EP1181992A2 - Multivariable flatness control systgem - Google Patents

Multivariable flatness control systgem Download PDF

Info

Publication number
EP1181992A2
EP1181992A2 EP01119908A EP01119908A EP1181992A2 EP 1181992 A2 EP1181992 A2 EP 1181992A2 EP 01119908 A EP01119908 A EP 01119908A EP 01119908 A EP01119908 A EP 01119908A EP 1181992 A2 EP1181992 A2 EP 1181992A2
Authority
EP
European Patent Office
Prior art keywords
flatness
control
account
measuring
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01119908A
Other languages
German (de)
French (fr)
Other versions
EP1181992B1 (en
EP1181992A3 (en
Inventor
Jelali Mohieddine
Müller Ullrich
Thiemann Gerd
Wolff Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BFI VDEH Institut fuer Angewandte Forschung GmbH
Original Assignee
BETRIEBSFORSCHUNGSINSTITUT VDEHINSTITUT fur ANGEWANDTE FORSCHUNG GmbH
BFI VDEH Institut fuer Angewandte Forschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7653388&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1181992(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BETRIEBSFORSCHUNGSINSTITUT VDEHINSTITUT fur ANGEWANDTE FORSCHUNG GmbH, BFI VDEH Institut fuer Angewandte Forschung GmbH filed Critical BETRIEBSFORSCHUNGSINSTITUT VDEHINSTITUT fur ANGEWANDTE FORSCHUNG GmbH
Publication of EP1181992A2 publication Critical patent/EP1181992A2/en
Publication of EP1181992A3 publication Critical patent/EP1181992A3/en
Application granted granted Critical
Publication of EP1181992B1 publication Critical patent/EP1181992B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/264Calculating means; Controlling methods with key characteristics based on closed loop control
    • B65H2557/2644Calculating means; Controlling methods with key characteristics based on closed loop control characterised by PID control

Definitions

  • the invention relates to a method for measuring and / or regulating the Flatness of strips during rolling and takes the priority of the German patent application 100 41 181.9 in claim to the content Reference is made.
  • One-sided edge waves on the left or right side of the band are described by the coefficients a 1 and a 3 .
  • the coefficients a 2 and a 4 describe either symmetrical center waves or symmetrical edge waves on the left and right side of the band.
  • the coefficients a 1 and a 3 or a 2 and a 4 thus contain common information components.
  • the manipulated variables of the work roll bend are usually used to regulate components a 2 and a 4 and the hydraulic adjustments on the operator and drive side (swiveling) to eliminate the error components a 1 and a 3 .
  • the coefficients a 1 and a 3 are used for the swiveling and the coefficients a 2 and a 4 are used as the control variable for the bending.
  • the axial displacement of the work rolls is used primarily for presetting the roll gap contour and only occasionally within of the control loop in combination with the bend to correct the Quarter wave.
  • the selective multi-zone cooling of the Work rolls allow the correction of higher order flatness errors.
  • Such a regulation is, for example, from the German one Patent application DE 197 58 466 A1 known.
  • each one is specified by a setup calculation Setting the rolling force and the bending force calculates the manipulated variables.
  • Known PI controllers are used as controllers, but they do Cannot take into account dead times of the route explicitly. Hence must a weak setting of the controller gains, especially the I component, be made to control loop instabilities avoid.
  • This control system can meet the increasing quality requirements not do justice to the flatness, since the flatness control only after reached their target curve for a relatively long time. This has the consequence that a large length of tape must first be accepted, the Flatness is out of tolerance. Often, however, the target curve not at all, but only approximated, so that large marginal or Center waves can arise.
  • the components a 0 , a 1 , a 2 , a 3 and a 4 influence one another and the dead times are not taken into account, ie are not compensated for.
  • the actuator characteristics (influencing functions) are only calculated once per band and assumed to be constant, since iterative model equations are used for the calculation.
  • measurement values become predetermined sampling times supplied.
  • time-discrete Controllers for example PI controllers
  • the Sampling time is constant. If the sampling time is not kept constant, it deteriorates the control result or the control loop even becomes unstable.
  • the invention is therefore based on the object of a method to provide that the measuring and / or regulating the flatness of a Reliably enables strip during rolling. Furthermore, a device be provided for performing this method.
  • the invention is based on the idea of flatness control according to the state of the art through an orthogonal model-based Multi-size flatness control system with detection of flatness and to improve their decomposition into orthogonal components.
  • Prefers the multivariate flatness control system has a determination of Control variables by means of dynamic online optimization taking into account of manipulated variable restrictions on and a prediction of the Control variables (flatness values) based on dynamic optimization is included.
  • the prediction of the controlled variables goes beyond the dead time out.
  • the model-based predictive approach uses a prediction of the controlled variables from the first sampling step after the dead time to used for a prediction horizon. This will make everyone Optimal manipulated variables are calculated at the time, even if the time constants the individual actuators are very different. This information also advantageously go into dynamic optimization on.
  • the components can advantageously be compared with values, which provides an online-capable model of the plant.
  • the resulting one Difference can serve as a control variable and then with that in independent Components broken down flatness curve are compared.
  • the resulting system deviation can be optimally decoupled be fed to a multivariable controller.
  • the dead time is taken into account by the Internal Model Control (IMC) approach can be. This can shorten the settling time and the belt length can be reduced, which is outside the tolerance range.
  • IMC Internal Model Control
  • the method according to the invention further enables consideration the change in rolling force, thermal crowning and the incoming strip properties at each time step by a Feedforward control.
  • the method and the associated system flatness measuring systems with time-variant sampling time through an IMC (Internal Model Control) approach with a Event generator and event-triggered sample and hold elements.
  • IMC Internal Model Control
  • the components can advantageously be dismantled using orthogonal ones Polynomials, for example with the help of Chebyshew polynomials or Gram polynomials are carried out as described in W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipies in C, Cambridge University Press (1992) or A. Ralston, P. Rabinowitz: A first course in numerical analysis, International series in pure applied mathematics, McGraw-Hill (1978).
  • the flatness of the leaking sheet can be done by bending, swiveling and axial displacement of the rolls as well as by selective multi-zone cooling to be influenced.
  • the individual manipulated variables can be used with the help a multivariable controller from the control difference described above be determined.
  • the influence of the rolling force, the incoming Band properties and the thermal crowning by a Feedforward control can be compensated.
  • the flatness deviation is measured using a measuring system determined and then in orthogonal (independent) components disassembled.
  • the components are compared with values that a online-capable model of the plant delivers.
  • the resulting difference is called Controlled variable used.
  • This is then independent with the Components decomposed target flatness curve compared and the resulting Control difference is a multi-size controller, consisting of an online-capable Model and dynamic optimization with the inclusion of Manipulated variable restrictions and predicted controlled variable curve, fed.
  • variable Sampling time is an event-triggered sampling system with one with two Sample hold elements cooperating event generator provided.
  • the flatness of the leaking sheet is made by bending, swiveling and Axial displacement of the rollers and through selective multi-zone cooling affected.
  • the individual manipulated variables are controlled using a multivariable controller determined from the control difference described above.
  • the Influence of the rolling force, the incoming strip properties and the thermal Bombing compensated by a feedforward control.
  • FIG. 4b The course of the manipulated variables in FIG. 4b shows that the Multi-size flatness system according to the invention first of all bending or Swiveling appeals and then the slow cone rollers follows up to correct the flatness errors and thus at any time optimal control variables determined.
  • the current concept creates it doesn't address the tapered rollers at the necessary speed and thus correct the flatness error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Feedback Control In General (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

The system detects band flatness with a measurement system and separates the planarity error into orthogonal components. A real-time model takes all rolling process parameters into account. Another model computes planarity regulation demand values. A multi-parameter regulator regulates band planarity. Control parameters for inclusion in dynamic optimization are predicted from the dead time. Noise parameter mixing is performed. The system detects the flatness of a band with a measurement system and separates the planarity error into orthogonal components. A real-time capability model takes all parameters involved in the rolling process in to account and another model computes demand values for planarity regulation. A multi-parameter regulator regulates band planarity. Control parameters for inclusion in dynamic optimization are predicted from the dead time. Noise parameter mixing takes into account the characteristics of the incoming band, the variation of the roller force and thermal crowning. Independent claims are also included for the following: a method of measuring and/or regulating flatness in when rolling material, and a device for measuring and/or regulating the flatness of a band.

Description

Die Erfindung betrifft ein Verfahren zum Messen und/oder Regeln der Planheit von Bändern beim Walzen und nimmt die Priorität der deutschen Patentanmeldung 100 41 181.9 in Anspruch, auf die inhaltlich Bezug genommen wird.The invention relates to a method for measuring and / or regulating the Flatness of strips during rolling and takes the priority of the German patent application 100 41 181.9 in claim to the content Reference is made.

Beim Walzen von Bändern stellt es ein besonderes Problem dar, eine optimale Planheit und Form des Bandes zu erhalten. Dazu ist es vorteilhaft, daß das Vorband bereits weitgehend das vorgesehene Bandprofil besitzt und zentrisch in die Fertigstraße einläuft. Des weiteren sollten die Stichabnahmen in den einzelnen Gerüsten so erfolgen, daß in allen Gerüsten eine jeweils gleichmäßige Bandlängung über die gesamte Bandbreite erhalten wird. Darüber hinaus wird eine Verringerung der Bandlänge (im Fertigprodukt) angestrebt, deren Planheit außerhalb der Toleranz liegt. Dies gilt insbesondere für den Bandkopf und Bandfuß.It is a particular problem when rolling strips, one to maintain optimal flatness and shape of the belt. For this it is advantageous that the opening act already largely the intended strip profile owns and runs centrally into the finishing train. Furthermore, the Stitch acceptance in the individual scaffolding takes place so that in all Scaffolding an even strip elongation over the entire Bandwidth is obtained. It will also reduce Strip length (in the finished product) aimed for, the flatness outside the Tolerance lies. This applies in particular to the tape head and tape foot.

Dazu ist es bekannt, die Längenverteilung des gewalzten Blechs mittels eines Planheitsmeßsystems zu ermitteln (siehe Figur 1). Die verschiedenen Arten von Fehlern - z.B. Mittenwellen, Randwellen, Viertelwellen oder Unplanheiten höherer Ordnung- werden durch eine mathematische Analyse der gemessenen Längenverteilung bestimmt, um gezielt die geeigneten Stellglieder zur Fehlerkorrektur einzusetzen. For this purpose it is known to use the length distribution of the rolled sheet to determine a flatness measuring system (see Figure 1). The different Types of errors - e.g. Center waves, edge waves, quarter waves or higher-order non-flatness are determined by a mathematical Analysis of the measured length distribution determined to target the use suitable actuators for error correction.

Die Darstellung der Längenverteilung erfolgt mit Hilfe eines üblichen Polynoms: p(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 The length distribution is represented using a common polynomial: p ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4

Dabei werden durch die Koeffizenten a 1 und a 3 einseitige Randwellen an der linken oder rechten Seite des Bandes beschrieben. Die Koeffizienten a 2 und a 4 beschreiben entweder symmetrische Mittenwellen oder symmetrische Randwellen an der linken und rechten Seite des Bandes. Die Koeffizenten a 1 und a 3 bzw. a 2 und a 4 enthalten somit gemeinsame Informationskomponenten.One-sided edge waves on the left or right side of the band are described by the coefficients a 1 and a 3 . The coefficients a 2 and a 4 describe either symmetrical center waves or symmetrical edge waves on the left and right side of the band. The coefficients a 1 and a 3 or a 2 and a 4 thus contain common information components.

Bisher werden zumindest in den meisten praktischen Realisierungen zur Planheitsregelung primär die Koeffizienten (nachfolgend auch Komponenten genannt) a 1 und a 2 benutzt.So far, at least in most practical implementations for flatness control, primarily the coefficients (hereinafter also referred to as components) a 1 and a 2 have been used.

Für das Regeln der Planheit an der Fertigstaffel werden meist die Stell-größen der Arbeitswalzenbiegung zur Ausregelung der Komponenten a 2 und a 4 sowie die hydraulischen Anstellungen an der Bediener- und Antriebsseite (Schwenken) zur Beseitigung der Fehlerkomponenten a 1 und a 3 genutzt. Zum Zwecke der Regelung werden also für das Schwenken die Koeffienzten a 1 und a 3 und für das Biegen die Koeffiezenten a 2 und a 4 als Regelgröße verwendet.To control the flatness of the finished scale, the manipulated variables of the work roll bend are usually used to regulate components a 2 and a 4 and the hydraulic adjustments on the operator and drive side (swiveling) to eliminate the error components a 1 and a 3 . For the purpose of regulation, the coefficients a 1 and a 3 are used for the swiveling and the coefficients a 2 and a 4 are used as the control variable for the bending.

Bei einigen Walzgerüsten dient die Axialverschiebung der Arbeitswalzen vorrangig zur Voreinstellung der Walzspaltkontur und nur fallweise innerhalb des Regelkreises in Kombination mit der Biegung zur Korrektur der Viertelwellen. Schließlich kann die selektive Mehrzonenkühlung der Arbeitswalzen die Korrektur der Planheitsfehler höherer Ordnung ermöglichen. Eine derartige Regelung ist beispielsweise aus der deutschen Patentanmeldung DE 197 58 466 A1 bekannt. With some rolling stands, the axial displacement of the work rolls is used primarily for presetting the roll gap contour and only occasionally within of the control loop in combination with the bend to correct the Quarter wave. Finally, the selective multi-zone cooling of the Work rolls allow the correction of higher order flatness errors. Such a regulation is, for example, from the German one Patent application DE 197 58 466 A1 known.

Dabei werden jeweils um eine durch eine Setup-Berechung vorgegebene Einstellung der Walzkraft und der Biegekraft die Stellgrößen berechnet. Als Regler kommen bekannte PI-Regler zum Einsatz, die allerdings die Totzeiten der Strecke nicht explizit berücksichtigen können. Folglich muß eine schwache Einstellung der Reglerverstärkungen, insbesondere des I-Anteils, vorgenommen werden, um Instabilitäten des Regelkreises zu vermeiden.In this case, each one is specified by a setup calculation Setting the rolling force and the bending force calculates the manipulated variables. Known PI controllers are used as controllers, but they do Cannot take into account dead times of the route explicitly. Hence must a weak setting of the controller gains, especially the I component, be made to control loop instabilities avoid.

Dieses Regelungssystem kann den steigenden Qualitätsanforderungen an die Planheit nicht gerecht werden, da die Planheitsregelung erst nach relativ großer Zeit ihre Sollkurve erreicht. Das hat zur Folge, daß zunächst eine große Bandlänge in Kauf genommen werden muß, deren Planheit außerhalb der Toleranz liegt. Oftmals wird jedoch die Sollkurve gar nicht, sondern nur in Annäherung erreicht, so daß große Rand- bzw. Mittenwellen entstehen können.This control system can meet the increasing quality requirements not do justice to the flatness, since the flatness control only after reached their target curve for a relatively long time. This has the consequence that a large length of tape must first be accepted, the Flatness is out of tolerance. Often, however, the target curve not at all, but only approximated, so that large marginal or Center waves can arise.

Des weiteren ist es nachteilig, daß sich die Kompenten a 0, a 1, a 2, a 3 und a 4 gegenseitig beeinflussen und die Totzeiten nicht berücksichtigt, d.h. nicht kompensiert werden. Darüber hinaus werden die Stellglieder-Charakteristika (Einflußfunktionen) nur einmal pro Band berechnet und konstant angenommen, da zur Berechnung iterative Modellgleichungen verwendet werden.Furthermore, it is disadvantageous that the components a 0 , a 1 , a 2 , a 3 and a 4 influence one another and the dead times are not taken into account, ie are not compensated for. In addition, the actuator characteristics (influencing functions) are only calculated once per band and assumed to be constant, since iterative model equations are used for the calculation.

Ausgehend von der zuvor beschriebenen klassischen Planheitsregelung wurden bereits Erweiterungen des klassischen Regelungskonzeptes vorgeschlagen, um die bestehenden Nachteile teilweise zu beheben.Based on the classic flatness control described above extensions of the classic control concept have already been proposed, to partially remedy the existing disadvantages.

Eine Zerlegung der gemessenen Planheit in Richtung von Einflußfunktionen, die nicht orthogonal zu einander stehen, wird in Schneider, A.; Kern, P.; Steffens, M.: Model Supported Profile and Flatness Control Systems, Proc. of 49° Congresso Internaciona de Tecnologia Metalurgica e de Materials - International Conference, 9-14 October 1994, S±o Paulo, Vol. 6, p. 49/60 und McDonald, I. R.; Mason, J. D.: Advances in flatness control technology, Proc. of the Conf. on the Control of Profile and Flatness, 25-27 March 1996, The Institute of Materials, Birmingham, p. 161/70 beschrieben. Hierdurch können verbesserte Resultate erreicht werden, aber bei redundanten und sehr ähnlichen Stellgrößen treten aufgrund der schlechten Konditionierung des Systems (schlecht invertierbare Systeme) sehr große Stellgrößen auf. Eine sehr starke Beanspruchung kann hieraus resultieren.A decomposition of the measured flatness in the direction of influence functions, that are not orthogonal to each other is described in Schneider, A .; Kern, P .; Steffens, M .: Model Supported Profile and Flatness Control Systems, Proc. of 49 ° Congresso Internaciona de Tecnologia Metalurgica e de Materials - International Conference, 9-14 October 1994, S ± o Paulo, vol. 6, p. 49/60 and McDonald, I. R .; Mason, J.D .: Advances in flatness control technology, proc. of the conf. on the control of profile and Flatness, March 25-27, 1996, The Institute of Materials, Birmingham, p. 161/70. This can result in improved results are, but occur with redundant and very similar manipulated variables due to the poor conditioning of the system (badly invertible Systems) very large manipulated variables. A very heavy load can result from this.

In Grimble, M.J.; Fotakis, J.: The Design of Strip shape Control Systems for Sendzimir Mills, IEEE Trans. on Automatic Control 27 (1982) no. 3, p. 656/666 und Ringwood, J. V.: Shape Control Systems for Sendzimir Steel Mills, IEEE Trans. on Control Systems Tegnology 8 (2000) no. 1, p. 70/86 wird eine Planheitsregelung für Sendzimiergerüste mit einer orthogonalen Zerlegung der Planheitswerte in Chebyshev-Polynome vorgeschlagen, um die Planheitsregelung zu verbessern, dabei werden aber Totzeitkompensation und Stellgrößenbeschränkungen nicht berücksichtigt. Die Stellgrößen werden dabei mittels eines Mehrgrößenreglers bestimmt. Der Mehrgrößenregler ist nicht für eine on-line fähige dynamische Optimierung ausgelegt.In Grimble, M.J .; Fotakis, J .: The Design of Strip shape Control Systems for Sendzimir Mills, IEEE Trans. on Automatic Control 27 (1982) no. 3, p. 656/666 and Ringwood, J.V .: Shape Control Systems for Sendzimir Steel Mills, IEEE Trans. On Control Systems Tegnology 8 (2000) no. 1, p. 70/86 becomes a flatness control for Sendzimier stand with an orthogonal Proposed flatness values in Chebyshev polynomials to improve the flatness control, however Dead time compensation and manipulated variable restrictions not taken into account. The manipulated variables are controlled using a multivariable controller certainly. The multivariable controller is not for an online capable dynamic Optimization designed.

Eine Planheitsregelung mittels Beobachter und klassischem Zustandsregler wird in Hoshino, I.; Kimura, H.: Observer-based multivariable control of rolling mills, Preprints of the IFAC Workshop on Automation in Mining, Mineral and Metal Processing, 1-3 September 1998, Cologne, p. 251/256 vorgestellt. Eine Erweiterung auf nichtlineare Modelle und dynamische Optimierung ist in Pu, H.: Nern, H.-J.; Roemer, R.; Nour Eldin, H. A.; Kern, P.; Jelali, M.: State-observer design and verification towards developing an integrated flatness-thickness control system for the 20 roll sendzimir cluster mill, Proc. Intern. Conf. on Steel Rolling (Steel Rolling '98), 9-11 November 1998, The Iron and Steel Institute of Japan, Chiba, p. 124/29 und Pu, H.; Nern, H.-J.; Nour Eldin, H. A.; Jelali, M.; Totz, O.; Kern, P.: The Hardware-in-Loop simulations and on-line tests of an integrated thickness and flatness control system for the 20 rolls sendzimir cold rolling mill, Proc. Intern. Conf. on Modelling of Metal Rolling Processes, 13-15 December 1999, London, p. 208/16 zu finden. Bei diesen Lösungen wird aber keine Zerlegung der Planheit in orthogonale Polynome vorgenommen. Die Totzeiten werden auch in diesen Ansätzen nicht kompensiert.Flatness control using an observer and a classic state controller is published in Hoshino, I .; Kimura, H .: Observer-based multivariable control of rolling mills, Preprints of the IFAC Workshop on Automation in Mining, Mineral and Metal Processing, 1-3 September 1998, Cologne, p. 251/256 presented. An extension to nonlinear models and dynamic optimization is in Pu, H .: Nern, H.-J .; Roemer, R .; Nour Eldin, H. A .; Kern, P .; Jelali, M .: State-observer design and verification towards developing an integrated flatness-thickness control system for the 20 roll sendzimir cluster mill, Proc. Intern. Conf. on steel rolling (Steel Rolling '98), November 9-11, 1998, The Iron and Steel Institute of Japan, Chiba, p. 124/29 and Pu, H .; Nern, H.-J .; Nour Eldin, H. A .; Jelali, M .; Totz, O .; Kern, P .: The Hardware-in-Loop simulations and on-line tests of an integrated thickness and flatness control system for the 20 rolls sendzimir cold rolling mill, proc. Intern. Conf. on Modeling of Metal Rolling Processes, December 13-15, 1999, London, p. 208/16 to find. With these solutions, however, the flatness is not broken down into orthogonal ones Polynomials. The dead times are also in these Approaches not compensated.

Eine Verbesserung der Planheitsregelung durch Kompensation der Totzeit mittels Smith-Prädikator wird in Soda, K.; Amanuma, Y.; Tsuchii, K.; Ohno, S.; N.: Improvement in Flatness Control Response for Tandem Cold Strip Mill, Proc. Intern. Conf. on Steel Rolling (Steel Rolling '98), 9-11 November 1998, The Iron and Steel Institute of Japan, Chiba, p. 760/765 beschrieben. Dabei berechnet der Prädikator die Regelunggrößen, die im ersten Abtastschritt nach Verstreichen der Totzeit auftreten und kompensiert damit die Totzeit. Die Planheit wird entlang der Einflußfunktionen zerlegt. Bei redundanten und sehr ähnlichen Stellgrößen treten aufgrund der schlechten Konditionierung des Systems (schlecht invertierbare Systeme) sehr große Stellgrößen auf. Dadurch kann die Anlage übermäßig beansprucht werden. Im Smith-Prädikator ist ein klassischer Mehrgrößenregler (PID-Regler) integriert. Es fehlt eine dynamische Optimierung mit über die Totzeit hinausgehende Prädiktion des Regelgrößenverlaufes. Hier wird eine Regelgröße vorhergesagt, die unmittelbar im ersten Abtastschritt nach der Totzeit auftritt.An improvement in the flatness control by compensating for the dead time using the Smith Predicator, Soda, K .; Amanuma, Y .; Tsuchii, K .; Ohno, S .; N .: Improvement in Flatness Control Response for Tandem Cold Strip Mill, Proc. Intern. Conf. on Steel Rolling (Steel Rolling '98), 9-11 November 1998, The Iron and Steel Institute of Japan, Chiba, p. 760/765. The predictor calculates the control variables which occur in the first sampling step after the dead time has elapsed and thus compensates for the dead time. The flatness is along the influence functions disassembled. With redundant and very similar manipulated variables occur due to poor conditioning of the system (bad invertible systems) very large manipulated variables. This allows the Plant are overused. In the Smith predicator there is a classic one Multi-size controller (PID controller) integrated. A dynamic is missing Optimization with prediction of the beyond the dead time Controlled variable course. A controlled variable is predicted here, the occurs immediately in the first sampling step after the dead time.

In vielen herkömmlichen Planheitsmeßsystemen werden Meßwerte zu vorbestimmten Abtastzeitpunkten geliefert. Bei Verwendung von zeitdiskreten Reglern, beispielsweise PI-Reglern, wird vorausgesetzt, daß die Abtastzeit konstant ist. Wird die Abtastzeit nicht konstant gehalten, verschlechtert sich das Regelergebnis oder der Regelkreis wird sogar instabil.In many conventional flatness measurement systems, measurement values become predetermined sampling times supplied. When using time-discrete Controllers, for example PI controllers, is assumed that the Sampling time is constant. If the sampling time is not kept constant, it deteriorates the control result or the control loop even becomes unstable.

Der Erfindung liegt demnach die Aufgabe zugrunde, ein Verfahren bereitzustellen, daß das Messen und/oder Regeln der Planheit eines Bandes beim Walzen zuverlässig ermöglicht. Des weiteren soll eine Vorrichtung zur Durchführung dieses Verfahrens bereitgestellt werden.The invention is therefore based on the object of a method to provide that the measuring and / or regulating the flatness of a Reliably enables strip during rolling. Furthermore, a device be provided for performing this method.

Diese Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1, eine Vorrichtung nach Anspruch 9 und ein Planheitsregelungssystem nach Anspruch 14. Vorteilhafte Weiterentwicklungen sind Gegenstand der Unteransprüche.This object is achieved by a method according to claim 1 Apparatus according to claim 9 and a flatness control system according to Claim 14. Advantageous further developments are the subject of Dependent claims.

Der Erfindung liegt dabei der Gedanke zugrunde, die Planheitsregelung nach dem Stand der Technik durch ein orthogonales modellgestütztes Mehrgrößen-Planheits-Regelungssystem mit Erfassung der Planheit und deren Zerlegung in orthogonale Komponenten zu verbessern. Bevorzugt weist das Mehrgrößen-Planheitsregelungssystem eine Bestimmung der Stellgrößen mittels einer dynamischen Online-Optimierung unter Berücksichtigung von Stellgrößen Beschränkungen auf und eine Prädiktion der Regelgrößen (Planheitswerte) auf, die in eine dynamische Optimierung einbezogen wird. Die Prädiktion geht der Regelgrößen geht über die Totzeit hinaus. Bei dem modellbasierten prädiktiven Ansatz wird eine Vorhersage der Regelgrößen vom ersten Abtastschritt nach der Totzeit bis zu einem Prädiktionshorizont verwendet. Hierdurch werden zu jedem Zeitpunkt optimale Stellgrößen berechnet, auch wenn die Zeitkonstanten der einzelne Stellglieder stark unterschiedlich sind. Diese Informationen gehen vorteilhafterweise in die dynamische Optimierung ebenfalls mit ein.The invention is based on the idea of flatness control according to the state of the art through an orthogonal model-based Multi-size flatness control system with detection of flatness and to improve their decomposition into orthogonal components. Prefers the multivariate flatness control system has a determination of Control variables by means of dynamic online optimization taking into account of manipulated variable restrictions on and a prediction of the Control variables (flatness values) based on dynamic optimization is included. The prediction of the controlled variables goes beyond the dead time out. The model-based predictive approach uses a prediction of the controlled variables from the first sampling step after the dead time to used for a prediction horizon. This will make everyone Optimal manipulated variables are calculated at the time, even if the time constants the individual actuators are very different. This information also advantageously go into dynamic optimization on.

Vorteilhafterweise können die Komponenten mit Werten verglichen werden, die ein online-fähiges Modell der Anlage liefert. Die resultierende Differenz kann als Regelgröße dienen und anschließend mit der in unabhängige Komponenten zerlegten Sollplanheitskurve verglichen werden. Die resultierende Regeldifferenz kann über eine optimale Entkopplung einem Mehrgrößenregler zugeführt werden.The components can advantageously be compared with values, which provides an online-capable model of the plant. The resulting one Difference can serve as a control variable and then with that in independent Components broken down flatness curve are compared. The resulting system deviation can be optimally decoupled be fed to a multivariable controller.

In dem erfindungsgemäßen Verfahren ist es besonders vorteilhaft, daß die Totzeit durch den Internal Model Control (IMC) Ansatz berücksichtigt werden kann. Dadurch kann die Ausregelzeit verkürzt und die Bandlänge verringert werden, die außerhalb des Toleranzbereichs liegt.In the process according to the invention it is particularly advantageous that the dead time is taken into account by the Internal Model Control (IMC) approach can be. This can shorten the settling time and the belt length can be reduced, which is outside the tolerance range.

Durch das Zerlegen der Planheitsmeßwerte in unabhängige Komponenten können des weiteren die jeweiligen Planheitsfehler eindeutig identifiziert werden, wodurch eine deutliche Verbesserung der Regelgüte ermöglicht wird.By breaking down the flatness measurements into independent components can also clearly identify the respective flatness errors be, which significantly improves the quality of control is made possible.

Ebenso stellt es einen Vorteil dar, daß durch die orthogonale Zerlegung der Planheit die Anzahl und die Form der erforderlichen Stellgrößen bestimmbar werden.It is also an advantage that the orthogonal decomposition flatness the number and form of the required manipulated variables become determinable.

Das erfindungsgemäße Verfahren ermöglicht des weiteren die Berücksichtigung der Änderung der Walzkraft, der thermischen Bombierung und der einlaufenden Bandeigenschaften zu jedem Zeitschritt durch eine Störgrößenaufschaltung.The method according to the invention further enables consideration the change in rolling force, thermal crowning and the incoming strip properties at each time step by a Feedforward control.

Darüber hinaus hat es den Vorteil, daß es eine explizite online-Berücksichtigung der Nichtlinearitäten der Anlage durch ein parallel zur Strecke liegendes online-fähiges Modell der Anlage ermöglicht.It also has the advantage of being explicitly considered online the non-linearities of the system by a parallel to the route allows online lying model of the plant.

Vorteilhafterweise berücksichtigt das erfindungsgemäße Verfahren und das zugehörige System Planheitsmeßsysteme mit zeitvarianter Abtastzeit durch einen IMC (Internal Model Control)-Ansatz mit einem Ereignisgenerator und ereignisgetriggerten Abtasthaltegliedern. The method and the associated system flatness measuring systems with time-variant sampling time through an IMC (Internal Model Control) approach with a Event generator and event-triggered sample and hold elements.

In einer vorteilhaften Ausführungsform umfaßt das erfindungsgemäße Mehrgrößen-Planheitsregelungssystem folgende Schritte:

  • Erfassung der Planheit des Bandes mit einem Meßsystem,
  • Zerlegen der Planheitsfehler (Längenverteilung) in orthogonale Komponenten,
  • einem expliziten, linearen oder nichtlinearen online-fähigen Profil- und Planheitsmodell, das alle wesentlichen am Walzprozeß beteiligten Größen (Biegen, Schwenken, Verschieben thermische Bombierung usw.) berücksichtigt;
  • einem expliziten online-fähigen Modell, das Sollwerte für die Planheitsregelung berechnet,
  • einen Mehrgrößenregler für die Regelung der Planheit des Bandes
  • einer Prädiktion der Regelgrößen (Planheitswerte), die in die dynamische Optimierung einbezogen wird, die über die Totzeit hinausgeht,
  • einer Störgrößenaufschaltung, die die Eigenschaften des einlaufenden Bandes, die Variation von Walzkraft und thermischer Bombierung berücksichtigt und
  • einem ereignisgetriggerten Abtastsystem zur Berücksichtigung von Planheitsmeßsystemen mit variabler Abtastzeit.
In an advantageous embodiment, the multivariate flatness control system according to the invention comprises the following steps:
  • Measuring the flatness of the strip with a measuring system,
  • Breakdown of flatness errors (length distribution) into orthogonal components,
  • an explicit, linear or nonlinear online-capable profile and flatness model, which takes into account all essential variables involved in the rolling process (bending, swiveling, shifting thermal crowning, etc.);
  • an explicit online-enabled model that calculates setpoints for flatness control,
  • a multi-size controller for controlling the flatness of the strip
  • a prediction of the controlled variables (flatness values), which is included in the dynamic optimization that goes beyond the dead time,
  • a feedforward control which takes into account the properties of the incoming strip, the variation of the rolling force and thermal crowning and
  • an event-triggered sampling system to take into account flatness measuring systems with variable sampling times.

Das Zerlegen der Komponenten kann vorteilhafterweise mit orthogonalen Polynomen, beispielsweise mit Hilfe von Chebyshewpolynomen oder Gram-Polynomen erfolgen, wie sie in W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipies in C, Cambridge University Press (1992) oder A. Ralston, P. Rabinowitz: A first course in numerical analysis, International series in pure applied mathematics, McGraw-Hill (1978) beschrieben sind.The components can advantageously be dismantled using orthogonal ones Polynomials, for example with the help of Chebyshew polynomials or Gram polynomials are carried out as described in W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipies in C, Cambridge University Press (1992) or A. Ralston, P. Rabinowitz: A first course in numerical analysis, International series in pure applied mathematics, McGraw-Hill (1978).

Die Planheit des auslaufenden Bleches kann durch Biegen, Schwenken und Axialverschiebung der Walzen sowie durch selektive Mehrzonenkühlung beeinflußt werden. Die einzelnen Stellgrößen können mit Hilfe eines Mehrgrößenreglers aus oben beschriebener Regeldifferenz bestimmt werden. Dabei kann der Einfluß der Walzkraft, der einlaufenden Bandeigenschaften und der thermischen Bombierung durch eine Störgrößenaufschaltung kompensiert werden.The flatness of the leaking sheet can be done by bending, swiveling and axial displacement of the rolls as well as by selective multi-zone cooling to be influenced. The individual manipulated variables can be used with the help a multivariable controller from the control difference described above be determined. The influence of the rolling force, the incoming Band properties and the thermal crowning by a Feedforward control can be compensated.

In den nachfolgenden Abbildungen zeigen:

Fig. 1
ein Schaubild einer Planheitsregelung nach dem Stand der Technik und
Fig. 2
ein Schaubild des erfindungsgemäßen Verfahrens zur modellgestützen prädiktiven Mehrgrößen-Planheitsregelung eines Bandes mit Zerlegung der gemessenen Planheit in orthgonale Komponenten, eine Störgrößenaufschaltung und einer dynamischen Optimierung unter Berücksichtigung von Beschränkungen,
Fig. 3a
Diagramm eines Regelergebnisses bei einem herkömmlichen Regelsystem,
Fig. 3b
Diagramm eines Regelergebnisses bei einem erfindungsgemäßen Regelsystem,
Fig. 4a
Stellgrößenverlaufs-Diagramme bei einem herkömmlichen Regelungssystem,
Fig. 4b
Stellgrößenverlaufs-Diagramm bei einem erfindungsgemäßen Regelungssystem.
The following pictures show:
Fig. 1
a diagram of a flatness control according to the prior art and
Fig. 2
2 shows a diagram of the method according to the invention for model-based predictive multivariate flatness control of a strip with decomposition of the measured flatness into orthgonal components, a disturbance variable feed-in and dynamic optimization taking restrictions into account,
Fig. 3a
Diagram of a control result in a conventional control system,
Fig. 3b
Diagram of a control result in a control system according to the invention,
Fig. 4a
Control curve diagrams in a conventional control system,
Fig. 4b
Control curve diagram in a control system according to the invention.

Wie in Figur 2 dargestellt wird die Planheitsabweichung mittels eines Meßsystems bestimmt und anschließend in orthogonale (unabhängige) Komponenten zerlegt. Die Komponenten werden mit Werten verglichen, die ein online-fähiges Modell der Anlage liefert. Die resultierende Differenz wird als Regelgröße verwendet. Diese wird anschließend mit der in unabhängige Komponenten zerlegten Sollplanheitskurve verglichen und die resultierende Regeldifferenz wird einem Mehrgrößenregler, bestehend aus einem online-fähigen Modell und einer dynamischen Optimierung unter Einbeziehung von Stellgrößenbeschränkungen und vorhergesagtem Regelgrößenverlauf, zugeführt. Zur Berücksichtigung von Planheitsmeßsystemen mit variabler Abtastzeit ist ein ereignisgetriggertes Abtastsystem mit einem mit zwei Abtasthaltegliedern zusammenwirkenden Ereignisgenerator vorgesehen.As shown in Figure 2, the flatness deviation is measured using a measuring system determined and then in orthogonal (independent) components disassembled. The components are compared with values that a online-capable model of the plant delivers. The resulting difference is called Controlled variable used. This is then independent with the Components decomposed target flatness curve compared and the resulting Control difference is a multi-size controller, consisting of an online-capable Model and dynamic optimization with the inclusion of Manipulated variable restrictions and predicted controlled variable curve, fed. To take into account flatness measuring systems with variable Sampling time is an event-triggered sampling system with one with two Sample hold elements cooperating event generator provided.

Die Planheit des auslaufenden Bleches wird durch Biegen, Schwenken und Axialverschiebung der Walzen sowie durch selektive Mehrzonenkühlung beeinflußt. Die einzelnen Stellgrößen werden mit Hilfe eines Mehrgrößenreglers aus oben beschriebener Regeldifferenz bestimmt. Dabei wird der Einfluß der Walzkraft, der einlaufenden Bandeigenschaften und der thermischen Bombierung durch eine Störgrößenaufschaltung kompensiert.The flatness of the leaking sheet is made by bending, swiveling and Axial displacement of the rollers and through selective multi-zone cooling affected. The individual manipulated variables are controlled using a multivariable controller determined from the control difference described above. The Influence of the rolling force, the incoming strip properties and the thermal Bombing compensated by a feedforward control.

Beispielhaft sind die Vorteile des neuen Konzeptes gegenüber dem Stand der Technik anhand von Simulationen in Figuren 3a, 3b, 4a und 4b dargestellt. Dabei wird ein Modell eines Sendzimiergerüstes verwendet mit stark unterschiedlichen Zeitkonstanten in den Stellgliedern. Es wird ein Planheitsfehler durch falsches gegensinniges Verschieben der Konuswalzen angenommen. Das neue Konzept regelt den Planheitsfehler nach etwa 30 m Bandlänge aus (siehe Figur 3b), während bei dem jetzigen Konzept ein Restplanheitsfehler von 10 lUnits bleibt (siehe Figur 3a). Dieser Restfehler verschwindet erst nach etwa 300m Bandlänge. Die Ursache hierfür liegt darin, daß beim jetzigen Konzept keine dynamische Optimierung mit Berücksichtigung der über die Totzeit hinausgehenden und vorhergesagten Regelgrößen verwendet wird. The advantages of the new concept over the stand are exemplary the technology based on simulations in Figures 3a, 3b, 4a and 4b. A model of a Sendzimier scaffolding is used with strong different time constants in the actuators. It becomes a flatness error by incorrectly moving the cone rollers in opposite directions accepted. The new concept regulates the flatness error after about 30 m Band length off (see Figure 3b), while in the current concept Residual flatness error of 10 lunits remains (see Figure 3a). This residual error disappears only after about 300m tape length. The reason for this lies in the fact that with the current concept no dynamic optimization with Taking into account those predicted beyond the dead time Control variables is used.

An dem Verlauf der Stellgrößen in Figur 4b kann man ersehen, daß das erfindungsgemäße Mehrgrößen-Planheitssystem zunächst das Biegen bzw. Schwenken anspricht und anschließend die langsamen Konuswalzen nachfährt, um die Planheitsfehler auszuregeln und damit zu jedem Zeitpunkt optimale Stellgrößen bestimmt. Das jetzige Konzept (siehe Figur 4a) schafft es nicht die Konuswalzen mit der notwendigen Geschwindigkeit anzusprechen und damit den Planheitsfehler auszuregeln.The course of the manipulated variables in FIG. 4b shows that the Multi-size flatness system according to the invention first of all bending or Swiveling appeals and then the slow cone rollers follows up to correct the flatness errors and thus at any time optimal control variables determined. The current concept (see Figure 4a) creates it doesn't address the tapered rollers at the necessary speed and thus correct the flatness error.

Claims (16)

Verfahren zum Messen und/oder Regeln der Planheit eines Bandes beim Walzen, dadurch gekennzeichnet, daß die Meßwerte in unabhängige Komponenten zerlegt werden.Method for measuring and / or regulating the flatness of a strip during rolling, characterized in that the measured values are broken down into independent components. Verfahren zum Messen und/oder Regeln der Planheit eines Bandes beim Walzen umfassend folgende Schritte: Erfassen von Meßwerten Zerlegen der Meßwerte in unabhängige Komponenten und Regeln von Stellgrößen. Method for measuring and / or regulating the flatness of a strip during rolling, comprising the following steps: Acquisition of measured values Breaking down the measured values into independent components and Control of manipulated variables. Verfahren nach einem der Ansprüche 1 oder 2, gekennzeichnet durch eine Zerlegung der Meßwerte mit Hilfe orthogonaler Polynome.Method according to one of claims 1 or 2, characterized by a decomposition of the measured values using orthogonal polynomials. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die unabhängigen Komponenten mit Sollwerten aus einem Sollwert-Planheitsmodell verglichen werden.Method according to one of claims 1 to 3, characterized in that the independent components are compared with setpoints from a setpoint flatness model. Verfahren nach Anspruch 4, gekennzeichnet durch die Ermittlung einer Regeldifferenz zwischen Sollwerten und unabhängigen Komponenten.A method according to claim 4, characterized by the determination of a control difference between target values and independent components. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine Störgrößenaufschaltung.Method according to one of claims 1 to 5, characterized by a feedforward control. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Verwendung eines Mehrgrößenreglers. Method according to one of claims 1 to 6, characterized by the use of a multivariable controller. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Regeldifferenz dem Mehrgrößenregler über eine Entkopplung zugeführt wird.Method according to Claim 7, characterized in that the control difference is fed to the multivariable controller via a decoupling. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Stellgrößen mittels einer dynamischen Optimierung unter Berücksichtigung von Beschränkungen bestimmt werden.Method according to one of claims 1 to 8, characterized in that the manipulated variables are determined by means of dynamic optimization taking into account restrictions. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß eine über die Totzeit hinausgehende Prädiktion der Regelgrößen in die dynamische Optimierung einbezogen wird.Method according to claim 9, characterized in that a prediction of the controlled variables going beyond the dead time is included in the dynamic optimization. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zur Berücksichtigung von Meßsystemen mit zeitvarianter Abtastzeit ein IMC (Internal Mode Control)-Ansatz mit ereignisgetriggerten Abtasthaltegliedern verwendet wird.Method according to one of Claims 1 to 10, characterized in that an IMC (Internal Mode Control) approach with event-triggered sample and hold elements is used to take measuring systems with a time-variant sampling time into account. Vorrichtung zum Messen und/oder Regeln der Planheit eines Bandes, insbesondere zur Durchführung eines Verfahrens nach den Ansprüchen 1 bis 8, beim Walzen mit einem Meßsystem zum Erfassen der Planheitsabweichung (Meßwerte) und einer Einheit zum Zerlegen der Meßwerte in unabhängige Komponenten. Device for measuring and / or regulating the flatness of a strip, in particular for carrying out a method according to claims 1 to 8, when rolling with a measuring system for recording the flatness deviation (measured values) and a unit for breaking down the measured values into independent components. Vorrichtung nach Anspruch 12, gekennzeichnet durch eine Einheit zur Ermittlung einer Regeldifferenz.Apparatus according to claim 12, characterized by a unit for determining a control difference. Vorrichtung nach einem der Ansprüche 9 und 10, gekennzeichnet durch einen Mehrgrößenregler. Device according to one of claims 9 and 10, characterized by a multivariable controller. Planheitsregelungssystem mit Erfassung der Planheit des Bandes mit einem Meßsystem, Zerlegen der Planheitsfehler (Längenverteilung) in orthogonale Komponenten, einem expliziten online-fähigen Profil- und Planheitsmodell, das alle am Walzprozeß beteiligten Größen berücksichtigt, einem expliziten online-fähigen Modell, das Sollwerte für die Planheitsregelung berechnet, einen Mehrgrößenregler für die Regelung der Planheit des Bandes, einer Prädiktion der Regelgrößen (Planheitswerte), die in die dynamische Optimierung einbezogen wird, die über die Totzeit hinausgeht, sowie einer Störgrößenaufschaltung, die die Eigenschaften des einlaufenden Bandes, die Variation von Walzkraft und thermischer Bombierung berücksichtigt. Flatness control system with Measuring the flatness of the strip with a measuring system, Breakdown of flatness errors (length distribution) into orthogonal components, an explicit online-capable profile and flatness model that takes into account all sizes involved in the rolling process, an explicit online-enabled model that calculates setpoints for flatness control, a multi-size controller for controlling the flatness of the strip, a prediction of the controlled variables (flatness values), which is included in the dynamic optimization that goes beyond the dead time, and a feedforward control that takes into account the properties of the incoming strip, the variation of the rolling force and thermal crowning. System nach Anspruch 15, gekennzeichnet durch eine Berücksichtigung von Meßsystemen mit zeitvarianter Abtastzeit durch Verwendung eines IMC (Internal Model Control)-Ansatz mit ereignisgetriggerten Abtasthaltegliedern.System according to claim 15, characterized by taking measurement systems with time-variant sampling times into account by using an IMC (Internal Model Control) approach with event-triggered sample and hold elements.
EP01119908A 2000-08-18 2001-08-17 Multivariable flatness control system Revoked EP1181992B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10041181 2000-08-18
DE10041181A DE10041181A1 (en) 2000-08-18 2000-08-18 Multivariable flatness control system

Publications (3)

Publication Number Publication Date
EP1181992A2 true EP1181992A2 (en) 2002-02-27
EP1181992A3 EP1181992A3 (en) 2003-05-02
EP1181992B1 EP1181992B1 (en) 2005-10-19

Family

ID=7653388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01119908A Revoked EP1181992B1 (en) 2000-08-18 2001-08-17 Multivariable flatness control system

Country Status (5)

Country Link
US (1) US6721620B2 (en)
EP (1) EP1181992B1 (en)
JP (1) JP2002153909A (en)
AT (1) ATE306991T1 (en)
DE (2) DE10041181A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078086A1 (en) * 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness
EP1488863A2 (en) * 2003-06-20 2004-12-22 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
DE102004005011A1 (en) * 2004-01-30 2005-09-15 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Control method and controller for a rolling stand
CN103406364A (en) * 2013-07-31 2013-11-27 渤海大学 Method for predicting thickness of hot-rolled strip steel on basis of improved partial robust M-regression algorithm
CN107138540A (en) * 2017-04-06 2017-09-08 首钢总公司 The approximating method and evaluation method of a kind of strip section plate profile shape

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348177B2 (en) * 2002-11-20 2009-10-21 ポスココーポレーションリミテッド Finishing rolling abnormality diagnosis device and method
CN100333845C (en) * 2004-08-30 2007-08-29 宝山钢铁股份有限公司 Method for designing roller shape and milling roller for inhibiting higher-order wave shape
FR2879486B1 (en) * 2004-12-22 2007-04-13 Vai Clecim Sa REGULATING THE PLANEITY OF A METAL STRIP AT THE EXIT OF A ROLLER CAGE
SE529074C2 (en) * 2005-06-08 2007-04-24 Abb Ab Method and apparatus for optimizing flatness control when rolling a belt
DE102005053489C5 (en) * 2005-11-09 2008-11-06 Siemens Ag Regulatory system and regulatory procedure for an industrial facility
EP1914875B8 (en) * 2006-10-20 2019-09-11 ABB Schweiz AG Control method and motorstarter device
US7823428B1 (en) 2006-10-23 2010-11-02 Wright State University Analytical method for use in optimizing dimensional quality in hot and cold rolling mills
JP4854602B2 (en) * 2007-06-15 2012-01-18 株式会社神戸製鋼所 Method for detecting the shape of rolled material
JP5207858B2 (en) * 2008-07-08 2013-06-12 株式会社神戸製鋼所 Method for predicting temperature at the tip of rolled material
DE102008035639A1 (en) * 2008-07-31 2010-02-04 Robert Bosch Gmbh Method for modeling a control loop for a processing machine
CN102500624B (en) * 2011-10-18 2014-09-10 中冶南方工程技术有限公司 Robust optimization control system and method for straightness of cold-rolled steel strip
DE102014007381A1 (en) 2014-05-20 2015-07-23 Asinco GmbH Method for measuring and controlling the flatness of a belt produced by belt rolling
EP3461567A1 (en) * 2017-10-02 2019-04-03 Primetals Technologies Germany GmbH Flatness control with optimiser
CN109604348B (en) * 2019-01-11 2023-11-03 中冶赛迪工程技术股份有限公司 Simulation loading and integrated testing system and method for hydraulic roller bending device of plate and strip rolling mill

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775214A (en) * 1980-10-30 1982-05-11 Mitsubishi Electric Corp Controlling system for shape of strip
JPS57109512A (en) * 1980-12-26 1982-07-08 Nippon Steel Corp Rolling method
JPS6133708A (en) * 1984-07-26 1986-02-17 Mitsubishi Electric Corp Determining method of drafting schedule of continuous rolling mill
SE500100C2 (en) * 1992-06-22 1994-04-18 Asea Brown Boveri Procedure and apparatus for flatness control of strips in rolling mills
DE19758466B4 (en) 1997-03-11 2007-10-04 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Flatness control system for metal strip

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. RALSTON; P. RABINOWITZ: "International series in pure applied mathematics", 1978, MCGRAW-HILL, article "A first course in numerical analysis"
PU, H. ET AL.: "The Hardware-in-Loop simulations and on-line tests of an integrated thickness and flatness control system for the 20 rolls sendzimir cold rolling mill", PROC. INTERN. CONF. ON MODELLING OF METAL ROLLING PROCESSES, 13 December 1999 (1999-12-13), pages 208 - 16
SODA, K. ET AL.: "Improvement in Flatness Control Response for Tandem Cold Strip Mill", PROC. INTERN. CONF. ON STEEL ROLLING (STEEL ROLLING '98), 9 November 1998 (1998-11-09), pages 760 - 765
W.H. PRESS ET AL., NUMERICAL RECIPIES IN C
W.H. PRESS ET AL.: "Numerical Recipies", 1992, C, CAMBRIDGE UNIVERSITY PRESS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078086A1 (en) * 2002-03-15 2003-09-25 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness
US7031797B2 (en) 2002-03-15 2006-04-18 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness
CN1311922C (en) * 2002-03-15 2007-04-25 西门子公司 Computer-aided method for determing desired values for controlling elements of profile and surface evenness
EP1488863A2 (en) * 2003-06-20 2004-12-22 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
EP1488863A3 (en) * 2003-06-20 2006-03-15 ABB PATENT GmbH System and method for optimizing the control of the quality of thickness in a rolling process
DE102004005011A1 (en) * 2004-01-30 2005-09-15 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Control method and controller for a rolling stand
DE102004005011B4 (en) * 2004-01-30 2008-10-02 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Control method and controller for a rolling stand
CN103406364A (en) * 2013-07-31 2013-11-27 渤海大学 Method for predicting thickness of hot-rolled strip steel on basis of improved partial robust M-regression algorithm
CN107138540A (en) * 2017-04-06 2017-09-08 首钢总公司 The approximating method and evaluation method of a kind of strip section plate profile shape

Also Published As

Publication number Publication date
EP1181992B1 (en) 2005-10-19
US20020050070A1 (en) 2002-05-02
DE50107738D1 (en) 2005-11-24
DE10041181A1 (en) 2002-05-16
JP2002153909A (en) 2002-05-28
ATE306991T1 (en) 2005-11-15
EP1181992A3 (en) 2003-05-02
US6721620B2 (en) 2004-04-13

Similar Documents

Publication Publication Date Title
EP1181992B1 (en) Multivariable flatness control system
EP1763411B1 (en) Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
DE69710817T2 (en) Rolling process and rolling mill for strip to reduce edge sharpening
EP1711283B1 (en) Control method and control device for a roll stand
WO2013167366A1 (en) Method for processing rolling stock and rolling mill
DE102009043400A1 (en) Method for the model-based determination of actuator setpoints for the asymmetric actuators of the rolling mills of a hot strip mill
EP3798750B1 (en) Method for monitoring and controlling a plant for rolling metal products
EP4204166B1 (en) Flatness-measuring device, hot-rolling mill, and method for operating a flatness-measuring device
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
EP1360018B1 (en) Method and device for pre-adjusting process variables of a mill train for milling metal strips
DE3026229A1 (en) Automatic adjustment of multiple roll cold strip mill - ensuring max. output by controlling roll slip, speed and deflection
EP2483004A1 (en) Method for the model-based determination of actuator nominal values for the symmetric and asymmetric actuators of the roll stands of a hot wide strip mill
WO1998034741A1 (en) Method and device for setting the advancement of a rolled strip
EP1230992A2 (en) Method for operating a rolling-mill train and control system for a rolling-mill train
EP0005450A2 (en) Arrangement for treating the pass line height variations in a continuous rolling mill
DE102022211278B3 (en) Method and computer program for adjusting the target thickness value for regulating the thickness of a strip to be newly rolled for at least one rolling stand
DE102020210938A1 (en) System, method and computer program for optimizing target values for a process automation of a coil line, in particular a coil line for finishing metal coils
EP1448321A1 (en) Inclined position adjustment
WO2022106707A1 (en) Method for adjusting the properties of a hot-rolled strip having a specific chemical composition in a hot strip mill
DE3811847A1 (en) Method for controlling the offset of the work rolls in a rolling stand
DE102021212881A1 (en) Device and method for producing a rolled metal strip
WO2020193099A1 (en) Preventing undulations when rolling metal strips
DE102019217935A1 (en) Method for monitoring and controlling a plant for rolling metallic products
EP4130895A1 (en) Method for determining a control parameter for controlling a rolling mill
DE3331335A1 (en) Method and circuit arrangement for controlling planarity in cold-rolling mills

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RTI1 Title (correction)

Free format text: MULTIVARIABLE FLATNESS CONTROL SYSTEM

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031027

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BETRIESFORSCHUNGSINSTITUT VDEHINSTITUT FUER ANGEWA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BETRIEBSFORSCHUNGSINSTITUT VDEHINSTITUT FUER ANGEW

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ANDREAS WOLFF

Inventor name: GERD THIEMANN

Inventor name: ULLRICH MUELLER

Inventor name: MOHIEDDINE JELALI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50107738

Country of ref document: DE

Date of ref document: 20051124

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060119

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060320

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20051019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ABB AB

Effective date: 20060711

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AG ABTEILUNG CT IP MCH

Effective date: 20060719

Opponent name: ABB AB

Effective date: 20060711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061208

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060817

BERE Be: lapsed

Owner name: BETRIEBSFORSCHUNGSINSTITUT VDEH INSTITUT FUR ANGE

Effective date: 20060831

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20101005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 11