EP1181367A2 - Polynucleotides and membrane-bound polypeptides encoded thereby - Google Patents
Polynucleotides and membrane-bound polypeptides encoded therebyInfo
- Publication number
- EP1181367A2 EP1181367A2 EP00942669A EP00942669A EP1181367A2 EP 1181367 A2 EP1181367 A2 EP 1181367A2 EP 00942669 A EP00942669 A EP 00942669A EP 00942669 A EP00942669 A EP 00942669A EP 1181367 A2 EP1181367 A2 EP 1181367A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- novx
- nucleic acid
- polypeptide
- ofthe
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/4756—Neuregulins, i.e. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the invention relates to nucleic acids and polypeptides encoded thereby, and methods of using these nucleic acids and polypeptides.
- Eukaryotic cells are subdivided by membranes into multiple functionally distinct compartments that are referred to as organelles.
- organelles Each organelle includes proteins essential for its proper function. These proteins can include sequence motifs often referred to as sorting signals.
- the sorting signals can aid in targeting the proteins to their appropriate cellular organelle.
- sorting signals can direct some proteins to be exported, or secreted, from the cell.
- One type of sorting signal is a signal sequence, which is also referred to as a signal peptide or leader sequence.
- the signal sequence is present as an amino-terminal extension on a newly synthesized polypeptide chain
- a signal sequence can target proteins to an intracellular organelle called the endoplasmic reticulum (ER).
- the signal sequence takes part in an array of protein-protein and protein-lipid interactions that result in translocation of a polypeptide containing the signal sequence through a channel in the ER. After translocation, a membrane-bound enzyme, named a signal peptidase, liberates the mature protein from the signal sequence.
- a membrane-bound enzyme named a signal peptidase
- the ER functions to separate membrane-bound proteins and secreted proteins from proteins that remain in the cytoplasm. Once targeted to the ER, both secreted and membrane-bound proteins can be further distributed to another cellular organelle called the Golgi apparatus.
- the Golgi directs the proteins to other cellular organelles such as vesicles, lysosomes, the plasma membrane, mitochondria and microbodies.
- Secreted and membrane-bound proteins are involved in many biologically diverse activities. Examples of known secreted proteins include human insulin, interferon, interleukins, transforming growth factor-beta, human growth hormone, erythropoietin, and lymphokines. Only a limited number of genes encoding human membrane-bound and secreted proteins have been identified. SUMMARY OF THE INVENTION
- the invention is based in part on the discovery of nucleic acids that include open reading frames encoding novel polypeptides, including secreted and membrane-bound polypeptides, and on the polypeptides encoded thereby.
- the nucleic acids and polypeptides are collectively referred to herein as "NOVX".
- the invention provides an isolated nucleic acid molecule (e.g., SEQ ID NO:l, 3, 5, 7, 9 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, or 45) that encodes novel polypeptide, or a fragment, homolog, analog or derivative thereof.
- the nucleic acid can also include, e.g., a nucleic acid sequence encoding a polypeptide at least 85% identical to a polypeptide comprising the amino acid sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the nucleic acid can be, e.g., a genomic DNA fragment, or a cDNA molecule.
- Also included in the invention is a vector containing one or more ofthe nucleic acids described herein, and a cell containing the vectors or nucleic acids described herein.
- the invention is also directed to host cells transformed with a recombinant expression vector comprising any ofthe nucleic acid molecules described above.
- the invention includes a pharmaceutical composition that includes a NOVX nucleic acid and a pharmaceutically acceptable carrier or diluent.
- the invention includes a substantially purified NOVX polypeptide, e.g., any ofthe NOVX polypeptides encoded by a NOVX nucleic acid, and fragments, homologs, analogs, and derivatives thereof.
- the invention also includes a pharmaceutical composition that includes a NOVX polypeptide and a pharmaceutically acceptable carrier or diluent.
- the invention provides an antibody that binds specifically to a NOVX polypeptide.
- the antibody can be, e.g., a monoclonal or polyclonal antibody, and fragments, homologs, analogs, and derivatives thereof.
- the invention also includes a pharmaceutical composition including NOVX antibody and a pharmaceutically acceptable carrier or diluent.
- the invention is also directed to isolated antibodies that bind to an epitope on a polypeptide encoded by any ofthe nucleic acid molecules described above.
- the invention also includes kits comprising any ofthe pharmaceutical compositions described above.
- the invention further provides a method for producing a NOVX polypeptide by providing a cell containing a NOVX nucleic acid, e.g., a vector that includes a NOVX nucleic acid, and culturing the cell under conditions sufficient to express the NOVX polypeptide encoded by the nucleic acid.
- the expressed NOVX polypeptide is then recovered from the cell.
- the cell produces little or no endogenous NOVX polypeptide.
- the cell can be, e.g., a prokaryotic cell or eukaryotic cell.
- the invention is also directed to methods of identifying a NOVX polypeptide or nucleic acid in a sample by contacting the sample with a compound that specifically binds to the polypeptide or nucleic acid, and detecting complex formation, if present.
- the invention further provides methods of identifying a compound that modulates the activity of a NOVX polypeptide by contacting NOVX polypeptide with a compound and determining whether the NOVX polypeptide activity is modified.
- the invention is also directed to compounds that modulate NOVX polypeptide activity identified by contacting a NOVX polypeptide with the compound and determining whether the compound modifies activity ofthe NOVX polypeptide, binds to the NOVX polypeptide, or binds to a nucleic acid molecule encoding a NOVX polypeptide.
- the invention provides a method of determining the presence of or predisposition of a NOVX-associated disorder in a subject.
- the method includes providing a sample from the subject and measuring the amount of NOVX polypeptide in the subject sample.
- the amount of NOVX polypeptide in the subject sample is then compared to the amount of NOVX polypeptide in a control sample.
- An alteration in the amount of NOVX polypeptide in the subject protein sample relative to the amount of NOVX polypeptide in the control protein sample indicates the subject has a tissue proliferation-associated condition.
- a control sample is preferably taken from a matched individual, i.e., an individual of similar age, sex, or other general condition but who is not suspected of having a tissue proliferation- associated condition.
- the control sample may be taken from the subject at a time when the subject is not suspected of having a tissue proliferation-associated disorder.
- the NOVX is detected using a NOVX antibody.
- the invention provides a method of determining the presence of or predisposition to a NOVX-associated disorder in a subject.
- the method includes providing a nucleic acid sample, e.g., RNA or DNA, or both, from the subject and measuring the amount ofthe NOVX nucleic acid in the subject nucleic acid sample.
- the amount of NOVX nucleic acid sample in the subject nucleic acid is then compared to the amount of a NOVX nucleic acid in a control sample.
- An alteration in the amount of NOVX nucleic acid in the sample relative to the amount of NOVX in the control sample indicates the subject has a tissue proliferation-associated disorder.
- the invention provides method of treating or preventing or delaying a NOVX-associated disorder.
- the method includes administering to a subject in which such treatment or prevention or delay is desired a NOVX nucleic acid, a NOVX polypeptide, or a NOVX antibody in an amount sufficient to treat, prevent, or delay a tissue proliferation-associated disorder in the subject.
- Figure 1 depicts the expression of a secreted NOV5 protein by human embryonic kidney 293 cells.
- Figure 2 depicts the expression of a secreted NOV5 protein by E. coli cells.
- Figure 3 depicts the expression of an NOV6 protein in human embryonic kidney 293 cells.
- the invention provides novel polynucleotides and polypeptides encoded thereby.
- the polynucleotides and their encoded polypeptides can be grouped according to the functions played by their gene products. Such functions include structural proteins and proteins, which are associated with metabolic pathways fatty acid metabolism, glycolysis, intermediary metabolism, calcium metabolism, proteases, and amino acid metabolism, etc.
- NOVX nucleic acids or “NOVX polynucleotides”
- NOVX polypeptide or "NOVX protein”.
- NOVX nucleic acid according to the invention is a nucleic acid that includes a NO VI nucleic acid
- NOVX polypeptide according to the invention is a polypeptide that includes the amino acid sequence of a NOV1 polypeptide.
- NOVX is meant to refer to any ofthe NOV1-23 sequences disclosed herein. TABLE 1: SUMMARY OF THE NOVX NUCLEIC ACIDS AND THEIR ENCODED POLYPEPTIDES
- Column 1 of Table 1 provides the NOVX assignment for the novel nucleic acids and encoded polypeptides of this invention.
- Column 2 provides a clone identification number for disclosed sequences corresponding to various NOVX sequences.
- Column 3 shows the length of a disclosed NOVX nucleic acid.
- Column 4 provides information about the tissues in which NOVX sequences are expressed.
- Column 5 shows the length of the polypeptide (in amino acids) encoded by an open reading frame (“ORF") found in disclosed NOVX nucleic acid sequences.
- Columns 6 and 7 show the nucleotide position ofthe start (ATG) and stop codons, respectively, ofthe ORF.
- Column 8 contains protein similarity information for each ofthe polypeptides of the invention.
- Column 9 provides the predicted cellular localization of each polypeptide, and column 10 shows the most likely site for signal peptide cleavage.
- NOVX nucleic acids, and their encoded polypeptides, according to the invention are useful in a variety of applications and contexts.
- various NOVX nucleic acids and polypeptides according to the invention are useful based on their relatedness to previously described proteins, as summarized in Column 8 of Table 1.
- NOVX nucleic acids can also be used to identify a cell in a cell sample. For example, identification of an RNA species homologous to a given NOVX nucleic acid indicates the tissue is one of those identified in Table 1, column 4, for the given NOVX. Similarly, detection of a NOVX polypeptide in a cell sample indicates that the sample includes one or more ofthe cell types indicated in Table 1, column 4, for the particular NOVX polypeptide.
- noncoding regions are those regions of the polypeptide that do not fall within the ORF.
- noncoding regions extend from nucleotides 1-168 and nucleotides 696-836.
- the noncoding regions extend from nucleotides 1-110 and 1751-2342. From these examples, along with the information presented in Table 1, a person of ordinary skill in this art can determine the locations ofthe noncoding regions for each of NOV1-23.
- Table 2 provides explanatory information for some of the tissue types provided in Column 4 of Table 1.
- Column 1 of Table 2 identifies the tissue name. Specifically, Column 1 of Table 2 corresponds to the tissue name abbreviations used in Column 4 of Table 1.
- Column 2 of Table 2 identifies the origin ofthe particular tissue type.
- Column 3 of Table 2 provides information about any disease association connected with a particular tissue type.
- Table 3 provides the SEQ ID NOs for disclosed NOVX nucleic acid sequences and encoded polypeptide sequences according to the invention.
- Column 1 of Table 3 provides the NOVX assignment of each ofthe identified sequences, while column 2 shows a clone identification number for each NOVX sequence.
- Column 3 displays the SEQ ID NOs assigned for the disclosed NOV:l-23 nucleic acid sequences.
- Column 4 displays the SEQ ID NOs assigned to the encoded polypeptides.
- sequence of various NOVX nucleic acids and encoded polypeptides according to the invention are as follows:
- ProProGlyLysAlaLysTrpGlyTrpGlyTrpGlyTrpGlyTrpSerPhe 1126 TCCCTCCCACAGGCCTGTGTTCNTGGGGCTGCTCCCATGCAGACA
- TTCCGTAGAGCATGTGCAAAACTTTTGTGATGGATTCTAAGTGGG lSerValGluHisValGlnAsnPheCysAspGlyPhe (SEQ ID NO: 10) 1351 AAATTGTTGAAAGAAAATCGTGAATCAGGAAGGGGGAAAAGGGAC 1396 TCCCAAAAAGGGGTTGGGGGAAAAACCT (SEQ ID NO : 9 )
- MEAAPSRFMFLLFL TCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIGFFQDLEIPAVPILH SMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQ NLEDEDIESIDATKLSRFIEINSLHMVTEYNPVTV IGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAAKLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTL DDEWDTLPTAEVSVEHVQNFCDGF (SEQ ID NO: 44) NOV6 (SEQ ID NOS:ll&12)
- AAAAGGTCTCTAGGAACTTTTAGTGTCTTCCTGTAATTCTCTGTA uLysGlyLeu (SEQ ID NO: 16) 496 CATTTCCTGTGTTTCCTTATTTATTTACTGTTTGAAACATAGTCA 541 TAGTAGACAATAAATATTAAACTACGTGAAACTAGTTTAGTATTT 586 ATAATATTATAACTTATTTAGATATAATTATGTTATTATAATAAA 631 ATATGTGAAACAGCTGCTTTTGTAGGGGAAAAAGTTGAATATTGG 676 CCATTCCACATGGTTCACTGAAGAAATAATAATGTTATCATTAAG 721 TGTACTTATTGGCA (SEQ ID NO: 15)
- GlySerSerValAlaLeuAsnCysThrAlaTrpValValSerGly 361 CCCCACTGCTCCCTGCCTTCAGTCCAGTGGCTGAAAGACGGGCTT
- YsAlaSerGlyLysProGlyGluCysCysAspLeuTyrGluCysL 1081 AACCAGTTTTCGGCGTGGACTGCAGGACTGTGGAATGCCCTCCTG ysProValPheGlyValAspCysArgThrValGluCysProProV
- ValLeuGlyValProGluLysProGlnlleSerGlyPheSerSer 946 CCAGTTATGGAGGGTGACTTGATGCAGCTGACTTGCAAAACATCT
- TyrAspSerAsnGlyAsnValAlaValAlaPheValTyrTyrLys 1396 AGTATTGGTCCTTTGCTTTCATCATCTGACAACTTCTTATTGAAA
- ProCysCysPheGlyCysLeuArg (SEQ ID NO: 28) 2476 AATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCA 2521 ATGTATAAAAATGACTCATCAAATTATCCAATTATTAACTACTAG 2566 ACAAAAAGTATTTTAAATCAGTTTTTCTGTTTATGCTATAGGAAC 2611 TGTAGATAATAAGGTAAAATTATGTATCATATAGATATACTATGT 2656 TTTTCTATGTGAAATAGTTCTGTCAAAAATAGTATTGCAGATATT 2701 TGGAAAGTAATTGGTTTCTCAGGAGTGATATCACTGCACCCAAGG 2746 AAAGATTTTCTTTCT (SEQ ID NO: 27) NOV23 (SEQ ID NO:45&46)
- MetGlyPheSerGlyAsnGly 481 GTCACAATTTGTGAAGATGATAATGAATGTGGAAATTTAACTCAGTCCTGTGGCGAAAATGCTAATTGCACTAACACAGA
- GlyAlaHisIleTrpProAspAspIleThrLysTrpProIleCys 1576 ACAGAGCAGGCCAGGAGCAACCACACAGGCTTCCTGCACATGGAC
- NOVX polypeptides and nucleic acids described in Table 1 Additional utilities for NOVX nucleic acids and polypeptides according to the invention are also disclosed herein.
- a NOV1 nucleic acid molecule according to the invention includes the nucleic acid sequence (SEQ ID NO:l), which is present in clone 889240.
- SEQ ID NO:l includes 836 bp coding for a protein resembling T1/ST2, a receptor binding polypeptide.
- This nucleotide sequence has an open reading frame encoding a polypeptide of 169 amino acid residues (SEQ ID NO:2) with a predicted molecular weight of 19662.4 Da.
- the start codon is at nucleotides 189-191 and the stop codon is at nucleotides 696-698.
- the protein of SEQ ID NO:2 is predicted by the PSORT program to localize extracellularly with a certainty of 0.8200.
- the program SignalP predicts that there is a signal peptide, with the most likely cleavage site between residues 27 and 28 in the sequence AAG-FT.
- 85 of 147 residues (57%) are identical to, and 107 of 147 residues (72%) are positive with, the 227 residue human putative T1/ST2 receptor binding protein precursor (ACC:Q13445).
- the polypeptide also has 154 of 158 residues (97%) identical to, and 155 of 158 residues (98%) positive with, a 229 residue human CGI-100 protein identified by comparative gene cloning using the Caenorhabditis elegans proteome as template (SPTREMBL-ACC:Q9Y3A6).
- the protein has 154 of 158 residues (97%) identical to, and 155 of 158 residues (98%) positive with, a 229 residue human protein disclosed as having activities as a cytokine, an immune system regulator, a tissue growth regulator, a Tl receptor-like ligand II and a p24 vesicle-trafficking protein and agonist (WO9836068; WO9807754; WO9946281; and WO9931236).
- T1/ST2 is a receptor-like molecule homologous to the type I interleukin- 1 receptor. T1/ST2 is expressed constitutively and stably on the surface of T helper type 2 (Th2) cells, but not on Thl cells. T1/ST2 is also expressed on mast cells. NO VI is found in fetal liver, thyroid, fetal kidney, and spleen.
- the proteins ofthe invention encoded by a NOV1 nucleic acid sequence include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both a precursor and any active forms ofthe NOV1 protein.
- the similarity of NOV1 to a putative ligand for the Interleukin 1 Receptor-related T1/ST2 gene suggests that this novel sequence may function as a ligand for a receptor that has homology to the interleukin-1 receptor family. These receptors play an important role in the immune response system and, therefore, the novel gene can be implicated in similar receptor- ligand systems in the immune response pathway.
- the novel gene can be therapeutically used as a diagnostic or prognostic marker, protein therapeutic and antibody target or small molecule drug target to treat disorder in the immune response pathway.
- NOV2 A NOV2 nucleic acid sequence ofthe invention includes the nucleotide sequence of
- the nucleotide sequence (SEQ ID NO:3) includes an open reading frame encoding a polypeptide of 547 amino acid residues (SEQ ID NO:4).
- the open reading frame begins with a start codon at nucleotides 110-112 and ends with a stop codon at nucleotides 1751-1753.
- the protein of SEQ ID NO:4 is predicted by the PSORT program to localize in the nucleus with a certainty of 0.7000. No N-terminal signal sequence is predicted for this protein.
- the disclosed polypeptide has 188 of 342 amino acid residues (54%) identical to, and 265 of 342 (77%) residues positive with, the 674 residue protein fragment encoded in human KIAA0554 PROTEIN (ACC:O60301).
- NOV2 has 300 of 544 residues (55%) identical to, and 401 of 544 residues (73%) positive with, the 545 residue human CDC42- interacting protein 4 (AC O15184).
- the protein has 60% identity and 74% similarity over 246 residues to the 265 residue human Src homology 3 domain (SH3)-containing protein 1; and 50% identity and 67% similarity over 168 residues to the 175 residue human SH3-containing protein 2 (US Patent No. 5,916,753, issued June 29, 1999).
- SH3 human Src homology 3 domain
- Example 2 indicates that NOV2 is preferentially expressed in various tissues, including several cancer cell lines (e.g. , osteosarcoma, thyroid gland, fetal brain, placenta, pancreas, uterus, fetal lung, and in an RNA pool from adrenal gland, mammary gland, prostate gland, testis, uterus, bone marrow, melanoma, pituitary, thyroid and spleen.
- cancer cell lines e.g. , osteosarcoma, thyroid gland, fetal brain, placenta, pancreas, uterus, fetal lung, and in an RNA pool from adrenal gland, mammary gland, prostate gland, testis, uterus, bone marrow, melanoma, pituitary, thyroid and spleen.
- the proteins of the invention encoded by a NOV2 nucleic acid include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both a precursor and any active forms ofthe NOV2 protein.
- a NOV3 nucleic acid according to the invention can include the nucleic acid sequence of SEQ ID NO: 5.
- the nucleotide sequence of this clone (SEQ ID NO: 5) is 711 bp in length and has an open reading frame encoding a polypeptide of 115 amino acid residues (SEQ ID NO:6) with a predicted molecular weight of 53945.0 Da.
- the start codon of this open reading frame is at nucleotides 143-145 and the stop codon is at nucleotides 488-490.
- the protein of SEQ ID NO:6 is predicted by the PSORT program to localize to the plasma membrane with a certainty of 0.9190.
- the program SignalP predicts that there is probably a signal peptide, with the most likely cleavage site between residues 19 and 20: AQA-LD.
- the encoded polypeptide has 41 of 97 residues (42%) identical to, and 47 of 97 residues (48%) positive with, the 128 residue human E48 antigen precursor ACC:Q14210).
- the encoded polypeptide also has 111 of 116 residues (95%) identical to, and 112 of 116 residues (96%) positive with, the 117 residue human secreted protein encoded by gene 89 (WO9902546).
- NOV3 is expressed in the heart. It is also expressed in kidney, thalamus, bone marrow, adrenal gland and/or suprarenal gland, and fetal brain. Proteins provided by a NOV3 nucleic acid include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV3 protein.
- NOV4 is believed to be expressed in heart, bone marrow, spleen, and thalamus.
- a NOV4 nucleic acid ofthe invention can include the nucleotide sequence of SEQ ID NO:7. This clone is 1987 bp in length and includes an open reading frame encoding a polypeptide of 152 amino acid residues (SEQ ID NO:8). The start codon is at nucleotides 991-993 and the stop codon is at nucleotides 1447-1449.
- the protein of SEQ ID NO:8 is predicted by the PSORT program to localize to the microbody (peroxisome) with a certainty of 0.6400. There most likely is no signal peptide present.
- the disclosed NOV4 protein has 90 of 100 residues (90%) identical to, and 93 of 100 residues (93%) positive with, the 102 residue expressed sequence tag from human breast tumour-associated protein 47 (DEI 9813835).
- Proteins encoded by a NOV4 nucleic acid sequence include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus, the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV4 protein.
- NOV5 A NOV5 nucleic acid according to the invention includes 1423 nucleotides of SEQ ID NO:9. This nucleic acid encodes a novel thyroid hormone binding protein-like protein from an open reading frame (ORF) beginning with an ATG initiation codon at nucleotide 587 and ending with a stop codon at nucleotide 1343.
- the encoded polypeptide has 252 amino acid residues, which have the amino acid sequence of SEQ ID NO: 10.
- the encoded polypeptide has 75 of 224 residues (33%) identical to, and 124 of 224 residues (55%) positive with, the 510 residue bovine protein disulfide isomerase precursor (PDI) (EC 5.3.4.1) (prolyl 4- hydroxylase beta subunit) (cellular thyroid hormone binding protein) (ACC:P05307).
- the encoded polypeptide has 73 of 224 residues (32%), identical to, and 121 of 224 residues (54%) positive with, the 508 residue human protein disulfide isomerase precursor (PDI) (EC 5.3.4.1) (prolyl 4- hydroxylase beta subunit) (cellular thyroid hormone binding protein) (p55) (ACC:P07237).
- the catalytic activity of NOV5 includes the rearrangement of both intrachain and interchain disulfide bonds in proteins to form the native structures. Its subcellular location is in the endoplasmic reticulum lumen. It contains two thioredoxin domains. PSORT analysis predicts that the disclosed NOV5 polypeptide is localized in the plasma membrane with a certainty of 0.4600.
- the protein ofthe invention has a cleavable N-terminal signal sequence with the cleavage site most likely occurring between positions 25 and 26 (VAA-EV).
- VAA-EV The predicted molecular weight ofthe protein ofthe invention is 28141.9 daltons.
- the NOV5 protein differs at two positions from the proteins encoded by the NOV21 and NOV22 nucleic acid sequences described below. The disclosed NOV21 and NOV22 polypeptides are identical in sequence.
- Thyroid hormone receptors are members ofthe steroid hormone/retinoic acid receptor superfamily. Members of this family regulate homeostasis, development, and differentiation. Their transcriptional activity is modulated by the thyroid hormone 3,3', 5- triiodo-L-thyronine (T3).
- T3 5- triiodo-L-thyronine
- Lee et al., Biochem Biophys Res Commun 222(3):839-43 (1996) found that expression of, as well as insulin binding to, cellular thyroid hormone binding protein, but not insulin degrading enzyme, is increased during 3T3-L1 adipocyte differentiation.
- cellular thyroid hormone binding protein may play a role in regulating some insulin action, especially the counter-regulation occurring between insulin and other hormones during adipocyte differentiation.
- NOV5 is highly expressed in the mammary gland.
- Proteins encoded by a NOV5 nucleic acid ofthe invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV5 protein.
- NOV5 nucleic acids and proteins according to the invention are useful in potential therapeutic applications implicated in the following disorders and pathologies: diabetes, metabolic and endocrine disorders, developmental disorders, and/or other pathologies and disorders.
- a cDNA encoding the thyroid hormone binding protein-like protein may be useful in thyroid hormone binding protein therapy.
- the thyroid hormone binding protein-like protein may be useful when administered to a subject in need thereof.
- the novel nucleic acid encoding thyroid hormone binding protein-like protein, as well as the thyroid hormone binding protein-like protein ofthe invention, or fragments thereof, may further be useful in diagnostic applications, wherein the presence or amount ofthe nucleic acid or the protein need to be assessed.
- NOV21 A NOV21 nucleic acid sequence according to the invention includes the nucleic acid sequence of SEQ ID NO:41.
- the nucleotide sequence (SEQ ID NO.41) has 1918 bp and has an open reading frame encoding a polypeptide of 252 amino acid residues (SEQ ID NO:42).
- the start codon is at nucleotides 1082-1084 and the stop codon is at nucleotides 1838-1840.
- the protein of SEQ ID NO:42 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.4600.
- the program SignalP predicts that the disclosed NOV21 protein has a cleavable N-terminal signal peptide with the most likely cleavage site between residues 25 and 26: VAA-EV.
- the dislcosed NOV21 protein differs at two positions from the protein encoded by a NOV5 nucleic acid (see above) and is identical to the protein encoded by the NOV22 nucleic acid sequence (see below).
- the disclosed NOV21 polypeptide has 75 of 224 residues (33%) identical to, and 124 of 224 residues (55%) positive with, the 510 residue bovine protein disulfide isomerase precursor (PDI) (EC 5.3.4.1) (prolyl 4-hydroxylase beta subunit) (cellular thyroid hormone binding protein) (ACC:P05307).
- PDI bovine protein disulfide isomerase precursor
- NOV21 proteins according to the invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- proteins of the invention encompass both the precursors and the active forms of the NOV21 protein.
- a NOV22 nucleic acid sequence according to the invention includes the nucleic acid sequence of SEQ ID NO:43.
- the nucleotide sequence includes 1914 nucleotides. An open reading frame was identified beginning with an ATG initiation codon at nucleotides 1078- 1080 and ending with a stop codon at nucleotides 1834-1836.
- SEQ ID NO:43 is the reverse complement of the coding strand.
- the encoded polypeptide has 252 amino acid residues (SEQ ID NO:44).
- the encoded NOV22 polypeptide differs at two positions from the NOV5 protein (see above) and is identical to the NOV21 protein (see above).
- the encoded polypeptide has 125 of 224 amino acid (55 %) homology to Bos taurus protein disulfide isomerase precursor (PDI) (EC 5.3.4.1) (prolyl-4-hydroxylase beta subunit)(cellular thyroid hormone binding protein)(p55) (ACC: P05307).
- the disclosed nucleotide sequence has 395 of 694 nucleotides (56 %) identity/homology to Homo sapien disulfide isomerase precursor (PDIp) mRNA (GENBANK-ID:HSU19948
- PSORT analysis predicts the protein of the invention to be localized in the plasma membrane with a certainty of 0.4600.
- SIGNALP analysis it is predicted that the protein ofthe invention seems to have a cleavable N-term signal sequence with most likely cleavage site between positions 25 and 26: VAA-EV.
- the predicted molecular weight ofthe protein ofthe invention is 28141.9 daltons.
- NOV5, NOV21, AND NOV22 nucleic acids and proteins are expressed in primarily in pancreas and thyroid, and additionally in peripheral blood, lymph node, bone, breast, ovary, kidney, lung, heart, parathyroid, brain, bone marrow, tonsils, adrenal gland and liver.
- the NOV5, NOV21, AND NOV22 nucleic acids and proteins are useful as protein therapeutics, antibody targets, and small molecule drug targets in potential therapeutic applications to treat immunlological diseases, thyroid and metabolic diseases, bone metabolic disorders, diseases ofthe pancreas including diabetes and digestive disorders, tissue regeneration and development.
- a NOV6 nucleic acid according to the invention includes the nucleotide sequence of (SEQ ID NO:l l). This sequence is 1481 bp in length and includes an open reading frame encoding a polypeptide of 393 amino acid residues (SEQ ID NO: 12). The open reading frame includes a start codon at nucleotides 183-185 and a stop codon at nucleotides 1362-1364.
- the encoded protein of SEQ ID NO: 12 is predicted by the PSORT program to localize extracellularly with a certainty of 0.3700.
- the program SignalP predicts that the 3218715 protein has a cleavable N-terminal signal peptide with the most likely cleavage site between residues 22 and 23: TLS-KS.
- NOV6 proteins ofthe invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV6 protein.
- NOV7 was identified in pancreas. In addition, it is found in fetal brain, salivary gland, thalamus, fetal brain, spleen, heart.
- a NOV7 nucleotide sequence according to the invention includes the nucleic acid sequence of SEQ ID NO:13, which is 811 nucleotides in length.
- the disclosed nucleotide (SEQ IDNO:13) has an open reading frame encoding a polypeptide of 132 amino acid residues (SEQ ID NO: 14). The start codon is at nucleotides 91-93 and the stop codon is at nucleotides 487-489.
- the protein of SEQ ID NO: 14 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.7000.
- the program SignalP predicts that there is probably a signal peptide with the most likely cleavage site between residues 57 and 58: IVA-NI.
- the encoded polypeptide has 14 of 30 residues (46%) identical to, and 18 of 30 residues (60%) positive with, a 51 residue fragment of human rhodopsin (ACC:Q15309).
- NOV7 was identified in pancreas. It is also found in fetal brain, salivary gland, thalamus, spleen, and heart, and in a number of other normal and cancer cell lines.
- NOV7 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV7 protein.
- a NOV8 nucleic acid according to the invention includes SEQ ID NO: 15, which is 734 nucleotides in length and has an open reading frame encoding a polypeptide of 105 amino acid residues (SEQ ID NO: 16).
- the start codon ofthe open reading frame is at nucleotides 146- 148, and the stop codon is at nucleotides 461-463.
- the encoded polypeptide is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.4600.
- the program SignalP predicts that there is a low probability that there is a signal peptide.
- the encoded protein has 11 of 19 residues (57%) identical to, and 15 of 19 residues (78%) positive with, the 30 residue fragment from human interferon alpha-1 pseudogene, 5' end precursor (ACC:E158503).
- NOV8 is broadly expressed to varying extents in most normal and cancer tissues examined.
- NOV8 proteins according to the invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV8 protein.
- a NOV9 nucleic acid sequence ofthe invention includes the nucleotide sequence of SEQ IDNO:17.
- SEQ ID NO: 17 is 1659 nucleotides in length and has an open reading frame encoding a polypeptide of 410 amino acid residues (SEQ ID NO:18).
- the start codon is at nucleotides 244-246 and the stop codon is at nucleotides 1474-1476.
- the protein of SEQ ID NO: 18 is predicted by the PSORT program to localize in the Golgi body with a certainty of 0.9000.
- the program SignalP predicts that there is probably no signal peptide.
- NOV9 The encoded NOV9 protein is 27% identical to, and 47% positive with, the 570 residue human IL-1 receptor accessory protein (ACC:O14915). NOV9 is found in fetal brain, lymph node, pancreas, placenta, osteogenic sarcoma, kidney, placenta, salivary gland, fetal kidney, prostate, spleen, pancreas, hematopoietic stem cells, and fetal lung.
- ACC:O14915 human IL-1 receptor accessory protein
- NOV9 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms of the NOV9 protein.
- a NOV10 nucleic acid sequence according to the invention includes the nucleotide sequence (SEQ ID NO: 19), which is 2261 nucleotides in length.
- This nucleic acid sequence includes an open reading frame encoding a polypeptide of 732 amino acid residues (SEQ ID NO:20).
- the start codon is at nucleotides 813-815 and the stop codon is at nucleotides 3009- 3011.
- the polypeptide of SEQ ID NO:20 is predicted by the PSORT program to localize in the nucleus with a low probability.
- the program SignalP predicts that there is probably no signal peptide.
- the NOV10 protein has 257 of 701 residues (36%) identical to, and 360 of 701 residues (51%) positive with, the 884 residue hypothetical 96.8 kDa protein B0024.14 in chromosome V from Caenorhabditis elegans, (ACC:Q17429). In addition it has 142 of 529 residues (26%) identical to, and 215 of 529 residues (40%) positive with, the 810 residue human NEL-related protein (ACC.BAA11680).
- the NOV10 protein has 715 of 721 residues (99%) identical to, and 716 of 721 residues (99%) positive with, the 1036 residue human secreted protein clone djl67_19 ( WO9957132-A1.
- Example 2 infra, indicates that NOV10 is widely expressed in most cell lines examined, with high levels of expression seen in several tumor cell lines.
- NOV10 was isolated from spleen, thymus gland, heart, and adrenal gland. In addition, it is also found in brain/pituitary gland, liver, fetal liver, kidney, fetal kidney, bone, osteosarcoma, and heart.
- NOV10 proteins ofthe invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV10 protein.
- a NO VI 1 nucleic acid according to the invention includes the nucleotide sequence of SEQ ID NO:21, which is 1431 nucleotides in length. This nucleic acid was originally identified in heart tissue and includes an open reading frame encoding a NOV12 polypeptide of 381 amino acid residues (SEQ ID NO:22) from positions 69-71 to positions 1212-1214 in SEQ ID NO:21.
- the encoded protein has 74 of 134 residues (55%) identical to, and 96 of 134 residues (71%) positives with, the human GAMMA-HEREGULIN protein having 768 residues (ACC:O14667).
- the protein is predicted to localize in the endoplasmic reticulum (membrane) with a certainty of 0.8500. There appears to be no predicted N-terminal signal peptide in the sequence.
- Heregulin is also known as neu differentiation factor (NDF) or glial growth factor 2 (GGF2).
- NDF neu differentiation factor
- GGF2 glial growth factor 2
- Heregulin shows homology to the protein neurestin.
- Neurestin shows homology to members ofthe tenascin family of proteins.
- Heregulin is the ligand for HER- 2/ErbB2/NEU, a proto-oncogene receptor tyrosine kinase implicated in breast and prostate cancer progression that was originally identified in rat neuro/glioblastoma cell lines.
- the tenascins are a growing family of extracellular matrix proteins that play prominent roles in tissue interactions critical to embryogenesis. Overexpression of tenascins has been described in multiple human solid malignancies. The role ofthe tenascin family of related proteins is to regulate epithelial- stromal interactions, participate in fibronectin-dependent cell attachment and interaction. Indeed, tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al., Br J Cancer 74: 999-1004(1996)) Tenascin-C is considered a therapeutic target for certain malignant brain tumors. (Gladson, J Neuropathol Exp Neurol 58(10):1029-40(1999)).
- Neurestin is a putative transmembrane molecule implicated in neuronal development. It shows homology to a neuregulin gene product, human gamma- heregulin, a Drosophila receptor-type pair-rule gene product, Odd Oz (Odz) / Ten(m), and Ten(a). It is putatively involved in synapse formation and morphogenesis.
- a mouse neurestin homolog, DOC4 has independently been isolated from the NIH-3T3 DOC4 is also known as tenascin M (TNM), Drosophila pair-rule gene homolog containing extracellular EGF-like repeats.
- aNOVl 1 nucleic acid or it encoded polypeptide may play a role in one or more aspects of tumor cell biology that alter the interactions of tumor epithelial cells with stromal components.
- NO VI 1 may play a role in the following malignant properties: autocrine/paracrine stimulation of tumor cell proliferation; autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy; local tissue remodeling, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis; and tumor-mediated immunosuppression of T-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveillance.
- Predicted disease indications from expression profiling include a subset of human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas.
- Targeting of NOVl 1 by human or humanized monoclonal antibodies designed to disrupt predicted interactions of NOVl 1 with its cognate receptor may result in significant anti-tumor/anti-metastatic activity and the amelioration of associated symptomatology. Identification of small molecules that specifically and/or selectively interfere with downstream signaling components engaged by NOVl 1 receptor interactions would also be expected to result in significant anti-tumor/anti-metastatic activity and the amelioration of associated symptomatology.
- modified antisense ribonucleotides or antisense gene expression constructs e.g., plasmids, adeno virus, adeno- associated viruses, and "naked" DNA approaches
- mRNA messenger RNA
- the neuregulin, glial growth factor 2 diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis.
- NOVl 1 may, in addition, be a protein involved in central nervous system myelination, localization in the extracellular matrix, and induction in neuroblastoma cells. (Notterpek, et al., Dev Neurosci 16(5-6):267-78 (1994)). Otaki et al.
- neurestin is highly expressed in the brain and relatively lowly expressed in other tissues. In situ hybridization to tissue sections demonstrates that neurestin is expressed in many types of neurons, including pyramidal cells in the cerebral cortex and tufted cells in the olfactory bulb during development. In adults, neurestin is mainly expressed in olfactory and hippocampal granule cells. Nonetheless, in adults, neurestin expression can be induced in external tufted cells during regeneration of olfactory sensory neurons.
- Direct delivery of recombinant purified NOVl 1 or fragments of NOVl 1 into brain parenchymal regions may promote the regeneration repair/remyelination of injured central nervous system cells resulting from ischemia, brain trauma, and various neurodegenerative diseases. It was found that NOVl 1 is broadly expressed in brain and central nervous system cells, among others.
- NOVl 1 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus, the proteins ofthe invention encompass both the precursors and the active forms of NOVl 1 proteins.
- a NOVl 2 nucleic acid according to the invention includes the nucleotide sequence of SEQ ID NO:23, which is 2116 bp in length.
- the nucleic acid sequence includes an open reading frame encoding a polypeptide of 404 amino acid residues (SEQ ID NO:24). The start codon ofo this open reading frame is at nucleotides 517-519, and the stop codon is at nucleotides 1729-1731.
- the protein of SEQ ID NO:24 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.4600.
- the program SignalP predicts that there is probably a signal peptide with the most likely cleavage site between residues 24 and 25: AAS-KN.
- the disclosed NOVl 2 protein has 200 of 374 residues (53%) identical to, and 269 of 374 residues (71%) positive with, the 433 residue human cell adhesion molecule protein (TREMBLNEW-ACC : AAD 17540).
- the disclosed NOV12 protein has 327 of 329 residues (99%) identical to, and 327 of 329 residues (99%) positive with, the 444 residue human beta-secretase (US Patent No. 5,942,400, issued August 24, 1999).
- This enzyme is capable of cleaving the beta-amyloid precursor protein (APP) (Y33742; Swedish mutant APP), which is implicated in Alzheimer's disease.
- NOV12 was isolated from brain tissue. NOV12 is highly expressed in brain and large cell lung cancer.
- NOVl 2 RNA sequences can be isolated from brain tissue, e.g., pituatary tissue.
- NOVl 2 proteins provided by this invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both the precursors and the active forms ofthe NOVl 2 protein.
- a NOVl 3 nucleotide sequence according to the invention includes SEQ ID NO:25, which is 2862 nucleotides in length.
- SEQ ID NO:25 includes an open reading frame encoding a NOV13 polypeptide of 683 amino acid residues (SEQ ID NO:26). The start codon of this open reading frame is at nucleotides 508-510 and the stop codon is at nucleotides 2557-2559.
- the polypeptide with the amino acid sequence of SEQ ID NO:26 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.6000. The program SignalP predicts that there is probably no signal peptide.
- the encoded protein has 227 of 541 residues (41%) identical to, and 335 of 541 residues (61%) positive with, a 872 residue fragment of human KIAA0768 protein (ACC:BAA34488).
- the encoded protein has 680 of 683 residues (99%) identical to, and 682 of 683 residues (99%) positive with, the 690 residue human protein PRO228 (WO9914328-A2, published March 25, 1999).
- NOVl 3 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOVl 3 protein.
- NOV 14 and NOV23 nucleic acids are also included in the invention.
- NOV 14 and NOV23 nucleic acids according to the invention encode identical proteins that are a variant ofthe protein encoded by a NOVl 3 nucleic acid sequence.
- the protein encoded by NOV 13 includes sequences in its amino terminal region that are absent in the other two proteins.
- the disclosed NOV 14 nucleic acid sequence and NOV23 nucleic acid sequences differ in their untranslated regions.
- the encoded NOV13, NOV14 and NOV23 polypeptides have identical amino acid sequences.
- a NOV 14 nucleic acid sequence according to the invention includes the 2760 nucleotides of (SEQ ID NO:27). This nucleic acid includes an open reading frame encoding a polypeptide of 645 amino acid residues (SEQ ID NO:28). The start codon is at nucleotides 520-522 and the stop codon is at nucleotides 2455-2457.
- a NOV23 nucleic acid sequence according to the invention can include the 3081 nucleotides of SEQ ID NO:45). This open reading frame has an open reading frame encoding a polypeptide of 645 amino acid residues (SEQ ID NO:46). The start codon is at nucleotides 460-462 and the stop codon is at nucleotides 2395-2397. This encoded polypeptide has an identical amino acid sequence to the NOV14 polypeptide encoded by SEQ ID NO:26.
- NOV14 and NOV23 proteins have 643 of 645 residues (99%) identical to, and 644 of 645 residues (99%) positive with, the 690 residue human protein PRO228 (PN WO9914328.
- NOV 14 and NOV23 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- proteins ofthe invention encompass both the precursors and the active forms ofthe NOV 14 and NOV21 proteins.
- a NOV 15 nucleic acid sequence according to the invention includes the nucleotide sequence (SEQ ID NO: 29), which is 727 bp in length and includes an open reading frame encoding a polypeptide of 83 amino acid residues (SEQ ID NO:30).
- the start codon of this open reading frame is at nucleotides 312-314, and the stop codon is at nucleotides 560-562.
- the protein of SEQ ID NO:30 is predicted by the PSORT program to localize in the mitochondrial matrix space with a certainty of 0.59.
- the program SignalP predicts a moderate probability that there is a signal peptide with the most likely cleavage site between residues 25 and 26: CRT-DL.
- This protein has 10 of 36 residues (27%) identical to, and 17 of 36 residues (47%) positive with, the 84 residue human PS2 protein precursor (HP1.A) (breast cancer estrogen- inducible protein) (PNR-2) (ACC:P04155). It also has 15 of 46 residues (32%) identical to, and 25 of 46 residues (54%) positive with, the 284 residue fragment of wheat receptor- like kinase (ACC:O8111).
- the disclosed NOV 15 sequence was isolated from the pituitary gland.
- NOV 15 homologous sequences are found in the pancreas and the salivary gland.
- NOV 15 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both the precursors and the active forms ofthe NOVl 5 protein.
- a NOV 16 nucleic acid sequence according to the invention includes the nucleotide sequence (SEQ ID NO:31), which is 2741 nucleotides in length and contains an open reading frame encoding a polypeptide of 578 amino acid residues (SEQ ID NO:32).
- the start codon of this open reading frame is at nucleotides 288-290, and the stop codon is at nucleotides 2022-2024.
- the protein of SEQ ID NO:32 is predicted by the PSORT program to localize in the nucleus with a certainty of 0.8920.
- the program SignalP predicts that there is probably no signal peptide.
- the encoded protein has 37 of 43 residues (86%) identical to, and 39 of 43 residues (90%) positive with, the 80 residue fragment of human epidermal growth factor receptor-related protein (ACC : Q04842) .
- NOVl 6 expression is downregulated in many tumor cell lines compared with the corresponding normal cell lines. (See Example 2, infra)
- NOV 16 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms of the NOV 16 protein.
- NOVl 7 is a variant of NOVl 8 (discussed below), which was isolated from bone marrow. It is also found in osteosarcoma, thymus gland, fetal kidney, and lymph node.
- a NOV 17 nucleic acid according to the invention includes the nucleotide sequence of SEQ ID NO:33, which is 2596 bp and includes an open reading frame encoding a polypeptide of 708 amino acid residues (SEQ ID NO:34). The start codon of this open reading frame is at nucleotides 289-291 and the stop codon is at nucleotides 2413-2415.
- the protein of SEQ ID NO:34 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.6000.
- NOV 17 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV 17 protein. NOV18
- a NOV 18 nucleic acid according to the invention includes the nucleotide sequence of SEQ ID NO:35.
- This nucleic acid 705 nucleotides in length and includes an open reading frame encoding a polypeptide of 137 amino acid residues (SEQ ID NO:36).
- the start codon of the open reading frame is at nucleotides 135-137, and the stop codon is at nucleotides 546- 548.
- the protein of SEQ ID NO:36 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.650.
- the program SignalP predicts that there is probably a signal peptide with the most likely cleavage site between residues 52 and 53: APS- ED.
- the encoded protein has 25 of 73 residues (34%) identical to, and 36 of 73 residues (49%) positive with, the 488 residue human stromelysin-3 precursor (EC 3.4.24.-) (matrix metalloproteinase-11) (MMP-11) (ST3) (SL-3) protein (ACC:P24347).
- NOV 18 was isolated from the uterus. In addition NOV 18 is found in fetal liver, bone marrow, uterus, fetal brain, and osteogenic sarcoma.
- NOV 18 proteins according to the invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications. Thus the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV 18 protein.
- a NOV 19 nucleic acid sequence according to the invention includes the nucleotide sequence of SEQ ID NO:37.
- This nucleic acid sequence is 1150 nucleotides in length and includes an open reading frame encoding a polypeptide of 156 amino acid residues (SEQ ID NO:38).
- the protein of SEQ ID NO:38 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.6000.
- the program SignalP predicts that there is a moderate probability of a signal peptide with the most likely cleavage site between residues 58 and 59: ISA-YM.
- the encoded protein has 40 of 112 residues (35%) identical to, and 61 of 112 residues (54%>) positive with, the 152 residue human intestinal membrane A4 protein (differentiation- dependent protein A4) (ACC:Q04941).
- NOV 19 proteins include the full protein disclosed as being encoded by the ORF described herein, as well as any mature proteins arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV 19 protein.
- NOV 19 sequences are expressed in thalamus and bone marrow.
- a NOV20 nucleic acid according to the invention includes the nucleotide sequence (SEQ ID NO:39), which is 1611 nucleotides in length and includes an open reading frame encoding a polypeptide of 260 amino acid residues (SEQ ID NO:40).
- the start codon ofthe open reading frame is at nucleotides 505-507 and the stop codon is at nucleotides 1285-1287.
- the protein of SEQ ID NO:40 is predicted by the PSORT program to localize in the plasma membrane with a certainty of 0.4600.
- the program SignalP predicts that there is probably a signal peptide with the most likely cleavage site between residues 29 and 30: VVA-VP.
- the encoded protein has 73 of 204 residues (35%) identical to, and 119 of 204 residues (58%) positive with, the 595 residue F40E10.6 protein from Caenorhabditis elegans (ACC:Q19985).
- NOV20 The expression of NOV20 is widely dispersed in many tissues, e.g., the placenta. NOV20 was isolated from lymph node tissue.
- NOV20 proteins according to the invention include the full protein disclosed as being encoded by the ORF described herein, as well as any mature protein arising therefrom as a result of posttranslational modifications.
- the proteins ofthe invention encompass both the precursors and the active forms ofthe NOV20 protein.
- the novel nucleic acids of the invention include those that encode a NOVX or a NOVX-like protein, or biologically active portions thereof.
- the nucleic acids include nucleic acids encoding polypeptides that include the amino acid sequence of one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the encoded polypeptides can thus include, e.g., the amino acid sequences of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, and 42.
- a nucleic acid encoding a polypeptide having the amino acid sequence of one or more of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 includes the nucleic acid sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or a fragment thereof.
- the invention includes mutant or variant nucleic acids of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or a fragment thereof, any of whose bases may be changed from the disclosed sequence while still encoding a protein that maintains its NOVX-like activities and physiological functions.
- the invention further includes the complement ofthe nucleic acid sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, including fragments, derivatives, analogs and homolog thereof.
- the invention additionally includes nucleic acids or nucleic acid fragments, or complements thereto, whose structures include chemical modifications.
- nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNA) and fragments for use as polymerase chain reaction (PCR) primers for the amplification or mutation of NOVX nucleic acid molecules.
- nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs ofthe DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof.
- the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
- Probes refer to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as about, e.g., 6,000 nt, depending on use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligomers. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies. An "isolated" nucleic acid molecule is one that is separated from other nucleic acid molecules that are present in the natural source ofthe nucleic acid.
- isolated nucleic acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA or RNA molecules.
- an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends ofthe nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated NOVX nucleic acid molecule can contain less than about 50 kb, 25 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA ofthe cell from which the nucleic acid is derived.
- an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule ofthe present invention e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or a complement of any of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein.
- NOVX nucleic acid sequences can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et ⁇ l., eds., MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et ⁇ l., eds., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)
- a nucleic acid ofthe invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
- the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g. , using an automated DNA synthesizer.
- oligonucleotide refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction.
- a short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
- Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length.
- an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at lease 6 contiguous nucleotides of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or a complement thereof. Oligonucleotides may be chemically synthesized and may be used as probes.
- an isolated nucleic acid molecule ofthe invention comprises a nucleic acid molecule that is a complement ofthe nucleotide sequence shown in any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- an isolated nucleic acid molecule ofthe invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or a portion of this nucleotide sequence.
- a nucleic acid molecule that is complementary to the nucleotide sequence shown in any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 is one that is sufficiently complementary to the nucleotide sequence shown in of any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 that it can hydrogen bond with little or no mismatches to the nucleotide sequence shown in of any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, thereby forming a stable duplex.
- binding means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, Von der Waals, hydrophobic interactions, etc.
- a physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
- nucleic acid molecule ofthe invention can comprise only a portion of the nucleic acid sequence of any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, e.g., a fragment that can be used as a probe or primer, or a fragment encoding a biologically active portion of NOVX.
- Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence.
- Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.
- Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution.
- Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type.
- Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.
- nucleic acids or proteins ofthe invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, 85%, 90%, 95%, 98%, or even 99% identity (with a preferred identity of 80-99%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions. See e.g.
- a “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above.
- Homologous nucleotide sequences encode those sequences coding for isoforms of NOVX polypeptide. Isoforms can be expressed in different tissues ofthe same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes.
- homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to, mammals, and thus can include, e.g., mouse, rat, rabbit, dog, cat cow, horse, and other organisms.
- homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations ofthe nucleotide sequences set forth herein.
- a homologous nucleotide sequence does not, however, include the nucleotide sequence encoding human NOVX protein.
- Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 as well as a polypeptide having NOVX activity. Biological activities ofthe NOVX proteins are described below. A homologous amino acid sequence does not encode the amino acid sequence of a human NOVX polypeptide.
- the nucleotide sequence determined from the cloning ofthe human NOVX gene allows for the generation of probes and primers designed for use in identifying the cell types disclosed and/or cloning NOVX homologues in other cell types, e.g. , from other tissues, as well as NOVX homologues from other mammals.
- the probe/primer typically comprises a substantially purified oligonucleotide.
- the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 or more consecutive sense strand nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45; or an anti-sense strand nucleotide sequence of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45; or of a naturally occurring mutant of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- Probes based on the human NOVX nucleotide sequence can be used to detect transcripts or genomic sequences encoding the same or homologous proteins.
- the probe further comprises a label group attached thereto, e.g., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
- Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which misexpress a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.
- a polypeptide having a biologically active portion of NOVX refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide ofthe present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency.
- a nucleic acid fragment encoding a "biologically active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, that encodes a polypeptide having a NOVX biological activity (biological activities ofthe NOVX proteins are summarized in Table 1), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity ofthe encoded portion of NOVX.
- NOVX variants are summarized in Table 1.
- the invention further encompasses nucleic acid molecules that differ from the disclosed NOVX nucleotide sequences due to degeneracy ofthe genetic code. These nucleic acids thus encode the same NOVX protein as that encoded by the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- an isolated nucleic acid molecule ofthe invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the human NOVX nucleotide sequence shown in any of SEQ ID NO: 1 In addition to the human NOVX nucleotide sequence shown in any of SEQ ID NO: 1 ,
- DNA sequence polymorphisms that lead to changes in the amino acid sequences of NOVX may exist within a population (e.g., the human population).
- Such genetic polymorphisms in the NOVX gene may exist among individuals within a population due to natural allelic variation.
- the terms "gene” and "recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a NOVX protein, preferably a mammalian NOVX protein.
- Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence ofthe NOVX gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in NOVX that are the result of natural allelic variation and that do not alter the functional activity of NOVX are intended to be within the scope ofthe invention.
- nucleic acid molecules encoding NOVX proteins from other species and thus that have a nucleotide sequence that differs from the human sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, are intended to be within the scope ofthe invention.
- Nucleic acid molecules corresponding to natural allelic variants and homologues ofthe NOVX cDNAs ofthe invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
- an isolated nucleic acid molecule ofthe invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- the nucleic acid is at least 10, 25, 50, 100, 250, 500 or 750 nucleotides in length.
- an isolated nucleic acid molecule ofthe invention hybridizes to the coding region.
- the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.
- Homologs i.e., nucleic acids encoding NOVX proteins derived from species other than human
- other related sequences e.g., paralogs
- stringent hybridization conditions refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences.
- stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.
- Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% ofthe probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% ofthe probes are occupied at equilibrium.
- stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60°C for longer probes, primers and oligonucleotides.
- Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide. Stringent conditions are known to those skilled in the art and can be found in CURRENT
- the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other.
- a non-limiting example of stringent hybridization conditions is hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02%
- nucleic acid molecule ofthe invention that hybridizes under stringent conditions to the sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 corresponds to a naturally occurring nucleic acid molecule.
- a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
- a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided.
- moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55°C, followed by one or more washes in IX SSC, 0.1 % SDS at 37°C. Other conditions of moderate stringency that may be used are well known in the art.
- nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided.
- low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one of more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C.
- Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations).
- allelic variants ofthe NOVX sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, thereby leading to changes in the amino acid sequence ofthe encoded NOVX protein, without altering the functional ability ofthe NOVX protein.
- nucleotide substitutions leading to amino acid substitutions at "non-essential” amino acid residues can be made in the sequence of any of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- a "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of NOVX without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
- amino acid residues that are conserved among the NOVX proteins ofthe present invention are predicted to be particularly unamenable to alteration.
- a NOVX protein according to the present invention can contain at least one domain (e.g., as shown in Table 1) that is a typically conserved region in a NOVX family member. As such, these conserved domains are not likely to be amenable to mutation. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved among members ofthe NOVX family) may not be as essential for activity and thus are more likely to be amenable to alteration.
- nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity.
- NOVX proteins differ in amino acid sequence from any of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46, yet retain biological activity.
- the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 75% homologous to the amino acid sequence of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the protein encoded by the nucleic acid is at least about 80% homologous to any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46, more preferably at least about 90%, 95%, 98%, and most preferably at least about 99% homologous to any one of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 can be created by introducing one or more nucleotide substitutions, additions or deletions into the corresponding nucleotide sequence, i.e. SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
- Mutations can be introduced into SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
- conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
- a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, pro line, phenylalanine, methionine, tryptophan
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- a predicted nonessential amino acid residue in NOVX is replaced with another amino acid residue from the same side chain family.
- mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity.
- the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
- a mutant NOVX protein can be assayed for (1) the ability to form proteimprotein interactions with other NOVX proteins, other cell-surface proteins, or biologically active portions thereof, (2) complex formation between a mutant NOVX protein and a NOVX receptor; (3) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically active portion thereof; (e.g., avidin proteins); (4) the ability to bind BRA protein; or (5) the ability to specifically bind an anti-NOVX protein antibody.
- Another aspect ofthe invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45, or fragments, analogs or derivatives thereof.
- An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence.
- antisense nucleic acid molecules comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof.
- an antisense nucleic acid molecule is antisense to a "coding region" ofthe coding strand of a nucleotide sequence encoding NOVX.
- the term "coding region” refers to the region ofthe nucleotide sequence comprising codons which are translated into amino acid residues (e.g. , the protein coding region of a human NOVX that corresponds to any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
- the antisense nucleic acid molecule is •antisense to a "noncoding region" ofthe coding strand of a nucleotide sequence encoding NOVX.
- noncoding region refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
- antisense nucleic acids ofthe invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing.
- the antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion ofthe coding or noncoding region of NOVX mRNA.
- the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA.
- An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.
- An antisense nucleic acid ofthe invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisense oligonucleotide
- an antisense nucleic acid e.g., an antisense oligonucleotide
- modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1 -methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-me
- 2-methylthio-N6-isopentenyladenine 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- the antisense nucleic acid molecules ofthe invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression ofthe protein, e.g., by inhibiting transcription and/or translation.
- the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove ofthe double helix.
- An example of a route of administration of antisense nucleic acid molecules ofthe invention includes direct injection at a tissue site.
- antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
- antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens.
- the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
- the antisense nucleic acid molecule ofthe invention is an ⁇ -anomeric nucleic acid molecule.
- An -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15: 6625-6641).
- the antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBSLett 215: 327-330).
- modifications include, by way of nonlimiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability ofthe modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
- an antisense nucleic acid ofthe invention is a ribozyme.
- Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
- ribozymes e.g., hammerhead ribozymes (described in
- Haselhoff and Gerlach (1988) Nature 334:585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA.
- a ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX DNA disclosed herein (i.e., SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45).
- SEQ ID NO:l 3
- a derivative of a NOVX DNA i.e., 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- a derivative of a NOVX DNA i.e., SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45
- Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence ofthe active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742.
- NOVX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.
- NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region ofthe NOVX (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription ofthe NOVX gene in target cells.
- nucleotide sequences complementary to the regulatory region ofthe NOVX e.g., the NOVX promoter and/or enhancers
- the NOVX promoter and/or enhancers e.g., the NOVX promoter and/or enhancers
- the nucleic acids of NOVX can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility ofthe molecule.
- the deoxyribose phosphate backbone ofthe nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) BioorgMed Chem 4: 5-23).
- the terms "peptide nucleic acids” or "PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
- PNAs of NOVX can be used in therapeutic and diagnostic applications. For example,
- PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
- PNAs of NOVX can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).
- PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
- PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA.
- Such chimeras allow DNA recognition enzymes, e.g. , RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
- PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above).
- the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63.
- a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al.
- PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above).
- chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) BioorgMed Chem Lett 5: 1119-11124.
- the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134).
- peptides e.g., for targeting host cell receptors in vivo
- agents facilitating transport across the cell membrane see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987
- oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549).
- the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.
- the novel protein ofthe invention includes the NOVX-like protein whose sequence is provided in any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residue shown in FIG. 1 while still encoding a protein that maintains its NOVX-like activities and physiological functions, or a functional fragment thereof.
- the invention includes the polypeptides encoded by the variant NOVX nucleic acids described above. In the mutant or variant protein, up to 20% or more of the residues may be so changed.
- a NOVX -like variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues ofthe parent protein as well as the possibility of deleting one or more residues from the parent sequence.
- Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
- positions of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 may be substitute such that a mutant or variant protein may include one or more substitutions
- the invention also includes isolated NOVX proteins, and biologically active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies.
- native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
- NOVX proteins are produced by recombinant DNA techniques.
- a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
- an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of NOVX protein in which the protein is separated from cellular components ofthe cells from which it is isolated or recombinantly produced.
- the language "substantially free of cellular material” includes preparations of NOVX protein having less than about 30% (by dry weight) of non-NOVX protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX protein, still more preferably less than about 10% of non-NOVX protein, and most preferably less than about 5% non-NOVX protein.
- non-NOVX protein also referred to herein as a "contaminating protein”
- NOVX protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%), and most preferably less than about 5% ofthe volume ofthe protein preparation.
- the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX protein in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis ofthe protein.
- the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX protein having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.
- Biologically active portions of a NOVX protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence ofthe NOVX protein, e.g., the amino acid sequence shown in SEQ ID NO:2 that include fewer amino acids than the full length NOVX proteins, and exhibit at least one activity of a NOVX protein.
- biologically active portions comprise a domain or motif with at least one activity ofthe NOVX protein.
- a biologically active portion of a NOVX protein can be a polypeptide, which is, for example, 10, 25, 50, 100 or more amino acids in length.
- a biologically active portion of a NOVX protein of the present invention may contain at least one ofthe above-identified domains conserved between the FGF family of proteins.
- NOVX protein has an amino acid sequence shown in any of
- the NOVX protein is substantially homologous to any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 and retains the functional activity ofthe protein of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail below.
- the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous, and more preferably about 55, 65, 70, 75, 80, 85, 90, 95, 98 or even 99% homologous to the amino acid sequence of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 and retains the functional activity ofthe NOVX proteins ofthe corresponding polypeptide having the sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in either ofthe sequences being compared for optimal alignment between the sequences).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
- a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology” is equivalent to amino acid or nucleic acid "identity").
- the nucleic acid sequence homology may be determined as the degree of identity between two sequences.
- the homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch 1970 JMol Biol 48: 443-453.
- the coding region ofthe analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part ofthe DNA sequence shown in SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.
- sequence identity refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by -residue basis over a particular region of comparison.
- percentage of sequence identity is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
- substantially identical denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.
- percentage of positive residues is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical and conservative amino acid substitutions, as defined above, occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of positive residues.
- NOVX chimeric or fusion proteins As used herein, a NOVX "chimeric protein” or “fusion protein” includes a NOVX polypeptide operatively linked to a non-NOVX polypeptide.
- a “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to NOVX
- a non-NOVX polypeptide refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism.
- NOVX polypeptide can correspond to all or a portion of a NOVX protein.
- a NOVX fusion protein comprises at least one biologically active portion of a NOVX protein.
- a NOVX fusion protein comprises at least two biologically active portions of a NOVX protein.
- the term "operatively linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in- frame to each other.
- the non-NOVX polypeptide can be fused to the N-terminus or C-terminus ofthe NOVX polypeptide.
- a NOVX fusion protein comprises a NOVX polypeptide operably linked to the extracellular domain of a second protein.
- fusion proteins can be further utilized in screening assays for compounds that modulate NOVX activity (such assays are described in detail below).
- the fusion protein is a GST-NO VX fusion protein in which the NOVX sequences are fused to the C-terminus ofthe GST (i.e., glutathione S-transferase) sequences.
- GST glutathione S-transferase
- the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus.
- the native NOVX signal sequence can be removed and replaced with a signal sequence from another protein.
- expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.
- the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences comprising one or more domains are fused to sequences derived from a member ofthe immunoglobulin protein family.
- the NOVX-immunoglobulin fusion proteins ofthe invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo.
- a contemplated NOVX ligand ofthe invention is a NOVX receptor.
- the NOVX-immunoglobulin fusion proteins can be used to modulate the bioavailability of a NOVX cognate ligand. Inhibition ofthe NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.
- a NOVX chimeric or fusion protein ofthe invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN
- fusion moiety e.g., a GST polypeptide
- a NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.
- the present invention also pertains to variants ofthe NOVX proteins that function as either NOVX agonists (mimetics) or as NOVX antagonists.
- Variants ofthe NOVX protein can be generated by mutagenesis, e.g., discrete point mutation or truncation ofthe NOVX protein.
- An agonist ofthe NOVX protein can retain substantially the same, or a subset of, the biological activities ofthe naturally occurring form ofthe NOVX protein.
- An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein.
- treatment of a subject with a variant having a subset ofthe biological activities of the naturally occurring form ofthe protein has fewer side effects in a subject relative to treatment with the naturally occurring form ofthe NOVX proteins.
- Variants ofthe NOVX protein that function as either NOVX agonists (mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the NOVX protein for NOVX protein agonist or antagonist activity.
- a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
- a variegated library of NOVX variants can be produced by, for example, enzymatically li gating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein.
- a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein.
- degenerate set of genes allows for the provision, in one mixture, of all ofthe sequences encoding the desired set of potential NOVX sequences.
- Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu Rev Biochem 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucl Acid Res 11 :477.
- libraries of fragments ofthe NOVX protein coding sequence can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein.
- a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S 1 nuclease, and ligating the resulting fragment library into an expression vector.
- an expression library can be derived which encodes N-terminal and internal fragments of various sizes ofthe NOVX protein.
- Recrusive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants (Arkin and Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6:327-331).
- the invention further encompasses antibodies and antibody fragments, such as F ab or (F ab ) 2 , that bind immunospecifically to any ofthe proteins ofthe invention.
- An isolated NOVX protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind NOVX using standard techniques for polyclonal and monoclonal antibody preparation.
- Full-length NOVX protein can be used.
- the invention provides antigenic peptide fragments of NOVX for use as immunogens.
- the antigenic peptide of NOVX comprises at least 4 amino acid residues ofthe amino acid sequence shown in any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- the antigenic peptide encompasses an epitope of NOVX such that an antibody raised against the peptide forms a specific immune complex with NOVX.
- the antigenic peptide may comprise at least 6 aa residues, at least 8 aa residues, at least 10 aa residues, at least 15 aa residues, at least 20 aa residues, or at least 30 aa residues.
- the antigenic peptide comprises a polypeptide comprising at least 6 contiguous amino acids of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46.
- epitopes encompassed by the antigenic peptide are regions of NOVX that are located on the surface ofthe protein, e.g., hydrophilic regions.
- hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety.
- a NOVX protein sequence of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46, or derivatives, fragments, analogs or homologs thereof, may be utilized as immunogens in the generation of antibodies that immunospecifically-bind these protein components.
- antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen, such as NOVX.
- Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F ab and F( ab')2 fragments, and an F a b expression library.
- antibodies to human NOVX proteins are disclosed.
- Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies to a NOVX protein sequence of any of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 or derivative, fragment, analog or homolog thereof.
- an appropriate immunogenic preparation can contain, for example, recombinantly expressed NOVX protein or a chemically synthesized NOVX polypeptide.
- the preparation can further include an adjuvant.
- adjuvants used to increase the immuno logical response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), human adjuvants such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents.
- the antibody molecules directed against NOVX can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction.
- monoclonal antibody or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of NOVX.
- a monoclonal antibody composition thus typically displays a single binding affinity for a particular NOVX protein with which it immunoreacts.
- any technique that provides for the production of antibody molecules by continuous cell line culture may be utilized.
- Such techniques include, but are not limited to, the hybridoma technique (see Kohler & Milstein, 1975 Nature 256: 495-497); the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al, 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).
- Human monoclonal antibodies may be utilized in the practice ofthe present invention and may be produced by using human hybridomas (see Cote, et al., 1983.
- techniques can be adapted for the production of single-chain antibodies specific to a NOVX protein (see e.g., U.S. Patent No. 4,946,778).
- methods can be adapted for the construction of F ab expression libraries (see e.g., Huse, et al, 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F ab fragments with the desired specificity for a NOVX protein or derivatives, fragments, analogs or homologs thereof.
- Non-human antibodies can be "humanized" by techniques well known in the art. See e.g., U.S. Patent No. 5,225,539. Each ofthe above citations are incorporated herein by reference.
- Antibody fragments that contain the idiotypes to a NOVX protein may be produced by techniques known in the art including, but not limited to: ( an F (ab')2 fragment produced by pepsin digestion of an antibody molecule; (ii) an F a b fragment generated by reducing the disulfide bridges of an F (ab')2 fragment; (iii) an F ab fragment generated by the treatment ofthe antibody molecule with papain and a reducing agent and (iv) F v fragments.
- recombinant anti-NOVX antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope ofthe invention.
- Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT International Application No. PCT/US86/02269; European Patent Application No. 184,187; European Patent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No.
- methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art.
- ELISA enzyme-linked immunosorbent assay
- selection of antibodies that are specific to a particular domain of a NOVX protein is facilitated by generation of hybridomas that bind to the fragment of a NOVX protein possessing such a domain.
- Antibodies that are specific for one or more domains within a NOVX protein e.g., the domain spanning the first fifty amino-terminal residues specific to NOVX when compared to FGF-9, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
- Anti-NOVX antibodies may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels ofthe NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like).
- antibodies for NOVX proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antibody derived binding domain are utilized as pharmacologically-active compounds [hereinafter "Therapeutics"].
- An anti-NOVX antibody (e.g. , monoclonal antibody) can be used to isolate NOVX by standard techniques, such as affinity chromatography or immunoprecipitation.
- An anti-NOVX antibody can facilitate the purification of natural NOVX from cells and of recombinantly produced NOVX expressed in host cells.
- an anti-NOVX antibody can be used to detect NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression ofthe NOVX protein.
- Anti-NOVX antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen.
- Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
- suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol;
- bioluminescent materials include
- radioactive material examples include I, , 31 I, 35 S or 3 H.
- vectors preferably expression vectors, containing a nucleic acid encoding NOVX protein, or derivatives, fragments, analogs or homologs thereof.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- viral vector is another type of vector, wherein additional DNA segments can be ligated into the viral genome.
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- Other vectors e.g., non-episomal mammalian vectors
- certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are refe ⁇ ed to herein as "expression vectors".
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- plasmid and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector.
- the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
- viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
- the recombinant expression vectors ofthe invention comprise a nucleic acid ofthe invention in a form suitable for expression ofthe nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively linked to the nucleic acid sequence to be expressed.
- operably linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression ofthe nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
- Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression ofthe nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design ofthe expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
- the expression vectors ofthe invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g. , NOVX proteins, mutant forms of NOVX, fusion proteins, etc.).
- the recombinant expression vectors ofthe invention can be designed for expression of NOVX in prokaryotic or eukaryotic cells.
- NOVX can be expressed in bacterial cells such as E. coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus ofthe recombinant protein.
- Such fusion vectors typically serve three purposes: (1) to increase expression of recombinant protein; (2) to increase the solubility of the recombinant protein; and (3) to aid in the purification ofthe recombinant protein by acting as a ligand in affinity purification.
- a proteolytic cleavage site is introduced at the junction ofthe fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification ofthe fusion protein.
- enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, NJ.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
- GST glutathione S-transferase
- maltose E binding protein or protein A, respectively, to the target recombinant protein.
- suitable inducible non-fusion E include glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively.
- coli expression vectors include pTrc (Amrann et al, (1988) Gene 69:301-315) and pET 1 Id (Studier et al, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
- One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128.
- Another strategy is to alter the nucleic acid sequence ofthe nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences ofthe invention can be carried out by standard DNA synthesis techniques.
- the NOVX expression vector is a yeast expression vector.
- yeast expression vectors for expression in yeast S. cerivisae include pYepSecl (Baldari, et al., (1987) EMBO J 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al, (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif), and picZ (InVitrogen Corp, San Diego, Calif).
- NOVX can be expressed in insect cells using baculovirus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol Cell Biol 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).
- a nucleic acid ofthe invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufinan et al.
- the expression vector's control functions are often provided by viral regulatory elements.
- viral regulatory elements For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
- promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
- suitable expression systems for both prokaryotic and eukaryotic cells See, e.g., Chapters 16 and 17 of Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1989.
- the recombinant mammalian expression vector is capable of directing expression ofthe nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.
- lymphoid-specific promoters Calame and Eaton (1988) Adv Immunol 43:235-275
- promoters of T cell receptors Winoto and Baltimore (1989) EMBO J8:729-733
- immunoglobulins Bonerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748
- neuron-specific promoters e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477
- pancreas-specific promoters Edlund et al.
- mammary gland-specific promoters e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166.
- Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the ⁇ -fetoprotein promoter (Campes and Tilghman (1989) Genes Dev 3:537-546).
- the invention further provides a recombinant expression vector comprising a DNA molecule ofthe invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription ofthe DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression ofthe antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA.
- the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
- a high efficiency regulatory region the activity of which can be determined by the cell type into which the vector is introduced.
- Another aspect ofthe invention pertains to host cells into which a recombinant expression vector of the invention has been introduced.
- host cell and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell.
- a host cell can be any prokaryotic or eukaryotic cell.
- NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as
- CHO Chinese hamster ovary cells
- COS cells Other suitable host cells are known to those skilled in the art.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and
- transfection are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.
- foreign nucleic acid e.g., DNA
- a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
- selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
- Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector.
- a host cell ofthe invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein.
- the invention further provides methods for producing NOVX protein using the host cells ofthe invention.
- the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX has been introduced) in a suitable medium such that NOVX protein is produced.
- the method further comprises isolating NOVX from the medium or the host cell.
- a host cell ofthe invention is a fertilized oocyte or an embryonic stem cell into which NOVX-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX and for identifying and/or evaluating modulators of NOVX activity.
- a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more ofthe cells of the animal includes a transgene.
- Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
- a transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome ofthe mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues ofthe transgenic animal.
- a "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell ofthe animal, e.g., an embryonic cell ofthe animal, prior to development ofthe animal.
- a transgenic animal ofthe invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- the human NOVX DNA sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 can be introduced as a transgene into the genome of a non-human animal.
- a nonhuman homologue ofthe human NOVX gene such as a mouse NOVX gene
- a nonhuman homologue ofthe human NOVX gene can be isolated based on hybridization to the human NOVX cDNA (described further above) and used as a transgene.
- Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression ofthe transgene.
- a tissue-specific regulatory sequence(s) can be operably linked to the NOVX transgene to direct expression of NOVX protein to particular cells.
- transgenic founder animal can be identified based upon the presence ofthe NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells ofthe animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding NOVX can further be bred to other transgenic animals carrying other transgenes.
- a vector which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene.
- the NOVX gene can be a human gene (e.g., SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45), but more preferably, is a non-human homologue of a human NOVX gene.
- a mouse homologue of human NOVX gene of SEQ ID NO:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome.
- the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
- the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein).
- the altered portion ofthe NOVX gene is flanked at its 5' and 3' ends by additional nucleic acid ofthe NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell.
- the additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene.
- flanking DNA both at the 5' and 3' ends
- flanking DNA both at the 5' and 3' ends
- the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously recombined with the endogenous NOVX gene are selected (see e.g., Li et al. (1992) Cell 69:915).
- the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras.
- an animal e.g., a mouse
- a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
- Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells ofthe animal contain the homologously recombined DNA by germline transmission ofthe transgene.
- transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression ofthe transgene.
- a system is the cre/loxP recombinase system of bacteriophage PI.
- cre/loxP recombinase system of bacteriophage PI.
- the cre/loxP recombinase system see, e.g., Lakso et al. (1992) PNAS 89:6232-6236.
- Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355.
- a cre/loxP recombinase system is used to regulate expression ofthe transgene
- animals containing transgenes encoding both the Cre recombinase and a selected protein are required.
- Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones ofthe non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813.
- a cell e.g., a somatic cell
- the quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal ofthe same species from which the quiescent cell is isolated.
- the reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal.
- the offspring borne of this female foster animal will be a clone ofthe animal from which the cell, e.g. , the somatic cell, is isolated.
- compositions suitable for administration can be incorporated into pharmaceutical compositions suitable for administration.
- compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference.
- Such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- a pharmaceutical composition ofthe invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance ofthe required particle size in the case of dispersion and by the use of surfactants.
- Prevention ofthe action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
- Prolonged absorption ofthe injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- the active compound e.g., a NOVX protein or anti-NOVX antibody
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part ofthe composition.
- the tablets, pills, capsules, troches and the like can contain any ofthe following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
- Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms ofthe invention are dictated by and directly dependent on the unique characteristics ofthe active compound and the particular therapeutic effect to be achieved.
- the nucleic acid molecules ofthe invention can be inserted into vectors and used as gene therapy vectors.
- Gene therapy vectors can be delivered to a subject by any of a number of routes, e.g., as described in U.S. Patent Nos. 5,703,055. Delivery can thus also include, e.g., intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or stereotactic injection (see e.g., Chen et al. (1994) PN4S 91 :3054-3057).
- the pharmaceutical preparation ofthe gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
- compositions can be included in a container, pack, or dispenser together with instructions for administration.
- nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more ofthe following methods: (a) screening assays; (b) detection assays (e.g., chromosomal mapping, cell and tissue typing, forensic biology), (c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and (d) methods of treatment (e.g., therapeutic and prophylactic).
- detection assays e.g., chromosomal mapping, cell and tissue typing, forensic biology
- predictive medicine e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics
- methods of treatment e.g., therapeutic and prophylactic.
- the isolated nucleic acid molecules ofthe invention can be used to express ⁇ OVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect ⁇ OVX mR ⁇ A (e.g. , in a biological sample) or a genetic lesion in a ⁇ OVX gene, and to modulate ⁇ OVX activity, as described further below.
- the ⁇ OVX proteins can be used to screen drugs or compounds that modulate the NOVX activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein, for example proliferative or differentiative disorders, or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild type protein.
- the anti-NOVX antibodies ofthe invention can be used to detect and isolate NOVX proteins and modulate NOVX activity.
- This invention further pertains to novel agents identified by the above described screening assays and uses thereof for treatments as described herein.
- the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, for example, NOVX expression or NOVX activity.
- modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, for example, NOVX expression or NOVX activity.
- the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a NOVX protein or polypeptide or biologically active portion thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04017461A EP1469073A3 (en) | 1999-06-03 | 2000-06-01 | Polynucleotides and membrane-bound polypeptides encoded thereby |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13732299P | 1999-06-03 | 1999-06-03 | |
US137322P | 1999-06-03 | ||
US18981000P | 2000-03-16 | 2000-03-16 | |
US189810P | 2000-03-16 | ||
US19115800P | 2000-03-22 | 2000-03-22 | |
US191158P | 2000-03-22 | ||
US19308600P | 2000-03-30 | 2000-03-30 | |
US193086P | 2000-03-30 | ||
US20138800P | 2000-05-03 | 2000-05-03 | |
US58441100A | 2000-05-31 | 2000-05-31 | |
PCT/US2000/015303 WO2000075321A2 (en) | 1999-06-03 | 2000-06-01 | Polynucleotides and membrane-bound polypeptide encoded thereby |
2003-12-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04017461A Division EP1469073A3 (en) | 1999-06-03 | 2000-06-01 | Polynucleotides and membrane-bound polypeptides encoded thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1181367A2 true EP1181367A2 (en) | 2002-02-27 |
Family
ID=27558209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00942669A Withdrawn EP1181367A2 (en) | 1999-06-03 | 2000-06-01 | Polynucleotides and membrane-bound polypeptides encoded thereby |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1181367A2 (ja) |
JP (1) | JP2004527202A (ja) |
AU (1) | AU783811B2 (ja) |
-
2000
- 2000-06-01 JP JP2001502584A patent/JP2004527202A/ja active Pending
- 2000-06-01 AU AU57262/00A patent/AU783811B2/en not_active Ceased
- 2000-06-01 EP EP00942669A patent/EP1181367A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0075321A2 * |
Also Published As
Publication number | Publication date |
---|---|
AU5726200A (en) | 2000-12-28 |
JP2004527202A (ja) | 2004-09-09 |
AU783811B2 (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060257882A1 (en) | Novel polynuceotides and polypeptides encoded thereby | |
AU766279B2 (en) | Novel secreted proteins and polynucleotides encoding them | |
WO2001090366A2 (en) | Human polynucleotides and polypeptides encoded thereby | |
US6942992B2 (en) | Nucleic acid sequences encoding human slit-, megf-, and roundabout-like polypeptides | |
AU2005200105A1 (en) | Novel Polynucleotides and Polypeptides Encoded Thereby | |
US20030003462A1 (en) | Novel human interleukin-like proteins and polynucleotides encoding them | |
WO2000075321A2 (en) | Polynucleotides and membrane-bound polypeptide encoded thereby | |
US20030017457A1 (en) | Novel polynucleotides and polypeptides encoded thereby | |
CA2382123A1 (en) | Novel polynucleotides expressed in activated t-lymphocytes and proteins encoded thereby | |
AU783811B2 (en) | Novel polynucleotides and polypeptides encoded thereby | |
US20020137675A1 (en) | Polynucleotides and polypeptides encoded thereby | |
EP1469073A2 (en) | Polynucleotides and membrane-bound polypeptides encoded thereby | |
WO2001027277A2 (en) | Proteins and polynucleotides encoded thereby | |
US20050170380A1 (en) | Novel human proteins and polynucleotides encoding them | |
WO2001085783A2 (en) | Nucleic acids encoding polypeptides related to the alpha subunit of the glycoprotein hormone family and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011219 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20040119 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040730 |