EP1181716A1 - Microwave bonding of mems component - Google Patents

Microwave bonding of mems component

Info

Publication number
EP1181716A1
EP1181716A1 EP00928252A EP00928252A EP1181716A1 EP 1181716 A1 EP1181716 A1 EP 1181716A1 EP 00928252 A EP00928252 A EP 00928252A EP 00928252 A EP00928252 A EP 00928252A EP 1181716 A1 EP1181716 A1 EP 1181716A1
Authority
EP
European Patent Office
Prior art keywords
substrate
bonding
microwave
cavity
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00928252A
Other languages
German (de)
French (fr)
Other versions
EP1181716A4 (en
Inventor
Martin B. California Inst. of Techn. Barmatz
John D. California Inst. of Techn. Mai
William T. California Inst. of Techn. Pike
Nasser K. California Inst. of Techn. Budra
Henry W. California Inst. of Techn. Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of EP1181716A1 publication Critical patent/EP1181716A1/en
Publication of EP1181716A4 publication Critical patent/EP1181716A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components

Definitions

  • Microelectrical mechanical or "MEMS” systems allow formation of physical features using semiconductor materials and processing techniques.
  • the techniques enable the physical features to have relatively small sizes.
  • a MEMS structure often requires two separated parts to become bonded. This can be difficult since too much heat can overheat and destroy delicate components.
  • Summary The present application teaches, bonding MEMS structures using selective heating feature of microwave energy.
  • a low temperature, low pressure wafer bonding can be effected e.g. in a MEMS environment.
  • Figure 1 shows a view of silicon substrates in a chamber
  • Figure 2 shows a view of a silicon wafer
  • Figure 3 shows a system for correcting for non- uniform heating
  • Figure 4 shows a heating protection element for a semiconductor wafer
  • Figure 5 shows a high speed bonding system
  • Figure 6 shows a system for processing a large sized wafer.
  • Bonding of MEMS structures has been carried out in the past using anodic bonding, thermal compression, or adhesives, such as polymer adhesives, between the layers. Other techniques have also been used. Each of these techniques has certain advantages and also its own host of limitations.
  • the present application discloses a way of bonding substrate using films such as a metal with a large imaginary dielectric constant ' ' .
  • Microwave energy causes heating effects predominately within the skin depth of such films.
  • the skin depth can be, for example, about lum.
  • This selective heating causes the skin depth in the metal film to be heated more than the parts of the metal film that are not within the skin depth.
  • This can be very useful when bonding together materials in which the metal films are thin, e.g., of comparable thickness to the skin depth.
  • the films can be less than lOum, and excellent effects are obtained when the films are less lum.
  • the metal is typically attached to a substrate, e.g., a silicon substrate.
  • the silicon substrate may include semiconductor materials, e.g. materials which can be sensitive to heat.
  • FIG. 1 This embodiment discloses bonding of two silicon substrates, each with two metal films, to each other.
  • the metal is a high E ' '
  • the MEMS device is placed in a single mode cavity 110.
  • Microwave radiation 120 is introduced into the cavity 110.
  • the microwave radiation 120 selectively heats the materials in the cavity. Most of the heating effect from the microwave is deposited in the skin depth 101 of the metal 102. Note that the skin depth can be smaller or larger than the thickness of the metal film. This effectively concentrates the deposition energy in that skin depth causing the thin metal film to rapidly heat and melt. Bonding occurs relatively quickly, with minimal heating of the substrate 104.
  • the substrate 104 is heated in the area of the gold 102 when the heat escapes from the heated gold. However, heating in the area 108 will generally be minimal due to the large heat capacity of the substrate 104.
  • the bonding process time can be short, allowing for reduced diffusion of the metallization 102 into the silicon 104.
  • the microwave bonding can be carried out with no pressure or low pressure. This means that mechanically- induced stresses can be minimized.
  • micromachining techniques may form a small cavity 130, e.g. of 0.1 to 8 microns in size.
  • the heating can hermetically seal the cavity.
  • This technique can lead to obtain leak rates at equal to or better than 3 X 10 9 atm-cc/s.
  • the microwave cavity 110 can be evacuated or the substrates to be bonded can be within a vessel such as a quartz tube, that is evacuated to form a vacuum around the substrates .
  • This technique allows bonding using microwave heating only, requiring no pressure in the bonding area beyond the weight of the substrate connections.
  • hermetic seals can be formed where the pressure in the hermetic sealed cavity would not return to atmospheric for over one year.
  • the present application uses a system disclosed herein. Two four-inch silicon wafers are used. One of those wafers is shown as 200 in Figure 2. A mask of photoresist 205 is provided to lithographically define a concentric square bond area. 150A of chromium is deposited as a first layer, followed by deposition of 1200A (0.12 m) of gold as a second layer 220. The remaining photoresist 205 is then lifted off.
  • the wafer is etched in a solution of ethylenediamene+pyrocathecol ( "EDP" ) for about 80 minutes .
  • EDP ethylenediamene+pyrocathecol
  • the wafer can then be diced to form separated parts (102/104) shown in Figure 1.
  • Microwave bonding is carried out, as shown in FIG. 1, in a cylindrical cavity 110 that may be excited by an azimuthally symmetric TM 0 ⁇ o mode at 2.45 GHz by a microwave source 122.
  • the cavity can have a 12.7 centimeter diameter.
  • the loaded Q of the empty cavity may be approximately 2500.
  • the first substrate 102 is simply placed on top of the second substrate 104 so that the deposited film patterns overlay. Microwave energy is applied in order to fuse the matching metallic parts on the two substrates .
  • the high vacuum within the cavity in many cases is desired in order to form a vacuum within the cavity 130. This vacuum can also avoid the formation of an underscrable a plasma during the bonding process .
  • the only pressure applied comes from the wafer's weight .
  • the wafers are optimally placed at the area of the highest magnetic field intensity, and are oriented so their surfaces are parallel to the magnetic field.
  • Different power-time profiles can be used. Some of these are high power and short times, e.g. a 300 watt pulse for 2-3 seconds. Others use the opposite, e.g., 30 seconds at 100 watts or less. Different time-power profiles can be used with different materials and substrate sizes and position in the cavity.
  • the hermetic seal in the cavity is maintained for over a year is quite good.
  • the cavity can be formed within silicon, it can be small, e.g. less than 5 ⁇ m in diameter, more preferably less than 1 ⁇ m which may be desirable for MEMS devices.
  • the above has disclosed bonding MEMS wafers together and forming hermetically sealed enclosures using a single mode microwave cavity.
  • the concentration of the heat on the metal films join the two surfaces together without external pressure.
  • the substrates temperature rise only slightly and due mostly to heat being transferred from the metal films.
  • Metal diffusion into the silicon substrates is relatively limited because of short film required for the bonding.
  • substrates and metallic layers such as platinum-titanium, copper, aluminum are contemplated .
  • FIG. 3 Another embodiment is shown in Figure 3. If the sample 300 is very large, e.g., greater than 10% of the size of the microwave wavelength 310, then the microwaves may actually induce a heat gradient along the substrate. For example, the microwave may have a sinusoidal shape in the cavity shown as sinusoid 310. This would mean that the heating effect would be greatest at the area 302, and somewhat less at the area 304.
  • a heat conducting plate 320 is added to either the top of the silicon wafer 300.
  • the heat plate 320 can be made of, for example, a sapphire material .
  • This system can avoid the uneven heating effect which could otherwise could not be avcfided no matter where the sample was placed in the cavity.
  • FIG. 4 Another embodiment shown in Figure 4 recognizes that some materials may actually require one or more electronic components such as a transistor and/or electrical leads shown as 400 on the silicon wafer 405.
  • the system preferentially heats the metallizations 410, 412.
  • the microwave heating may also heat the circuitry 400, especially if the circuitry 400 includes metal.
  • This system places at least one shield element 420, 422 on the substrate surface so as to block the microwave energy from penetrating the substrate and heating the component 400. This should cover about 2/3 of the surface.
  • This shield element can reduce, at least somewhat, the heating effect of the microwave energy.
  • An automation system is shown in Figure 5.
  • a number of samples, 500, 502 are placed on a conveyor element 510.
  • the conveyor element can be a set of non metallic support wires or a belt for example.
  • the conveyor element takes each of the samples into the microwave area 520, and irradiates them with microwave while they are in the area. After the irradiation, the samples can be removed from
  • Figure 6 shows a system in which two wafers to be bonded are inserted into the chamber through a slit 600 in the chamber.
  • the wafers are round and are rotated together, as shown by the arrow 610.
  • Each portion of the wafer that enters the chamber is heated during the time it is in the chamber.
  • the metallization 620 at various positions is formed of a graded material using metals of varying melting points.
  • the material towards the end 622 has a higher melting point, while the material towards the end 624 has a lower melting point.
  • the microwave energy may follow the curve 626 shown in figure 6. Therefore, more microwave energy is presented at the area 622 and less at the area 624.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material (120). This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

Description

MICROWAVE BONDING OF MEMS COMPONENT
Cross-Reference To Related Applications
This application claims benefit of U.S. Provisional Application No. 60/130,842, filed April 22, 1999.
Statement As To Federally-Sponsored Research
The U.S. Government may have certain rights in this invention pursuant. to Grant No. 7-1407 awarded by NASA.
Background
Microelectrical mechanical or "MEMS" systems allow formation of physical features using semiconductor materials and processing techniques. The techniques enable the physical features to have relatively small sizes. A MEMS structure often requires two separated parts to become bonded. This can be difficult since too much heat can overheat and destroy delicate components. Summary The present application teaches, bonding MEMS structures using selective heating feature of microwave energy. A low temperature, low pressure wafer bonding, can be effected e.g. in a MEMS environment.
Brief Description Of The Drawings
These and other aspects will now be described in detail with respect to the accompanying drawings, wherein: Figure 1 shows a view of silicon substrates in a chamber;
Figure 2 shows a view of a silicon wafer; Figure 3 shows a system for correcting for non- uniform heating; Figure 4 shows a heating protection element for a semiconductor wafer;
Figure 5 shows a high speed bonding system; and Figure 6 shows a system for processing a large sized wafer. Detailed Description
Bonding of MEMS structures has been carried out in the past using anodic bonding, thermal compression, or adhesives, such as polymer adhesives, between the layers. Other techniques have also been used. Each of these techniques has certain advantages and also its own host of limitations.
The present application discloses a way of bonding substrate using films such as a metal with a large imaginary dielectric constant ' ' . Microwave energy causes heating effects predominately within the skin depth of such films. The skin depth can be, for example, about lum.
This selective heating causes the skin depth in the metal film to be heated more than the parts of the metal film that are not within the skin depth. This can be very useful when bonding together materials in which the metal films are thin, e.g., of comparable thickness to the skin depth. The films can be less than lOum, and excellent effects are obtained when the films are less lum. The metal is typically attached to a substrate, e.g., a silicon substrate. The silicon substrate may include semiconductor materials, e.g. materials which can be sensitive to heat. An embodiment is shown in FIG. 1. This embodiment discloses bonding of two silicon substrates, each with two metal films, to each other. The metal is a high E ' '
material while the silicon substrate lower e ' ' material. The MEMS device is placed in a single mode cavity 110. Microwave radiation 120 is introduced into the cavity 110. The microwave radiation 120 selectively heats the materials in the cavity. Most of the heating effect from the microwave is deposited in the skin depth 101 of the metal 102. Note that the skin depth can be smaller or larger than the thickness of the metal film. This effectively concentrates the deposition energy in that skin depth causing the thin metal film to rapidly heat and melt. Bonding occurs relatively quickly, with minimal heating of the substrate 104. Of course, the substrate 104 is heated in the area of the gold 102 when the heat escapes from the heated gold. However, heating in the area 108 will generally be minimal due to the large heat capacity of the substrate 104. Moreover, the bonding process time can be short, allowing for reduced diffusion of the metallization 102 into the silicon 104. The microwave bonding can be carried out with no pressure or low pressure. This means that mechanically- induced stresses can be minimized.
As shown in figure 1, micromachining techniques may form a small cavity 130, e.g. of 0.1 to 8 microns in size. By surrounding this cavity with a continuous metal film, the heating can hermetically seal the cavity. This technique can lead to obtain leak rates at equal to or better than 3 X 109 atm-cc/s. The microwave cavity 110 can be evacuated or the substrates to be bonded can be within a vessel such as a quartz tube, that is evacuated to form a vacuum around the substrates .
This technique allows bonding using microwave heating only, requiring no pressure in the bonding area beyond the weight of the substrate connections.
Furthermore, in a vacuum environment, hermetic seals can be formed where the pressure in the hermetic sealed cavity would not return to atmospheric for over one year.
The present application uses a system disclosed herein. Two four-inch silicon wafers are used. One of those wafers is shown as 200 in Figure 2. A mask of photoresist 205 is provided to lithographically define a concentric square bond area. 150A of chromium is deposited as a first layer, followed by deposition of 1200A (0.12 m) of gold as a second layer 220. The remaining photoresist 205 is then lifted off.
The wafer is etched in a solution of ethylenediamene+pyrocathecol ( "EDP" ) for about 80 minutes .
This produces pits of approximately 3mm X 100 m deep. The pits are surrounded by a 2mm wide plateau of gold on all sides.
If multiple parts are formed on the wafer, the wafer can then be diced to form separated parts (102/104) shown in Figure 1.
Microwave bonding is carried out, as shown in FIG. 1, in a cylindrical cavity 110 that may be excited by an azimuthally symmetric TM0ιo mode at 2.45 GHz by a microwave source 122. The cavity can have a 12.7 centimeter diameter. The loaded Q of the empty cavity may be approximately 2500.
The first substrate 102 is simply placed on top of the second substrate 104 so that the deposited film patterns overlay. Microwave energy is applied in order to fuse the matching metallic parts on the two substrates . The high vacuum within the cavity in many cases is desired in order to form a vacuum within the cavity 130. This vacuum can also avoid the formation of an underscrable a plasma during the bonding process .
The only pressure applied comes from the wafer's weight . The wafers are optimally placed at the area of the highest magnetic field intensity, and are oriented so their surfaces are parallel to the magnetic field.
Different power-time profiles can be used. Some of these are high power and short times, e.g. a 300 watt pulse for 2-3 seconds. Others use the opposite, e.g., 30 seconds at 100 watts or less. Different time-power profiles can be used with different materials and substrate sizes and position in the cavity.
The hermetic seal in the cavity is maintained for over a year is quite good. Moreover, since the cavity can be formed within silicon, it can be small, e.g. less than 5μm in diameter, more preferably less than 1 μm which may be desirable for MEMS devices.
The above has disclosed bonding MEMS wafers together and forming hermetically sealed enclosures using a single mode microwave cavity. The concentration of the heat on the metal films join the two surfaces together without external pressure. The substrates temperature rise only slightly and due mostly to heat being transferred from the metal films. Metal diffusion into the silicon substrates is relatively limited because of short film required for the bonding.
Different combinations of substrates and metallic layers, such as platinum-titanium, copper, aluminum are contemplated .
Another embodiment is shown in Figure 3. If the sample 300 is very large, e.g., greater than 10% of the size of the microwave wavelength 310, then the microwaves may actually induce a heat gradient along the substrate. For example, the microwave may have a sinusoidal shape in the cavity shown as sinusoid 310. This would mean that the heating effect would be greatest at the area 302, and somewhat less at the area 304. A heat conducting plate 320 is added to either the top of the silicon wafer 300. The heat plate 320 can be made of, for example, a sapphire material .
This system can avoid the uneven heating effect which could otherwise could not be avcfided no matter where the sample was placed in the cavity.
Another embodiment shown in Figure 4 recognizes that some materials may actually require one or more electronic components such as a transistor and/or electrical leads shown as 400 on the silicon wafer 405. The system preferentially heats the metallizations 410, 412. The microwave heating may also heat the circuitry 400, especially if the circuitry 400 includes metal. This system places at least one shield element 420, 422 on the substrate surface so as to block the microwave energy from penetrating the substrate and heating the component 400. This should cover about 2/3 of the surface. This shield element can reduce, at least somewhat, the heating effect of the microwave energy. An automation system is shown in Figure 5. A number of samples, 500, 502 are placed on a conveyor element 510. The conveyor element can be a set of non metallic support wires or a belt for example. The conveyor element takes each of the samples into the microwave area 520, and irradiates them with microwave while they are in the area. After the irradiation, the samples can be removed from the area by moving the conveyor element .
Items can be loaded onto the conveyor 510 in advance. If vacuum is desired, the entire operation shown in Figure 5 can actually be within a vacuum.
Figure 6 shows a system in which two wafers to be bonded are inserted into the chamber through a slit 600 in the chamber. The wafers are round and are rotated together, as shown by the arrow 610. Each portion of the wafer that enters the chamber is heated during the time it is in the chamber. This allows simultaneous bonding at multiple positions larger wafers in a relatively small chamber. According to a particular embodiment, the metallization 620 at various positions is formed of a graded material using metals of varying melting points. The material towards the end 622 has a higher melting point, while the material towards the end 624 has a lower melting point. The microwave energy may follow the curve 626 shown in figure 6. Therefore, more microwave energy is presented at the area 622 and less at the area 624.
Other modifications are contemplated.

Claims

What is claimed is :
1 . A method comprising : placing a first semiconductor substrate with a first metal part against a second semiconductor substrate with a second metal part; aligning said first metal part with said second metal part; and applying microwave energy to the first and second substrates to bond the first substrate to the second substrate.
2. A method as in claim 1, wherein the first substrate is placed on top of the second substrate, and is held only by gravity during bonding.
3. A method as in claim 1, wherein said bonding includes hermetically sealing a cavity.
4. A method as in claim 3, wherein said hermetically sealing comprises hermetically sealing completely said cavity, to form a hermetically sealed cavity inside the indented part.
A method as in claim 2, wherein said metal is gold.
6. A method as in claim 5, wherein said substrate are silicon.
7. A method as in claim 1, wherein said first part has an outer surface formed of a material with a low imaginary dielectric constant e' ' .
8. A method, comprising: forming a semiconductor substrate having a semiconductor material at a first portion; forming a second material, have a metallic portion, at an outer surface of said metallic portion; and using microwave energy to bond the metallic portion to the substrate without heating the semiconductor portion significantly.
9. A method as in claim 8, wherein said first portion is held on the second portion by gravity only.
10. A method as in claim 9, wherein the first portion includes an indented portion therein, and
EP00928252A 1999-04-22 2000-04-20 Microwave bonding of mems component Withdrawn EP1181716A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13084299P 1999-04-22 1999-04-22
US130842P 1999-04-22
PCT/US2000/010685 WO2000065641A1 (en) 1999-04-22 2000-04-20 Microwave bonding of mems component

Publications (2)

Publication Number Publication Date
EP1181716A1 true EP1181716A1 (en) 2002-02-27
EP1181716A4 EP1181716A4 (en) 2006-05-24

Family

ID=22446626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00928252A Withdrawn EP1181716A4 (en) 1999-04-22 2000-04-20 Microwave bonding of mems component

Country Status (3)

Country Link
EP (1) EP1181716A4 (en)
AU (1) AU4651300A (en)
WO (1) WO2000065641A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132334A (en) * 1981-02-06 1982-08-16 Mitsubishi Electric Corp Soldering method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708170B1 (en) * 1993-07-19 1995-09-08 Innovation Dev Cie Gle Electronic circuits with very high conductivity and great finesse, their manufacturing processes, and devices comprising them.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132334A (en) * 1981-02-06 1982-08-16 Mitsubishi Electric Corp Soldering method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUDRAA N K ET AL: "LOW PRESSURE AND LOW TEMPERATURE HERMETIC WAFER BONDING USING MICROWAVE HEATING" TECHNICAL DIGEST OF THE IEEE INTERNATIONAL MEMS '99 CONFERENCE. 12TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS. ORLANDO, FL, JAN. 17 - 21, 1999, IEEE INTERNATIONAL MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE, NEW YORK, NY : IE, 17 January 1999 (1999-01-17), - 21 January 1999 (1999-01-21) pages 490-492, XP000830796 ISBN: 0-7803-5195-9 *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 230 (E-142), 16 November 1982 (1982-11-16) & JP 57 132334 A (MITSUBISHI DENKI KK), 16 August 1982 (1982-08-16) *
See also references of WO0065641A1 *

Also Published As

Publication number Publication date
WO2000065641A1 (en) 2000-11-02
WO2000065641A8 (en) 2001-05-03
AU4651300A (en) 2000-11-10
WO2000065641A9 (en) 2002-07-11
EP1181716A4 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US6905945B1 (en) Microwave bonding of MEMS component
KR102474915B1 (en) Dynamically confined nano-scale diffusion junction structures and methods
US9688533B2 (en) Using millisecond pulsed laser welding in MEMS packaging
EP2402298B1 (en) Method of fabricating a ceramic-metal junction
US7192841B2 (en) Method of wafer/substrate bonding
Budraa et al. Low pressure and low temperature hermetic wafer bonding using microwave heating
US6503368B1 (en) Substrate support having bonded sections and method
Howlader et al. Room-temperature microfluidics packaging using sequential plasma activation process
TWI681482B (en) Method and device for prefixing substrates
Tao et al. Selective bonding and encapsulation for wafer-level vacuum packaging of MEMS and related micro systems
WO2009108321A1 (en) Frit sealing using direct resistive heating
WO2016146449A1 (en) Method of temporarily supporting a wafer during dicing and rfid device
Lorenz et al. Hermetic glass frit packaging in air and vacuum with localized laser joining
US6809305B2 (en) Microwave bonding of thin film metal coated substrates
US20060027570A1 (en) Microwave bonding of MEMS component
Chen et al. Research on low-temperature anodic bonding using induction heating
EP1181716A1 (en) Microwave bonding of mems component
TW202213442A (en) Method for bonding and debonding two substrates
JP2002313890A (en) Heater member for object loaded to be heated and substrate processor using the same
WO2004010739A1 (en) Microwave bonding on thin film metal coated substrates
Barmatz et al. Microwave bonding of MEMS component
JP2006134899A (en) Bonding method and bonder
US20210260688A1 (en) Method for production of a component by atomic diffusion bonding
US20040087053A1 (en) Low cost fabrication and assembly of lid for semiconductor devices
Tao et al. Laser-assisted sealing and testing for ceramic packaging of MEMS devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20060411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060710