seconde chambre de mesure 20 comporte également un canal de vidange 50 dont l'ouverture et la fermeture sont commandées par une électrovanne de vidange 52 associée à un déverseur 54. Le fluide vidangé retourne dans le réservoir 10. La paroi du cylindre 36 le long de laquelle se déplace le piston 38 est une paroi lisse. Ce cylindre peut être ou non chemisé. La jupe 42 présente sur sa face extérieure une gorge annulaire 56. Cette gorge s'étend sur sensiblement la moitié de la hauteur du piston 38 et est centrée par rapport à la hauteur de celui-ci. On réalise ainsi deux surfaces annulaires de guidage 58.The second measurement chamber 20 also includes a drain channel 50, the opening and closing of which are controlled by a drain solenoid valve 52 associated with an overflow valve 54. The drained fluid returns to the reservoir 10. The wall of the cylinder 36 along from which the piston 38 moves is a smooth wall. This cylinder may or may not be lined. The skirt 42 has on its outer face an annular groove 56. This groove extends over substantially half the height of the piston 38 and is centered relative to the height of the latter. Two annular guide surfaces 58 are thus produced.
Ce dispositif mécanique décrit ci-dessus est associé à un dispositif électronique non représenté ici et qui reçoit des informations de deux capteurs de température 60, chaque chambre étant équipée d'un capteur de température 60 à réponse rapide ainsi que d'un capteur de pression 62 situé au niveau de la première chambre de mesure 8.This mechanical device described above is associated with an electronic device not shown here and which receives information from two temperature sensors 60, each chamber being equipped with a quick response temperature sensor 60 as well as a pressure sensor. 62 located at the level of the first measurement chamber 8.
Un système de refroidissement est également prévu dans le dispositif de mesure. Le fluide de refroidissement est le même que celui qui est injecté au niveau de l'injecteur 2. En aval de la pompe 22, se trouve un échangeur de chaleur 64. Le même réservoir 10 sert donc pour le fluide injecté et pour le liquide de refroidissement. Ce fluide de refroidissement est envoyé au niveau du support d'injecteur 4 puis ensuite autour de la première chambre de mesure 8, au niveau du capteur de déplacement 46 et au niveau du piston 38. Une chambre annulaire 66 entoure le capteur de déplacement 46 et comporte un canal d'alimentation en fluide de refroidissement et un canal pour le retour de ce fluide vers le réservoir 10. Une gorge 68 est prévue dans le support d'injecteur 4 pour permettre la circulation autour de celui-ci du liquide de refroidissement. Cette gorge 36 est alimentée en liquide de refroidissement par une conduite et le liquide de refroidissement, après avoir quitté la gorge 36, passe dans une chambre annulaire 70 située autour de la première chambre de mesure 8 avant de retourner au réservoir 10.A cooling system is also provided in the measuring device. The cooling fluid is the same as that which is injected at the level of the injector 2. Downstream of the pump 22, there is a heat exchanger 64. The same reservoir 10 therefore serves for the injected fluid and for the cooling. This cooling fluid is sent to the injector support 4 and then around the first measurement chamber 8, at the displacement sensor 46 and at the piston 38. An annular chamber 66 surrounds the displacement sensor 46 and comprises a cooling fluid supply channel and a channel for the return of this fluid to the reservoir 10. A groove 68 is provided in the injector support 4 to allow the circulation of the coolant around it. This groove 36 is supplied with coolant through a pipe and the coolant, after leaving the groove 36, passes into an annular chamber 70 situated around the first measurement chamber 8 before returning to the reservoir 10.
La gorge annulaire 56 du piston 38 est également alimentée en fluide de refroidissement. Un canal d'alimentation est prévu à cet effet dans le cylindre 36. Un autre canal est également prévu pour le retour du fluide de refroidissement vers le réservoir 10. Ce canal de retour est avantageusement décalé en hauteur par rapport au canal d'alimentation et se trouve de préférence au-dessus de ce dernier diamétralement opposé à celui-ci.The annular groove 56 of the piston 38 is also supplied with cooling fluid. A supply channel is provided for this purpose in the cylinder 36. Another channel is also provided for the return of the coolant to the reservoir 10. This return channel is advantageously offset in height with respect to the feed channel and is preferably located above the latter diametrically opposite to the latter.
Le fonctionnement de ce dispositif de mesure est décrit ci- après.The operation of this measuring device is described below.
La première chambre de mesure est tout d 'abord remplie de fluide pompé dans le réservoir 10 à l'aide de la pompe 22 et en ouvrant l'électrovanne 26. Une fois la chambre remplie, celle-ci est purgée à l'aide de l'électrovanne 28 pour garantir qu'aucune bulle d'air ou d'autre gaz, ne se trouve à l'intérieur de celle-ci. Pour remplir la seconde chambre de mesure, on peut, au cours de ce remplissage, ouvrir l'électrovanne 32 vers la seconde chambre de mesure 20.The first measurement chamber is firstly filled with fluid pumped into the reservoir 10 using the pump 22 and by opening the solenoid valve 26. Once the chamber is filled, it is purged using the solenoid valve 28 to ensure that no air bubbles or other gases are inside it. To fill the second measurement chamber, it is possible, during this filling, to open the solenoid valve 32 to the second measurement chamber 20.
Pour mettre la première chambre de mesure 20 sous pression, on injecte du fluide par l'injecteur 2 dans la première chambre de mesure 8 jusqu'à obtenir une pression au-dessus de la pression de consigne. Grâce à l'électrovanne de vidange 32 et au déverseur 34, on ramène la pression dans la première chambre de mesure à la pression de consigne. La mesure proprement dite peut alors commencer. L'injecteur 2 réalise alors une injection de fluide dans la première chambre de mesure 8. Grâce aux capteurs, notamment le capteur de pression 62, on peut ainsi déterminer la courbe de débit de fluide injecté en fonction du temps. Cette injection provoque en effet une augmentation de la pression dans la première chambre de mesure. Lorsque la pression dans cette chambre n'augmente plus, on en déduit que l'injection est terminée. L'électrovanne 32 s'ouvre alors et reste ouverte jusqu'à ce que la pression dans la première chambre de mesure retrouve sensiblement la pression de consigne initiale. Le déverseur 34 permet de maintenir cette pression de consigne résiduelle dans la première chambre de mesure 8. Le fluide qui sort de la première chambre de mesure 8 est envoyé dans la seconde chambre de mesure 20. Le volume de cette seconde chambre de mesure 20 augmente donc, ce qui provoque un déplacement du piston 38. Le capteur de déplacement 46 mesure ce déplacement du piston 38, et en connaissant grâce au capteur de température 60 la température du fluide se trouvant dans la chambre 20, il est possible de déterminer la quantité de fluide qui a été introduite dans la seconde chambre de mesure 20.To put the first measurement chamber 20 under pressure, fluid is injected through the injector 2 into the first measurement chamber 8 until a pressure is obtained above the set pressure. Thanks to the drain solenoid valve 32 and the overflow valve 34, the pressure in the first measurement chamber is reduced to the set pressure. The actual measurement can then begin. The injector 2 then injects fluid into the first measurement chamber 8. Thanks to the sensors, in particular the pressure sensor 62, it is thus possible to determine the curve of flow rate of injected fluid as a function of time. This injection in fact causes an increase in the pressure in the first measurement chamber. When the pressure in this chamber no longer increases, we deduce that the injection is finished. The solenoid valve 32 then opens and remains open until the pressure in the first measurement chamber substantially regains the initial set pressure. The overflow valve 34 makes it possible to maintain this residual set pressure in the first measurement chamber 8. The fluid which leaves the first measurement chamber 8 is sent to the second measurement chamber 20. The volume of this second measurement chamber 20 increases therefore, which causes a displacement of the piston 38. The displacement sensor 46 measures this displacement of the piston 38, and by knowing by means of the temperature sensor 60 the temperature of the fluid being in the chamber 20, it is possible to determine the quantity of fluid which has been introduced into the second measurement chamber 20.
Toutes les données obtenues sont alors envoyées dans une unité de traitement électronique. Les principales données sont la pression initiale dans la première chambre de mesure, la pression finale dans cette chambre, et la différence de pression au cours de l'injection, ainsi que le déplacement du piston 38. A l'aide d'une méthode de traitement dite des "matrices croisées", on obtient alors les résultats de la mesure. Ces résultats sont obtenus déjà avant une seconde injection. En effet, au cours de la première injection le fluide est injecté dans la première chambre de mesure. Puis le fluide est transféré vers la seconde chambre de mesure 20. Une seconde injection peut alors avoir lieu dans la première chambre de mesure 8. Les résultats sont obtenus dès que le transfert de la première chambre de mesure 8, vers la seconde chambre de mesure 20 est terminé, soit juste avant la seconde injection.All the data obtained is then sent to a electronic processing unit. The main data are the initial pressure in the first measurement chamber, the final pressure in this chamber, and the pressure difference during injection, as well as the displacement of the piston 38. Using a method of so-called "crossed matrix" treatment, we then obtain the results of the measurement. These results are obtained already before a second injection. Indeed, during the first injection the fluid is injected into the first measurement chamber. Then the fluid is transferred to the second measurement chamber 20. A second injection can then take place in the first measurement chamber 8. The results are obtained as soon as the transfer from the first measurement chamber 8, to the second measurement chamber 20 is finished, ie just before the second injection.
La deuxième chambre de mesure est vidangée grâce à l'électrovanne 52. Le second déverseur 54 permet de maintenir dans la seconde chambre de mesure 20 une seconde pression de consigne.The second measurement chamber is drained by means of the solenoid valve 52. The second overflow valve 54 makes it possible to maintain in the second measurement chamber 20 a second set pressure.
Dans la première chambre 8, la relation entre l'augmentation de la pression et le volume injecté n'est pas linéaire. Elle dépend notamment des caractéristiques du fluide, de la température et de la pression. Cette pression varie pendant l'injection, et ce phénomène est utilisé pour la mesure. La calibration est réalisée en injectant des volumes petits, mais pas trop petits afin de conserver une précision sur la mesure, 10 mm3 par exemple pour une échelle de mesure de 200 mm3 . On effectue plusieurs injections successivement en commençant l'injection à des pressions différentes, choisies pour couvrir toute la plage des pressions rencontrées pendant le fonctionnement nominal. Chaque injection est mesurée précisément par la deuxième chambre 20. Une série de points de correspondance entre une pression de départ dans la chambre, une petite variation de pression due à l'injection et le volume injecté est obtenue, à la température nominale des mesures avec le fluide d'essai réel, dans son état actuel. L'unité de calcul mémorise, périodiquement, un tableau de valeurs permettant de linéariser et corriger en temps réel les mesures ultérieures. L'avantage de cette procédure est qu'elle ne fait appel à aucun dispositif extérieur. L'exploration des différentes pressions de départ se fait simplement en cumulant quelques injections sans ouvrir l'électrovanne de transfert vers la deuxième chambre ce qui a pour effet d'augmenter progressivement la pression dans la première chambre 8 jusqu'aux environs de chaque valeur souhaitée pour mémoriser une courbe de linéarisation. Ce procédé de calibration est indiqué à titre d 'exemple et d'autres procédés sont envisageables ici.In the first chamber 8, the relationship between the increase in pressure and the volume injected is not linear. It depends in particular on the characteristics of the fluid, the temperature and the pressure. This pressure varies during the injection, and this phenomenon is used for the measurement. The calibration is carried out by injecting small volumes, but not too small in order to maintain a precision on the measurement, 10 mm 3 for example for a measurement scale of 200 mm 3 . Several injections are carried out successively, starting the injection at different pressures, chosen to cover the entire range of pressures encountered during nominal operation. Each injection is precisely measured by the second chamber 20. A series of correspondence points between a starting pressure in the chamber, a small variation in pressure due to the injection and the volume injected is obtained, at the nominal temperature of the measurements with the actual test fluid, in its current state. The calculation unit stores, periodically, a table of values making it possible to linearize and correct in real time the subsequent measurements. The advantage of this procedure is that it does not use any external device. The exploration of the different starting pressures is done simply by accumulating a few injections without opening the transfer solenoid valve to the second chamber which has the effect of gradually increasing the pressure in the first chamber 8 to the surroundings of each desired value to store a linearization curve. This calibration method is given by way of example and other methods can be envisaged here.
Ce dispositif de mesure permet d'obtenir avec précision la quantité de fluide injectée par l'injecteur et fourni également avec précision la courbe de débit en fonction du temps.This measuring device makes it possible to precisely obtain the quantity of fluid injected by the injector and also provides precisely the flow curve as a function of time.
Un dispositif électronique de compensation est prévu pour tenir compte d'une possible imperfection de la phase de vidange de la première chambre de mesure 8 et fournir des résultats de mesure précis même si la pression finale dans cette chambre, après la vidange, n'est pas strictement égale à la pression initiale nominale. Le système est capable de tenir compte de variations relativement importantes de ce paramètre. Cette fonction de compensation est importante car, entre autres facteurs, les temps de réponse à la fermeture et à l'ouverture de l'électrovanne ne sont pas absolument stables ni prévisibles, même si leur valeur moyenne est prise en compte par le système dans la séquence de pilotage de cette électrovanne.An electronic compensation device is provided to take account of a possible imperfection in the emptying phase of the first measurement chamber 8 and to provide precise measurement results even if the final pressure in this chamber, after emptying, is not not strictly equal to the nominal initial pressure. The system is capable of accounting for relatively large variations in this parameter. This compensation function is important because, among other factors, the response times for closing and opening the solenoid valve are not absolutely stable or predictable, even if their average value is taken into account by the system in the control sequence of this solenoid valve.
Le déplacement du piston mesuré par le capteur de déplacement 46, par exemple un capteur inductif, permet, connaissant le diamètre exact du piston, de calculer le volume injecté. Cette mesure permet à la section électronique de calibrer, à tout instant, très exactement les mesures qui sont faites par la première cellule. La gorge 56 réalisée dans le piston apporte plusieurs avantages. Elle permet tout d'abord de piéger d'éventuelles fuites de gaz ou de fluide en évitant qu'elles ne viennent perturber la mesure. Elle permet également d'alléger le piston et donc de limiter les effets indésirables dus à son inertie mécanique. Elle permet enfin de réduire la surface du piston qui doit être parfaitement rodée et appairée avec la surface intérieure du cylindre en limitant cette surface de guidage à deux couronnes situées aux extrémités du piston. Le piston, notamment au niveau de sa jupe, présente une flexibilité supérieure à celle des pistons utilisés dans les dispositifs de l'art antérieur grâce à l'amincissement de la jupe. Tout ceci est réalisé sans rendre plus difficile la réalisation du piston et en permettant de plus, de réduire les contraintes qui gênent le glissement du piston 38 dans le cylindre 36. De par la conception de ce système, il est inutile de prévoir une contre-pression sur le piston de mesure à l'aide d'azote sous pression. On évite ainsi tout risque de fuite de ce gaz. De plus, la mesure du volume et de la masse de carburant injecté au niveau de l'injecteur 2 se fait à température stabilisée. Ceci apporte fiabilité et précision à la mesure effectuée. Le traitement effectué par la section électronique réunit les informations obtenues au niveau des deux chambres de mesure et permet de compenser les défauts de chacune par les qualités de l'autre. Les résultats fournis à l'opérateur ou aux systèmes extérieurs de traitement de données connectées sont complètement prétraités par la section électronique et intègrent toutes les compensations.The displacement of the piston measured by the displacement sensor 46, for example an inductive sensor, makes it possible, knowing the exact diameter of the piston, to calculate the volume injected. This measurement allows the electronic section to calibrate, at all times, very exactly the measurements that are made by the first cell. The groove 56 made in the piston provides several advantages. First of all, it traps any gas or fluid leaks, preventing them from disturbing the measurement. It also makes it possible to lighten the piston and therefore to limit the undesirable effects due to its mechanical inertia. Finally, it makes it possible to reduce the surface of the piston which must be perfectly run in and matched with the internal surface of the cylinder by limiting this guide surface to two rings located at the ends of the piston. The piston, in particular at the level of its skirt, has a greater flexibility than that of the pistons used in the devices of the prior art thanks to the thinning of the skirt. All this is achieved without making it more difficult to produce the piston and, in addition, making it possible to reduce the stresses which hamper the sliding of the piston 38 in the cylinder 36. By the design of this system, it is unnecessary to provide a counter pressure on the measuring piston using pressurized nitrogen. We This avoids any risk of leakage of this gas. In addition, the volume and mass of fuel injected at the injector 2 are measured at stabilized temperature. This brings reliability and precision to the measurement made. The processing carried out by the electronic section brings together the information obtained at the level of the two measurement chambers and makes it possible to compensate for the faults of each with the qualities of the other. The results provided to the operator or to external connected data processing systems are completely preprocessed by the electronic section and include all compensations.
La conception mécanique de ce dispositif de mesure est beaucoup plus robuste que dans les systèmes de l'art antérieur. Notamment, il n'est plus nécessaire d'utiliser le dispositif d'équilibrage de pression dans la première chambre de mesure. Cette contre-pression est fournie directement par la pression d'injection dans cette chambre en jouant sur sa vidange. La deuxième chambre de mesure à piston n'a plus besoin d'être particulièrement "rapide" puisqu'elle est remplie par l'électrovanne de vidange de la première chambre de mesure, dont on maîtrise le fonctionnement. Elle ne nécessite plus de travailler avec une contre-pression et un simple ressort est donc suffisant pour assurer son retour. Le piston travaillant avec des contraintes de pression moins élevées, les contraintes entre le piston et sa chemise sont limitées et l'usure est très sensiblement réduite.The mechanical design of this measuring device is much more robust than in the systems of the prior art. In particular, it is no longer necessary to use the pressure balancing device in the first measurement chamber. This back pressure is provided directly by the injection pressure in this chamber by playing on its emptying. The second piston measurement chamber no longer needs to be particularly "rapid" since it is filled by the solenoid drain valve of the first measurement chamber, the operation of which is controlled. It no longer requires working with a back pressure and a simple spring is therefore sufficient to ensure its return. The piston working with lower pressure stresses, the stresses between the piston and its jacket are limited and wear is very significantly reduced.
Comme il va de soi, l'invention ne se limite pas au mode de réalisation décrit ci-dessus à titre d'exemple non limitatif ; elle en embrasse au contraire toutes les variantes dans le cadre des revendications ci-après. It goes without saying that the invention is not limited to the embodiment described above by way of nonlimiting example; on the contrary, it embraces all variants thereof within the scope of the claims below.

Claims

REVENDICATIONS
1 . Dispositif de mesure d' une quantité de carburant injectée par un injecteur (2) utilisé dans un moteur thermique comportant une première chambre de mesure (8) dans laquelle est injecté le carburant, un capteur de pression (62) et un capteur de température (60) mesurant respectivement la pression et la température régnant dans la première chambre de mesure (8) ainsi que des moyens permettant de vidanger au moins partiellement cette chambre de mesure, une section électronique pilotant le système et analysant des informations reçues par les capteurs (46, 60, 62), caractérisé en ce que ce dispositif comporte en aval de la première chambre de mesure (8) une seconde chambre de mesure (20) dans laquelle est envoyé le carburant vidangé hors de la première chambre de mesure (8), et en ce que le volume de la seconde chambre de mesure (20) est variable selon le déplacement d'un piston (38) dont le déplacement est mesuré à l'aide d'un capteur de déplacement (46).1. Device for measuring the quantity of fuel injected by an injector (2) used in a heat engine comprising a first measuring chamber (8) into which the fuel is injected, a pressure sensor (62) and a temperature sensor ( 60) measuring respectively the pressure and the temperature prevailing in the first measurement chamber (8) as well as means making it possible to at least partially drain this measurement chamber, an electronic section controlling the system and analyzing information received by the sensors (46 , 60, 62), characterized in that this device comprises downstream of the first measurement chamber (8) a second measurement chamber (20) into which the fuel drained is sent out of the first measurement chamber (8), and in that the volume of the second measurement chamber (20) is variable according to the movement of a piston (38) whose movement is measured using a displacement sensor (46).
2. Dispositif de mesure selon la revendication 1 , caractérisé en ce qu'une électrovanne rapide (32) pilotée par une partie de la section électronique et un déverseur (34) sont disposés entre les deux chambres de mesure (8, 20) pour vidanger partiellement la première chambre de mesure (8) après une injection jusqu'à retrouver dans la première chambre de mesure la pression régnant dans celle-ci avant cette injection.2. Measuring device according to claim 1, characterized in that a rapid solenoid valve (32) controlled by a part of the electronic section and a spillway (34) are arranged between the two measuring chambers (8, 20) for draining partially the first measurement chamber (8) after an injection until the pressure prevailing therein is recovered in the first measurement chamber before this injection.
3. Dispositif de mesure selon la revendication 2, caractérisé en ce que la section électronique comporte un dispositif de compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure (8) après deux vidanges successives.3. Measuring device according to claim 2, characterized in that the electronic section comprises a compensation device making it possible to take account of any pressure difference in the first measuring chamber (8) after two successive empties.
4. Dispositif de mesure selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte une électrovanne de vidange rapide (52) en aval de la seconde chambre de mesure (20) . 4. Measuring device according to one of claims 1 to 3, characterized in that it comprises a rapid drain solenoid valve (52) downstream of the second measuring chamber (20).
5. Dispositif de mesure selon l'une des revendications 1 à 4, caractérisé en ce que le piston (38) est précontraint par un ressort (44) vers la seconde chambre de mesure (20) .5. Measuring device according to one of claims 1 to 4, characterized in that the piston (38) is prestressed by a spring (44) towards the second measuring chamber (20).
6. Dispositif de mesure selon l'une des revendications 1 à 5, caractérisé en ce que le piston (38) se déplace dans un cylindre (36) à paroi lisse et en ce qu'il comporte une gorge annulaire (56) ouverte vers la paroi du cylindre (36). 6. Measuring device according to one of claims 1 to 5, characterized in that the piston (38) moves in a cylinder (36) with smooth wall and in that it comprises an annular groove (56) open towards the wall of the cylinder (36).
7. Dispositif de mesure selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte un système de refroidissement pour refroidir l'injecteur (2), la première chambre de mesure (8), le piston (38) et le capteur de déplacement (46) du piston.7. Measuring device according to one of claims 1 to 6, characterized in that it comprises a cooling system for cooling the injector (2), the first measuring chamber (8), the piston (38) and the piston displacement sensor (46).
8. Dispositif de mesure selon la revendication 7, caractérisé en ce que le fluide utilisé dans le système de refroidissement est le même que celui qui est utilisé pour réaliser les injections. 8. Measuring device according to claim 7, characterized in that the fluid used in the cooling system is the same as that which is used to carry out the injections.
EP00949547A 1999-06-18 2000-06-15 Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine Expired - Lifetime EP1187987B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9907982 1999-06-18
FR9907982A FR2795139B1 (en) 1999-06-18 1999-06-18 DEVICE FOR INSTANTLY ANALYZING THE CUT-BY-CUT INJECTION FLOW PROVIDED BY AN INJECTION SYSTEM USED IN A HEAT ENGINE
PCT/FR2000/001660 WO2000079125A1 (en) 1999-06-18 2000-06-15 Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine

Publications (2)

Publication Number Publication Date
EP1187987A1 true EP1187987A1 (en) 2002-03-20
EP1187987B1 EP1187987B1 (en) 2005-03-23

Family

ID=9547180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949547A Expired - Lifetime EP1187987B1 (en) 1999-06-18 2000-06-15 Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine

Country Status (8)

Country Link
US (1) US6755076B1 (en)
EP (1) EP1187987B1 (en)
JP (1) JP2003502578A (en)
AT (1) ATE291694T1 (en)
DE (1) DE60018928T2 (en)
ES (1) ES2237440T3 (en)
FR (1) FR2795139B1 (en)
WO (1) WO2000079125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935757A1 (en) 2008-09-05 2010-03-12 Efs Sa METHOD FOR ANALYZING THE CUT-INJECTION FLOW RATE PROVIDED BY A FUEL INJECTION SYSTEM USED IN A HEAVY-DUTY THERMAL ENGINE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100459A1 (en) * 2001-01-08 2002-08-01 Bosch Gmbh Robert Device and method for measuring the injection quantity of injection systems, in particular for internal combustion engines of motor vehicles
DE10107032A1 (en) * 2001-02-15 2002-08-29 Bosch Gmbh Robert Method, computer program and device for measuring the injection quantity of injection nozzles, in particular for motor vehicles
DE10331228B3 (en) * 2003-07-10 2005-01-27 Pierburg Instruments Gmbh Device for measuring time-resolved volumetric flow processes
US7197918B2 (en) * 2003-08-14 2007-04-03 International Engine Intellectual Property Company, Llc Apparatus and method for evaluating fuel injectors
CN100376884C (en) * 2005-04-08 2008-03-26 天津大学 Total cylinder sampling system capable of simulating high-pressure common-rail, supercharged intercooling and waste gas recirculation
DE602006017014D1 (en) * 2005-07-20 2010-11-04 Aea Srl Measuring device for measuring the amount of fluid injected by an injector
JP4821994B2 (en) * 2006-08-28 2011-11-24 いすゞ自動車株式会社 Gas injector characteristic measurement test apparatus and characteristic measurement test method
FR2935758B1 (en) * 2008-09-05 2010-09-24 Efs Sa DEVICE FOR ANALYZING THE CUT-INJECTION FLOW RATE PROVIDED BY A FUEL INJECTION SYSTEM USED IN A HEAVY-DUTY THERMAL ENGINE
IT1392001B1 (en) * 2008-11-27 2012-02-09 Aea Srl METHOD FOR MEASURING THE INSTANTANEOUS FLOW OF AN INJECTOR FOR GASEOUS FUELS
DE102009058932B4 (en) * 2009-12-17 2013-08-14 Avl List Gmbh System and method for measuring injection events
JP5418259B2 (en) * 2010-02-02 2014-02-19 株式会社デンソー Injection quantity measuring device
RU2449164C2 (en) * 2010-05-19 2012-04-27 Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный государственный технический университет (МАДИ) Device to register characteristic of fuel injection by diesel engine nozzle
DE102010031486A1 (en) * 2010-07-16 2012-01-19 Robert Bosch Gmbh Test bench for fluid pumps and fluid injectors
EP2455604B1 (en) * 2010-11-22 2015-07-22 Continental Automotive GmbH Measuring apparatus and method for determining a leakage of an injection valve
JP5429266B2 (en) * 2011-11-25 2014-02-26 株式会社デンソー Fluid pump inspection device and inspection method
JP5920084B2 (en) * 2012-07-20 2016-05-18 株式会社デンソー Injection quantity measuring device
FR2995640B1 (en) 2012-09-19 2015-03-20 Efs Sa DEVICE FOR MEASURING A QUANTITY OF FLUID INJECTED BY AN INJECTOR
ITUB20154960A1 (en) * 2015-11-06 2017-05-06 Giacomo Buitoni Method and device for measuring the time course of the flow rate (injection rate) of any device controlled to control an outflow of fluid
DE102015225736A1 (en) 2015-12-17 2017-06-22 Robert Bosch Gmbh Method and device for determining the injection rate of an injection valve
CN109386420B (en) * 2018-10-15 2021-02-02 哈尔滨工程大学 Method for measuring multi-time fuel injection rule

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577967A (en) * 1968-07-13 1971-05-11 Bosch Gmbh Robert Control device for fuel injection pumps
DE2054911A1 (en) * 1970-11-07 1972-05-10 Robert Bosch Gmbh, 7000 Stuttgart Control element for a fuel injection system
US4040405A (en) * 1975-06-10 1977-08-09 Nippon Soken, Inc. Fuel injection system for internal combustion engine
JPS5853669A (en) * 1981-09-28 1983-03-30 Hitachi Ltd Fuel injection pump device for internal-combustion engine
JPS6065271A (en) * 1983-09-19 1985-04-15 Nippon Soken Inc Fuel injector of internal-combustion engine
JPS614860A (en) * 1984-06-16 1986-01-10 Mitsubishi Heavy Ind Ltd Injection-rate meter
JP2806019B2 (en) * 1990-09-13 1998-09-30 株式会社デンソー Injection amount measuring device
US6135100A (en) * 1994-05-06 2000-10-24 Sanshin Kogyo Kabushiki Kaisha Sensor arrangement for engine control system
DE4434597B4 (en) * 1994-09-28 2006-09-21 Robert Bosch Gmbh Method and device for measuring small amounts of fuel injection
JPH08270478A (en) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd Internal combustion engine control method using oxygen concentration sensor, device therefor, and internal combustion engine
DE19758660B4 (en) * 1997-01-08 2004-01-22 Sonplas Gmbh Method for adjusting the fuel flow of component openings for injection valves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0079125A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935757A1 (en) 2008-09-05 2010-03-12 Efs Sa METHOD FOR ANALYZING THE CUT-INJECTION FLOW RATE PROVIDED BY A FUEL INJECTION SYSTEM USED IN A HEAVY-DUTY THERMAL ENGINE

Also Published As

Publication number Publication date
FR2795139A1 (en) 2000-12-22
US6755076B1 (en) 2004-06-29
DE60018928T2 (en) 2006-04-27
ES2237440T3 (en) 2005-08-01
ATE291694T1 (en) 2005-04-15
EP1187987B1 (en) 2005-03-23
DE60018928D1 (en) 2005-04-28
JP2003502578A (en) 2003-01-21
FR2795139B1 (en) 2001-07-20
WO2000079125A1 (en) 2000-12-28

Similar Documents

Publication Publication Date Title
EP1187987B1 (en) Device for instantaneous ad hoc analysis of an injection flow provided by an injection system used in a heat engine
EP1705355B1 (en) Method for determining operating parameters of an injection system
FR2922598A1 (en) PROCESS FOR DETERMINING THE FLAMMABILITY OF FUEL OF UNKNOWN QUALITY.
FR2514076A1 (en) METHOD AND DEVICE FOR MEASURING QUANTITIES OF FUEL INJECTED BY INJECTION PUMPS OF INTERNAL COMBUSTION ENGINES
FR2734213A1 (en) METHOD FOR DIAGNOSING THE SEALING OF A TANK VENTILATION SYSTEM
FR2762647A1 (en) METHOD FOR DETERMINING THE DURATION OF INJECTION IN A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
FR2509796A1 (en) METHOD AND DEVICE FOR CONTROLLING RECYCLED QUANTITIES OF EXHAUST GAS
EP2399015B1 (en) Method for estimating total filling of a combustion chamber of an engine
FR3028891B1 (en) METHOD FOR STARTING A DIRECT INJECTION INTERNAL COMBUSTION ENGINE BY ADAPTING THE INJECTED FUEL QUANTITY
EP2318689B1 (en) Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
EP2324232A1 (en) Device for analyzing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
WO2011154528A1 (en) Method and device for starting or stopping a gas turbine engine
FR2901848A1 (en) METHOD AND DEVICE FOR CORRECTING THE RATE OF PILOT FUEL INJECTION IN A DIRECT INJECTION DIESEL ENGINE OF THE COMMON RAIL TYPE, AND MOTOR COMPRISING SUCH A DEVICE
FR2492003A1 (en) PUMPING DEVICE FOR FUEL INJECTION
FR2851013A1 (en) Pressure wave correcting process for motor vehicle, involves recording operational parameter value of internal combustion engine with time interval, between two control signals, if parameter and its wave have changed
FR3103269A1 (en) Fluid mass flow measurement device
EP3215727B1 (en) Method of estimation of a intake gas throttle position for control of an internal combustion engine
FR2617908A1 (en) FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES
WO2021165096A1 (en) Method for measuring a liquid flow rate at the outlet of a pump
FR2844307A1 (en) METHOD AND DEVICE FOR DETERMINING THE FUEL MASS OF A WALL FILM DURING INJECTION INTO THE SUCTION LINE OF AN INTERNAL COMBUSTION ENGINE
FR2790790A1 (en) METHOD FOR DETERMINING THE PRESSURE IN THE FUEL INJECTION RAMP OF AN INTERNAL COMBUSTION ENGINE AND CORRESPONDING DEVICE
FR2948410A3 (en) Particle filter regeneration device for test bench to test operation of components of internal combustion engine, has injection device injecting air toward upstream of filter to regenerate filter irrespective of operating point of engine
FR2900977A3 (en) Fuel injection control system for e.g. heat engine, has feedback loop determining quantity of fuel to be injected in chamber based on comparison between average torque threshold and instantaneous average torque calculated by controller
FR2795173A1 (en) Piston device for measuring small quantities of fuel injected by fuel injection system of an engine
EP2044312A2 (en) Method for reducing hydrocarbon emissions from a cold engine with external fuel injection and engine for the implementation of said method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60018928

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2237440

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051227

BERE Be: lapsed

Owner name: EFS SA

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150630

Year of fee payment: 16

Ref country code: CH

Payment date: 20150630

Year of fee payment: 16

Ref country code: LU

Payment date: 20150630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150716

Year of fee payment: 16

Ref country code: ES

Payment date: 20150730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150630

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60018928

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160615

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615