EP1185769B1 - Appareil de deplacement de fluide active cycliquement - Google Patents

Appareil de deplacement de fluide active cycliquement Download PDF

Info

Publication number
EP1185769B1
EP1185769B1 EP00937103A EP00937103A EP1185769B1 EP 1185769 B1 EP1185769 B1 EP 1185769B1 EP 00937103 A EP00937103 A EP 00937103A EP 00937103 A EP00937103 A EP 00937103A EP 1185769 B1 EP1185769 B1 EP 1185769B1
Authority
EP
European Patent Office
Prior art keywords
variable volume
volume chamber
reciprocating member
machine
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00937103A
Other languages
German (de)
English (en)
Other versions
EP1185769A1 (fr
Inventor
Steven Kenchington
Jeffrey Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotus Cars Ltd
Original Assignee
Lotus Cars Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotus Cars Ltd filed Critical Lotus Cars Ltd
Publication of EP1185769A1 publication Critical patent/EP1185769A1/fr
Application granted granted Critical
Publication of EP1185769B1 publication Critical patent/EP1185769B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/30Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with one working piston sliding inside another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners
    • F02G2254/11Catalytic burners

Definitions

  • the present invention relates to a cyclically operated fluid displacement machine.
  • the present invention can provide a cyclically operated fluid displacement machine either in the form of an engine or a compressor.
  • the present invention aims to provide a machine which is very simple and in particular which does not require a valve train system, separate alternator and starter motor or cam shaft.
  • the machine of the present invention could be used as an engine in a hybrid vehicle, the engine producing electrical power which would then be used by electrical motors to power the vehicle.
  • US Patent No.US-A-5172784 describes an arrangement for powering a hybrid vehicle which comprises external combustion Stirling engines coupled to linear generators and used in conjunction with a battery pack to power electric motors for a vehicle.
  • US Patent US-A-4924956 describes a tandem double-acting free piston engine comprising a housing including a cylinder having first and second combustion chambers at opposite ends thereof and a third combustion chamber between the ends.
  • One double acting piston is displaceable between the first and third combustion chamber.
  • a second double acting piston is displaceable between the second and third combustion chambers.
  • the two double acting pistons are linked so that they move in timed relationship with each other.
  • a linear alternator is combined in the engine by attaching one coil to each of the double acting pistons and by surrounding the cylinder with other electrical coils, the fields of which are intersected by the coils on the two pistons.
  • FR-A-2092659 shows a cyclically operating fluid displacement machine in which air drawn from a fluid inlet into a first variable volume chamber is then transferred via an outlet and a holding chamber into a second variable volume chamber where it is ignited by a spark plug before being exhausted.
  • the reciprocating member comprises a middle section which has a middle section and two end sections each comprising a wall which defines with the middle section an open-ended cylinder open at one end.
  • the housing of the machine has piston portions extending into the open-ended cylinders to define the variable volume chambers.
  • the present invention provides a cyclically operated fluid displacement machine which comprises:
  • the construction of the machine given above provides an engine or a compressor which has a reduced weight at reduced cost and is simple. In effect, the machine has a single moving member.
  • the machine would be ideal, for instance, for use as an engine in a hybrid vehicle.
  • the present invention provides a very compact and simple combined machine and electrical power generator. By locating the winding next to the reciprocating member more power and/or greater electrical control is provided.
  • the construction of the engine can allow a greater percentage of the work of the piston in an engine to be extracted and also the construction of machine allows electrical power to be used efficiently to compress gas in a compressor or to compress fuel/air mixture in an engine. Electrical control can also be used to control the position of the reciprocating member accurately.
  • the reciprocating member has a generally circular radial cross-section and the end sections each comprise an annular wall spaced from a central axis of the reciprocating member.
  • the electrical winding extends parallel to the axis of reciprocation on the reciprocating member and has a length equivalent to at least the sum of the axial length of the reciprocating member and the distance travelled by the reciprocating member in each reciprocation. This ensures good efficiency.
  • the end section walls of the reciprocating member are slidable in slots defined in the housing and the electrical winding in the housing extends adjacent to, and parallel with, surfaces defining the slots.
  • a seal is formed between the end sections of the reciprocating member and the slots in which the end section slides.
  • resilient means acts between the housing and the reciprocating member to bias the reciprocating member to move in one direction.
  • the resilient means act to bias the reciprocating member to reduce the second variable volume chamber to a minimum volume.
  • the reciprocating member in the present machine is essentially a free motion member.
  • free motion pistons have tended to be used in diesel engines or in Stirling engines. In diesel engines combustion could be ensured by the functioning of the diesel cycle. However, the engines tend to be fairly large and bulky. Stirling engines lack the benefit of internal combustion.
  • the resilient means biassing the reciprocal member could comprise a standard coiled spring or a gas spring.
  • the machine could be configured to work at a frequency equivalent to its resonant frequency, e.g. 3000 rpm.
  • the machine could also be operated by pausing the reciprocating member at a convenient point, with the duration of the pause being variable to vary power output.
  • each of the inlet valve means, the outlet valve means and the transfer valve means comprises either a one-way valve which opens and closes under the action of a pressure differential thereacross or a ported valve comprising a port opening onto one of the variable volume chambers which is cyclically opened and closed by the reciprocating member during reciprocation.
  • the present invention can remove the need for a complicated valve train system.
  • the present invention when used as an engine can combine an alternator and a starter motor by using electrical winding.
  • the present invention does away with the need for a cam shaft to control movement of valves.
  • the present invention works essentially on a two-stroke cycle when the invention is used as an engine.
  • the inlet valve means comprises a spring-biassed one-way valve.
  • machine described before functions as an internal combustion engine, wherein:
  • the present invention provides a very simple construction of engine, with essentially only one moving part.
  • the fuel used in the engine is compressed natural gas and the machine comprises storage means for storing natural gas in a pressurised state and fuel delivery means controls the flow of the pressurised natural gas into the second variable volume chamber without use of pumping means.
  • the engine is made simple by the fact that no pump is needed.
  • the engine is made simple and light and can be used for instance as a to provide enough power to drive a television and lights. Bottled natural gas is widely available.
  • the burning of natural gas solves lots of emission problems, because natural gas burns very efficiently in air without leaving difficult problems of emissions. Indeed it is envisaged that the engine of the present invention will run without any need for treatment of the exhaust gases, for instance without the need of a catalytic converter.
  • the inlet valve means comprises a one-way valve
  • the transfer valve means comprises a port cyclically opened and closed during motion of the reciprocating member
  • the exhaust valve means comprises a port cyclically opened and closed during motion of the reciprocating member.
  • the transfer valve means comprises a first transfer valve which can be opened in the first variable volume chamber and a second transfer port which can be opened in the second variable volume chamber and conduit means extending through the reciprocating member to connect the first and second transfer ports.
  • the first transfer port is devised in an inwardly facing surface of an end section wall of an open ended cylinder of the reciprocating member and the second transfer port is provided in an inwardly facing surface of an end section wall of the other open ended cylinder of the reciprocating member.
  • the present invention provides a simple construction wherein the flow of gases passes actually through the reciprocating member itself rather than through the housing surrounding the reciprocating member. This is a novel approach to the passage of gases.
  • a first piston portion of the housing extends in a first of the open-ended cylinders and opens and closes the first transfer port present in the first open ended cylinder during reciprocation of the reciprocating member. It is also preferable that a second piston portion of the housing extends in a second of the open-ended cylinders and acts as a piston in the second open ended cylinder and opens and closes the second transfer port present in the second open ended cylinder during reciprocation of the reciprocating member.
  • the exhaust valve means comprises an exhaust port which can be opened in the second variable volume chamber and conduit means extending through the reciprocating member to connect the exhaust port to the fluid outlet.
  • the exhaust port provided will be advantageously provided on the inwardly facing surface of the end section wall of the second open ended cylinder, the exhaust port being located opposite the second transfer port. It is preferred that the second piston portion of the housing controls the opening and closing of the exhaust port by opening and closing the exhaust port during reciprocation of the reciprocating member.
  • the engine is simple in construction, operates on a two-stroke cycle and uses scavenging to remove at least some of the combusted gas to exhaust.
  • the scavenging will permit some exhaust gas recirculation, because some exhaust gases will inevitably remain along with the fresh incoming charge, for subsequent combustion. This may improve the emissions of the engine.
  • the second piston portion of the housing sequentially:
  • the second piston portion of the housing which acts as a piston in the second variable volume chamber is provided with a cut-out portion located adjacent the second transfer port when the second transfer port is open which defines a region where combustion is commenced.
  • the fuel delivery means delivers fuel to the region of the second variable volume chamber defined by the cut out portion in the second piston portion of the housing.
  • the fuel and air mixture is ignited by active radical combustion.
  • Active radical combustion is a new combustion mechanism recognised in the art in which the fuel/air mixture commences combustion spontaneously due to the presence of free radical ions in the mixture along with an elevated pressure and an elevated temperature of the mixture.
  • the free radical ions are most advantageously introduced by_the retention of exhaust gases in the mixture and the use of a two-stroke cycle with scavenging actively assists this.
  • the scavenging arrangement preferred in the present invention is a well-proven system which gives a well balanced distribution of fuel/air which is very good for auto ignition.
  • the active radical combustion gives stable and clean combustion, particularly when an engine is run at a steady speed. It is envisaged that the very simple engine of the present invention will use active radical combustion with a two-stroke cycle and will operate as a steady state or a reasonably steady state with perhaps a full load condition and a half-load condition.
  • the machine of the present invention can be provided with a spark ignition means which operates in the region of the second variable volume chamber when ignition is commenced.
  • the spark ignition means can be used either instead of active radical combustion or in combination with active radical combustion. It is preferred that active radical combustion is used alongside spark ignition, because the spark ignition will ensure combustion at a particular time, whilst the active radical combustion will ensure combustion which provides very low levels of NO x hydrocarbons and carbon monoxide.
  • the housing has conduit means passing therethrough which allow cooling air to be drawn from, and expelled to, the atmosphere for passing over and cooling of the reciprocating member.
  • the reciprocating member can itself have cooling passages passing therethrough which allow passage of cooling air through the reciprocating member. Again, the use of air cooling provides a very simple engine, which does not, for instance, require a water pump.
  • the engine comprises an electrical winding in the housing surrounding the reciprocating member and the reciprocation of the reciprocating member is used to generate electrical power with the electrical winding being connectable to an electrical load.
  • the present invention could be used as an engine in a hybrid vehicle.
  • the reciprocating member can generate single phase alternating current. Three-phase alternating current would then be provided by use of an inverter.
  • the present invention integrates the generator into the engine itself by providing an electrical coil in the cylinder liner. The electrical coil is therefore brought very close to the reciprocating member and this aids considerably the efficiency for generators.
  • the coil is adjacent to the reciprocating member and there is no cylinder liner inbetween which will attenuate the flux linkage.
  • the clearance between the coil and the reciprocating member can be reduced to perhaps 1/1000 th of an inch, ensuring maximum efficiency of the electrical circuit.
  • the present invention provides a good combination of engine and generator because essentially the engine is turned inside out, with the what would normally be the cylinder block in fact providing the pistons and what would normally be the piston providing the cylinders. This facilitates a good interaction between the reciprocating member and the coil surroundings.
  • the present invention would fill the gap between current technology and fuel cell technology and could provide an immediate hybrid power solution for vehicles, where the delay to produce hybrid vehicles has been in part due to the complexity and cost of existing engines and fuel cell systems.
  • the present engine would also be very useful as a static generator.
  • the generator could be used as a generator for electrical power for electrical actuators in a vehicle which are now more common and which are more efficient and more in place of hydraulic actuators.
  • the combined generator engine in a vehicle could be provided with a socket for outside uses so that the engine could not only provide power for powering electric motors driving a vehicle, but also external power, e.g. of 50 Hz, for powering electrical apparatus used outside the vehicle.
  • the present invention also provides a use of the machine described above in its operation as an engine in which one machine is used in tandem with a second machine, with the reciprocal members of the first and second machines lying on the same axis of reciprocation and with the reciprocal members of the first and second machines connected to move together and with the timing of both machines chosen so that whilst combusted gases are expanded in one machine a charge of fuel and air is being compressed in the other machine.
  • the coupling of the two pistons together would utilise the combustion of fuel and air mixture in one engine with the subsequent expansion of gases as power for compressing charge air in the other engine.
  • the machine of the present invention could also be used as a compressor with the reciprocating member driven to reciprocate by electrical power supplied to the electrical winding of the machine, wherein during reciprocation:
  • the inlet valve means in the compressor embodiment of the invention comprises a first one way valve which allows gas to pass from the fluid inlet into the first variable volume chamber and does not allow gas to pass from the first variable volume chamber out of the fluid inlet, the first one way valve allowing passage of gas from the fluid inlet to the first variable volume chamber only after a pressure differential of a first magnitude is established thereacross.
  • the transfer valve means comprises a second one way valve which allows gas to pass from the first variable volume chamber to the second variable volume chamber and which prevents gas flowing from the second variable volume chamber to the first variable volume chamber, the second one way valve allowing passage of gas from the first to the second variable volume chamber only when a pressure differential is established thereacross of a second magnitude.
  • the outlet valve means comprises a third one way valve which allows gas to be expelled from the second variable volume chamber to the fluid outlet and prevents gas being drawn into the second variable volume chamber via the fluid outlet, the third one way valve allowing expulsion of gas from the second variable volume chamber only when a pressure differential is established thereacross of a third magnitude.
  • the compressor provided by the invention is a two-stage compressor, with the gas being compressed to a first level of pressure in the first variable volume chamber and the second level of pressure in the second variable volume chamber.
  • the first, second and third one way valves are spring-biassed valves.
  • the compressor of the present invention is simple and cheap in construction.
  • the first variable volume chamber preferably has a cross-section taken perpendicularly of the axis of reciprocation which has a first area and the second variable volume chamber has a cross-section taken radially of the axis of reciprocation which has a second area smaller than the first area.
  • the housing has a first piston portion which extends into the first variable volume chamber and matches in radial cross-section the first variable volume chamber and the housing has a second piston portion which extends into the second variable volume chamber and matches in radial cross-section the second variable volume chamber.
  • the present invention achieves its simplicity of construction by reversing the usual arrangement of components.
  • the cylinders are provided by the reciprocating member and the pistons are provided by the static housing.
  • the inlet valve means is provided in the first piston portion of the housing and the outlet valve means is provided in the second piston portion.
  • the transfer valve means is located in the middle section of the reciprocating member.
  • the second variable volume chamber has a maximum volume smaller than the maximum volume of the first variable volume chamber.
  • the engine has control means to control the electrical wave form used to power the electrical winding and thereby control the output of the machine.
  • the internal combustion engine 10 comprises a housing 11 in which there reciprocates a reciprocating member 12.
  • the reciprocating member 12 is reciprocal linearly along an axis of reciprocation 13 in the housing 11.
  • the reciprocating member 12 defines with the housing 11 a first variable volume chamber 14 and a second variable volume chamber 15.
  • An inlet valve 16 in the form of a one-way spring biassed valve allows air to be drawn from air inlet 17 into the first variable volume chamber 14 and prevents flow of air from the first variable volume chamber 14 out of the air inlet 17.
  • the reciprocating member 12 comprises a middle section 18 which extends perpendicularly of the axis of reciprocation 13.
  • the reciprocating member 12 also comprises two end sections 19 and 20 on opposite sides of the middle section 18.
  • Each of the end sections 19 and 20 comprises a wall extending generally parallel to the axis of reciprocation 13.
  • Each of the end sections 19 and 20 defines with the middle section 18 an open-ended cylinder open at one end.
  • the housing 11 has a first piston portion 21 which extends into a first of the open-ended cylinders of the reciprocating member 12 and which acts as a piston in the open-ended cylinder formed by the end-section 19.
  • the first piston portion 21 and the first open-ended cylinder formed by the end section 19 together define the first variable volume chamber 14.
  • the housing 11 has a second piston portion 22 which extends into the open ended cylinder defined by the end-section 20 and which acts as a piston in the open-ended cylinder defined by the end section 20.
  • the second piston portion 22 and the open ended cylinder formed by the end section 20 together define the second variable volume chamber 15.
  • Transfer of gas from the first variable volume chamber 14 to the second variable volume chamber 15 is permitted by three conduits 23, 24 and 25 (see Figure 2).
  • Each conduit 23, 24, 25 runs from a transfer port which can open onto the first variable volume chamber 14 to a transfer port which can open onto a second variable volume chamber 15.
  • the conduit 23 runs from a transfer port 26 which can open onto the variable volume chamber 14 to a transfer port 27 which can open onto the variable volume chamber 15.
  • the transfer ports 26 and 27 are closed when they are aligned with and are covered respectively by the piston portions 21 and 22 of the housing 11.
  • the transfer ports 26 and 27 are open when they are not aligned with and are not covered respectively by the piston portions 21 and 22.
  • a conduit 30 extends through the reciprocating member 12 and connects an exhaust port 31 openable in the variable volume chamber 15 with an exhaust 32 of the engine 10.
  • the exhaust port 31 is located diametrically opposite the transfer ports 27, 33 and 34, as can be seen in Figure 2.
  • the reciprocating member 12 has a circular radial cross-section.
  • the end sections 19 and 20 of the reciprocating member 12 comprise each an annular wall spaced from the central axis of the reciprocating member 12, which is coincident with the axis of reciprocation 13.
  • Each of the end section annular walls 19 and 20 are slidable in annular slots provided in the housing 11.
  • Two annular slots 35 and 36 are provided one at each end of the housing 11.
  • An annular ring seal 37 acts between the end section 19 and the slots 35 and an annular ring seal 38 acts between the slot 36 and the end section 20.
  • An electrical winding 39 is provided in the housing 11 wound around the reciprocating member 12.
  • the electrical winding 39 is annular in nature and extends parallel to and adjacent to the cylindrical outermost surface of the reciprocating member 12.
  • the annular electrical winding 39 extends parallel to the axis of reciprocation 13 and has a length equivalent to at least the sum of the axial length of the reciprocating member 12 and the distance travelled by the reciprocating member 12 during each reciprocation.
  • the engine 10 uses compressed natural gas as a fuel.
  • the compressed natural gas is contained in a pressurised container 40 which is connected by a pipe 41 to a gas injector 42.
  • the gas injector 42 regulates the flow of compressed natural gas into the second variable volume chamber 15, but the engine 10 does not include any pumping means for the fuel, instead relying upon the pressure of the pressurised gas itself.
  • the second piston portion 22 of the housing 11 is provided with a cut out portion 43 which is located adjacent the transfer ports 27,33 and 34 when the transfer ports 27, 33 and 34 are open, i.e. the reciprocating member 12 is in its position shown in Figure 1, i.e. displaced to the left, with the volume of the second variable volume chamber 15 at or close to maximum volume and the volume of the first variable volume chamber 14 at or close to its minimum volume.
  • the cut out portion 43 defines a region in the second variable volume chamber 15 in which combustion is commenced.
  • a spark plug 44 is provided to operate in the region 43.
  • the housing 11 is provided with cooling air inlets such as 45 and 46. These cooling air inlets 45 and 46 as shown are valved inlets, permitting cooling air to be drawn into the housing 11, but not expelled from the housing 11. Instead, cooling air outlets 77 and 78 are provided at the other end of the housing 11. Cooling air ducts 47 and 48 extend linearly along the length of the reciprocating member 12. As the reciprocating member 12 reciprocates, cooling air is drawn in through the cooling air inlets 45 and 46, passed through the cooling air ducts 47 and 48 and expelled through the cooling air outlets 77 and 78. In fact, the cooling air exhausted through the outlet 78 is mixed with exhaust gases passing through the exhaust 32.
  • a charge of air is drawn into the first variable volume chamber 14 via the fluid inlet 17 and via the one way inlet valve 16.
  • the air is drawn into the first variable volume chamber 14 as the first variable volume chamber 14 increases in volume, i.e. when the reciprocating member 12 moves to the right of its position in Figure 1.
  • a pressure differential is established across the one-way inlet valve 16 which allows admission of air into the first variable volume chamber 14. Air continues to be drawn into the chamber 14 until the chamber 14 reaches its maximum volume. At this point the one way valve 16 closes and the reciprocating member 12 acts to reduce the volume of the chamber 14.
  • the transfer port 26 is open throughout all or the majority of travel of the reciprocating member 12 As the reciprocating member 12 acts to reduce the volume of the chamber 14, the air in the chamber 14 is compressed and also displaced through the transfer port 26 into the conduits 23, 24 and 25. Initially as the reciprocating member 12 acts to reduce the volume of the chamber 14, the transfer ports 27, 33 and 34 are not open to the chamber 15, because they are sealed by the piston portion 22 of the housing 11. As the chamber 14 reaches its minimum volume and the chamber 15 reaches it maximum volume, the transfer ports 23, 24 and 25 become uncovered and the compressed air flows into the chamber 15 and scavenges from the chamber 15 combusted gases out through the exhaust port 31 to the exhaust 32. The air admitted via the transfer ports 27,33 and 34 also forms fresh charge air for the engine 10.
  • the direction of motion of the reciprocating member 12 will change and the reciprocating member 12 will act to reduce the volume of the chamber 15 and increase the volume of the chamber 14.
  • the transfer ports 27, 33 and 34 are then covered and closed by the peripheral surface of the piston portion 22.
  • the exhaust port 31 is subsequently closed by the piston portion 22.
  • the chamber 15 is then closed and the air in the chamber 15 becomes compressed as the reciprocating member 12 moves to reduce the volume of the chamber 15.
  • pressurised gas is admitted to the chamber 15.
  • the injector 42 controls the admission of pressurised gas.
  • the mixture of gas and air in the chamber 15 is compressed after the exhaust port 31 is closed by the reduction in volume of the chamber 15. At or about the point where the volume of the chamber 15 is at its minimum, the spark plug 44 sparks and ignites the gas and air mixture. The combusted gas and air mixture then expands and forces the reciprocating member 12 to move as the volume of the chamber 15 increases. Eventually, the exhaust port 31 is uncovered and the expanding combusted gases can escape to the exhaust 32. The combusted gases are scavenged by the next charge of air admitted to the transfer ports 27, 33 and 34 and the whole cycle begins again.
  • the fuel/air mixture present in the chamber 15 before combustion will contain some exhaust gas and this is preferred. It is preferred because the exhaust gas will contain radical ions and will enable combustion of the fuel/air mixture by active radical combustion. Active radical combustion is known in the art and will not be explained in detail in the specification. In the preferred embodiment, active radical combustion occurs in parallel with combustion using spark ignition.
  • the engine 10 comprises a spring 49 which acts between the housing 11 and the reciprocating member 12 to bias a reciprocating member 12 into a position where the chamber 15 has minimum volume and the chamber 14 has maximum volume.
  • the spring 49 uses stored energy to return the reciprocating member 12 to a position in which the chamber 14 has maximum volume and the chamber 15 minimum volume.
  • the reciprocation of the reciprocating member 12 will generate electricity by means of the electrical winding 39.
  • the electrical winding 39 is connected to an electronic controller 50 which generates an alternating current sinusoidal waveform on the line 51.
  • the line 51 13 connected to an electrical load.
  • the line 51 is also connected to an electronic controller 52 which controls the ignition of the spark plug 44 and controls injection of pressurised gas by the injector 42.
  • the controller 52 can determine the position of the reciprocating member 12 relative to the housing 11 from the signal on the line 51.
  • two engines 10 can be used in tandem as illustrated in Figure 3. It can be seen in Figure 3 that the second variable volume chamber 15 of one of the engines 10 has its maximum volume when the second variable volume chamber 15 of the other engine 10 has its minimum volume.
  • the two reciprocating members 12 are connected by a connecting rod 53.
  • the expansion of the combusted gases in one of the engines 10 will cause both of the reciprocating members 12 in both engines 10 to move. In the arrangement shown, there will always be expansion of combusted gases in one of the engines so that there will always be an expanding force acting to move the reciprocating members 12.
  • the expansion of combusted gases in one of the engines 10 acts to move the reciprocating members 12 in one direction and the expansion of the combusted gas in the other engine 10 acts to move the reciprocating members 12 in the opposite direction.
  • controller 50 is common to both engines 10 and the line 51 is connected to an inverter 54 which produces three-phase alternating current on the line 55.
  • the engine of the present invention provides a combined engine and electrical generator, suitable for use in, for instance, a hybrid electrical vehicle.
  • the engine would be connected to a combination of batteries and electric motors and would power the electric motors and/or generate electricity for storing in the batteries.
  • the output line could be connected to a load outside of the vehicle, to power other electrical devices.
  • the engine 10 of the present invention can be designed to work at a specific frequency, which will be the natural frequency of the engine.
  • the engine is designed to work in a steady state condition or perhaps in two different steady state conditions.
  • the interaction of the reciprocating member 12 and the surrounding electrical winding 39 can allow some control of reciprocation of the reciprocating member 12 by use of the electrical controller 50.
  • the frequency of reciprocation of the reciprocating member 12 and/or the amplitude of reciprocal movement can be varied to vary the current output.
  • the current will be proportional to a maximum velocity of the reciprocating member 12.
  • the induction coil 39 will comprise enamelled wire.
  • the engine 10 described above can be started using the coil 39 powered by an electrical source such as a battery.
  • the controller 50 can be used to energise the coil 39 in order to start the reciprocation of the reciprocating member 12. Once the reciprocating member 12 has started reciprocation then the controller 52 will start injection of pressurised gas and ignition of the spark plug 44. Timed opposing forces will be applied on the reciprocating member 12 under the control of the controller 50 during starting.
  • the two coils of the two engines 10 of the Figure 3 arrangement will be controlled in tandem during starting in the Figure 3 arrangement.
  • the coil 39 is used as part of an electrical motor to start the motion of the reciprocating member as well as a generator in extracting power from the engine.
  • the reciprocating member will be reciprocated three or four times before combustion is initiated.
  • the coil 39 can be used in place of or in parallel with a spring such as 49 to apply an electromagnetic force which acts to reduce the volume of the chamber 15 and compress the charge therein. Electrical power would be supplied to the coil 39 to enable this to happen. As long as on average the power needed by the coil 39 to effect compression of the fuel/air charge is less than the power extracted by the coil from motion of the reciprocating member caused by expansion of combusted gases, the engine will produce electrical power.
  • the coil can in effect act as an electrical equivalent to a flywheel. Use of a coil as the sole means of effecting compression of a fuel/air charge (withcut help of a spring) can be beneficial in ensuring accurate control of position of reciprocating member 12.
  • the engine 10 can be operated in such a way that during operation the reciprocating member 12 can be held stationary for a pause of a controllable duration, under the control of an electromagnetic force applied by coil 39.
  • the reciprocating member 12 could be held in a position in which the exhaust port 31 has just been closed.
  • the coil 39 could then, after a pause, apply an electromagnetic force to compress the fuel/air charge in the chamber 15 and operation could start again.
  • the use of periodically occurring variable length pauses could be used to vary the power output of the engine in place of a change of rate of reciprocation of the reciprocating member 12 since it is preferred that the reciprocating member 12 when reciprocating does so at a constant optimum rate.
  • the engine above provides a very simple construction engine of light weight and low cost.
  • the engine effectively has a single moving part, the reciprocating member 12.
  • the engine does not need complicated valving arrangements or cam shafts to drive such valves.
  • the cyclically operated fluid displacement machine of the present invention can also provide a compressor and an example of this is shown in Figure 4.
  • a compressor 100 is shown to comprise a housing 101 in which reciprocates a reciprocating member 102.
  • the reciprocating member 102 is reciprocal along an axis of reciprocation 103.
  • the reciprocating member 102 defines with the housing 101 a first variable volume chamber 104 and a second variable volume chamber 105.
  • the first variable volume chamber 104 has a cross-section taken radially of the axis of reciprocation 13 which has a first area
  • the second variable volume chamber 105 has a cross-section taken radially of the axis of reciprocation 103 which has a second area smaller than the first area.
  • the second variable volume chamber 105 has a maximum volume smaller than the maximum volume of the first variable volume chamber 104.
  • a one-way inlet valve 106 allows flow of gas from a gas inlet 107 into the first variable volume chamber 104, but does not allow gas to pass from the variable volume chamber 104 out of the gas inlet 107.
  • the one way inlet valve 106 is spring-biassed and only allows gas to flow from the gas inlet 107 into the first variable volume chamber 104 when a pressure differential of a first magnitude is established thereacross.
  • the reciprocating member 102 comprises a middle section 108 which extends perpendicularly of the axis of reciprocation 103.
  • the reciprocating member 102 has two end sections 109 and 110 on opposite sides of the middle section 108.
  • the end sections 109, 110 comprise walls extending generally parallel to the axis of reciprocation 103. Each end section 109, 110 defines with the middle section 108 an open ended cylinder, open at one end.
  • the housing 101 has a first piston portion 111 which extends into the open ended cylinder defined in part by the end section 109.
  • the piston portion 111 acts as a piston in the open ended cylinder defined in part by the end section 109.
  • the first piston portion 111 and the open ended cylinder defined in part by the end section 109 together define the first variable volume chamber 104.
  • a second piston portion 112 extends into the open ended cylinder defined in part by the wall 110.
  • the piston portion 112 acts as a piston in the open ended cylinder defined in part by the end section 110 and the open ended cylinder and the piston portion 112 together define a second variable volume chamber 105.
  • the reciprocating member 102 has a generally circular radial cross-section and the end sections 109 and 110 each comprise an annular wall spaced from the central axis of the reciprocating member 102 which is coincident with the axis of reciprocation 103.
  • the end section walls 109 and 110 are slidable in two annular slots 113 and 114 provided at opposite ends of the housing 101.
  • a transfer one-way valve 115 which is spring biassed is provided in the middle section 108 of the reciprocating member 102.
  • the valve 115 allows gas to pass from the chamber 104 to the chamber 105 but does not allow gas to pass from the chamber 105 back to the chamber 104.
  • the valve 115 is spring-biassed and only allows gas to pass from the chamber 104 to the chamber 105 when a pressure differential is established thereacross which is of a second magnitude.
  • a third one-way valve 116 which is also spring-biassed is provided in the piston portion 112 and allows gas to be expelled from the chamber 105 to a gas outlet 117.
  • the one-way valve 116 allows gas to be expelled from the chamber 105 to the outlet 117 but does not allow gas to be drawn into the chamber 105 from the outlet 117.
  • the valve 116 is spring-biassed to allow gas to be expelled from the chamber 105 to the outlet 117 only when a pressure differential is established thereacross of a third magnitude.
  • An annular electrical winding 118 surrounds the reciprocating member 112 and extends parallel to and is adjacent to the outwardly facing cylindrical surface of the reciprocating member 102.
  • the electrical winding 118 extends parallel to the axis of reciprocation 103 and has a length equivalent to at least the sum of the axial length of the reciprocating member 102 and the distance travelled by the reciprocating member 102 in each reciprocation.
  • the electrical winding 118 is connected to a controller 119 which is connected to the source of electrical power 120.
  • the controller 119 supplies to the coil 118 an electrical waveform controlled in such a way that the reciprocating member 102 is forced first one way and then the opposite way, in a timed fashion.
  • the reciprocating member 102 is preferably caused to reciprocate back and forth at a frequency set by the electrical waveform supplied by the controller 119.
  • the reciprocating member will be forced by the electromagnetic force applied by the coil 118 to increase the volume of the chamber 104.
  • This increasing in volume will establish a pressure differential across the inlet valve 106 and when this pressure differential is greater than the first magnitude mentioned above, the inlet valve 106 will open to allow gas to be drawn in from the gas inlet 107 into the chamber 104.
  • the one way valve 106 will close and the reciprocating member 102 will be forced by the magnetic force to reduce in volume the chamber 104. The gas in the chamber 104 will therefore be compressed.
  • the one way valve 115 When the pressure of the compressed gas in the chamber 104 exceeds a second magnitude (mentioned above) the one way valve 115 will open and will allow gas to flow from the chamber 104 into the chamber 105 (which increases in size as the chamber 104 decreases in size). When the chamber 105 reaches its maximum volume and the chamber 104 reaches its minimum volume, then the one way valve 115 will close and the reciprocating member 102 will be forced again to increase the volume of the chamber 104 (drawing in gas as previously described) whilst at the same time reducing in volume the chamber 105. Since the chamber 105 is a of a reduced cross-sectional area, the force on the reciprocating member 102 will result in a greater pressure being applied to the gas compressed in chamber 105. The gas compressed in chamber 105 is compressed until the pressure differential across the valve 116 reaches the third magnitude, at which point the valve 116 opens and allows the gas compressed in chamber 105 to escape via the gas outlet 117.
  • the compressor 100 provided by the invention is a two stage compressor of very simple construction.
  • the output of the compressor can be controlled simply by controlling the electrical wave form used to power the electrical winding 118.
  • the construction of the compressor 100 is unusual in that the pistons are part of the static housing whilst the cylinders are part of a reciprocating member. This construction makes good use of the flux linkage between the annular electrical winding 118 and the reciprocating member 102, which is located adjacent to the electrical winding 118.
  • the two stage compressor is effectively a single moving part machine.
  • open ended cylinders defined by the reciprocating member are circular in cross-section
  • the open ended cylinders could be of any cross-section and the use of the term "cylinder" should not require a circular cross-section but could include, for instance, a square cross-section, an oval cross-section, a rectangular cross-section or whatever shaped cross-section is most convenient.
  • the transfer ports, e.g. 26 are closed by the piston 21 when the chamber 14 is at minimum volume, the transfer ports opening onto the chamber 14 could be permanently open to the chamber 14 since control of transfer between chambers 14 and 15 is governed by the transfer ports 27, 33 and 34 which open onto the chamber 15.
  • the reciprocating member 12, 102 could be of steel with good magnetic properties.
  • a coil could be provided within the reciprocating member 12, 102 for instance to allow the use of a lighter member.
  • a current could be run through (or induced in) such a coil to improve the performance of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Compressor (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Claims (37)

  1. Machine de déplacement de' fluide fonctionnant cycliquement (10 ; 100) qui comprend,
       un carter (11 ; 101),
       un élément alternatif (12 ; 102) effectuant un mouvement de va -et -vient rectiligne le long d'un axe de va -et -vient (13 ; 103) dans le carter (11 ; 101) et définissant avec le carter (11 ; 101) des première (14 ; 104) et seconde (15 ; 105) chambres à volumes variables,
       une entrée de fluide (17 ; 107) reliée à la première chambre à volume variable (14 ; 104) ;
       une sortie de fluide (78 ; 117) reliée à la seconde chambre à volume variable (15 ; 105) ;
       un moyen de soupape d'entrée (16 ; 106) qui permet un écoulement de fluide par l'entrée de fluide (17 ; 117) dans la première chambre à volume variable (14 ; 104) et qui empêche l'écoulement du fluide de la première chambre à volume variable (14 ; 104) par l'entrée de fluide (17 ; 107) ;
       un moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27 ; 115) qui permet un écoulement du fluide provenant de la première chambre à volume variable (14 ; 104) vers la seconde chambre à volume variable (15 ; 105) et qui empêche l'écoulement du fluide provenant de la seconde chambre à volume variable (15 ; 105) vers la première chambre à volume variable (14 ; 104) ; et
       un moyen de soupape de sortie (22, 31 ; 116) qui permet un écoulement du fluide provenant de la seconde chambre à volume variable (15 ; 105) par la sortie de fluide (78 ; 117) et qui empêche un écoulement du fluide provenant de la sortie de fluide (78 ; 117) dans la seconde chambre à volume variable (12 ; 105) ;
       dans laquelle :
    au cours du mouvement de l'élément alternatif (12 ; 102) dans le carter (11 ; 101) dans un premier sens, du fluide est aspiré dans la première chambre à volume variable (14 ; 104) et du fluide dans la seconde chambre à volume variable (15 ; 105) est expulsé de la seconde chambre à volume variable (15 ; 105) par la sortie de fluide (78 ; 117) ;
    au cours du mouvement de l'élément alternatif (12 ; 102) dans le carter (11 ; 101) dans un second sens opposé au premier sens, du fluide est comprimé dans la première chambre à volume variable (14 ; 104) et du fluide est transféré depuis la première chambre à volume variable (14 ; 104) par l'intermédiaire du moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27 ; 115) vers la seconde chambre à volume variable (15 ; 114) ;
    l'élément alternatif (12 ; 102) comprend une section intermédiaire (18 ; 108) qui s'étende perpendiculairement à l'axe de va -et -vient (13 ; 103) et deux sections d'extrémités (19, 20 ; 109, 110) sur des côtés opposés de la section intermédiaire (13 ; 103), chacune des sections d'extrémités (19, 20 ; 109, 110) comprenant une paroi (19, 20 ; 109, 110) s'étendant globalement parallèlement à l'axe de va -et -vient (13 ; 103) et chacune des sections d'extrémités (19, 20 ; 109, 110) définissant avec la section intermédiaire (18 ; 108) un cylindre à extrémité ouverte, ouvert à une première extrémité ;
    le carter (10 ; 101) comporte une première partie de piston (21 ; 111) qui s'étend dans un premier des cylindres à extrémité ouverte, de l'élément alternatif (12 ; 102) et qui agit comme un piston dans le premier cylindre à extrémité ouverte, la première partie de piston (21 ; 111) et le premier cylindre à extrémité ouverte, définissant ensemble la première chambre à volume variable (14 ; 104); et
    le carter (10 ; 101) comporte une seconde partie de piston (22 ; 112) qui s'étend dans un second des cylindres à extrémité ouverte de l'élément alternatif (12 ; 102) et qui agit comme un piston dans le second cylindre à extrémité ouverte, la seconde partie de piston (22 ; 112) et le second cylindre à extrémité ouverte, définissant ensemble la seconde chambre à volume variable (15 ; 105) ;
       caractérisée en ce que :
    la machine (10 ; 100) comprend en outre un enroulement électrique (39 ; 118) disposé dans le carter (11 ; 101) entourant l'élément alternatif (12 ; 102), l'enroulement électrique (39 ; 118) s'étendant parallèlement aux parois de sections d'extrémités (19, 20 ; 109, 110) de l'élément alternatif (12 ; 102) et de façon adjacente à celles -ci, grâce à quoi le mouvement de va -et -vient de l'élément alternatif (12 ; 102) est utilisé pour générer un courant électrique avec l'enroulement électrique (39) qui peut être relié à une charge électrique et/ou l'élément alternatif (12 ; 102) est entraíné pour effectuer un mouvement de va - et -vient par l'alimentation électrique fournie à l'enroulement électrique (39, 118).
  2. Machine (10 ; 100) selon la revendication 1, dans laquelle l'élément alternatif (12 ; 102) présente une section transversale radiale globalement circulaire et dans laquelle les sections d'extrémités (19, 20 ; 109, 110) comprennent chacune une paroi annulaire espacée de l'axe central de l'élément alternatif (12 ; 102).
  3. Machine (10 ; 100) selon la revendication 1 ou la revendication 2, dans laquelle l'enroulement électrique (39 ; 118) s'étend parallèlement à l'axe du mouvement de va -et - vient (13 ; 103) de l'élément alternatif (12 ; 102) et présente une longueur équivalente à au moins la somme de la longueur axiale de l'élément alternatif (12 ; 102) et de la distance parcourue par l'élément alternatif (12 ; 102) dans chaque va -et -vient.
  4. Machine (10 ; 100) selon la revendication 3 dans laquelle les parois de sections d'extrémités (19, 20 ; 109, 110) de l'élément alternatif (12 ; 102) peuvent coulisser dans des fentes (35, 36 ; 113, 114) définies dans le carter (11 ; 101) et l'enroulement électrique (39 ; 118) dans le carter (11 ; 101) s'étend de manière adjacente et parallèlement aux surfaces définissant les fentes (35, 36 ; 113, 114).
  5. Machine (10 ; 100) selon la revendication 4 dans laquelle un joint (37 ; 38) est formé entre chaque section d'extrémité (19 ; 20) de l'élément alternatif (112) et la fente dans laquelle la section d'extrémité (19 ; 20) coulisse.
  6. Machine (10) selon l'une quelconque des revendications précédentes dans laquelle un moyen élastique (49) agit entre le carter (11) et l'élément alternatif (12) pour solliciter l'élément alternatif (12) pour qu'il se déplace dans un sens.
  7. Machine (10) selon la revendication 6, dans laquelle le moyen élastique (49) agit pour solliciter l'élément alternatif (12) dans le sens d'une réduction de la seconde chambre à volume variable (15) à un volume minimum.
  8. Machine (10 ; 100) selon l'une quelconque des revendications précédentes, dans laquelle chacun du moyen de soupape d'entrée (16 ; 106), du moyen de soupape de sortie (22, 31 ; 116) et du moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27 ; 115), comprend soit une soupape unidirectionnelle (16 ; 106, 115, 116) qui s'ouvre et se ferme sous l'action d'une différence de pression de part et d'autre de celle -ci,ou une soupape à orifice (21, 22, 23, 24, 25, 26, 27, 31) comportant un orifice (26, 27, 31) s'ouvrant sur l'une des chambres à volume variable (14, 15) laquelle est ouverte et fermée de manière cyclique par l'élément alternatif (12) au cours du mouvement de va -et - vient
  9. Machine (10 ; 100) selon la revendication 8 dans laquelle le moyen de soupape d'entrée (16 ; 106) comprend une soupape unidirectionnelle sollicitée par un ressort.
  10. Machine (10) selon l'une quelconque des revendications précédentes, qui fonctionne comme un moteur à combustion interne dans laquelle :
    une charge d'air est aspirée dans la première chambre à volume variable (14) par l'intermédiaire de l'entrée de fluide (17) ;
    la charge d'air aspirée dans la première chambre à volume variable (14) est comprimée ;
    la charge d'air comprimée ; est délivrée par l'intermédiaire du moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27) vers la seconde chambre à volume variable (15) ;
    la machine (10) comprend un moyen de délivrance de carburant (41, 42) qui délivre du carburant à la seconde chambre à volume variable (15) afin de le mélanger avec la charge d'air comprimée ;
    le mélange de charge comprimée de carburant et d'air est brûlé et on le laisse se détendre dans la seconde chambre à volume variable (15) ; et
    le mélange brûlé détendu est refoulé de la seconde chambre à volume variable (15) par une charge consécutive d'air délivrée à la seconde chambre à volume variable (15) par l'intermédiaire du moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27).
  11. Machine (10) selon la revendication 10, dans laquelle le carburant utilisé est du gaz naturel comprimé et la machine comprend un moyen de stockage (40) destiné à stocker le gaz naturel dans un état sous pression et dans lequel le moyen de délivrance de carburant (41, 42) commande le débit du gaz naturel sous pression dans la seconde chambre à volume variable (15) sans utiliser de moyen de pompage.
  12. Machine (10) selon la revendication 10 ou la revendication 11, dans laquelle le moyen de soupape d'entrée (16) comprend une soupape unidirectionnelle, le moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27) comprend un orifice (26, 27) ouvert et fermé de manière cyclique au cours du mouvement de l'élément alternatif (12) et le moyen de soupape d'échappement (22, 31) comprend un orifice (31) ouvert et fermé cycliquement au cours du mouvement de l'élément alternatif (12).
  13. Machine (10) selon la revendication 12, dans laquelle le moyen de soupape de transfert (21, 22, 23, 24, 25, 26, 27) comprend un premier orifice de transfert (26) qui peut être ouvert dans la première chambre à volume variable (14) et un second orifice de transfert (27) qui peut être ouvert dans la seconde chambre à volume variable (15) et un moyen de conduit (23) s'étendant à travers l'élément alternatif (12) pour relier les premier (26) et second (27) orifices de transfert.
  14. Machine (10) selon la revendication 13, dans laquelle le premier orifice de transfert (26) est disposé sur une surface tournée vers l'intérieur d'une paroi de section d'extrémité (19) d'un premier cylindre à extrémité ouverte de l'élément alternatif (12) et le second orifice de transfert (27) est disposé sur une surface tournée vers l'intérieur d'une paroi de section d'extrémité (20) de l'autre cylindre à extrémité ouverte de l'élément alternatif (12).
  15. Machine (10) selon la revendication 14 dans laquelle la première partie de piston (21) du carter (11) ouvre et ferme le premier orifice de transfert (26) présent dans le premier cylindre à extrémité ouverte au cours du va -et -vient de l'élément alternatif (12) et dans laquelle la seconde partie de piston (22) du carter (11) ouvre et ferme le second orifice de transfert (27) présent dans le second cylindre à extrémité ouverte au cours du va -et - vient de l'élément alternatif (12).
  16. Machine (10) selon l'une quelconque des revendications 12 à 15, dans laquelle le moyen de soupape d'échappement (22, 31) comprend un orifice d'échappement (31) qui peut être ouvert dans la seconde chambre à volume variable (15) et un moyen de conduit (30) s'étendant à travers l'élément alternatif (12) afin de relier l'orifice d'échappement (31) à la sortie de fluide (48).
  17. Machine (10) selon la revendication 16, dans laquelle l'orifice d'échappement (31) est disposé sur la surface tournée vers l'intérieur de la paroi de section d'extrémité (20) du second cylindre à extrémité ouverte, l'orifice d'échappement (31) étant situé en face du second orifice de transfert (27).
  18. Machine (10) selon la revendication 17, dans laquelle la seconde partie de piston (22) du carter (11) ouvre et ferme l'orifice d'échappement (31) au cours du va -et -vient de l'élément alternatif (12).
  19. Machine (10) selon la revendication 18, dans laquelle, au cours de chaque mouvement de va -et -vient de l'élément alternatif (12), la seconde partie de piston (22) du carter (11) séquentiellement :
    ouvre l'orifice d'échappement (31) pour permettre aux gaz brûlés de sortir de la seconde chambre à volume variable (15) ;
    ouvre le second orifice de transfert (27) pour permettre l'admission d'une charge d'air dans la seconde chambre à volume variable (15) pour expulser les gaz brûlés de la seconde chambre à volume variable (15) par l'orifice d'échappement (31) et pour fournir de l'air pour la combustion ;
    ferme le second orifice de transfert (27) pour empêcher l'air d'être expulsé par l'orifice de transfert (27) au cours de la compression ; et
    ferme l'orifice d'échappement (31) pour fermer hermétiquement la seconde chambre à volume variable (15) et qu'elle soit prête pour la combustion.
  20. Machine (10) selon la revendication 18 ou la revendication 19, dans laquelle la seconde partie de piston (22) du carter (11) est munie d'une partie de découpe (43) qui est située de manière adjacente au second orifice de transfert (27) lorsque le second orifice de transfert (27) est ouvert, et qui définit une région dans laquelle commence la combustion.
  21. Machine (10) selon la revendication 20, dans laquelle le moyen de délivrance de carburant (41, 42) délivre du carburant à la région de la seconde chambre à volume variable définie par la partie de découpe (43) dans la seconde partie de piston (22) du carter (11).
  22. Machine (10) selon la revendication 21, dans laquelle le mélange d'air et de carburant est allumé par un allumage provoqué par la présence d'ions de radicaux en même temps que par des conditions de pression et de température augmentées.
  23. Machine (10) selon la revendication 21 ou 22 dans laquelle un moyen d'allumage par étincelle (44) est prévu afin de fonctionner dans la région de la seconde chambre à volume variable (15) dans laquelle commence la combustion afin d'allumer le mélange comprimé dé carburant et d'air.
  24. Machine (10) selon l'une quelconque des revendications 10 à 23, dans laquelle le carter (11) comporte un moyen de conduit passant à travers celui-ci qui permet à de l'air de refroidissement d'être aspiré depuis l'atmosphère et d'être expulsé vers celle -ci afin de passer sur l'élément alternatif (12) et de le refroidir.
  25. Machine selon la revendication 24, dans laquelle l'élément alternatif (12) comporte des passages de refroidissement passant au travers de celui -ci, lesquels permettent le passage de l'air de refroidissement au travers de l'élément alternatif.
  26. Utilisation d'une première machine (10) selon l'une quelconque des revendications 10 à 25 en tandem avec une seconde machine (10) selon l'une quelconque des revendications 10 à 25, les éléments alternatifs (12) des première et seconde machines (10) étant situés sur le même axe de mouvement de va -et -vient et les éléments alternatifs (12) des première et seconde machines (10) étant reliés pour se déplacer ensemble et la synchronisation des deux machines (10) étant choisie de telle sorte que, pendant que les gaz brûlés se détendent dans une machine (10) une charge de carburant et d'air est comprimée dans l'autre machine (10).
  27. Machine (100) selon l'une quelconque des revendications 1 à 7, qui fonctionne comme un compresseur, l'élément alternatif (102) étant entraíné pour aller et vernir avec une alimentation électrique fournie à l'enroulement électrique (118), dans laquelle au cours du mouvement de va -et -vient :
    une charge de gaz est aspirée dans une première chambre à volume variable (104) par l'intermédiaire de l'entrée de fluide (107),
    la charge de gaz aspirée dans la première chambre à volume variable (104) est comprimée dans la première chambre à volume variable (104),
    le gaz comprimé est délivré par l'intermédiaire du moyen de soupape de transfert (115) vers la seconde chambre à volume variable (105),
    le gaz comprimé délivré à la seconde chambre à volume variable (105) est comprimé davantage dans la seconde chambre à volume variable (105),
    le gaz comprimé dans la seconde chambre à volume variable (105) est expulsé par l'intermédiaire du moyen de soupape de sortie (116) vers la sortie (117).
  28. Machine (100) selon la revendication 27, dans laquelle le moyen de soupape d'entrée (106) comprend une première soupape unidirectionnelle (106) qui permet au gaz de passer depuis l'entrée de fluide (107) dans la première chambre à volume variable (104) et ne permet pas au gaz de passer de la première chambre à volume variable (104) pour sortir par l'entrée de fluide (107), la première soupape unidirectionnelle (106) ne permettant le passage du gaz depuis l'entrée de fluide (107) vers la première chambre à volume variable (104) qu'après qu'une différence de pression d'une première amplitude est établie de part et d'autre de celle -ci.
  29. Machine (100) selon la revendication 28, dans laquelle le moyen de soupape de transfert (115) comprend une seconde soupape unidirectionnelle (115) qui permet au gaz de passer depuis la première chambre à volume variable (104) dans la seconde chambre à volume variable (105) et qui empêche le gaz de s'écouler de la seconde chambre à volume variable (105) vers la première chambre à volume variable (104), la seconde soupape unidirectionnelle ne permettant le passage du gaz de la première (104) à la seconde (105) chambre à volume variable que lorsqu'une différence de pression présentant une seconde amplitude est établie de part et d'autre de celle -ci.
  30. Machine (100) selon la revendication 29, dans laquelle le moyen de soupape de sortie (116) comprend une troisième soupape unidirectionnelle (116) qui permet au gaz d'être expulsé depuis la seconde chambre à volume variable (105) vers la sortie de fluide (117) et qui empêche le gaz d'être aspiré dans la seconde chambre à volume variable (105) par l'intermédiaire de la sortie de fluide (117), la troisième soupape unidirectionnelle (116) ne permettant une expulsion du gaz depuis la seconde chambre à volume variable (105) que lorsqu'une différence de pression d'une troisième amplitude est établie de part et d'autre de celle -ci.
  31. Machine (100) selon la revendication 30, dans laquelle chacune des première (106), seconde (115) et troisième (116) soupapes unidirectionnelles sont des soupapes sollicitées par des ressorts.
  32. Machine (100) selon l'une quelconque des revendications 27 à 31, dans laquelle la première chambre à volume variable (104) présente une section transversale prise radialement par rapport à l'axe de va-et-vient (103) qui présente une première aire et la seconde chambre à volume variable (105) présente une section transversale prise radialement par rapport à l'axe de va-et-vient (103) qui présente une seconde aire plus petite que la première aire.
  33. Machine (100) selon la revendication 32 dans laquelle une première partie de piston (111) correspond en section transversale radiale à la première chambre à volume variable (104) et la partie de second piston du carter correspond en section transversale radiale à la seconde chambre à volume variable (105).
  34. Machine (100) selon la revendication 33, dans laquelle le moyen de soupape d'entrée (106) est disposé dans la première partie de piston et le moyen de soupape de sortie (116) est disposé dans la seconde partie de piston (112).
  35. Machine (100) selon la revendication 34, dans laquelle le moyen de soupape de transfert (115) est situé dans la section intermédiaire (108) de l'élément alternatif (102).
  36. Machine (100) selon l'une quelconque des revendications 32 à 35, dans laquelle la seconde chambre à volume variable (105) a un volume maximum plus petit que le volume maximum de la première chambre à volume variable (104).
  37. Machine (100) selon l'une quelconque des revendications 27 à 36, dans laquelle un moyen de commande (119, 120) est prévu afin de commander la forme d'onde électrique utilisée pour alimenter l'enroulement électrique (118) et pour commander ainsi la puissance de la machine (100).
EP00937103A 1999-06-11 2000-06-09 Appareil de deplacement de fluide active cycliquement Expired - Lifetime EP1185769B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9913661.6A GB9913661D0 (en) 1999-06-11 1999-06-11 Cyclically operated fluid displacement machine
GB9913661 1999-06-11
PCT/GB2000/002260 WO2000077366A1 (fr) 1999-06-11 2000-06-09 Appareil de deplacement de fluide active cycliquement

Publications (2)

Publication Number Publication Date
EP1185769A1 EP1185769A1 (fr) 2002-03-13
EP1185769B1 true EP1185769B1 (fr) 2004-10-13

Family

ID=10855205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00937103A Expired - Lifetime EP1185769B1 (fr) 1999-06-11 2000-06-09 Appareil de deplacement de fluide active cycliquement

Country Status (8)

Country Link
US (1) US6626650B1 (fr)
EP (1) EP1185769B1 (fr)
JP (1) JP4460809B2 (fr)
KR (1) KR100768769B1 (fr)
AT (1) ATE279645T1 (fr)
DE (1) DE60014894D1 (fr)
GB (1) GB9913661D0 (fr)
WO (1) WO2000077366A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469662B2 (en) * 1999-03-23 2008-12-30 Thomas Engine Company, Llc Homogeneous charge compression ignition engine with combustion phasing
DE60211517T2 (de) * 2001-07-05 2007-05-03 Sarcos, L.C., Salt Lake City Schnell ansprechende energieumwandlungsvorrichtung
EP1355050A1 (fr) * 2002-04-16 2003-10-22 Denys Wasem Moteur à combustion interne
US6793471B2 (en) * 2002-05-09 2004-09-21 Sergei Latyshev Fluid machine
DE10242141A1 (de) * 2002-09-03 2004-03-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Freikolben-Verbrennungsvorrichtung mit elektrischem Lineartrieb
US20040265659A1 (en) * 2003-06-26 2004-12-30 Richardson Curtis A. Pressure control system for fuel cell gas spring
JP2007512470A (ja) * 2003-11-26 2007-05-17 シェパード,グレイドン,オーブリー 往復機関
US7066116B2 (en) * 2004-07-29 2006-06-27 Sarcos Investments Lc Valve system for a rapid response power conversion device
US7363887B2 (en) * 2004-12-02 2008-04-29 Raytheon Sarcos, Llc Dynamic mass transfer rapid response power conversion system
US20080251050A1 (en) * 2007-04-05 2008-10-16 Jacobsen Stephen C Rapid-fire rapid-response power conversion system
JP5447419B2 (ja) * 2011-03-28 2014-03-19 株式会社豊田中央研究所 フリーピストン式発電機
ITVR20110187A1 (it) * 2011-10-04 2013-04-05 Damiano Giuriato Macchina ad alta efficienza per la produzione di energia da una sorgente di energia esterna
US9777716B2 (en) * 2013-06-14 2017-10-03 Richard Nelson Dual displacement fluid level control pump
US11406742B2 (en) 2014-07-18 2022-08-09 M.A. Med Alliance SA Coating for intraluminal expandable catheter providing contact transfer of drug micro-reservoirs
DE102016120354B4 (de) 2016-10-25 2022-02-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Freikolbenvorrichtung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB198735A (en) 1922-02-09 1923-06-11 Peter Mcdermid Improved internal combustion engine with reciprocating pistons and cylinders
GB736664A (en) 1951-01-31 1955-09-14 Ici Ltd Improvements in or relating to high pressure reciprocating compressors
FR2092659B1 (fr) 1970-06-05 1973-03-16 Tassinari Robert
ES468200A2 (es) * 1976-02-11 1978-12-16 Mallofre Salvador Gali Perfeccionamientos en instalaciones neumaticas.
NL7806506A (en) 1978-06-16 1979-12-18 Adrianus Stephanus Maria Stuij Compressed air engine for vehicle propulsion - has central power cylinder with piston forming unit with compressor pistons
DE2832909A1 (de) 1978-07-27 1980-02-14 Hans Norbert Heesen Einkolbenmotor mit zwei brennkammern
US4449488A (en) * 1980-06-09 1984-05-22 Rondal P. Howell Free piston internal combustion engine
US4586881A (en) 1983-02-28 1986-05-06 Beshore Craig S Machine having integral piston and cylinder wall sections
US4775301A (en) * 1986-06-27 1988-10-04 Cartwright Garry E Oscillating electromagnetic pump with one-way diaphragm valves
US4924956A (en) 1986-10-24 1990-05-15 Rdg Inventions Corporation Free-piston engine without compressor
US5085563A (en) * 1990-01-26 1992-02-04 Collins Development Corporation Reciprocating pump or motor
US5172784A (en) 1991-04-19 1992-12-22 Varela Jr Arthur A Hybrid electric propulsion system
US5540194A (en) * 1994-07-28 1996-07-30 Adams; Joseph S. Reciprocating system
US5600961A (en) 1994-09-07 1997-02-11 General Electric Company Refrigeration system with dual cylinder compressor
US5678522A (en) * 1996-07-12 1997-10-21 Han; William Free piston internal combustion engine
GB2330012B (en) 1997-10-04 1999-09-15 Zhang Wei Min Linear motor compressor
US6199519B1 (en) 1998-06-25 2001-03-13 Sandia Corporation Free-piston engine

Also Published As

Publication number Publication date
ATE279645T1 (de) 2004-10-15
JP4460809B2 (ja) 2010-05-12
DE60014894D1 (de) 2004-11-18
KR20020015344A (ko) 2002-02-27
JP2003502552A (ja) 2003-01-21
WO2000077366A1 (fr) 2000-12-21
EP1185769A1 (fr) 2002-03-13
US6626650B1 (en) 2003-09-30
KR100768769B1 (ko) 2007-10-19
GB9913661D0 (en) 1999-08-11

Similar Documents

Publication Publication Date Title
EP1185769B1 (fr) Appareil de deplacement de fluide active cycliquement
AU680774B2 (en) Linear electrical energy generator
RU2487254C1 (ru) Воздушно-гибридный двигатель с расщепленным циклом
US7353786B2 (en) Split-cycle air hybrid engine
US9010287B2 (en) Multi-fuel engine
CN102770637B (zh) 燃烧管理系统
US8613269B2 (en) Internal combustion engine with direct air injection
US11846230B2 (en) Adaptive linear linked piston electric power generator
RU2411379C2 (ru) Линейный электрогидродинамический двигатель внутреннего сгорания кущенко в.а.
WO2003069142A1 (fr) Moteur à combustion interne à pistons libres
RU2152523C1 (ru) Двигатель внутреннего сгорания
US4785770A (en) Coaxial pump and motor cylinder engine
AU606316B2 (en) A reciprocating internal combustion engine including a separate gas chamber
RU2070643C1 (ru) Поршневой двигатель-генератор с внешней камерой сгорания
US4745886A (en) Back and forth motion type of the internal engine with the separate gas chamber and its application equipment
RU2154176C2 (ru) Двухтактный аксиальный двигатель
RU2176025C1 (ru) Тепловая электрогенерирующая машина
WO2017051141A1 (fr) Turbine à gaz comprenant un moteur à piston libre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60014894

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050609

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050609

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

EN Fr: translation not filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121130

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609