EP1178519B1 - Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp - Google Patents
Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp Download PDFInfo
- Publication number
- EP1178519B1 EP1178519B1 EP01116803A EP01116803A EP1178519B1 EP 1178519 B1 EP1178519 B1 EP 1178519B1 EP 01116803 A EP01116803 A EP 01116803A EP 01116803 A EP01116803 A EP 01116803A EP 1178519 B1 EP1178519 B1 EP 1178519B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sio
- glass bulb
- composite material
- noble metal
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/36—Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J5/00—Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
- H01J5/46—Leading-in conductors
Definitions
- the invention relates to an SiO 2 glass bulb with at least one feedthrough made of a gas-tight composite material, the composite material being formed from a noble metal with a melting point> 1700 ° C. and SiO 2 , and the composite material being at least partially covered with an SiO 2 layer is.
- the invention further relates to a high-power discharge lamp and a method for producing a gas-tight connection between an SiO 2 glass bulb and a current leadthrough.
- EP 0 938 126 A1 describes a leadthrough made of a composite material for a lamp, in particular a discharge lamp, the composite material being formed from SiO 2 and metal and the metal content changing over the length of the leadthrough.
- the metal content can change from 0 to 100%.
- the side with the low molybdenum content is connected gas-tight to the lamp bulb in the direction of the discharge space of the lamp.
- only the end face of the current leadthrough, which consists mainly or entirely of SiO 2 is in direct contact with the gas in the discharge space.
- a metal electrode holder is sintered into the current feedthrough on the side of the low metal content, this holder immersing so far into the current feedthrough that direct contact is made with a composite area in which the SiO 2 content is ⁇ 80%. This creates an electrical contact between the bracket and the metal-rich side of the current feedthrough.
- a metal powder of molybdenum with an average particle size d 50 of 1 ⁇ m and a glass powder with an average particle size d 50 of 5.6 ⁇ m are disclosed for the composite material.
- EP 0 930 639 A1 likewise discloses a current feedthrough with a metal content which changes over its length together with an SiO 2 lamp bulb, tungsten, platinum, nickel, tantalum and zircon being mentioned as suitable metals for the composite material in addition to molybdenum.
- a protective layer made of glass, metal oxide, noble metal or chrome is provided, which partially covers the part of the current lead-through protruding from the lamp bulb. The gas-tight fusion between the current leadthrough and the lamp bulb is arranged in a region of the current leadthrough in which the metal is present in the composite material with less than 2%.
- EP 0 074 507 A2 describes a material for electrical contacts, in particular Low power contacts, and a process for its manufacture.
- the material becomes one Precious metal with 1 to 50 vol .-% glass, preferably a precious metal powder with a Particle size of ⁇ 250 ⁇ m and a glass powder with an average particle size of ⁇ 50 ⁇ m is used.
- Gold, silver, palladium and their alloys are used as precious metals.
- the problem is solved in that the noble metal and the SiO 2 are homogeneously distributed in the composite material, that a noble metal portion is present in the composite material in a range from ⁇ 10% by volume to ⁇ 50% by volume and that the SiO 2 layer the composite material is covered at least in the area of the connection with the SiO 2 glass bulb.
- the SiO 2 used for the formation of the composite material should have a purity of ⁇ 97% by weight. Contamination in SiO 2 , which can be attributed, for example, to alkalis or alkaline earths, can therefore be tolerated up to approximately 3% by weight. Due to the SiO 2 layer, this current feedthrough can be fused gas-tight with the SiO 2 glass bulb over its entire length or even only in any partial area.
- the proportion of noble metal in the current leadthrough can be used to set the thermal expansion coefficient, which is preferably chosen for the current leadthrough in the range from ⁇ 5.10 -6 1 / K. It was recognized as a particularly advantageous property of the current feedthrough that the composite material with SiO 2 and the noble metal component is easily deformable in the range from 10 10% by volume to 50 50% by volume at temperatures of approximately approximately 1200 ° C.
- a measured current transmission capacity of 20 amperes for a rod made of composite material with a diameter of 2 mm indicates a coherent network of the noble metal component, which would normally be stiff and hardly deformable.
- This combination of properties of the composite material, which is formed from the deformation properties of the pure quartz glass and the conductivity of the noble metal enables precise and very simple mounting of electrodes or contact pins on the current leadthrough.
- a tungsten electrode can be attached to the end of the current leadthrough, which points in the direction of the interior of the glass bulb, by heating the electrode together with the powder mixture. Sintering into already formed composite material is also possible.
- an electrode can also be inserted into viscous composite material heated to around 1200 ° C.
- a sufficiently conductive electrical connection is generated in a simple manner.
- the connection of a contact pin to the current bushing on the end facing away from the glass bulb is possible in the same way. Aligning or correcting the position and position of the electrode or the contact pin and correcting the straightness of the current feedthrough itself can also be carried out at temperatures of approximately 1200 ° C.
- the composite material is preferably formed by heating a powder mixture of noble metal powder and SiO 2 glass powder.
- the noble metal can also be formed by a noble metal alloy.
- the noble metals platinum, rhodium, ruthenium, rhenium and iridium have proven to be particularly suitable for the composite material.
- An electrical conductivity of the current feedthrough should preferably be selected in the range of> 0.01 m / ⁇ mm 2 .
- the thickness of the SiO 2 layer should be in the range from 5 to 25 ⁇ m, but in particular in the range from 7 to 15 ⁇ m.
- a noble metal powder which has a specific surface according to BET (Brunauer-Emmett-Teller) in the range from 0.01 to 10 m 2 / g is particularly suitable. It is also advantageous to use a precious metal powder with an average particle size (d 50 ) in the range from 3 to 30 ⁇ m.
- the SiO 2 glass powder preferably has a BET specific surface area in the range from 10 to 100 m 2 / g.
- An average particle size (d 50 ) for the SiO 2 glass powder in the range from 0.1 to 10 ⁇ m has proven successful. It is particularly cost-effective if there is only a noble metal content in the composite material in a range from 10% by volume to 25% by volume.
- SiO 2 glass bulb with current feedthrough for high-performance discharge lamps is ideal because of the high corrosion resistance, conductivity and gas tightness of the feedthrough.
- the problem is solved for a method in that the powder mixture is heated to a maximum of 1200-1600 ° C., that after the heating, the SiO 2 layer is applied to the gas-tight composite material in the region of the connection with the SiO 2 glass bulb Current feedthrough is introduced into an opening of the SiO 2 glass bulb and is gas-tightly connected to the SiO 2 glass bulb in the region of the SiO 2 layer at a temperature> 1600 ° C.
- the SiO 2 layer is preferably applied to the composite material in the form of a paste or a suspension by spraying or printing or dipping, the SiO 2 layer subsequently being baked onto the composite material.
- the SiO 2 layer can also be applied to the composite material by vapor deposition, sputtering, chemical deposition or thermal spraying.
- the problem is also solved in that the powder mixture is heated to a maximum of 1200-1600 ° C., that the gas-tight composite material at least partially after heating Temperature ⁇ 1600 ° C is annealed in an oxygen-containing atmosphere, whereby the noble metal is oxidized and evaporated on the surface of the composite material and at least in the area of connection with the SiO 2 glass bulb of the lamp, the SiO 2 layer is generated that the current feedthrough into a Opening of the SiO 2 glass bulb is introduced and gas-tight connection in the region of the SiO 2 layer at a temperature> 1600 ° C with the SiO 2 glass bulb.
- This process uses the knowledge that the metals ruthenium, rhenium and iridium, which form volatile oxides, oxidize and evaporate on the surface when the composite material is heated to a temperature ⁇ 1600 ° C in an atmosphere containing oxygen.
- a closed thin SiO 2 layer forms around the composite material, which prevents the metal from evaporating further and can be fused perfectly and gas-tight with the SiO 2 of the glass capsule.
- the fusion is mechanically so stable that an atomic bond is presumably formed between the SiO 2 of the glass capsule, the SiO 2 layer produced by annealing and the SiO 2 in the composite material.
- Air is preferably used as the atmosphere containing oxygen, but pure oxygen or other gas mixtures which have an oxygen content can also be used. It is particularly advantageous if the temperature is gradually increased to a maximum of 1200-1600 ° C. when the powder mixture is heated.
- a method in which the powder mixture is shaped before heating is inexpensive. It has proven to be useful to press or extrude the powder mixture before it is heated. If an unshaped powder mixture is heated, which is of course also possible, the resulting composite material must be shaped. Due to the higher strength of the composite material, this usually has to be achieved by means of low-cost cutting processes.
- a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
- the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
- 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1500 ° C.
- the cooled composite strand with a diameter of 1.9 mm is coated evenly thinly with a paste consisting only of SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m with the addition of distilled water is formed.
- the paste is dried in air and baked on the composite strand at 1550 ° C. for 30 minutes.
- the composite strand coated with a ⁇ 0.1 mm thick SiO 2 layer or the current feedthrough is cut to a length of 25 mm and - if necessary after mounting an electrode and a contact pin - inserted into the tubular opening of an SiO 2 glass capsule, the tubular one Opening has an inner diameter of 2mm and an outer diameter of 5.9mm.
- the area of the tubular opening is locally heated to approximately 1700 ° C., for example with a hydrogen flame. As a result, the tubular opening collapses onto the feedthrough and forms a gas-tight, mechanically stable bond.
- a micrograph of the connection point from the glass capsule to the current lead-through showed no transition lines, which are formed, for example, by inhomogeneities such as pores, cracks or structural differences, between the composite material and the SiO 2 layer or between the SiO 2 layer and the glass capsule, but it was merely a uniform SiO 2 phase.
- Example 1 a composite strand is produced, a final temperature of 1300 ° C. being maintained during the gradual heating.
- the composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer and the feedthrough can be melted into a tubular opening in the glass capsule according to Example 1.
- a noble metal powder made of ruthenium with a BET specific surface area of 0.29 m 2 / g and an average particle size d 50 of 5.0 ⁇ m is used for the powder mixture.
- the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
- 88 vol .-% SiO 2 powder and 12 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air.
- the dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours.
- the composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer. The current feedthrough produced in this way is freed of the SiO 2 layer on the end faces and subjected to an electrical conductivity test.
- the conductivity value was 0.047m / ⁇ mm 2 .
- Example 2 The current feedthrough from Example 2 with a diameter of 1.9 mm was subjected to a current carrying capacity test.
- the rod-shaped feedthrough was clamped between two copper terminals and supplied with electricity in air.
- the current could be increased to a value of 20 amperes, whereby the current feedthrough heated up to approximately 1700 ° C. Only an increase in the current to 22 amperes caused the feedthrough to melt. This results in a possible current density of a remarkable 7.05 A / mm 2 for the tested current implementation.
- a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
- the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
- 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C.
- the current leadthrough is cut to a length of 15 mm and a blind hole with a depth of 3 mm and a diameter of 1 mm is drilled in the end faces of the composite strand.
- a tungsten wire electrode is inserted into one of the blind holes and a contact pin made of molybdenum into the other.
- the surface of the composite strand is then coated evenly thinly with a paste which is formed only from SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m with the addition of distilled water.
- the paste is dried in air and baked at 1550 ° C for 30 minutes on the composite strand, which has the electrode and the contact pin.
- a conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
- a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
- the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
- 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air.
- the dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours.
- the composite strand is cooled, cut to a length of 15 mm and then annealed at 1620 ° C. in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer.
- the current feedthrough is heated to 1500 ° C on one end and a tungsten wire electrode is pressed into the viscous composite material by about 2 mm. in the same way, the contact pin is attached to the other end of the feedthrough.
- a conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
- FIG. 1 shows a discharge lamp in the sense of the inventive solution, which has a current feedthrough 1 and an SiO 2 glass bulb in the form of a discharge vessel 2.
- the discharge vessel 2 has a tubular section 3 in the region of the current leadthrough 1 with an opening into which the current leadthrough 1 is melted.
- the current feedthrough 1 is formed from a composite material 1a, which is surrounded by a thin SiO 2 layer 1b.
- the end of the current feedthrough 1, which projects into the discharge space of the discharge vessel 2, has a tungsten electrode 4.
- the end of the current lead-through 1, which protrudes from the discharge vessel 2, has a contact pin 5 made of molybdenum.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Description
Die Erfindung betrifft einen SiO2-Glaskolben mit mindestens einer Stromdurchführung aus einem gasdichten Kompositmaterial, wobei das Kompositmaterial aus einem Edelmetall mit einem Schmelzpunkt > 1700°C und aus SiO2 gebildet ist, und wobei das Kompositmaterial zumindest teilweise mit einer SiO2-Schicht bedeckt ist. Die Erfindung betrifft weiterhin eine Hochleistungs-Entladungslampe sowie ein Verfahren zur Herstellung einer gasdichten Verbindung zwischen einem SiO2 -Glaskolben und einer Stromdurchführung.The invention relates to an SiO 2 glass bulb with at least one feedthrough made of a gas-tight composite material, the composite material being formed from a noble metal with a melting point> 1700 ° C. and SiO 2 , and the composite material being at least partially covered with an SiO 2 layer is. The invention further relates to a high-power discharge lamp and a method for producing a gas-tight connection between an SiO 2 glass bulb and a current leadthrough.
Stromdurchführungen aus Metall oder einem Kompositmaterial für SiO2 - Glaskolben sind bekannt. Dabei wird unter dem Begriff "Komposit" eine Kombination unterschiedlicher Werkstoffgruppen verstanden. Hier ist speziell die Kombination zwischen einem Glaswerkstoff und einem metallischen Werkstoff betroffen. Bei der Ausbildung einer gasdichten Verbindung zwischen dem Material SiO2 und einer elektrisch leitenden, metallischen oder metallhaltigen Stromdurchführung besteht grundsätzlich die Problematik, dass die Metallanteile der Stromdurchführung einerseits durch zähflüssiges SiO2 nur schlecht benetzt werden. Andererseits erschwert der niedrige thermische Ausdehnungskoeffizient von SiO2 im Verhältnis zu dem eines Metalls die Ausbildung einer gasdichten Verbindung beträchtlich. Da beim Abkühlen nach dem Verschmelzen die metallische oder metallhaltige Stromdurchführung stärker schrumpft als das SiO2 des Glaskolbens, besteht die Neigung zur Bildung eines Spaltes an der Grenzfläche von Glaskolben zu Stromdurchführung. Zwar kann diese Gefahr durch eine Minimierung der Dicke der Stromdurchführung vermindert werden, jedoch ist die Positionierung und Handhabung sehr dünner Stromdurchführungen beispielsweise in Folienform schwierig. Um dennoch eine gasdichte Verbindung herstellen zu können, wurden bislang relativ aufwendige Lösungen vorgeschlagen.Current feedthroughs made of metal or a composite material for SiO 2 glass bulbs are known. The term "composite" is understood to mean a combination of different material groups. Here the combination between a glass material and a metallic material is particularly affected. When forming a gas-tight connection between the material SiO 2 and an electrically conductive, metallic or metal-containing current leadthrough, there is basically the problem that the metal parts of the current leadthrough are on the one hand only poorly wetted by viscous SiO 2 . On the other hand, the low coefficient of thermal expansion of SiO 2 compared to that of a metal makes the formation of a gas-tight connection considerably difficult. Since the metallic or metal-containing current leadthrough shrinks more than the SiO 2 of the glass bulb when cooling after melting, there is a tendency to form a gap at the interface between the glass bulb and the current leadthrough. Although this risk can be reduced by minimizing the thickness of the feedthrough, the positioning and handling of very thin feedthroughs, for example in the form of a film, is difficult. In order to nevertheless be able to produce a gas-tight connection, relatively complex solutions have hitherto been proposed.
So beschreibt die EP 0 938 126 A1 eine Stromdurchführung aus einem Kompositmaterial für
eine Lampe, insbesondere eine Entladungslampe, wobei das Kompositmaterial aus SiO2 und
Metall gebildet ist und wobei sich der Metall-Gehalt über die Länge der Stromdurchführung ändert.
Der Metall-Gehalt kann sich dabei von 0 bis 100% ändern. Die Seite mit dem niedrigen
Molybdängehalt wird in Richtung des Entladungsraumes der Lampe mit dem Lampenkolben
gasdicht verbunden. Dabei steht nur die Stirnseite der Stromdurchführung, die hauptsächlich
oder gänzlich aus SiO2 besteht, mit dem Gas im Entladungsraum in direktem Kontakt. In die
Stromdurchführung ist auf Seiten des niedrigen Metall-Gehalts eine metallische Elektrodenhalterung
eingesintert, wobei diese Halterung so weit in die Stromdurchführung eintaucht, dass ein
direkter Kontakt mit einem Komposit-Bereich hergestellt wird, in welchem der SiO2-Gehalt ≤
80% beträgt. So wird ein elektrischer Kontakt zwischen der Halterung und der Metall-reichen
Seite der Stromdurchführung hergestellt. Für das Kompositmaterial ist dabei ein Metallpulver
aus Molybdän mit einer mittleren Teilchengröße d50 von 1 µm und ein Glaspulver mit einer mittleren
Teilchengröße d50 von 5,6µm offenbart.
Die EP 0 930 639 A1 offenbart ebenfalls eine Stromdurchführung mit einem sich über deren
Länge ändernden Metall-Gehalt zusammen mit einem SiO2 - Lampenkolben, wobei als geeignete
Metalle für das Kompositmaterial neben Molybdän auch Wolfram, Platin, Nickel, Tantal
und Zirkon genannt sind. Zum Schutz des Metall-reichen Endes der Stromdurchführung vor
Oxidation ist eine Schutzschicht aus Glas, Metalloxid, Edelmetall oder Chrom vorgesehen, die
den aus dem Lampenkolben ragenden Teil der Stromdurchführung teilweise bedeckt. Die gasdichte
Verschmelzung zwischen Stromdurchführung und Lampenkolben ist in einem Bereich
der Stromdurchführung angeordnet, in welchem das Metall mit weniger als 2% im Kompositmaterial
vorliegt.
Die Herstellung einer Stromdurchführung mit einer sich über die Länge der Stromdurchführung
ändernden Metallkonzentration ist jedoch apparativ aufwendig. Unterschiedliche Pulver müssen
hergestellt und in Lagen angeordnet werden. Zudem muss beim Einschmelzen einer Elektrode
in die Stromdurchführung auf die elektrische Leitfähigkeit der einzelnen Lagen und damit auf die
Eintauchtiefe der Elektrode in die Stromdurchführung geachtet werden, um einen durchgängigen
elektrischen Kontakt zu erzeugen. Die Verschmelzung mit dem SiO2-Lampenkolben muss
in einem bestimmten Längenabschnitt der Stromdurchführung mit sehr niedriger Metallkonzentration
erfolgen, um eine gasdichte Verbindung erreichen zu können. Bei hohen thermischen
Belastungen im Bereich der Stromdurchführung kann es zudem bei den nicht oxidationsbeständigen
Metallen wie zum Beispiel Molybdän zu Korrosion kommen.For example, EP 0 938 126 A1 describes a leadthrough made of a composite material for a lamp, in particular a discharge lamp, the composite material being formed from SiO 2 and metal and the metal content changing over the length of the leadthrough. The metal content can change from 0 to 100%. The side with the low molybdenum content is connected gas-tight to the lamp bulb in the direction of the discharge space of the lamp. In this case, only the end face of the current leadthrough, which consists mainly or entirely of SiO 2, is in direct contact with the gas in the discharge space. A metal electrode holder is sintered into the current feedthrough on the side of the low metal content, this holder immersing so far into the current feedthrough that direct contact is made with a composite area in which the SiO 2 content is ≤ 80%. This creates an electrical contact between the bracket and the metal-rich side of the current feedthrough. A metal powder of molybdenum with an average particle size d 50 of 1 μm and a glass powder with an average particle size d 50 of 5.6 μm are disclosed for the composite material.
EP 0 930 639 A1 likewise discloses a current feedthrough with a metal content which changes over its length together with an SiO 2 lamp bulb, tungsten, platinum, nickel, tantalum and zircon being mentioned as suitable metals for the composite material in addition to molybdenum. To protect the metal-rich end of the current lead-through from oxidation, a protective layer made of glass, metal oxide, noble metal or chrome is provided, which partially covers the part of the current lead-through protruding from the lamp bulb. The gas-tight fusion between the current leadthrough and the lamp bulb is arranged in a region of the current leadthrough in which the metal is present in the composite material with less than 2%.
However, the production of a current leadthrough with a metal concentration that changes over the length of the current leadthrough is expensive in terms of apparatus. Different powders have to be produced and arranged in layers. In addition, when an electrode is melted into the leadthrough, attention must be paid to the electrical conductivity of the individual layers and thus to the immersion depth of the electrode in the leadthrough in order to produce a continuous electrical contact. The fusion with the SiO 2 lamp bulb must take place in a certain length section of the current lead-through with a very low metal concentration in order to be able to achieve a gas-tight connection. In the case of high thermal loads in the area of the current lead-through, corrosion can also occur with the non-oxidation-resistant metals such as molybdenum.
Die EP 0 074 507 A2 beschreibt einen Werkstoff für elektrische Kontakte, insbesondere Schwachstromkontakte, und ein Verfahren zu seiner Herstellung. Der Werkstoff wird aus einem Edelmetall mit 1 bis 50 Vol.-% Glas gebildet, wobei vorzugsweise ein Edelmetallpulver mit einer Teilchengröße von ≤ 250 µm und ein Glaspulver mit einer mittleren Teilchengröße von ≤ 50 µm verwendet wird. Als Edelmetalle werden Gold, Silber, Palladium und deren Legierungen verwendet.EP 0 074 507 A2 describes a material for electrical contacts, in particular Low power contacts, and a process for its manufacture. The material becomes one Precious metal with 1 to 50 vol .-% glass, preferably a precious metal powder with a Particle size of ≤ 250 µm and a glass powder with an average particle size of ≤ 50 µm is used. Gold, silver, palladium and their alloys are used as precious metals.
Es stellt sich das Problem, eine gasdichte, korrosionsbeständige Stromdurchführung für einen SiO2-Glaskolben, vorzugsweise einer Entladungslampe, bereitzustellen, die eine hohe elektrische Leitfähigkeit besitzt und die einfach herzustellen und zu handhaben ist.The problem arises of providing a gas-tight, corrosion-resistant feedthrough for an SiO 2 glass bulb, preferably a discharge lamp, which has a high electrical conductivity and which is easy to manufacture and to handle.
Das Problem wird dadurch gelöst, dass das Edelmetall und das SiO2 homogen im Kompositmaterial
verteilt sind, dass ein Edelmetallanteil im Kompositmaterial in einem Bereich von
≥ 10 Vol.-% bis ≤ 50 Vol.-% vorhanden ist und dass die SiO2 -Schicht das Kompositmaterial
zumindest im Bereich der Verbindung mit dem SiO2 -Glaskolben bedeckt.
Dabei sollte das SiO2, welches für die Bildung des Kompositmaterials verwendet wird, eine
Reinheit von ≥ 97 Gew.-% aufweisen. Verunreinigungen im SiO2, die beispielsweise auf Alkalien
oder Erdalkalien zurückzuführen sind, sind demnach bis circa 3 Gew.-% tolerierbar.
Diese Stromdurchführung kann aufgrund der SiO2-Schicht auf ihrer gesamten Länge oder auch
nur in einem beliebigen Teilbereich gasdicht mit dem SiO2-Glaskolben verschmolzen werden.
Es ist nur ein einziges Kompositpulver zur Herstellung erforderlich. Da die Stromdurchführung
über ihre gesamte Länge eine gleichbleibend hohe elektrische Leitfähigkeit aufweist, muss beim
Einschmelzen einer Elektrode in die Stromdurchführung nicht auf deren Eintauchtiefe in das
Kompositmaterial geachtet werden. Mit dem Anteil an Edelmetall in der Stromdurchführung
kann die Einstellung des thermischen Ausdehnungskoeffizienten, der für die Stromdurchführung
vorzugsweise im Bereich von < 5.10-6 1/K gewählt wird, erfolgen. Als besonders vorteilhafte
Eigenschaft der Stromdurchführung wurde erkannt, dass das Kompositmaterial mit SiO2 und
dem Edelmetallanteil in Bereich von ≥ 10 Vol.-% bis ≤ 50 Vol.-% bei Temperaturen von größer
circa 1200°C leicht verformbar ist. Bei Temperaturen von größer circa 1600°C biegen sich beispielsweise
als Stäbe ausgebildete Stromdurchführungen unter ihrem Eigengewicht rissfrei bis
zu einem Winkel von 90° ohne Beeinträchtigung der elektrischen Leitfähigkeit des Materials. Ein
Ausrichten beziehungsweise Begradigen einer solchen Stromdurchführung ist dadurch möglich. The problem is solved in that the noble metal and the SiO 2 are homogeneously distributed in the composite material, that a noble metal portion is present in the composite material in a range from ≥ 10% by volume to ≤ 50% by volume and that the SiO 2 layer the composite material is covered at least in the area of the connection with the SiO 2 glass bulb.
The SiO 2 used for the formation of the composite material should have a purity of ≥ 97% by weight. Contamination in SiO 2 , which can be attributed, for example, to alkalis or alkaline earths, can therefore be tolerated up to approximately 3% by weight.
Due to the SiO 2 layer, this current feedthrough can be fused gas-tight with the SiO 2 glass bulb over its entire length or even only in any partial area. Only a single composite powder is required to make it. Since the electrical feedthrough has a consistently high electrical conductivity over its entire length, it is not necessary to pay attention to its immersion depth in the composite material when an electrode is melted into the electrical feedthrough. The proportion of noble metal in the current leadthrough can be used to set the thermal expansion coefficient, which is preferably chosen for the current leadthrough in the range from <5.10 -6 1 / K. It was recognized as a particularly advantageous property of the current feedthrough that the composite material with SiO 2 and the noble metal component is easily deformable in the range from 10 10% by volume to 50 50% by volume at temperatures of approximately approximately 1200 ° C. At temperatures greater than approximately 1600 ° C, current feedthroughs designed as rods, for example, bend under their own weight without cracks up to an angle of 90 ° without impairing the electrical conductivity of the material. Aligning or straightening such a feedthrough is thus possible.
Diese mechanischen Eigenschaften entsprechen zwar dem des reinen Quarzglases, jedoch erstaunte, dass sie auch für das Kompositmaterial mit seiner hohen elektrischen Leitfähigkeit und Stromübertragungsfähigkeit gelten. Eine gemessene Stromübertragungsfähigkeit von 20 Ampere bei einem Stab aus Kompositmaterial mit einem Durchmesser von 2mm weist auf ein zusammenhängendes Netzwerk der Edelmetallkomponente hin, das normalerweise steif und kaum verformbar wäre. Diese Kombination von Eigenschaften des Kompositmaterials, die sich aus Verformungseigenschaften des reinen Quarzglases und der Leitfähigkeit des Edelmetalls bildet, ermöglicht eine präzise und sehr einfache Montage von Elektroden oder Kontaktstiften an der Stromdurchführung. So kann beispielsweise an das Ende der Stromdurchführung, welches in Richtung des Inneren des Glaskolbens zeigt, eine Wolframelektrode befestigt werden, indem die Elektrode zusammen mit dem Pulvergemisch erhitzt wird. Auch ein Einsintern in bereits gebildetes Kompositmaterial ist möglich. Zudem kann eine Elektrode auch in auf circa 1200°C erhitztes, zähflüssiges Kompositmaterial gesteckt werden. In allen drei Fällen wird in einfacher Weise eine ausreichend leitfähige elektrische Verbindung erzeugt. Die Verbindung eines Kontaktstiftes mit der Stromdurchführung auf deren dem Glaskolben abgewandten Ende ist in gleicher Weise möglich. Das Ausrichten beziehungsweise Korrigieren der Position und Lage der Elektrode beziehungsweise des Kontaktstiftes sowie ein Korrigieren der Geradheit der Stromdurchführung selbst kann ebenfalls bei Temperaturen von circa 1200°C erfolgen. Vorzugsweise ist das Kompositmaterial durch Erhitzen eines Pulvergemisches aus Edelmetallpulver und SiO2-Glaspulver gebildet. Das Edelmetall kann dabei auch durch eine Edelmetall-Legierung gebildet sein. Als besonders für das Kompositmaterial geeignet haben sich die Edelmetalle Platin, Rhodium, Ruthenium, Rhenium und Iridium erwiesen. Eine elektrische Leitfähigkeit der Stromdurchführung sollte vorzugsweise im Bereich von > 0,01m/Ωmm2 gewählt werden. Die Dicke der SiO2 -Schicht sollte im Bereich von 5 - 25µm, insbesondere aber im Bereich von 7 - 15µm liegen. Besonders geeignet ist ein Edelmetallpulver, welches eine spezifische Oberfläche nach BET (Brunauer-Emmett-Teller) im Bereich von 0,01 bis 10 m2/g aufweist. Von Vorteil ist zudem, ein Edelmetallpulver mit einer mittleren Teilchengröße ( d50 ) im Bereich von 3 bis 30µm einzusetzen. Das SiO2 -Glaspulver weist vorzugsweise eine spezifische Oberfläche nach BET im Bereich von 10 bis 100 m2/g auf. Eine mittlere Teilchengröße ( d50 ) für das SiO2-Glaspulver im Bereich von 0,1 bis 10µm hat sich bewährt. Besonders kostengünstig ist es, wenn nur ein Edelmetallanteil im Kompositmaterial in einem Bereich von 10 Vol.-% bis 25 Vol.-% vorhanden ist. Although these mechanical properties correspond to those of pure quartz glass, it is astonishing that they also apply to the composite material with its high electrical conductivity and current transmission capacity. A measured current transmission capacity of 20 amperes for a rod made of composite material with a diameter of 2 mm indicates a coherent network of the noble metal component, which would normally be stiff and hardly deformable. This combination of properties of the composite material, which is formed from the deformation properties of the pure quartz glass and the conductivity of the noble metal, enables precise and very simple mounting of electrodes or contact pins on the current leadthrough. For example, a tungsten electrode can be attached to the end of the current leadthrough, which points in the direction of the interior of the glass bulb, by heating the electrode together with the powder mixture. Sintering into already formed composite material is also possible. In addition, an electrode can also be inserted into viscous composite material heated to around 1200 ° C. In all three cases, a sufficiently conductive electrical connection is generated in a simple manner. The connection of a contact pin to the current bushing on the end facing away from the glass bulb is possible in the same way. Aligning or correcting the position and position of the electrode or the contact pin and correcting the straightness of the current feedthrough itself can also be carried out at temperatures of approximately 1200 ° C. The composite material is preferably formed by heating a powder mixture of noble metal powder and SiO 2 glass powder. The noble metal can also be formed by a noble metal alloy. The noble metals platinum, rhodium, ruthenium, rhenium and iridium have proven to be particularly suitable for the composite material. An electrical conductivity of the current feedthrough should preferably be selected in the range of> 0.01 m / Ωmm 2 . The thickness of the SiO 2 layer should be in the range from 5 to 25 μm, but in particular in the range from 7 to 15 μm. A noble metal powder which has a specific surface according to BET (Brunauer-Emmett-Teller) in the range from 0.01 to 10 m 2 / g is particularly suitable. It is also advantageous to use a precious metal powder with an average particle size (d 50 ) in the range from 3 to 30 μm. The SiO 2 glass powder preferably has a BET specific surface area in the range from 10 to 100 m 2 / g. An average particle size (d 50 ) for the SiO 2 glass powder in the range from 0.1 to 10 μm has proven successful. It is particularly cost-effective if there is only a noble metal content in the composite material in a range from 10% by volume to 25% by volume.
Der Einsatz des erfindungsgemäßen SiO2 -Glaskolbens mit Stromdurchführung für Hochleistungs-Entladungslampen ist aufgrund der hohen Korrosionsbeständigkeit, Leitfähigkeit und Gasdichtheit der Durchführung ideal.The use of the SiO 2 glass bulb with current feedthrough for high-performance discharge lamps is ideal because of the high corrosion resistance, conductivity and gas tightness of the feedthrough.
Das Problem wird für ein Verfahren dadurch gelöst, dass das Pulvergemisch auf maximal 1200
- 1600°C erhitzt wird, dass nach dem Erhitzen auf das gasdichte Kompositmaterial im Bereich
der Verbindung mit dem SiO2 -Glaskolben die SiO2 -Schicht aufgetragen wird, dass die Stromdurchführung
in eine Öffnung des SiO2-Glaskolbens eingeführt wird und im Bereich der SiO2-Schicht
bei einer Temperatur > 1600°C gasdicht mit dem SiO2-Glaskolben verbunden wird.
Das Auftragen der SiO2-Schicht auf das Kompositmaterial erfolgt vorzugsweise in Form einer
Paste oder einer Suspension durch Sprühen oder Drucken oder Tauchen, wobei nachfolgend
die SiO2 -Schicht auf dem Kompositmaterial eingebrannt werden sollte.
Der Auftrag der SiO2 -Schicht auf das Kompositmaterial kann aber auch durch Aufdampfen,
Sputtem, chemische Abscheidung oder thermisches Spritzen erfolgen.The problem is solved for a method in that the powder mixture is heated to a maximum of 1200-1600 ° C., that after the heating, the SiO 2 layer is applied to the gas-tight composite material in the region of the connection with the SiO 2 glass bulb Current feedthrough is introduced into an opening of the SiO 2 glass bulb and is gas-tightly connected to the SiO 2 glass bulb in the region of the SiO 2 layer at a temperature> 1600 ° C.
The SiO 2 layer is preferably applied to the composite material in the form of a paste or a suspension by spraying or printing or dipping, the SiO 2 layer subsequently being baked onto the composite material.
The SiO 2 layer can also be applied to the composite material by vapor deposition, sputtering, chemical deposition or thermal spraying.
Das Problem wird für ein Verfahren bei Einsatz der Edelmetalle Ruthenium und/oder Rhenium
und/oder Iridium für das Komposit auch dadurch gelöst, dass das Pulvergemisch auf maximal
1200 - 1600°C erhitzt wird, dass das gasdichte Kompositmaterial nach dem Erhitzen zumindest
teilweise bei einer Temperatur ≥ 1600°C in Sauerstoff enthaltender Atmosphäre geglüht wird,
wodurch das Edelmetall an der Oberfläche des Kompositmaterials oxidiert und verdampft und
zumindest im Bereich der Verbindung mit dem SiO2 -Glaskolben der Lampe die SiO2 -Schicht
erzeugt wird, dass die Stromdurchführung in eine Öffnung des SiO2-Glaskolbens eingeführt
wird und im Bereich der SiO2 -Schicht bei einer Temperatur > 1600°C gasdicht mit dem SiO2-Glaskolben
verbunden wird.
Dieses Verfahren nutzt die Erkenntnis, dass die Metalle Ruthenium, Rhenium und Iridium, welche
flüchtige Oxide bilden, bei Erhitzen des Kompositmaterials auf eine Temperatur ≥ 1600°C in
Sauerstoff enthaltender Atmosphäre oberflächlich oxidieren und verdampfen. Es bildet sich
während des Glühens eine geschlossene dünne SiO2 -Schicht um das Kompositmaterial aus,
die ein weiteres Abdampfen des Metalls verhindert und mit dem SiO2 der Glaskapsel einwandfrei
und gasdicht verschmelzbar ist. Die Verschmelzung ist mechanisch so stabil, dass vermutlich
ein atomarer Verbund zwischen dem SiO2 der Glaskapsel, der durch Glühen erzeugten
SiO2 -Schicht und dem SiO2 im Kompositmaterial gebildet wird. For a process using the noble metals ruthenium and / or rhenium and / or iridium for the composite, the problem is also solved in that the powder mixture is heated to a maximum of 1200-1600 ° C., that the gas-tight composite material at least partially after heating Temperature ≥ 1600 ° C is annealed in an oxygen-containing atmosphere, whereby the noble metal is oxidized and evaporated on the surface of the composite material and at least in the area of connection with the SiO 2 glass bulb of the lamp, the SiO 2 layer is generated that the current feedthrough into a Opening of the SiO 2 glass bulb is introduced and gas-tight connection in the region of the SiO 2 layer at a temperature> 1600 ° C with the SiO 2 glass bulb.
This process uses the knowledge that the metals ruthenium, rhenium and iridium, which form volatile oxides, oxidize and evaporate on the surface when the composite material is heated to a temperature ≥ 1600 ° C in an atmosphere containing oxygen. During the annealing, a closed thin SiO 2 layer forms around the composite material, which prevents the metal from evaporating further and can be fused perfectly and gas-tight with the SiO 2 of the glass capsule. The fusion is mechanically so stable that an atomic bond is presumably formed between the SiO 2 of the glass capsule, the SiO 2 layer produced by annealing and the SiO 2 in the composite material.
Als Sauerstoff enthaltende Atmosphäre wird dabei vorzugsweise Luft verwendet, aber auch
reiner Sauerstoff oder weitere Gasgemische, die einen Sauerstoffanteil aufweisen, sind verwendbar.
Besonders vorteilhaft ist es, wenn die Temperatur beim Erhitzen des Pulvergemisches stufenweise
auf maximal 1200 - 1600°C erhöht wird.
Kostengünstig ist ein Verfahren, bei welchem das Pulvergemisch vor dem Erhitzen geformt
wird. Bewährt hat sich, das Pulvergemisch vor dem Erhitzen formgebend zu pressen oder zu
extrudieren. Wird ein ungeformtes Pulvergemisch erhitzt, was selbstverständlich auch möglich
ist, so muss das daraus entstandene Kompositmaterial formgebend bearbeitet werden. Aufgrund
der höheren Festigkeit des Kompositmaterials muss dies in der Regel durch wenig kostengünstige,
spanabhebende Verfahren realisiert werden.Air is preferably used as the atmosphere containing oxygen, but pure oxygen or other gas mixtures which have an oxygen content can also be used.
It is particularly advantageous if the temperature is gradually increased to a maximum of 1200-1600 ° C. when the powder mixture is heated.
A method in which the powder mixture is shaped before heating is inexpensive. It has proven to be useful to press or extrude the powder mixture before it is heated. If an unshaped powder mixture is heated, which is of course also possible, the resulting composite material must be shaped. Due to the higher strength of the composite material, this usually has to be achieved by means of low-cost cutting processes.
Folgende Beispiele 1 bis 6 sowie Figur 1 sollen den Gegenstand der Erfindung beispielhaft erläutern.
So zeigt
Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche
nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße
d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 - Pulver und 25Vol.-% Edelmetallpulver
werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet.
Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an
Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit
einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1500°C erhitzt, wobei eine stufenweise
Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils
30 min realisiert wird. Die Endtemperatur von 1500°C wird 2h gehalten. Der abgekühlte Kompositstrang
mit einem Durchmesser von 1,9mm wird gleichmäßig dünn mit einer Paste belegt,
die nur aus dem SiO2 mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren
Teilchengröße d50 von 4,4µm unter Zumischung von destilliertem Wasser gebildet ist. Die
Paste wird an Luft getrocknet und bei 1550°C über 30min auf dem Kompositstrang eingebrannt.
Der mit einer < 0,1 mm dicken SiO2-Schicht beschichtete Kompositstrang beziehungsweise die
Stromdurchführung wird auf eine Länge von 25mm geschnitten und ― gegebenenfalls nach
Montage einer Elektrode und eines Kontaktstiftes ― in die rohrförmige Öffnung einer SiO2 ―
Glaskapsel eingeführt, wobei die rohrförmige Öffnung einen Innendurchmesser von 2mm und
einen Außendurchmesser von 5,9mm aufweist. Der Bereich der rohrförmigen Öffnung wird,
beispielsweise mit einer Wasserstoff-Flamme, lokal auf circa 1700°C erhitzt. Dadurch kollabiert
die rohrförmige Öffnung auf die Stromdurchführung und bildet einen gasdichten, mechanisch stabilen
Verbund. Ein Schliffbild der Verbindungsstelle von Glaskapsel zu Stromdurchführung
zeigte keine Übergangslinien, die zum Beispiel durch Inhomogenitäten wie Poren, Risse oder
Gefügeunterschiede gebildet werden, zwischen Kompositmaterial und SiO2-Schicht beziehungsweise
zwischen SiO2-Schicht und Glaskapsel mehr, sondern es war lediglich eine einheitliche
SiO2-Phase zu erkennen.A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1500 ° C. in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1500 ° C is held for 2 hours. The cooled composite strand with a diameter of 1.9 mm is coated evenly thinly with a paste consisting only of SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm with the addition of distilled water is formed. The paste is dried in air and baked on the composite strand at 1550 ° C. for 30 minutes. The composite strand coated with a <0.1 mm thick SiO 2 layer or the current feedthrough is cut to a length of 25 mm and - if necessary after mounting an electrode and a contact pin - inserted into the tubular opening of an SiO 2 glass capsule, the tubular one Opening has an inner diameter of 2mm and an outer diameter of 5.9mm. The area of the tubular opening is locally heated to approximately 1700 ° C., for example with a hydrogen flame. As a result, the tubular opening collapses onto the feedthrough and forms a gas-tight, mechanically stable bond. A micrograph of the connection point from the glass capsule to the current lead-through showed no transition lines, which are formed, for example, by inhomogeneities such as pores, cracks or structural differences, between the composite material and the SiO 2 layer or between the SiO 2 layer and the glass capsule, but it was merely a uniform SiO 2 phase.
Gemäß Beispiel 1 wird ein Kompositstrang erzeugt, wobei eine Endtemperatur beim stufenweisen Erhitzen von 1300°C eingehalten wird. Der Kompositstrang wird bei 1620°C in Luft 30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen von Rutheniumoxid festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig mit einer dünnen SiO2-Schicht überzogen und die Stromdurchführung kann gemäß Beispiel 1 in eine rohrförmige Öffnung der Glaskapsel eingeschmolzen werden.According to Example 1, a composite strand is produced, a final temperature of 1300 ° C. being maintained during the gradual heating. The composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer and the feedthrough can be melted into a tubular opening in the glass capsule according to Example 1.
Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche
nach BET von 0,29m2/g und einer mittleren Teilchengröße d50 von 5,0µm verwendet.
Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße
d50 von 4,4µm eingesetzt. 88Vol.-% SiO2 ― Pulver und 12Vol.-% Edelmetallpulver
werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet.
Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an
Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit
einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise
Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils
30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Der Kompositstrang
wird bei 1620°C in Luft 30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen
von Rutheniumoxid festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig
mit einer dünnen SiO2-Schicht überzogen.
Die so hergestellte Stromdurchführung wird an den Stirnseiten von der SiO2-Schicht befreit und
einer elektrischen Leitfähigkeitsprüfung unterzogen. Es ergab sich ein Leitfähigkeits-Wert von
0,047m/Ωmm2.A noble metal powder made of ruthenium with a BET specific surface area of 0.29 m 2 / g and an average particle size d 50 of 5.0 μm is used for the powder mixture. The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 88 vol .-% SiO 2 powder and 12 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. The composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer.
The current feedthrough produced in this way is freed of the SiO 2 layer on the end faces and subjected to an electrical conductivity test. The conductivity value was 0.047m / Ωmm 2 .
Die Stromdurchführung aus Beispiel 2 mit einem Durchmesser von 1,9mm wurde einer Strombelastbarkeitsprüfung unterzogen. Dazu wurde die stabförmige Stromdurchführung zwischen zwei Kupferklemmen eingespannt und an Luft mit Strom beaufschlagt. Der Strom konnte bis zu einem Wert von 20 Ampere erhöht werden, wobei sich die Stromdurchführung auf circa 1700°C aufheizte. Erst eine Erhöhung des Stromes auf 22 Ampere führte zum Durchschmelzen der Stromdurchführung. Somit ergibt sich eine mögliche Stromdichte in Höhe beachtlicher 7,05 A/mm2 für die getestete Stromdurchführung.The current feedthrough from Example 2 with a diameter of 1.9 mm was subjected to a current carrying capacity test. For this purpose, the rod-shaped feedthrough was clamped between two copper terminals and supplied with electricity in air. The current could be increased to a value of 20 amperes, whereby the current feedthrough heated up to approximately 1700 ° C. Only an increase in the current to 22 amperes caused the feedthrough to melt. This results in a possible current density of a remarkable 7.05 A / mm 2 for the tested current implementation.
Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche
nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße
d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 ― Pulver und 25Vol.-% Edelmetallpulver
werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet.
Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an
Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit
einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise
Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils
30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Nach dem Abkühlen
wird die Stromdurchführung auf eine Länge von 15mm geschnitten und in die Stirnseiten des
Kompositstranges jeweils ein Sackloch mit einer Tiefe von 3mm und mit einem Durchmesser
von 1 mm gebohrt. In eines der Sacklöcher wird eine Wolframdrahtelektrode eingeführt und in
das andere ein Kontaktstift aus Molybdän. Die Oberfläche des Kompositstranges wird anschließend
gleichmäßig dünn mit einer Paste belegt, die nur aus dem SiO2 mit einer spezifischen
Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm unter Zumischung
von destilliertem Wasser gebildet ist. Die Paste wird an Luft getrocknet und bei 1550°C
über 30min auf dem Kompositstrang, der die Elektrode und den Kontaktstift aufweist, eingebrannt.
Es entsteht eine stromleitende, mechanisch stabile Verbindung zwischen Kompositmaterial und
Elektrode sowie Kompositmaterial und Kontaktstift.A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C. in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. After cooling, the current leadthrough is cut to a length of 15 mm and a blind hole with a depth of 3 mm and a diameter of 1 mm is drilled in the end faces of the composite strand. A tungsten wire electrode is inserted into one of the blind holes and a contact pin made of molybdenum into the other. The surface of the composite strand is then coated evenly thinly with a paste which is formed only from SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm with the addition of distilled water. The paste is dried in air and baked at 1550 ° C for 30 minutes on the composite strand, which has the electrode and the contact pin.
A conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche
nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße
d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 ― Pulver und 25Vol.-% Edelmetallpulver
werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet.
Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an
Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit
einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise
Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils
30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Der Kompositstrang
wird abgekühlt, auf eine Länge von 15mm geschnitten und anschließend bei 1620°C in Luft
30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen von Rutheniumoxid
festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig mit einer dünnen
SiO2-Schicht überzogen. Die Stromdurchführung wird an einer Stirnseite auf 1500°C erhitzt und
eine Wolframdrahtelektrode circa 2mm in das zähflüssige Kompositmaterial eingedrückt. in
gleicher Weise wird der Kontaktstift am anderen Ende der Stromdurchführung befestigt.
Es entsteht eine stromleitende, mechanisch stabile Verbindung zwischen Kompositmaterial und
Elektrode sowie Kompositmaterial und Kontaktstift. A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. The composite strand is cooled, cut to a length of 15 mm and then annealed at 1620 ° C. in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer. The current feedthrough is heated to 1500 ° C on one end and a tungsten wire electrode is pressed into the viscous composite material by about 2 mm. in the same way, the contact pin is attached to the other end of the feedthrough.
A conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
Figur 1 zeigt eine Entladungslampe im Sinne der erfinderischen Lösung, die eine Stromdurchführung
1 und einen SiO2-Glaskolben in Form eines Entladungsgefäßes 2 aufweist. Das Entladungsgefäß
2 weist im Bereich der Stromdurchführung 1 einen rohrförmige Abschnitt 3 mit einer
Öffnung auf, in welche die Stromdurchführung 1 eingeschmolzen ist. Die Stromdurchführung
1 ist aus einem Kompositmaterial 1a gebildet, das von einer dünnen SiO2 -Schicht 1b umgeben
ist. Das Ende der Stromdurchführung 1, welches in den Entladungsraum des Entladungsgefäßes
2 hineinragt, weist eine Wolframelektrode 4 auf. Das Ende der Stromdurchführung
1, welches aus dem Entladungsgefäß 2 hinausragt, weist einen Kontaktstift 5 aus Molybdän
auf.FIG. 1 shows a discharge lamp in the sense of the inventive solution, which has a current feedthrough 1 and an SiO 2 glass bulb in the form of a
Claims (22)
- SiO2 glass bulb having at least one current lead-through comprising a gas-tight composite material, the composite material being formed from a noble metal having a melting point > 1700°C and from SiO2 and being at least partly covered with an SiO2 layer, characterized in that the noble metal and the SiO2 are homogeneously distributed in the composite material, that a proportion of noble metal in a range from ≥ 10% by volume to ≤ 50% by volume is present in the composite material and that the SiO2 layer covers the composite material at least in the region of the joint with the SiO2 glass bulb.
- SiO2 glass bulb according to Claim 1, characterized in that the composite material is formed by heating a powder mixture comprising noble metal powder and SiO2 glass powder.
- SiO2 glass bulb according to Claim 1 or 2, characterized in that the noble metal is formed from a noble metal alloy.
- SiO2 glass bulb according to any of Claims 1 to 3, characterized in that the noble metal is formed from platinum and/or rhodium.
- SiO2 glass bulb according to any of Claims 1 to 3, characterized in that the noble metal is formed from ruthenium and/or rhenium and/or iridium.
- SiO2 glass bulb according to any of Claims 1 to 5, characterized in that the current lead-through has an electrical conductivity of > 0.01 m/Ωmm2.
- SiO2 glass bulb according to any of Claims 1 to 6, characterized in that the SiO2 layer has a thickness in the range of 5 - 25 µm.
- SiO2 glass bulb according to Claim 7, characterized in that the thickness of the SiO2 layer is 7 - 15 µm.
- SiO2 glass bulb according to any of Claims 2 to 8, characterized in that the noble metal powder has a BET specific surface area in the range from 0.01 to 10 m2/g.
- SiO2 glass bulb according to any of Claims 2 to 9, characterized in that the noble metal powder has a median particle size (d50) in the range from 3 to 30 µm.
- SiO2 glass bulb according to any of Claims 2 to 10, characterized in that the SiO2 glass powder has a BET specific surface area of from 10 to 100 m2/g.
- SiO2 glass bulb according to any of Claims 2 to 11, characterized in that the SiO2 glass powder has a median particle size (d50) in the range from 0.1 to 10 µm.
- SiO2 glass bulb according to any of Claims 1 to 12, characterized in that the proportion of noble metal in the composite material is in a range from ≥ 10% by volume to 25% by volume.
- High-power discharge lamp comprising an SiO2 glass bulb according to any of Claims 1 to 13.
- Process for the production of a gas-tight joint between an SiO2 glass bulb and a current lead-through according to any of Claims 1 to 13, characterized in that the powder mixture is heated to not more than 1200 - 1600°C, that the SiO2 layer is applied to the gas-tight composite material in the region of the joint with the SiO2 glass bulb after the heating, that the current lead-through is introduced into an opening of the SiO2 glass bulb and is joined gas-tight to the SiO2 glass bulb in the region of the SiO2 layer at a temperature > 1600°C.
- Process according to Claim 15, characterized in that the application of the SiO2 layer to the composite material is effected in the form of a paste or of a suspension by spraying or printing or immersion and that the SiO2 layer is fired on the composite material.
- Process according to Claim 15, characterized in that the application of the SiO2 layer to the composite material is effected by vapour deposition, sputtering, chemical deposition or thermal spraying.
- Process for the production of a gas-tight joint between an SiO2 glass bulb and a current lead-through according to Claim 5, characterized in that the powder mixture is heated to not more than 1200 - 1600°C, that, after the heating, the gas-tight composite material is at least partly ignited at a temperature of ≥ 1600°C in an oxygen-containing atmosphere, with the result that the noble metal is oxidized and vaporized on the surface of the composite material and the SiO2 layer is produced at least in the region of the joint with the SiO2 glass bulb of the lamp, that the current lead-through is introduced into an opening of the SiO2 glass bulb and is joined gas-tight with the SiO2 glass bulb in the region of the SiO2 layer at a temperature > 1600°C.
- Process according to Claim 18, characterized in that air is used as the oxygen-containing atmosphere.
- Process according to any of Claims 15 to 19, characterized in that the temperature during the heating is increased stepwise to not more than 1200 - 1600°C.
- Process according to any of Claims 15 to 20, characterized in that the powder mixture is moulded prior to heating.
- Process according to Claim 21, characterized in that the powder mixture is compression moulded or extruded prior to heating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10038841A DE10038841C1 (en) | 2000-08-04 | 2000-08-04 | Silicon dioxide glass bulb used in a high power discharge lamp has a current duct made from a gas-tight composite material consisting of a precious metal and silicon dioxide |
DE10038841 | 2000-08-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1178519A1 EP1178519A1 (en) | 2002-02-06 |
EP1178519B1 true EP1178519B1 (en) | 2004-02-11 |
Family
ID=7651832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01116803A Expired - Lifetime EP1178519B1 (en) | 2000-08-04 | 2001-07-10 | Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp |
Country Status (4)
Country | Link |
---|---|
US (1) | US6525475B2 (en) |
EP (1) | EP1178519B1 (en) |
JP (1) | JP3523617B2 (en) |
DE (2) | DE10038841C1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4613408B2 (en) * | 1999-10-15 | 2011-01-19 | 日本碍子株式会社 | Manufacturing method of arc tube for high pressure discharge lamp |
AT6924U1 (en) * | 2003-05-27 | 2004-05-25 | Plansee Ag | COLD CATHODE FLUORESCENT LAMP WITH MOLYBDENUM CURRENT LEADS |
DE102004015467B4 (en) * | 2004-03-26 | 2007-12-27 | W.C. Heraeus Gmbh | Electrode system with a current feed through a ceramic component |
JP5043123B2 (en) * | 2006-12-18 | 2012-10-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | High pressure discharge lamp with ceramic discharge vessel |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1074124A (en) * | 1963-08-12 | 1967-06-28 | Ass Elect Ind | Improvements in electric devices which have a sealed envelope of vitreous or ceramic insulating refractoy material |
JPS4625848B1 (en) * | 1966-04-15 | 1971-07-26 | ||
NL6918746A (en) * | 1969-12-13 | 1971-06-15 | ||
DE3135035A1 (en) * | 1981-09-04 | 1983-03-24 | Degussa Ag, 6000 Frankfurt | MATERIAL FOR ELECTRICAL CONTACTS AND METHOD FOR THE PRODUCTION THEREOF |
US5404078A (en) * | 1991-08-20 | 1995-04-04 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | High-pressure discharge lamp and method of manufacture |
JP3453955B2 (en) | 1995-10-18 | 2003-10-06 | 東陶機器株式会社 | Sealing part structure of discharge lamp and method of manufacturing sealing cap |
JPH1040868A (en) | 1996-07-25 | 1998-02-13 | Ushio Inc | Discharge lamp |
JP3407564B2 (en) * | 1996-10-18 | 2003-05-19 | 東陶機器株式会社 | Method of manufacturing cap for sealing portion of arc tube |
WO1998047169A1 (en) * | 1997-04-11 | 1998-10-22 | Ushio Denki Kabushiki Kaisya | Seal of bulb |
JP3736710B2 (en) * | 1997-09-08 | 2006-01-18 | ウシオ電機株式会社 | Electric introduction for tube |
US6169366B1 (en) * | 1997-12-24 | 2001-01-02 | Ngk Insulators, Ltd. | High pressure discharge lamp |
-
2000
- 2000-08-04 DE DE10038841A patent/DE10038841C1/en not_active Expired - Fee Related
-
2001
- 2001-07-10 EP EP01116803A patent/EP1178519B1/en not_active Expired - Lifetime
- 2001-07-10 DE DE50101463T patent/DE50101463D1/en not_active Expired - Lifetime
- 2001-07-31 US US09/919,018 patent/US6525475B2/en not_active Expired - Fee Related
- 2001-08-01 JP JP2001234103A patent/JP3523617B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002117809A (en) | 2002-04-19 |
DE50101463D1 (en) | 2004-03-18 |
DE10038841C1 (en) | 2001-12-20 |
JP3523617B2 (en) | 2004-04-26 |
US6525475B2 (en) | 2003-02-25 |
EP1178519A1 (en) | 2002-02-06 |
US20020030446A1 (en) | 2002-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0602530B1 (en) | Method for producing a vacuum-tight seal for a ceramic discharge vessel and discharge lamp | |
EP1111655B1 (en) | Seal foil an lamp provided with such a foil | |
DE2641866A1 (en) | AIR-TIGHTLY SEALED ELECTRICAL ITEM | |
WO2006032522A1 (en) | Method for producing an arc-erosion resistant coating and corresponding shield for vacuum arcing chambers | |
DE69920373T2 (en) | POWER SUPPLY BODY FOR BULBS AND METHOD FOR THE PRODUCTION THEREOF | |
EP1178519B1 (en) | Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp | |
DE2655726C2 (en) | ||
DE1640218A1 (en) | Thermistor | |
DE69220865T2 (en) | Material for vacuum switch contacts and process for their manufacture | |
DE2747087C2 (en) | Electrical contact and method of making it | |
DE69330598T2 (en) | Contact material for vacuum switches and manufacturing processes therefor | |
DE10336087A1 (en) | Electrode system with novel connection, associated lamp with this foil and method of making the connection | |
DE10242035A1 (en) | Melting film and associated lamp with this film | |
DE3043193A1 (en) | ELECTRIC LAMP | |
DE69409334T2 (en) | Method of connecting a molybdenum foil to a part of a molybdenum conductor and method of manufacturing a hermetically sealed lamp part using this method | |
WO2007000142A1 (en) | Solder filler | |
DE4308361C2 (en) | Method for producing a connection between two ceramic parts or a metal and a ceramic part | |
DE10257477B4 (en) | Flash-forming composite body and method of manufacturing a flashlamp-forming composite body | |
EP1351278B1 (en) | Metal halide lamp with ceramic discharge vessel | |
DE604107C (en) | Airtight squeezing of the power supply for electric light bulbs and other vessels made of quartz glass | |
DE112014002069T5 (en) | Ceramic-metal bond structure and method for its production | |
DE2253439C3 (en) | Ternary alloy for superconducting magnets | |
DE1812221C3 (en) | Process for joining a light metal or its alloys with a non-metallic material | |
DE2244241C3 (en) | Process for producing gas-impermeable tubular components from graphite bodies | |
DE2321516C3 (en) | Indirectly heated cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50101463 Country of ref document: DE Date of ref document: 20040318 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040414 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050627 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050712 Year of fee payment: 5 |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: W.C. HERAEUS GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060710 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060731 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070710 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: TD Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50101463 Country of ref document: DE Representative=s name: HANS-CHRISTIAN KUEHN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50101463 Country of ref document: DE Representative=s name: KUEHN, HANS-CHRISTIAN, DE Effective date: 20111219 Ref country code: DE Ref legal event code: R081 Ref document number: 50101463 Country of ref document: DE Owner name: HERAEUS MATERIALS TECHNOLOGY GMBH & CO. KG, DE Free format text: FORMER OWNER: W.C. HERAEUS GMBH, 63450 HANAU, DE Effective date: 20111219 |
|
BECN | Be: change of holder's name |
Owner name: HERAEUS MATERIALS TECHNOLOGY G.M.B.H. & CO. K.G. Effective date: 20120210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120720 Year of fee payment: 12 Ref country code: BE Payment date: 20120720 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120719 Year of fee payment: 12 |
|
BERE | Be: lapsed |
Owner name: HERAEUS MATERIALS TECHNOLOGY G.M.B.H. & CO. K.G. Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50101463 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 |