EP1178519B1 - Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp - Google Patents

Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp Download PDF

Info

Publication number
EP1178519B1
EP1178519B1 EP01116803A EP01116803A EP1178519B1 EP 1178519 B1 EP1178519 B1 EP 1178519B1 EP 01116803 A EP01116803 A EP 01116803A EP 01116803 A EP01116803 A EP 01116803A EP 1178519 B1 EP1178519 B1 EP 1178519B1
Authority
EP
European Patent Office
Prior art keywords
sio
glass bulb
composite material
noble metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01116803A
Other languages
German (de)
French (fr)
Other versions
EP1178519A1 (en
Inventor
David Francis Dr. Lupton
Jörg Schielke
Friedhold Schölz
Holger Zingg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP1178519A1 publication Critical patent/EP1178519A1/en
Application granted granted Critical
Publication of EP1178519B1 publication Critical patent/EP1178519B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/46Leading-in conductors

Definitions

  • the invention relates to an SiO 2 glass bulb with at least one feedthrough made of a gas-tight composite material, the composite material being formed from a noble metal with a melting point> 1700 ° C. and SiO 2 , and the composite material being at least partially covered with an SiO 2 layer is.
  • the invention further relates to a high-power discharge lamp and a method for producing a gas-tight connection between an SiO 2 glass bulb and a current leadthrough.
  • EP 0 938 126 A1 describes a leadthrough made of a composite material for a lamp, in particular a discharge lamp, the composite material being formed from SiO 2 and metal and the metal content changing over the length of the leadthrough.
  • the metal content can change from 0 to 100%.
  • the side with the low molybdenum content is connected gas-tight to the lamp bulb in the direction of the discharge space of the lamp.
  • only the end face of the current leadthrough, which consists mainly or entirely of SiO 2 is in direct contact with the gas in the discharge space.
  • a metal electrode holder is sintered into the current feedthrough on the side of the low metal content, this holder immersing so far into the current feedthrough that direct contact is made with a composite area in which the SiO 2 content is ⁇ 80%. This creates an electrical contact between the bracket and the metal-rich side of the current feedthrough.
  • a metal powder of molybdenum with an average particle size d 50 of 1 ⁇ m and a glass powder with an average particle size d 50 of 5.6 ⁇ m are disclosed for the composite material.
  • EP 0 930 639 A1 likewise discloses a current feedthrough with a metal content which changes over its length together with an SiO 2 lamp bulb, tungsten, platinum, nickel, tantalum and zircon being mentioned as suitable metals for the composite material in addition to molybdenum.
  • a protective layer made of glass, metal oxide, noble metal or chrome is provided, which partially covers the part of the current lead-through protruding from the lamp bulb. The gas-tight fusion between the current leadthrough and the lamp bulb is arranged in a region of the current leadthrough in which the metal is present in the composite material with less than 2%.
  • EP 0 074 507 A2 describes a material for electrical contacts, in particular Low power contacts, and a process for its manufacture.
  • the material becomes one Precious metal with 1 to 50 vol .-% glass, preferably a precious metal powder with a Particle size of ⁇ 250 ⁇ m and a glass powder with an average particle size of ⁇ 50 ⁇ m is used.
  • Gold, silver, palladium and their alloys are used as precious metals.
  • the problem is solved in that the noble metal and the SiO 2 are homogeneously distributed in the composite material, that a noble metal portion is present in the composite material in a range from ⁇ 10% by volume to ⁇ 50% by volume and that the SiO 2 layer the composite material is covered at least in the area of the connection with the SiO 2 glass bulb.
  • the SiO 2 used for the formation of the composite material should have a purity of ⁇ 97% by weight. Contamination in SiO 2 , which can be attributed, for example, to alkalis or alkaline earths, can therefore be tolerated up to approximately 3% by weight. Due to the SiO 2 layer, this current feedthrough can be fused gas-tight with the SiO 2 glass bulb over its entire length or even only in any partial area.
  • the proportion of noble metal in the current leadthrough can be used to set the thermal expansion coefficient, which is preferably chosen for the current leadthrough in the range from ⁇ 5.10 -6 1 / K. It was recognized as a particularly advantageous property of the current feedthrough that the composite material with SiO 2 and the noble metal component is easily deformable in the range from 10 10% by volume to 50 50% by volume at temperatures of approximately approximately 1200 ° C.
  • a measured current transmission capacity of 20 amperes for a rod made of composite material with a diameter of 2 mm indicates a coherent network of the noble metal component, which would normally be stiff and hardly deformable.
  • This combination of properties of the composite material, which is formed from the deformation properties of the pure quartz glass and the conductivity of the noble metal enables precise and very simple mounting of electrodes or contact pins on the current leadthrough.
  • a tungsten electrode can be attached to the end of the current leadthrough, which points in the direction of the interior of the glass bulb, by heating the electrode together with the powder mixture. Sintering into already formed composite material is also possible.
  • an electrode can also be inserted into viscous composite material heated to around 1200 ° C.
  • a sufficiently conductive electrical connection is generated in a simple manner.
  • the connection of a contact pin to the current bushing on the end facing away from the glass bulb is possible in the same way. Aligning or correcting the position and position of the electrode or the contact pin and correcting the straightness of the current feedthrough itself can also be carried out at temperatures of approximately 1200 ° C.
  • the composite material is preferably formed by heating a powder mixture of noble metal powder and SiO 2 glass powder.
  • the noble metal can also be formed by a noble metal alloy.
  • the noble metals platinum, rhodium, ruthenium, rhenium and iridium have proven to be particularly suitable for the composite material.
  • An electrical conductivity of the current feedthrough should preferably be selected in the range of> 0.01 m / ⁇ mm 2 .
  • the thickness of the SiO 2 layer should be in the range from 5 to 25 ⁇ m, but in particular in the range from 7 to 15 ⁇ m.
  • a noble metal powder which has a specific surface according to BET (Brunauer-Emmett-Teller) in the range from 0.01 to 10 m 2 / g is particularly suitable. It is also advantageous to use a precious metal powder with an average particle size (d 50 ) in the range from 3 to 30 ⁇ m.
  • the SiO 2 glass powder preferably has a BET specific surface area in the range from 10 to 100 m 2 / g.
  • An average particle size (d 50 ) for the SiO 2 glass powder in the range from 0.1 to 10 ⁇ m has proven successful. It is particularly cost-effective if there is only a noble metal content in the composite material in a range from 10% by volume to 25% by volume.
  • SiO 2 glass bulb with current feedthrough for high-performance discharge lamps is ideal because of the high corrosion resistance, conductivity and gas tightness of the feedthrough.
  • the problem is solved for a method in that the powder mixture is heated to a maximum of 1200-1600 ° C., that after the heating, the SiO 2 layer is applied to the gas-tight composite material in the region of the connection with the SiO 2 glass bulb Current feedthrough is introduced into an opening of the SiO 2 glass bulb and is gas-tightly connected to the SiO 2 glass bulb in the region of the SiO 2 layer at a temperature> 1600 ° C.
  • the SiO 2 layer is preferably applied to the composite material in the form of a paste or a suspension by spraying or printing or dipping, the SiO 2 layer subsequently being baked onto the composite material.
  • the SiO 2 layer can also be applied to the composite material by vapor deposition, sputtering, chemical deposition or thermal spraying.
  • the problem is also solved in that the powder mixture is heated to a maximum of 1200-1600 ° C., that the gas-tight composite material at least partially after heating Temperature ⁇ 1600 ° C is annealed in an oxygen-containing atmosphere, whereby the noble metal is oxidized and evaporated on the surface of the composite material and at least in the area of connection with the SiO 2 glass bulb of the lamp, the SiO 2 layer is generated that the current feedthrough into a Opening of the SiO 2 glass bulb is introduced and gas-tight connection in the region of the SiO 2 layer at a temperature> 1600 ° C with the SiO 2 glass bulb.
  • This process uses the knowledge that the metals ruthenium, rhenium and iridium, which form volatile oxides, oxidize and evaporate on the surface when the composite material is heated to a temperature ⁇ 1600 ° C in an atmosphere containing oxygen.
  • a closed thin SiO 2 layer forms around the composite material, which prevents the metal from evaporating further and can be fused perfectly and gas-tight with the SiO 2 of the glass capsule.
  • the fusion is mechanically so stable that an atomic bond is presumably formed between the SiO 2 of the glass capsule, the SiO 2 layer produced by annealing and the SiO 2 in the composite material.
  • Air is preferably used as the atmosphere containing oxygen, but pure oxygen or other gas mixtures which have an oxygen content can also be used. It is particularly advantageous if the temperature is gradually increased to a maximum of 1200-1600 ° C. when the powder mixture is heated.
  • a method in which the powder mixture is shaped before heating is inexpensive. It has proven to be useful to press or extrude the powder mixture before it is heated. If an unshaped powder mixture is heated, which is of course also possible, the resulting composite material must be shaped. Due to the higher strength of the composite material, this usually has to be achieved by means of low-cost cutting processes.
  • a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
  • the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
  • 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1500 ° C.
  • the cooled composite strand with a diameter of 1.9 mm is coated evenly thinly with a paste consisting only of SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m with the addition of distilled water is formed.
  • the paste is dried in air and baked on the composite strand at 1550 ° C. for 30 minutes.
  • the composite strand coated with a ⁇ 0.1 mm thick SiO 2 layer or the current feedthrough is cut to a length of 25 mm and - if necessary after mounting an electrode and a contact pin - inserted into the tubular opening of an SiO 2 glass capsule, the tubular one Opening has an inner diameter of 2mm and an outer diameter of 5.9mm.
  • the area of the tubular opening is locally heated to approximately 1700 ° C., for example with a hydrogen flame. As a result, the tubular opening collapses onto the feedthrough and forms a gas-tight, mechanically stable bond.
  • a micrograph of the connection point from the glass capsule to the current lead-through showed no transition lines, which are formed, for example, by inhomogeneities such as pores, cracks or structural differences, between the composite material and the SiO 2 layer or between the SiO 2 layer and the glass capsule, but it was merely a uniform SiO 2 phase.
  • Example 1 a composite strand is produced, a final temperature of 1300 ° C. being maintained during the gradual heating.
  • the composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer and the feedthrough can be melted into a tubular opening in the glass capsule according to Example 1.
  • a noble metal powder made of ruthenium with a BET specific surface area of 0.29 m 2 / g and an average particle size d 50 of 5.0 ⁇ m is used for the powder mixture.
  • the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
  • 88 vol .-% SiO 2 powder and 12 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air.
  • the dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours.
  • the composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer. The current feedthrough produced in this way is freed of the SiO 2 layer on the end faces and subjected to an electrical conductivity test.
  • the conductivity value was 0.047m / ⁇ mm 2 .
  • Example 2 The current feedthrough from Example 2 with a diameter of 1.9 mm was subjected to a current carrying capacity test.
  • the rod-shaped feedthrough was clamped between two copper terminals and supplied with electricity in air.
  • the current could be increased to a value of 20 amperes, whereby the current feedthrough heated up to approximately 1700 ° C. Only an increase in the current to 22 amperes caused the feedthrough to melt. This results in a possible current density of a remarkable 7.05 A / mm 2 for the tested current implementation.
  • a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
  • the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
  • 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C.
  • the current leadthrough is cut to a length of 15 mm and a blind hole with a depth of 3 mm and a diameter of 1 mm is drilled in the end faces of the composite strand.
  • a tungsten wire electrode is inserted into one of the blind holes and a contact pin made of molybdenum into the other.
  • the surface of the composite strand is then coated evenly thinly with a paste which is formed only from SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m with the addition of distilled water.
  • the paste is dried in air and baked at 1550 ° C for 30 minutes on the composite strand, which has the electrode and the contact pin.
  • a conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
  • a noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 ⁇ m is used for the powder mixture.
  • the SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 ⁇ m.
  • 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air.
  • the dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours.
  • the composite strand is cooled, cut to a length of 15 mm and then annealed at 1620 ° C. in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer.
  • the current feedthrough is heated to 1500 ° C on one end and a tungsten wire electrode is pressed into the viscous composite material by about 2 mm. in the same way, the contact pin is attached to the other end of the feedthrough.
  • a conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.
  • FIG. 1 shows a discharge lamp in the sense of the inventive solution, which has a current feedthrough 1 and an SiO 2 glass bulb in the form of a discharge vessel 2.
  • the discharge vessel 2 has a tubular section 3 in the region of the current leadthrough 1 with an opening into which the current leadthrough 1 is melted.
  • the current feedthrough 1 is formed from a composite material 1a, which is surrounded by a thin SiO 2 layer 1b.
  • the end of the current feedthrough 1, which projects into the discharge space of the discharge vessel 2, has a tungsten electrode 4.
  • the end of the current lead-through 1, which protrudes from the discharge vessel 2, has a contact pin 5 made of molybdenum.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

Die Erfindung betrifft einen SiO2-Glaskolben mit mindestens einer Stromdurchführung aus einem gasdichten Kompositmaterial, wobei das Kompositmaterial aus einem Edelmetall mit einem Schmelzpunkt > 1700°C und aus SiO2 gebildet ist, und wobei das Kompositmaterial zumindest teilweise mit einer SiO2-Schicht bedeckt ist. Die Erfindung betrifft weiterhin eine Hochleistungs-Entladungslampe sowie ein Verfahren zur Herstellung einer gasdichten Verbindung zwischen einem SiO2 -Glaskolben und einer Stromdurchführung.The invention relates to an SiO 2 glass bulb with at least one feedthrough made of a gas-tight composite material, the composite material being formed from a noble metal with a melting point> 1700 ° C. and SiO 2 , and the composite material being at least partially covered with an SiO 2 layer is. The invention further relates to a high-power discharge lamp and a method for producing a gas-tight connection between an SiO 2 glass bulb and a current leadthrough.

Stromdurchführungen aus Metall oder einem Kompositmaterial für SiO2 - Glaskolben sind bekannt. Dabei wird unter dem Begriff "Komposit" eine Kombination unterschiedlicher Werkstoffgruppen verstanden. Hier ist speziell die Kombination zwischen einem Glaswerkstoff und einem metallischen Werkstoff betroffen. Bei der Ausbildung einer gasdichten Verbindung zwischen dem Material SiO2 und einer elektrisch leitenden, metallischen oder metallhaltigen Stromdurchführung besteht grundsätzlich die Problematik, dass die Metallanteile der Stromdurchführung einerseits durch zähflüssiges SiO2 nur schlecht benetzt werden. Andererseits erschwert der niedrige thermische Ausdehnungskoeffizient von SiO2 im Verhältnis zu dem eines Metalls die Ausbildung einer gasdichten Verbindung beträchtlich. Da beim Abkühlen nach dem Verschmelzen die metallische oder metallhaltige Stromdurchführung stärker schrumpft als das SiO2 des Glaskolbens, besteht die Neigung zur Bildung eines Spaltes an der Grenzfläche von Glaskolben zu Stromdurchführung. Zwar kann diese Gefahr durch eine Minimierung der Dicke der Stromdurchführung vermindert werden, jedoch ist die Positionierung und Handhabung sehr dünner Stromdurchführungen beispielsweise in Folienform schwierig. Um dennoch eine gasdichte Verbindung herstellen zu können, wurden bislang relativ aufwendige Lösungen vorgeschlagen.Current feedthroughs made of metal or a composite material for SiO 2 glass bulbs are known. The term "composite" is understood to mean a combination of different material groups. Here the combination between a glass material and a metallic material is particularly affected. When forming a gas-tight connection between the material SiO 2 and an electrically conductive, metallic or metal-containing current leadthrough, there is basically the problem that the metal parts of the current leadthrough are on the one hand only poorly wetted by viscous SiO 2 . On the other hand, the low coefficient of thermal expansion of SiO 2 compared to that of a metal makes the formation of a gas-tight connection considerably difficult. Since the metallic or metal-containing current leadthrough shrinks more than the SiO 2 of the glass bulb when cooling after melting, there is a tendency to form a gap at the interface between the glass bulb and the current leadthrough. Although this risk can be reduced by minimizing the thickness of the feedthrough, the positioning and handling of very thin feedthroughs, for example in the form of a film, is difficult. In order to nevertheless be able to produce a gas-tight connection, relatively complex solutions have hitherto been proposed.

So beschreibt die EP 0 938 126 A1 eine Stromdurchführung aus einem Kompositmaterial für eine Lampe, insbesondere eine Entladungslampe, wobei das Kompositmaterial aus SiO2 und Metall gebildet ist und wobei sich der Metall-Gehalt über die Länge der Stromdurchführung ändert. Der Metall-Gehalt kann sich dabei von 0 bis 100% ändern. Die Seite mit dem niedrigen Molybdängehalt wird in Richtung des Entladungsraumes der Lampe mit dem Lampenkolben gasdicht verbunden. Dabei steht nur die Stirnseite der Stromdurchführung, die hauptsächlich oder gänzlich aus SiO2 besteht, mit dem Gas im Entladungsraum in direktem Kontakt. In die Stromdurchführung ist auf Seiten des niedrigen Metall-Gehalts eine metallische Elektrodenhalterung eingesintert, wobei diese Halterung so weit in die Stromdurchführung eintaucht, dass ein direkter Kontakt mit einem Komposit-Bereich hergestellt wird, in welchem der SiO2-Gehalt ≤ 80% beträgt. So wird ein elektrischer Kontakt zwischen der Halterung und der Metall-reichen Seite der Stromdurchführung hergestellt. Für das Kompositmaterial ist dabei ein Metallpulver aus Molybdän mit einer mittleren Teilchengröße d50 von 1 µm und ein Glaspulver mit einer mittleren Teilchengröße d50 von 5,6µm offenbart.
Die EP 0 930 639 A1 offenbart ebenfalls eine Stromdurchführung mit einem sich über deren Länge ändernden Metall-Gehalt zusammen mit einem SiO2 - Lampenkolben, wobei als geeignete Metalle für das Kompositmaterial neben Molybdän auch Wolfram, Platin, Nickel, Tantal und Zirkon genannt sind. Zum Schutz des Metall-reichen Endes der Stromdurchführung vor Oxidation ist eine Schutzschicht aus Glas, Metalloxid, Edelmetall oder Chrom vorgesehen, die den aus dem Lampenkolben ragenden Teil der Stromdurchführung teilweise bedeckt. Die gasdichte Verschmelzung zwischen Stromdurchführung und Lampenkolben ist in einem Bereich der Stromdurchführung angeordnet, in welchem das Metall mit weniger als 2% im Kompositmaterial vorliegt.
Die Herstellung einer Stromdurchführung mit einer sich über die Länge der Stromdurchführung ändernden Metallkonzentration ist jedoch apparativ aufwendig. Unterschiedliche Pulver müssen hergestellt und in Lagen angeordnet werden. Zudem muss beim Einschmelzen einer Elektrode in die Stromdurchführung auf die elektrische Leitfähigkeit der einzelnen Lagen und damit auf die Eintauchtiefe der Elektrode in die Stromdurchführung geachtet werden, um einen durchgängigen elektrischen Kontakt zu erzeugen. Die Verschmelzung mit dem SiO2-Lampenkolben muss in einem bestimmten Längenabschnitt der Stromdurchführung mit sehr niedriger Metallkonzentration erfolgen, um eine gasdichte Verbindung erreichen zu können. Bei hohen thermischen Belastungen im Bereich der Stromdurchführung kann es zudem bei den nicht oxidationsbeständigen Metallen wie zum Beispiel Molybdän zu Korrosion kommen.
For example, EP 0 938 126 A1 describes a leadthrough made of a composite material for a lamp, in particular a discharge lamp, the composite material being formed from SiO 2 and metal and the metal content changing over the length of the leadthrough. The metal content can change from 0 to 100%. The side with the low molybdenum content is connected gas-tight to the lamp bulb in the direction of the discharge space of the lamp. In this case, only the end face of the current leadthrough, which consists mainly or entirely of SiO 2, is in direct contact with the gas in the discharge space. A metal electrode holder is sintered into the current feedthrough on the side of the low metal content, this holder immersing so far into the current feedthrough that direct contact is made with a composite area in which the SiO 2 content is ≤ 80%. This creates an electrical contact between the bracket and the metal-rich side of the current feedthrough. A metal powder of molybdenum with an average particle size d 50 of 1 μm and a glass powder with an average particle size d 50 of 5.6 μm are disclosed for the composite material.
EP 0 930 639 A1 likewise discloses a current feedthrough with a metal content which changes over its length together with an SiO 2 lamp bulb, tungsten, platinum, nickel, tantalum and zircon being mentioned as suitable metals for the composite material in addition to molybdenum. To protect the metal-rich end of the current lead-through from oxidation, a protective layer made of glass, metal oxide, noble metal or chrome is provided, which partially covers the part of the current lead-through protruding from the lamp bulb. The gas-tight fusion between the current leadthrough and the lamp bulb is arranged in a region of the current leadthrough in which the metal is present in the composite material with less than 2%.
However, the production of a current leadthrough with a metal concentration that changes over the length of the current leadthrough is expensive in terms of apparatus. Different powders have to be produced and arranged in layers. In addition, when an electrode is melted into the leadthrough, attention must be paid to the electrical conductivity of the individual layers and thus to the immersion depth of the electrode in the leadthrough in order to produce a continuous electrical contact. The fusion with the SiO 2 lamp bulb must take place in a certain length section of the current lead-through with a very low metal concentration in order to be able to achieve a gas-tight connection. In the case of high thermal loads in the area of the current lead-through, corrosion can also occur with the non-oxidation-resistant metals such as molybdenum.

Die EP 0 074 507 A2 beschreibt einen Werkstoff für elektrische Kontakte, insbesondere Schwachstromkontakte, und ein Verfahren zu seiner Herstellung. Der Werkstoff wird aus einem Edelmetall mit 1 bis 50 Vol.-% Glas gebildet, wobei vorzugsweise ein Edelmetallpulver mit einer Teilchengröße von ≤ 250 µm und ein Glaspulver mit einer mittleren Teilchengröße von ≤ 50 µm verwendet wird. Als Edelmetalle werden Gold, Silber, Palladium und deren Legierungen verwendet.EP 0 074 507 A2 describes a material for electrical contacts, in particular Low power contacts, and a process for its manufacture. The material becomes one Precious metal with 1 to 50 vol .-% glass, preferably a precious metal powder with a Particle size of ≤ 250 µm and a glass powder with an average particle size of ≤ 50 µm is used. Gold, silver, palladium and their alloys are used as precious metals.

Es stellt sich das Problem, eine gasdichte, korrosionsbeständige Stromdurchführung für einen SiO2-Glaskolben, vorzugsweise einer Entladungslampe, bereitzustellen, die eine hohe elektrische Leitfähigkeit besitzt und die einfach herzustellen und zu handhaben ist.The problem arises of providing a gas-tight, corrosion-resistant feedthrough for an SiO 2 glass bulb, preferably a discharge lamp, which has a high electrical conductivity and which is easy to manufacture and to handle.

Das Problem wird dadurch gelöst, dass das Edelmetall und das SiO2 homogen im Kompositmaterial verteilt sind, dass ein Edelmetallanteil im Kompositmaterial in einem Bereich von ≥ 10 Vol.-% bis ≤ 50 Vol.-% vorhanden ist und dass die SiO2 -Schicht das Kompositmaterial zumindest im Bereich der Verbindung mit dem SiO2 -Glaskolben bedeckt.
Dabei sollte das SiO2, welches für die Bildung des Kompositmaterials verwendet wird, eine Reinheit von ≥ 97 Gew.-% aufweisen. Verunreinigungen im SiO2, die beispielsweise auf Alkalien oder Erdalkalien zurückzuführen sind, sind demnach bis circa 3 Gew.-% tolerierbar.
Diese Stromdurchführung kann aufgrund der SiO2-Schicht auf ihrer gesamten Länge oder auch nur in einem beliebigen Teilbereich gasdicht mit dem SiO2-Glaskolben verschmolzen werden. Es ist nur ein einziges Kompositpulver zur Herstellung erforderlich. Da die Stromdurchführung über ihre gesamte Länge eine gleichbleibend hohe elektrische Leitfähigkeit aufweist, muss beim Einschmelzen einer Elektrode in die Stromdurchführung nicht auf deren Eintauchtiefe in das Kompositmaterial geachtet werden. Mit dem Anteil an Edelmetall in der Stromdurchführung kann die Einstellung des thermischen Ausdehnungskoeffizienten, der für die Stromdurchführung vorzugsweise im Bereich von < 5.10-6 1/K gewählt wird, erfolgen. Als besonders vorteilhafte Eigenschaft der Stromdurchführung wurde erkannt, dass das Kompositmaterial mit SiO2 und dem Edelmetallanteil in Bereich von ≥ 10 Vol.-% bis ≤ 50 Vol.-% bei Temperaturen von größer circa 1200°C leicht verformbar ist. Bei Temperaturen von größer circa 1600°C biegen sich beispielsweise als Stäbe ausgebildete Stromdurchführungen unter ihrem Eigengewicht rissfrei bis zu einem Winkel von 90° ohne Beeinträchtigung der elektrischen Leitfähigkeit des Materials. Ein Ausrichten beziehungsweise Begradigen einer solchen Stromdurchführung ist dadurch möglich.
The problem is solved in that the noble metal and the SiO 2 are homogeneously distributed in the composite material, that a noble metal portion is present in the composite material in a range from ≥ 10% by volume to ≤ 50% by volume and that the SiO 2 layer the composite material is covered at least in the area of the connection with the SiO 2 glass bulb.
The SiO 2 used for the formation of the composite material should have a purity of ≥ 97% by weight. Contamination in SiO 2 , which can be attributed, for example, to alkalis or alkaline earths, can therefore be tolerated up to approximately 3% by weight.
Due to the SiO 2 layer, this current feedthrough can be fused gas-tight with the SiO 2 glass bulb over its entire length or even only in any partial area. Only a single composite powder is required to make it. Since the electrical feedthrough has a consistently high electrical conductivity over its entire length, it is not necessary to pay attention to its immersion depth in the composite material when an electrode is melted into the electrical feedthrough. The proportion of noble metal in the current leadthrough can be used to set the thermal expansion coefficient, which is preferably chosen for the current leadthrough in the range from <5.10 -6 1 / K. It was recognized as a particularly advantageous property of the current feedthrough that the composite material with SiO 2 and the noble metal component is easily deformable in the range from 10 10% by volume to 50 50% by volume at temperatures of approximately approximately 1200 ° C. At temperatures greater than approximately 1600 ° C, current feedthroughs designed as rods, for example, bend under their own weight without cracks up to an angle of 90 ° without impairing the electrical conductivity of the material. Aligning or straightening such a feedthrough is thus possible.

Diese mechanischen Eigenschaften entsprechen zwar dem des reinen Quarzglases, jedoch erstaunte, dass sie auch für das Kompositmaterial mit seiner hohen elektrischen Leitfähigkeit und Stromübertragungsfähigkeit gelten. Eine gemessene Stromübertragungsfähigkeit von 20 Ampere bei einem Stab aus Kompositmaterial mit einem Durchmesser von 2mm weist auf ein zusammenhängendes Netzwerk der Edelmetallkomponente hin, das normalerweise steif und kaum verformbar wäre. Diese Kombination von Eigenschaften des Kompositmaterials, die sich aus Verformungseigenschaften des reinen Quarzglases und der Leitfähigkeit des Edelmetalls bildet, ermöglicht eine präzise und sehr einfache Montage von Elektroden oder Kontaktstiften an der Stromdurchführung. So kann beispielsweise an das Ende der Stromdurchführung, welches in Richtung des Inneren des Glaskolbens zeigt, eine Wolframelektrode befestigt werden, indem die Elektrode zusammen mit dem Pulvergemisch erhitzt wird. Auch ein Einsintern in bereits gebildetes Kompositmaterial ist möglich. Zudem kann eine Elektrode auch in auf circa 1200°C erhitztes, zähflüssiges Kompositmaterial gesteckt werden. In allen drei Fällen wird in einfacher Weise eine ausreichend leitfähige elektrische Verbindung erzeugt. Die Verbindung eines Kontaktstiftes mit der Stromdurchführung auf deren dem Glaskolben abgewandten Ende ist in gleicher Weise möglich. Das Ausrichten beziehungsweise Korrigieren der Position und Lage der Elektrode beziehungsweise des Kontaktstiftes sowie ein Korrigieren der Geradheit der Stromdurchführung selbst kann ebenfalls bei Temperaturen von circa 1200°C erfolgen. Vorzugsweise ist das Kompositmaterial durch Erhitzen eines Pulvergemisches aus Edelmetallpulver und SiO2-Glaspulver gebildet. Das Edelmetall kann dabei auch durch eine Edelmetall-Legierung gebildet sein. Als besonders für das Kompositmaterial geeignet haben sich die Edelmetalle Platin, Rhodium, Ruthenium, Rhenium und Iridium erwiesen. Eine elektrische Leitfähigkeit der Stromdurchführung sollte vorzugsweise im Bereich von > 0,01m/Ωmm2 gewählt werden. Die Dicke der SiO2 -Schicht sollte im Bereich von 5 - 25µm, insbesondere aber im Bereich von 7 - 15µm liegen. Besonders geeignet ist ein Edelmetallpulver, welches eine spezifische Oberfläche nach BET (Brunauer-Emmett-Teller) im Bereich von 0,01 bis 10 m2/g aufweist. Von Vorteil ist zudem, ein Edelmetallpulver mit einer mittleren Teilchengröße ( d50 ) im Bereich von 3 bis 30µm einzusetzen. Das SiO2 -Glaspulver weist vorzugsweise eine spezifische Oberfläche nach BET im Bereich von 10 bis 100 m2/g auf. Eine mittlere Teilchengröße ( d50 ) für das SiO2-Glaspulver im Bereich von 0,1 bis 10µm hat sich bewährt. Besonders kostengünstig ist es, wenn nur ein Edelmetallanteil im Kompositmaterial in einem Bereich von 10 Vol.-% bis 25 Vol.-% vorhanden ist. Although these mechanical properties correspond to those of pure quartz glass, it is astonishing that they also apply to the composite material with its high electrical conductivity and current transmission capacity. A measured current transmission capacity of 20 amperes for a rod made of composite material with a diameter of 2 mm indicates a coherent network of the noble metal component, which would normally be stiff and hardly deformable. This combination of properties of the composite material, which is formed from the deformation properties of the pure quartz glass and the conductivity of the noble metal, enables precise and very simple mounting of electrodes or contact pins on the current leadthrough. For example, a tungsten electrode can be attached to the end of the current leadthrough, which points in the direction of the interior of the glass bulb, by heating the electrode together with the powder mixture. Sintering into already formed composite material is also possible. In addition, an electrode can also be inserted into viscous composite material heated to around 1200 ° C. In all three cases, a sufficiently conductive electrical connection is generated in a simple manner. The connection of a contact pin to the current bushing on the end facing away from the glass bulb is possible in the same way. Aligning or correcting the position and position of the electrode or the contact pin and correcting the straightness of the current feedthrough itself can also be carried out at temperatures of approximately 1200 ° C. The composite material is preferably formed by heating a powder mixture of noble metal powder and SiO 2 glass powder. The noble metal can also be formed by a noble metal alloy. The noble metals platinum, rhodium, ruthenium, rhenium and iridium have proven to be particularly suitable for the composite material. An electrical conductivity of the current feedthrough should preferably be selected in the range of> 0.01 m / Ωmm 2 . The thickness of the SiO 2 layer should be in the range from 5 to 25 μm, but in particular in the range from 7 to 15 μm. A noble metal powder which has a specific surface according to BET (Brunauer-Emmett-Teller) in the range from 0.01 to 10 m 2 / g is particularly suitable. It is also advantageous to use a precious metal powder with an average particle size (d 50 ) in the range from 3 to 30 μm. The SiO 2 glass powder preferably has a BET specific surface area in the range from 10 to 100 m 2 / g. An average particle size (d 50 ) for the SiO 2 glass powder in the range from 0.1 to 10 μm has proven successful. It is particularly cost-effective if there is only a noble metal content in the composite material in a range from 10% by volume to 25% by volume.

Der Einsatz des erfindungsgemäßen SiO2 -Glaskolbens mit Stromdurchführung für Hochleistungs-Entladungslampen ist aufgrund der hohen Korrosionsbeständigkeit, Leitfähigkeit und Gasdichtheit der Durchführung ideal.The use of the SiO 2 glass bulb with current feedthrough for high-performance discharge lamps is ideal because of the high corrosion resistance, conductivity and gas tightness of the feedthrough.

Das Problem wird für ein Verfahren dadurch gelöst, dass das Pulvergemisch auf maximal 1200 - 1600°C erhitzt wird, dass nach dem Erhitzen auf das gasdichte Kompositmaterial im Bereich der Verbindung mit dem SiO2 -Glaskolben die SiO2 -Schicht aufgetragen wird, dass die Stromdurchführung in eine Öffnung des SiO2-Glaskolbens eingeführt wird und im Bereich der SiO2-Schicht bei einer Temperatur > 1600°C gasdicht mit dem SiO2-Glaskolben verbunden wird.
Das Auftragen der SiO2-Schicht auf das Kompositmaterial erfolgt vorzugsweise in Form einer Paste oder einer Suspension durch Sprühen oder Drucken oder Tauchen, wobei nachfolgend die SiO2 -Schicht auf dem Kompositmaterial eingebrannt werden sollte.
Der Auftrag der SiO2 -Schicht auf das Kompositmaterial kann aber auch durch Aufdampfen, Sputtem, chemische Abscheidung oder thermisches Spritzen erfolgen.
The problem is solved for a method in that the powder mixture is heated to a maximum of 1200-1600 ° C., that after the heating, the SiO 2 layer is applied to the gas-tight composite material in the region of the connection with the SiO 2 glass bulb Current feedthrough is introduced into an opening of the SiO 2 glass bulb and is gas-tightly connected to the SiO 2 glass bulb in the region of the SiO 2 layer at a temperature> 1600 ° C.
The SiO 2 layer is preferably applied to the composite material in the form of a paste or a suspension by spraying or printing or dipping, the SiO 2 layer subsequently being baked onto the composite material.
The SiO 2 layer can also be applied to the composite material by vapor deposition, sputtering, chemical deposition or thermal spraying.

Das Problem wird für ein Verfahren bei Einsatz der Edelmetalle Ruthenium und/oder Rhenium und/oder Iridium für das Komposit auch dadurch gelöst, dass das Pulvergemisch auf maximal 1200 - 1600°C erhitzt wird, dass das gasdichte Kompositmaterial nach dem Erhitzen zumindest teilweise bei einer Temperatur ≥ 1600°C in Sauerstoff enthaltender Atmosphäre geglüht wird, wodurch das Edelmetall an der Oberfläche des Kompositmaterials oxidiert und verdampft und zumindest im Bereich der Verbindung mit dem SiO2 -Glaskolben der Lampe die SiO2 -Schicht erzeugt wird, dass die Stromdurchführung in eine Öffnung des SiO2-Glaskolbens eingeführt wird und im Bereich der SiO2 -Schicht bei einer Temperatur > 1600°C gasdicht mit dem SiO2-Glaskolben verbunden wird.
Dieses Verfahren nutzt die Erkenntnis, dass die Metalle Ruthenium, Rhenium und Iridium, welche flüchtige Oxide bilden, bei Erhitzen des Kompositmaterials auf eine Temperatur ≥ 1600°C in Sauerstoff enthaltender Atmosphäre oberflächlich oxidieren und verdampfen. Es bildet sich während des Glühens eine geschlossene dünne SiO2 -Schicht um das Kompositmaterial aus, die ein weiteres Abdampfen des Metalls verhindert und mit dem SiO2 der Glaskapsel einwandfrei und gasdicht verschmelzbar ist. Die Verschmelzung ist mechanisch so stabil, dass vermutlich ein atomarer Verbund zwischen dem SiO2 der Glaskapsel, der durch Glühen erzeugten SiO2 -Schicht und dem SiO2 im Kompositmaterial gebildet wird.
For a process using the noble metals ruthenium and / or rhenium and / or iridium for the composite, the problem is also solved in that the powder mixture is heated to a maximum of 1200-1600 ° C., that the gas-tight composite material at least partially after heating Temperature ≥ 1600 ° C is annealed in an oxygen-containing atmosphere, whereby the noble metal is oxidized and evaporated on the surface of the composite material and at least in the area of connection with the SiO 2 glass bulb of the lamp, the SiO 2 layer is generated that the current feedthrough into a Opening of the SiO 2 glass bulb is introduced and gas-tight connection in the region of the SiO 2 layer at a temperature> 1600 ° C with the SiO 2 glass bulb.
This process uses the knowledge that the metals ruthenium, rhenium and iridium, which form volatile oxides, oxidize and evaporate on the surface when the composite material is heated to a temperature ≥ 1600 ° C in an atmosphere containing oxygen. During the annealing, a closed thin SiO 2 layer forms around the composite material, which prevents the metal from evaporating further and can be fused perfectly and gas-tight with the SiO 2 of the glass capsule. The fusion is mechanically so stable that an atomic bond is presumably formed between the SiO 2 of the glass capsule, the SiO 2 layer produced by annealing and the SiO 2 in the composite material.

Als Sauerstoff enthaltende Atmosphäre wird dabei vorzugsweise Luft verwendet, aber auch reiner Sauerstoff oder weitere Gasgemische, die einen Sauerstoffanteil aufweisen, sind verwendbar.
Besonders vorteilhaft ist es, wenn die Temperatur beim Erhitzen des Pulvergemisches stufenweise auf maximal 1200 - 1600°C erhöht wird.
Kostengünstig ist ein Verfahren, bei welchem das Pulvergemisch vor dem Erhitzen geformt wird. Bewährt hat sich, das Pulvergemisch vor dem Erhitzen formgebend zu pressen oder zu extrudieren. Wird ein ungeformtes Pulvergemisch erhitzt, was selbstverständlich auch möglich ist, so muss das daraus entstandene Kompositmaterial formgebend bearbeitet werden. Aufgrund der höheren Festigkeit des Kompositmaterials muss dies in der Regel durch wenig kostengünstige, spanabhebende Verfahren realisiert werden.
Air is preferably used as the atmosphere containing oxygen, but pure oxygen or other gas mixtures which have an oxygen content can also be used.
It is particularly advantageous if the temperature is gradually increased to a maximum of 1200-1600 ° C. when the powder mixture is heated.
A method in which the powder mixture is shaped before heating is inexpensive. It has proven to be useful to press or extrude the powder mixture before it is heated. If an unshaped powder mixture is heated, which is of course also possible, the resulting composite material must be shaped. Due to the higher strength of the composite material, this usually has to be achieved by means of low-cost cutting processes.

Folgende Beispiele 1 bis 6 sowie Figur 1 sollen den Gegenstand der Erfindung beispielhaft erläutern. So zeigt

  • Bsp. 1 ein Verfahren zur Herstellung einer Stromdurchführung mit Ruthenium,
  • Bsp. 2 ein weiteres Verfahren zur Herstellung einer Stromdurchführung mit Ruthenium,
  • Bsp. 3 eine Leitfähigkeitsmessung an einer Stromdurchführung mit Ruthenium,
  • Bsp. 4 eine Strombelastbarkeitsprüfung an einer Stromdurchführung mit Ruthenium,
  • Bsp. 5 eine mögliche Art der Montage einer Elektrode und eines Kontaktstiftes und
  • Bsp. 6 eine weitere mögliche Art der Montage einer Elektrode und eines Kontaktstiftes.
  • Fig. 1 eine Entladungslampe mit SiO2-Entladungsgefäß
  • The following examples 1 to 6 and FIG. 1 are intended to explain the subject matter of the invention by way of example. So shows
  • Example 1 a method for producing a current leadthrough with ruthenium,
  • Example 2 a further method for producing a leadthrough with ruthenium,
  • Example 3 a conductivity measurement on a leadthrough with ruthenium,
  • Example 4 a current carrying capacity test on a current lead-through with ruthenium,
  • Ex. 5 a possible way of mounting an electrode and a contact pin and
  • Example 6 another possible way of mounting an electrode and a contact pin.
  • Fig. 1 shows a discharge lamp with SiO 2 discharge vessel
  • Beispiel 1:Example 1:

    Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
    Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 - Pulver und 25Vol.-% Edelmetallpulver werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet. Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1500°C erhitzt, wobei eine stufenweise Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils 30 min realisiert wird. Die Endtemperatur von 1500°C wird 2h gehalten. Der abgekühlte Kompositstrang mit einem Durchmesser von 1,9mm wird gleichmäßig dünn mit einer Paste belegt, die nur aus dem SiO2 mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm unter Zumischung von destilliertem Wasser gebildet ist. Die Paste wird an Luft getrocknet und bei 1550°C über 30min auf dem Kompositstrang eingebrannt. Der mit einer < 0,1 mm dicken SiO2-Schicht beschichtete Kompositstrang beziehungsweise die Stromdurchführung wird auf eine Länge von 25mm geschnitten und ― gegebenenfalls nach Montage einer Elektrode und eines Kontaktstiftes ― in die rohrförmige Öffnung einer SiO2 ― Glaskapsel eingeführt, wobei die rohrförmige Öffnung einen Innendurchmesser von 2mm und einen Außendurchmesser von 5,9mm aufweist. Der Bereich der rohrförmigen Öffnung wird, beispielsweise mit einer Wasserstoff-Flamme, lokal auf circa 1700°C erhitzt. Dadurch kollabiert die rohrförmige Öffnung auf die Stromdurchführung und bildet einen gasdichten, mechanisch stabilen Verbund. Ein Schliffbild der Verbindungsstelle von Glaskapsel zu Stromdurchführung zeigte keine Übergangslinien, die zum Beispiel durch Inhomogenitäten wie Poren, Risse oder Gefügeunterschiede gebildet werden, zwischen Kompositmaterial und SiO2-Schicht beziehungsweise zwischen SiO2-Schicht und Glaskapsel mehr, sondern es war lediglich eine einheitliche SiO2-Phase zu erkennen.
    A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
    The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1500 ° C. in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1500 ° C is held for 2 hours. The cooled composite strand with a diameter of 1.9 mm is coated evenly thinly with a paste consisting only of SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm with the addition of distilled water is formed. The paste is dried in air and baked on the composite strand at 1550 ° C. for 30 minutes. The composite strand coated with a <0.1 mm thick SiO 2 layer or the current feedthrough is cut to a length of 25 mm and - if necessary after mounting an electrode and a contact pin - inserted into the tubular opening of an SiO 2 glass capsule, the tubular one Opening has an inner diameter of 2mm and an outer diameter of 5.9mm. The area of the tubular opening is locally heated to approximately 1700 ° C., for example with a hydrogen flame. As a result, the tubular opening collapses onto the feedthrough and forms a gas-tight, mechanically stable bond. A micrograph of the connection point from the glass capsule to the current lead-through showed no transition lines, which are formed, for example, by inhomogeneities such as pores, cracks or structural differences, between the composite material and the SiO 2 layer or between the SiO 2 layer and the glass capsule, but it was merely a uniform SiO 2 phase.

    Beispiel 2:Example 2:

    Gemäß Beispiel 1 wird ein Kompositstrang erzeugt, wobei eine Endtemperatur beim stufenweisen Erhitzen von 1300°C eingehalten wird. Der Kompositstrang wird bei 1620°C in Luft 30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen von Rutheniumoxid festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig mit einer dünnen SiO2-Schicht überzogen und die Stromdurchführung kann gemäß Beispiel 1 in eine rohrförmige Öffnung der Glaskapsel eingeschmolzen werden.According to Example 1, a composite strand is produced, a final temperature of 1300 ° C. being maintained during the gradual heating. The composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer and the feedthrough can be melted into a tubular opening in the glass capsule according to Example 1.

    Beispiel 3:Example 3:

    Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche nach BET von 0,29m2/g und einer mittleren Teilchengröße d50 von 5,0µm verwendet. Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm eingesetzt. 88Vol.-% SiO2 ― Pulver und 12Vol.-% Edelmetallpulver werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet. Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils 30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Der Kompositstrang wird bei 1620°C in Luft 30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen von Rutheniumoxid festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig mit einer dünnen SiO2-Schicht überzogen.
    Die so hergestellte Stromdurchführung wird an den Stirnseiten von der SiO2-Schicht befreit und einer elektrischen Leitfähigkeitsprüfung unterzogen. Es ergab sich ein Leitfähigkeits-Wert von 0,047m/Ωmm2.
    A noble metal powder made of ruthenium with a BET specific surface area of 0.29 m 2 / g and an average particle size d 50 of 5.0 μm is used for the powder mixture. The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 88 vol .-% SiO 2 powder and 12 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. The composite strand is annealed at 1620 ° C in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer.
    The current feedthrough produced in this way is freed of the SiO 2 layer on the end faces and subjected to an electrical conductivity test. The conductivity value was 0.047m / Ωmm 2 .

    Beispiel 4:Example 4:

    Die Stromdurchführung aus Beispiel 2 mit einem Durchmesser von 1,9mm wurde einer Strombelastbarkeitsprüfung unterzogen. Dazu wurde die stabförmige Stromdurchführung zwischen zwei Kupferklemmen eingespannt und an Luft mit Strom beaufschlagt. Der Strom konnte bis zu einem Wert von 20 Ampere erhöht werden, wobei sich die Stromdurchführung auf circa 1700°C aufheizte. Erst eine Erhöhung des Stromes auf 22 Ampere führte zum Durchschmelzen der Stromdurchführung. Somit ergibt sich eine mögliche Stromdichte in Höhe beachtlicher 7,05 A/mm2 für die getestete Stromdurchführung.The current feedthrough from Example 2 with a diameter of 1.9 mm was subjected to a current carrying capacity test. For this purpose, the rod-shaped feedthrough was clamped between two copper terminals and supplied with electricity in air. The current could be increased to a value of 20 amperes, whereby the current feedthrough heated up to approximately 1700 ° C. Only an increase in the current to 22 amperes caused the feedthrough to melt. This results in a possible current density of a remarkable 7.05 A / mm 2 for the tested current implementation.

    Beispiel 5:Example 5:

    Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
    Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 ― Pulver und 25Vol.-% Edelmetallpulver werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet. Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils 30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Nach dem Abkühlen wird die Stromdurchführung auf eine Länge von 15mm geschnitten und in die Stirnseiten des Kompositstranges jeweils ein Sackloch mit einer Tiefe von 3mm und mit einem Durchmesser von 1 mm gebohrt. In eines der Sacklöcher wird eine Wolframdrahtelektrode eingeführt und in das andere ein Kontaktstift aus Molybdän. Die Oberfläche des Kompositstranges wird anschließend gleichmäßig dünn mit einer Paste belegt, die nur aus dem SiO2 mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm unter Zumischung von destilliertem Wasser gebildet ist. Die Paste wird an Luft getrocknet und bei 1550°C über 30min auf dem Kompositstrang, der die Elektrode und den Kontaktstift aufweist, eingebrannt.
    Es entsteht eine stromleitende, mechanisch stabile Verbindung zwischen Kompositmaterial und Elektrode sowie Kompositmaterial und Kontaktstift.
    A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
    The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C. in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. After cooling, the current leadthrough is cut to a length of 15 mm and a blind hole with a depth of 3 mm and a diameter of 1 mm is drilled in the end faces of the composite strand. A tungsten wire electrode is inserted into one of the blind holes and a contact pin made of molybdenum into the other. The surface of the composite strand is then coated evenly thinly with a paste which is formed only from SiO 2 with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm with the addition of distilled water. The paste is dried in air and baked at 1550 ° C for 30 minutes on the composite strand, which has the electrode and the contact pin.
    A conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.

    Beispiel 6:Example 6:

    Für das Pulvergemisch wird ein Edelmetallpulver aus Ruthenium mit einer spezifischen Oberfläche nach BET von 0,96m2/g und einer mittleren Teilchengröße d50 von 9,4µm verwendet.
    Das SiO2 wird mit einer spezifischen Oberfläche nach BET von 53m2/g und einer mittleren Teilchengröße d50 von 4,4µm eingesetzt. 75Vol.-% SiO2 ― Pulver und 25Vol.-% Edelmetallpulver werden unter Zugabe von destilliertem Wasser homogen gemischt und zu einer Paste verarbeitet. Diese Paste wird zu einem Strang mit einem Durchmesser von 2,5mm extrudiert und an Luft getrocknet. Der getrocknete Strang wird in inerter Atmosphäre, vorzugsweise in Argon, mit einer Aufheizgeschwindigkeit von maximal 15°C/min auf 1300°C erhitzt, wobei eine stufenweise Erhitzung durch ein Konstanthalten der Temperatur bei 500°C, 800°C und 1100°C über jeweils 30 min realisiert wird. Die Endtemperatur von 1300°C wird 2h gehalten. Der Kompositstrang wird abgekühlt, auf eine Länge von 15mm geschnitten und anschließend bei 1620°C in Luft 30min lang geglüht. Zu Beginn des Glühprozesses ist kurzzeitig ein Abdampfen von Rutheniumoxid festzustellen. Nach dem Abkühlen ist das Kompositmaterial allseitig mit einer dünnen SiO2-Schicht überzogen. Die Stromdurchführung wird an einer Stirnseite auf 1500°C erhitzt und eine Wolframdrahtelektrode circa 2mm in das zähflüssige Kompositmaterial eingedrückt. in gleicher Weise wird der Kontaktstift am anderen Ende der Stromdurchführung befestigt.
    Es entsteht eine stromleitende, mechanisch stabile Verbindung zwischen Kompositmaterial und Elektrode sowie Kompositmaterial und Kontaktstift.
    A noble metal powder made of ruthenium with a BET specific surface area of 0.96 m 2 / g and an average particle size d 50 of 9.4 μm is used for the powder mixture.
    The SiO 2 is used with a BET specific surface area of 53 m 2 / g and an average particle size d 50 of 4.4 μm. 75 vol .-% SiO 2 powder and 25 vol .-% precious metal powder are mixed homogeneously with the addition of distilled water and processed into a paste. This paste is extruded into a strand with a diameter of 2.5 mm and dried in air. The dried strand is heated to 1300 ° C in an inert atmosphere, preferably in argon, at a heating rate of at most 15 ° C./min, a gradual heating by keeping the temperature constant at 500 ° C., 800 ° C. and 1100 ° C. 30 minutes each. The final temperature of 1300 ° C is held for 2 hours. The composite strand is cooled, cut to a length of 15 mm and then annealed at 1620 ° C. in air for 30 minutes. At the beginning of the annealing process, ruthenium oxide evaporates briefly. After cooling, the composite material is coated on all sides with a thin SiO 2 layer. The current feedthrough is heated to 1500 ° C on one end and a tungsten wire electrode is pressed into the viscous composite material by about 2 mm. in the same way, the contact pin is attached to the other end of the feedthrough.
    A conductive, mechanically stable connection is created between the composite material and the electrode, as well as the composite material and the contact pin.

    Figur 1 zeigt eine Entladungslampe im Sinne der erfinderischen Lösung, die eine Stromdurchführung 1 und einen SiO2-Glaskolben in Form eines Entladungsgefäßes 2 aufweist. Das Entladungsgefäß 2 weist im Bereich der Stromdurchführung 1 einen rohrförmige Abschnitt 3 mit einer Öffnung auf, in welche die Stromdurchführung 1 eingeschmolzen ist. Die Stromdurchführung 1 ist aus einem Kompositmaterial 1a gebildet, das von einer dünnen SiO2 -Schicht 1b umgeben ist. Das Ende der Stromdurchführung 1, welches in den Entladungsraum des Entladungsgefäßes 2 hineinragt, weist eine Wolframelektrode 4 auf. Das Ende der Stromdurchführung 1, welches aus dem Entladungsgefäß 2 hinausragt, weist einen Kontaktstift 5 aus Molybdän auf.FIG. 1 shows a discharge lamp in the sense of the inventive solution, which has a current feedthrough 1 and an SiO 2 glass bulb in the form of a discharge vessel 2. The discharge vessel 2 has a tubular section 3 in the region of the current leadthrough 1 with an opening into which the current leadthrough 1 is melted. The current feedthrough 1 is formed from a composite material 1a, which is surrounded by a thin SiO 2 layer 1b. The end of the current feedthrough 1, which projects into the discharge space of the discharge vessel 2, has a tungsten electrode 4. The end of the current lead-through 1, which protrudes from the discharge vessel 2, has a contact pin 5 made of molybdenum.

    Claims (22)

    1. SiO2 glass bulb having at least one current lead-through comprising a gas-tight composite material, the composite material being formed from a noble metal having a melting point > 1700°C and from SiO2 and being at least partly covered with an SiO2 layer, characterized in that the noble metal and the SiO2 are homogeneously distributed in the composite material, that a proportion of noble metal in a range from ≥ 10% by volume to ≤ 50% by volume is present in the composite material and that the SiO2 layer covers the composite material at least in the region of the joint with the SiO2 glass bulb.
    2. SiO2 glass bulb according to Claim 1, characterized in that the composite material is formed by heating a powder mixture comprising noble metal powder and SiO2 glass powder.
    3. SiO2 glass bulb according to Claim 1 or 2, characterized in that the noble metal is formed from a noble metal alloy.
    4. SiO2 glass bulb according to any of Claims 1 to 3, characterized in that the noble metal is formed from platinum and/or rhodium.
    5. SiO2 glass bulb according to any of Claims 1 to 3, characterized in that the noble metal is formed from ruthenium and/or rhenium and/or iridium.
    6. SiO2 glass bulb according to any of Claims 1 to 5, characterized in that the current lead-through has an electrical conductivity of > 0.01 m/Ωmm2.
    7. SiO2 glass bulb according to any of Claims 1 to 6, characterized in that the SiO2 layer has a thickness in the range of 5 - 25 µm.
    8. SiO2 glass bulb according to Claim 7, characterized in that the thickness of the SiO2 layer is 7 - 15 µm.
    9. SiO2 glass bulb according to any of Claims 2 to 8, characterized in that the noble metal powder has a BET specific surface area in the range from 0.01 to 10 m2/g.
    10. SiO2 glass bulb according to any of Claims 2 to 9, characterized in that the noble metal powder has a median particle size (d50) in the range from 3 to 30 µm.
    11. SiO2 glass bulb according to any of Claims 2 to 10, characterized in that the SiO2 glass powder has a BET specific surface area of from 10 to 100 m2/g.
    12. SiO2 glass bulb according to any of Claims 2 to 11, characterized in that the SiO2 glass powder has a median particle size (d50) in the range from 0.1 to 10 µm.
    13. SiO2 glass bulb according to any of Claims 1 to 12, characterized in that the proportion of noble metal in the composite material is in a range from ≥ 10% by volume to 25% by volume.
    14. High-power discharge lamp comprising an SiO2 glass bulb according to any of Claims 1 to 13.
    15. Process for the production of a gas-tight joint between an SiO2 glass bulb and a current lead-through according to any of Claims 1 to 13, characterized in that the powder mixture is heated to not more than 1200 - 1600°C, that the SiO2 layer is applied to the gas-tight composite material in the region of the joint with the SiO2 glass bulb after the heating, that the current lead-through is introduced into an opening of the SiO2 glass bulb and is joined gas-tight to the SiO2 glass bulb in the region of the SiO2 layer at a temperature > 1600°C.
    16. Process according to Claim 15, characterized in that the application of the SiO2 layer to the composite material is effected in the form of a paste or of a suspension by spraying or printing or immersion and that the SiO2 layer is fired on the composite material.
    17. Process according to Claim 15, characterized in that the application of the SiO2 layer to the composite material is effected by vapour deposition, sputtering, chemical deposition or thermal spraying.
    18. Process for the production of a gas-tight joint between an SiO2 glass bulb and a current lead-through according to Claim 5, characterized in that the powder mixture is heated to not more than 1200 - 1600°C, that, after the heating, the gas-tight composite material is at least partly ignited at a temperature of ≥ 1600°C in an oxygen-containing atmosphere, with the result that the noble metal is oxidized and vaporized on the surface of the composite material and the SiO2 layer is produced at least in the region of the joint with the SiO2 glass bulb of the lamp, that the current lead-through is introduced into an opening of the SiO2 glass bulb and is joined gas-tight with the SiO2 glass bulb in the region of the SiO2 layer at a temperature > 1600°C.
    19. Process according to Claim 18, characterized in that air is used as the oxygen-containing atmosphere.
    20. Process according to any of Claims 15 to 19, characterized in that the temperature during the heating is increased stepwise to not more than 1200 - 1600°C.
    21. Process according to any of Claims 15 to 20, characterized in that the powder mixture is moulded prior to heating.
    22. Process according to Claim 21, characterized in that the powder mixture is compression moulded or extruded prior to heating.
    EP01116803A 2000-08-04 2001-07-10 Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp Expired - Lifetime EP1178519B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10038841A DE10038841C1 (en) 2000-08-04 2000-08-04 Silicon dioxide glass bulb used in a high power discharge lamp has a current duct made from a gas-tight composite material consisting of a precious metal and silicon dioxide
    DE10038841 2000-08-04

    Publications (2)

    Publication Number Publication Date
    EP1178519A1 EP1178519A1 (en) 2002-02-06
    EP1178519B1 true EP1178519B1 (en) 2004-02-11

    Family

    ID=7651832

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01116803A Expired - Lifetime EP1178519B1 (en) 2000-08-04 2001-07-10 Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp

    Country Status (4)

    Country Link
    US (1) US6525475B2 (en)
    EP (1) EP1178519B1 (en)
    JP (1) JP3523617B2 (en)
    DE (2) DE10038841C1 (en)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP4613408B2 (en) * 1999-10-15 2011-01-19 日本碍子株式会社 Manufacturing method of arc tube for high pressure discharge lamp
    AT6924U1 (en) * 2003-05-27 2004-05-25 Plansee Ag COLD CATHODE FLUORESCENT LAMP WITH MOLYBDENUM CURRENT LEADS
    DE102004015467B4 (en) * 2004-03-26 2007-12-27 W.C. Heraeus Gmbh Electrode system with a current feed through a ceramic component
    JP5043123B2 (en) * 2006-12-18 2012-10-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ High pressure discharge lamp with ceramic discharge vessel

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1074124A (en) * 1963-08-12 1967-06-28 Ass Elect Ind Improvements in electric devices which have a sealed envelope of vitreous or ceramic insulating refractoy material
    JPS4625848B1 (en) * 1966-04-15 1971-07-26
    NL6918746A (en) * 1969-12-13 1971-06-15
    DE3135035A1 (en) * 1981-09-04 1983-03-24 Degussa Ag, 6000 Frankfurt MATERIAL FOR ELECTRICAL CONTACTS AND METHOD FOR THE PRODUCTION THEREOF
    US5404078A (en) * 1991-08-20 1995-04-04 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh High-pressure discharge lamp and method of manufacture
    JP3453955B2 (en) 1995-10-18 2003-10-06 東陶機器株式会社 Sealing part structure of discharge lamp and method of manufacturing sealing cap
    JPH1040868A (en) 1996-07-25 1998-02-13 Ushio Inc Discharge lamp
    JP3407564B2 (en) * 1996-10-18 2003-05-19 東陶機器株式会社 Method of manufacturing cap for sealing portion of arc tube
    WO1998047169A1 (en) * 1997-04-11 1998-10-22 Ushio Denki Kabushiki Kaisya Seal of bulb
    JP3736710B2 (en) * 1997-09-08 2006-01-18 ウシオ電機株式会社 Electric introduction for tube
    US6169366B1 (en) * 1997-12-24 2001-01-02 Ngk Insulators, Ltd. High pressure discharge lamp

    Also Published As

    Publication number Publication date
    JP2002117809A (en) 2002-04-19
    DE50101463D1 (en) 2004-03-18
    DE10038841C1 (en) 2001-12-20
    JP3523617B2 (en) 2004-04-26
    US6525475B2 (en) 2003-02-25
    EP1178519A1 (en) 2002-02-06
    US20020030446A1 (en) 2002-03-14

    Similar Documents

    Publication Publication Date Title
    EP0602530B1 (en) Method for producing a vacuum-tight seal for a ceramic discharge vessel and discharge lamp
    EP1111655B1 (en) Seal foil an lamp provided with such a foil
    DE2641866A1 (en) AIR-TIGHTLY SEALED ELECTRICAL ITEM
    WO2006032522A1 (en) Method for producing an arc-erosion resistant coating and corresponding shield for vacuum arcing chambers
    DE69920373T2 (en) POWER SUPPLY BODY FOR BULBS AND METHOD FOR THE PRODUCTION THEREOF
    EP1178519B1 (en) Quartz vessel with at least one current feedthrough, method of manufacturing a gastight connection between the two, and its application in a gas discharge lamp
    DE2655726C2 (en)
    DE1640218A1 (en) Thermistor
    DE69220865T2 (en) Material for vacuum switch contacts and process for their manufacture
    DE2747087C2 (en) Electrical contact and method of making it
    DE69330598T2 (en) Contact material for vacuum switches and manufacturing processes therefor
    DE10336087A1 (en) Electrode system with novel connection, associated lamp with this foil and method of making the connection
    DE10242035A1 (en) Melting film and associated lamp with this film
    DE3043193A1 (en) ELECTRIC LAMP
    DE69409334T2 (en) Method of connecting a molybdenum foil to a part of a molybdenum conductor and method of manufacturing a hermetically sealed lamp part using this method
    WO2007000142A1 (en) Solder filler
    DE4308361C2 (en) Method for producing a connection between two ceramic parts or a metal and a ceramic part
    DE10257477B4 (en) Flash-forming composite body and method of manufacturing a flashlamp-forming composite body
    EP1351278B1 (en) Metal halide lamp with ceramic discharge vessel
    DE604107C (en) Airtight squeezing of the power supply for electric light bulbs and other vessels made of quartz glass
    DE112014002069T5 (en) Ceramic-metal bond structure and method for its production
    DE2253439C3 (en) Ternary alloy for superconducting magnets
    DE1812221C3 (en) Process for joining a light metal or its alloys with a non-metallic material
    DE2244241C3 (en) Process for producing gas-impermeable tubular components from graphite bodies
    DE2321516C3 (en) Indirectly heated cathode

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010713

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: BE DE FR GB IT NL

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50101463

    Country of ref document: DE

    Date of ref document: 20040318

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040414

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041112

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20050627

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050712

    Year of fee payment: 5

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: W.C. HERAEUS GMBH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060710

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060731

    Year of fee payment: 6

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060710

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070330

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070710

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: TD

    Effective date: 20111102

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50101463

    Country of ref document: DE

    Representative=s name: HANS-CHRISTIAN KUEHN, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50101463

    Country of ref document: DE

    Representative=s name: KUEHN, HANS-CHRISTIAN, DE

    Effective date: 20111219

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50101463

    Country of ref document: DE

    Owner name: HERAEUS MATERIALS TECHNOLOGY GMBH & CO. KG, DE

    Free format text: FORMER OWNER: W.C. HERAEUS GMBH, 63450 HANAU, DE

    Effective date: 20111219

    BECN Be: change of holder's name

    Owner name: HERAEUS MATERIALS TECHNOLOGY G.M.B.H. & CO. K.G.

    Effective date: 20120210

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120720

    Year of fee payment: 12

    Ref country code: BE

    Payment date: 20120720

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20120719

    Year of fee payment: 12

    BERE Be: lapsed

    Owner name: HERAEUS MATERIALS TECHNOLOGY G.M.B.H. & CO. K.G.

    Effective date: 20130731

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20140201

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50101463

    Country of ref document: DE

    Effective date: 20140201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201