EP1178169B1 - Gegen Betrug gerichtetes Fernsteuerungsverfahren für Fahrzeuge und System zur Durchführung des Verfahrens - Google Patents
Gegen Betrug gerichtetes Fernsteuerungsverfahren für Fahrzeuge und System zur Durchführung des Verfahrens Download PDFInfo
- Publication number
- EP1178169B1 EP1178169B1 EP20010402079 EP01402079A EP1178169B1 EP 1178169 B1 EP1178169 B1 EP 1178169B1 EP 20010402079 EP20010402079 EP 20010402079 EP 01402079 A EP01402079 A EP 01402079A EP 1178169 B1 EP1178169 B1 EP 1178169B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- phase
- carrier wave
- identification device
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
- G07C2009/0042—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks the transmitted data signal containing a code which is changed
- G07C2009/00476—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks the transmitted data signal containing a code which is changed dynamically
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
- G07C2009/00555—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks comprising means to detect or avoid relay attacks
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C2009/00753—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
- G07C2009/00769—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
- G07C2009/00793—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by Hertzian waves
Definitions
- the present invention relates to a control method for distance of an organ of a motor vehicle, in particular an organ of condemnation of access to said vehicle and / or a starting device, and also a control system for the implementation of this method.
- a such a control system is for example used to allow access said hands-free to a vehicle, and / or the start said hands-free said vehicle; "Hands-free" meaning that it is not necessary to use a key for these operations.
- such a system comprises generally an identification device I intended to be worn by a user U and able to establish a bidirectional dialogue at a distance and without wire with a central control unit 1 on board the vehicle V, to authenticate the user and order means of condemnation / unlocking of the locks of the doors when the user has been recognized as genuine.
- Initialization of the protocol communication can be activated by pressing the outer handle of door, for hands-free access, or by pressing a button start, in the hands-free start mode. In a variant, this initialization can be triggered by pressing a command button of the identification device I.
- a commonly proposed system is to use low-frequency carrier waves, of the order of 125 kHz for the communication from the vehicle to the identification device I, and carrier waves at ultra high frequency, for example of the order of 434 or 868 MHz for the Europe area and 315 or 902 MHz for the USA zone, for communication from the identification device I towards the vehicle V.
- the identification device I must include a battery to power its own electronic circuits. To minimize the electricity consumption, it can be foreseen, for example, that the identification device either dormant for 9 ms and waking 1 ms, for periods of 10 ms.
- the bidirectional dialogue comprises a first communication of a first signal S 1 sent by a first transmitter 2 of the central unit 1 to a first receiver 3 of said identification device I and a second communication of a second signal S 2 emitted by a second transmitter 4 from said identification device I to a second receiver 5 of the central unit 1.
- the signal term is used to designate a sequence, continuous or interrupted, of data.
- the power of the transmitters 2 and 4 and the efficiency of the receivers 3 and 5 is such that the first and second communications can take place only when the identification device I is at a distance less than or equal to a predetermined communication distance.
- d c of the vehicle V generally of the order of a few meters, to avoid, on the one hand, interference with other signal sources of the environment, and, on the other hand, to avoid the operation of the system at a distance such that the user U is too far from the vehicle V to be aware of the operations performed by said system.
- said first signal S 1 comprises characteristic data of said vehicle to be recognized by said identification device and / or the second signal S 2 comprises data characteristic of said identification device to be recognized by said vehicle.
- the bidirectional dialogue between the vehicle and the identification device can be encrypted, in order to avoid any inadvertent operation of the system and to secure it against the perpetrators.
- This piracy method is represented in FIG. 2.
- the user U carrying the identification device I is located at a distance d l from the vehicle V greater than the authorized communication distance d c , for example from 10 to 100 m distance from the vehicle.
- a hacker with a first housing-relay 6 may approach the vehicle V at a distance d c sufficient to communicate therewith, for example at a distance of the order of 1 to 5 m .
- This hacker activates the beginning of the communication, for example by pulling on the outside door handle. This triggers the transmission of said first signal S 1 by the vehicle V to the relay box 6.
- This signal S 1 sent by the vehicle is received by the relay box 6, which comprises a receiver 8 at 125 kHz.
- This receiver 8 is connected to a transmitter 9 at high frequency, of the order of several MHz.
- the transmitter 9 emits, as represented by the arrow 10, to a second relay housing 11, which is carried by another hacker who follows the user U at a distance d u of the order of a few meters.
- the exchange of information between the two relay boxes 6 and 11 is performed at very high frequency, it is possible to perform this communication at a distance d p very large, of the order of several tens or hundreds of meters for example.
- the second relay box 11 comprises a receiver 12 at the same frequency as the transmitter 9 of the first relay box 6.
- the signal 10 thus received is retransmitted at the frequency of 125 kHz by a transmitter 13 in order to send a signal 14 to the identification device I which complies with the signal S 1 emitted by the vehicle.
- the signal 14 being the repetition of the authentic signal S 1 of the vehicle, the identification device I will recognize it and in turn transmit its response signal S 2 , said response signal S 2 being sent at high frequency, for example to 434 MHz and received by a receiver 15 of the second relay box 11, which will convert the signal at 434 MHz into a signal at a different frequency, for example at 315 MHz.
- the converted signal 17 is then emitted by a transmitter 16 to the first relay box 6, this frequency difference being necessary so that the different signals do not interfere with each other.
- the frequency of the signal 17 is different from both the frequency of the signal 10 and the signal S 2 .
- This signal 17 is picked up by the first relay box 6, which comprises a receiver 18 of the same frequency as the transmitter 16.
- the receiver 18 is connected to a transmitter 19 which transforms the signal at 315 MHz into a signal S 2 'to 434 MHz, according to the signal S 2 transmitted by the identification device I, which is sent to the vehicle V.
- the signal S 2 ' received by the receiver 5 in the case of the hacking attempt shown in FIG. 2, would have, with respect to the signal S 2 that would have been received in the case of a normal use of said system of control, as shown in Figure 1, a transmission delay ⁇ t of the order of 4 to 5 ⁇ s.
- the transmission delay ⁇ t is negligible in comparison with the time constants required for the authorized normal transmission.
- the total communication can be of the order of 20 to 40 milliseconds (ms), and the total duration of operation of the system to trigger the unlocking or condemnation of the electric locks can be of the order of 100 ms.
- the transmission delay ⁇ t is of the order of half the period T BF of the low frequency carrier wave at 125 kHz.
- the present invention aims to eliminate the disadvantages mentioned above and to propose a method and system for remote control for a motor vehicle to prevent a hacking of the system, especially via relay boxes, taking into account the propagation time and signal processing between the vehicle and the identification device.
- the system of proposed order can be realized from existing systems operating at a frequency of 125 kHz.
- the invention provides a control method for distance according to claim 1.
- the phase of said first carrier wave undergoes a random modulation during the duration of its emission.
- said random modulation comprises advantageously the introduction of phase jumps in said first carrier wave at random moments succeeding each other at intervals irregularities greater than or equal to a period of predetermined.
- said modulation period is substantially greater than the period of said first carrier wave; preferably of the order of 5 to 10 times the period of said first wave carrier.
- the amplitude of said phase jump is substantially fixed.
- the ratio between said amplitude and said modulation period is significantly lower than the fundamental frequency of said first carrier wave, preferably less than 1/5 th of this fundamental frequency.
- phase represented by said phase signal image present, with respect to the phase of said carrier wave, alterations introduced by the identification device according to said phase jumps according to a predetermined algorithm known to said central unit.
- said delay of transmission being dependent on the time required for the journey of said first signal between said central unit and said identification device and the time required for the path of said second signal between said device identification and said central unit, said reference delay is chosen substantially equal to a predetermined normal delay, said normal delay being the substantially fixed value of said transmission delay when the distance separating said central unit from said identification device is substantially less than said communication distance predetermined.
- said cancellation criterion is validated if the difference between the two values of compared phase exceeds a predetermined maximum level.
- the difference between said two compared phase values comprises the sum of a so-called continuous component, substantially constant over a duration greater than the said modulation period, and a fluctuating over the duration of the said modulation period, the said criterion of cancellation being validated as soon as the absolute value of the said component continuous exceeds a first predetermined threshold.
- said cancellation criterion is validated as soon as the integral of the amplitude of said fluctuating component over a predetermined integration time exceeds a second threshold predetermined.
- the present invention also provides a system for implementation of the method described above, according to claim 10.
- said random sequence generator of signals is able to deliver periodically to said first transmitter a random binary signal, said first transmitter being able to introduce a phase jump in said first carrier wave each time said received binary signal takes a predetermined value.
- said identification device comprises a demodulator connected to the first receiver to receive said first carrier wave and the second microcontroller for delivering said demodulated random binary signal said first carrier wave; said second microcontroller being adapted to modify said image phase signal as a function of said signal random binary.
- said decision module comprises a filter low-pass whose input is connected to the output of said comparator module phase and whose output is connected to a signal comparator for compare the difference between the two compared phase values predetermined maximum level.
- said decision module includes a high-pass filter whose input is connected at the output of said phase comparator module for extracting said fluctuating component of said result of the comparisons and whose output is connected to a second comparator, distinct or not from the comparator of signal, to compare said fluctuating component with said second threshold predetermined.
- said first transmitter is able to transmit said first signal by amplitude or phase modulation of said first carrier wave.
- the control method according to the invention uses a two-way radio communication between a central unit 1 carried by a vehicle V to control one of its organs O, visible in FIG. 3, and a portable identification device I intended to be carried by a user U of said vehicle.
- the control system for the implementation of the method according to the invention comprises the central unit 1 and the portable identification device I, which will now be described with reference to FIG.
- the central unit 1 comprises a first microcontroller 20 connected to said member O, which can notably be a contact switch or a door lock, by a communication network 21.
- the microcontroller 20 is generally in a state of semi-sleep or of waiting for an awakening.
- an activation signal is sent to the microcontroller 20, as indicated by the arrow 22.
- the microcontroller sends a general supply signal, to supply the various components
- the microcontroller 20 generates the signal S 1 to communicate to the identification device I and sends it to the input of a low frequency generator 24 to modulate amplitude or phase the wave. carrier low frequency 27 it generates.
- the low frequency generator 24 has a fundamental frequency f 0 for example of the order of 125 kHz.
- the output of the low frequency generator 24 is connected to an amplifier device 25 to amplify the carrier wave 27 carrying the signal S 1 .
- the first transmitter 2 comprises said low frequency generator 24 and said amplifier device 25.
- the output of the amplifier device 25 is connected to antennas 26 to transmit to the identification device I the carrier wave 27 carrying the signal S 1 .
- the antennas 26 comprise several identical antennas, for example three or more, located at different points of the vehicle V to allow the emission of the wave 27 in several directions around the vehicle V.
- the antennas 26 comprise a 26g antenna on the driver's door, an antenna 26d on the front door of the passenger, and an antenna 26c on the trunk of the vehicle V.
- each antenna 26 has a capacity connected in series to a coil with a core connected to ground.
- the wave 27 is received by antennas 28 of the device identification I with an attenuation depending on the distance of spread.
- the antennas 28 each comprise a winding mounted in parallel with a capacity of which a terminal is connected to the ground, the respective windings of the three antennas 28x, 28y and 28z having axes mutually orthogonal so that the carrier wave 27 can be detected whatever its polarization and whatever the orientation of the identification device I.
- the three antennas 28 are connected respectively at three inputs 3x, 3y and 3z of the low frequency receiver 3. That of antennas 28 which is the best oriented is thus able to produce an amplitude of 2 mV.
- the identification device I comprises a second microcontroller 30, the second transmitter 4 and a battery (not shown) to supply its various elements, the low frequency receiver 3 being preferably low consumption.
- the receiver 3 has a first output connected to a fitness module 31 and a second output linked to the microcontroller 30 to deliver it the first signal S 1 obtained by demodulation of the carrier wave 27.
- the receiver 3 sends to the delivery module in form 31 a square wave signal 64 reproducing, in a clipped form, the carrier wave 27 as it receives, without demodulation, so that the fitness module 31 eliminates the noise generated during the first communication.
- the fitness module 31 is also able to reduce the frequency of the crenellated signal 34 to a fraction of the fundamental frequency f 0 , so as to make it suitable for transported by the second transmitter 4 on a carrier wave 35.
- the crenellated signal 34 may also include alterations with respect to the transitions of the low frequency carrier wave 27, introduced according to a predetermined algorithm.
- the crenellated signal 34 at the output of the fitness module 31 reproduces the transitions of the low frequency carrier wave 27 as emitted by the transmitter 2, possibly at a reduced frequency, possibly with desired alterations and without disturbances. parasites.
- a two-input rocker switch 32 is controlled by the second microcontroller 30 by a line 33 to generate the second signal S 2 .
- the rocker switch 32 has a first input linked to the fitness module 31 to receive the signal 34 and a second input linked to the second microcontroller 30 to receive an identification signal S i , generated by the second microcontroller 30.
- the second signal S 2 delivered at the output of said flip-flop 32 to the second emitter 4 is alternately composed of data sequences of the identification signal S i and data sequences reproducing the low-frequency carrier wave 27.
- the second transmitter 4 is ultra-high frequency, to emit the second signal S 2 by frequency modulation of a carrier wave 35 of fundamental frequency, for example of the order of 434 MHz.
- the carrier wave 35 is transmitted via an antenna 36 of the second transmitter 4 to an antenna 37 connected to the second receiver 5 of the central unit 1.
- the ultra-high frequency receiver 5 is able to demodulate the carrier wave 35 which it receives to transmit at its output the signal S 2 to the first microcontroller 20.
- the microcontroller 20 is able to authenticate the identification signal S i contained in the signal S 2 that it receives, and to issue an activation command 38 to the organ O after the authenticity of the identification signal Si has been recognized.
- the second signal S 2 can be emitted by amplitude modulation of the carrier wave 35.
- the toggle switch 32 is replaced by a summing module and the signal S 2 is formed by modulation of the signal. amplitude of the signal 34 within said summing module (not shown).
- the signal S 2 then comprises simultaneously, and no longer alternatively, the identification signal S i and the signal 34 reproducing the transitions of the low frequency carrier wave 27.
- the second microcontroller 30 is linked to a permanent memory 56 where are stored identification and encryption data characteristics of said identification device I, to use these identification data in the authentication of the first signal S 1 and / or the generation of the identification signal S i .
- the first microcontroller 20 is also linked to a permanent memory 49 where are stored identification and encryption data characteristics of said vehicle V, in order to use these identification data in the generation of the first signal S 1 and / or the authentication of the identification signal S i .
- the remote control method according to the invention allows to ensure an anti-piracy function, allowing to detect the transmission delay ⁇ t generated by a hacking attempt by the previously described method.
- the central unit 1 comprises a comparator module of phase 40, the two inputs of which are respectively linked to the generator 24 and the second receiver 5, and whose output is connected to a decision module 43 for delivering a phase signal ⁇ .
- the decision module 43 is connected to the microcontroller 20 to deliver it an annulment signal An when the phase signal ⁇ satisfies a criterion predetermined cancellation.
- the phase signal ⁇ is a voltage signal which is between a minimum value, for example equal to -0.75V, taken when the phase difference measured by the phase comparator module 40 is substantially zero (modulo 2 ⁇ ) and a maximum value, for example equal to + 0.75V, taken when the phase shift measured by the phase comparator module 40 is substantially ⁇ (modulo 2 ⁇ ).
- transition of the low frequency wave 27 carrier signal S 1 is transmitted at time t 1 by the transmitter 2.
- This transition is received by the receiver 3 at time t 2 , separated from the instant t 1 by the low frequency carrier wave delay 27 on the distance between the vehicle V of the portable device identification I, is substantially of d c / c, where c is the speed of light in air , substantially equal to 3.0 ⁇ 10 8 m / s.
- This same transition is represented by a part of the signal 34 included in the signal S 2 .
- the second ultra-high frequency transmitter 4 emits this part of the signal 34 at the instant t 3 , separated from the reception instant t 2 by a response delay R, due to the signal processing time by the first receiver 3, the shaping module 31 and the second emitter 4.
- the portion of the signal S 2 representative of this same transition of the low-frequency carrier wave 27 is received by the second receiver 5 at the instant t 4 ; then it is finally received by the phase comparator 40 at time t B after a reception delay Q due to the reception and processing of the second signal S 2 in the second receiver 5.
- the delays Q and R are for example of the order of 2 to 10 ⁇ s each.
- P can be neglected in front of Q and R.
- This part of the signal 10 is received by the receiver 12 of the second relay box 11 at the instant t 4 ', separated from the instant t 3 ' by the propagation time of the wave over the distance d p separating the two relay boxes 6 and 11.
- This part of the signal 10 received is converted in the second relay box 11 into a part of the signal 14 representative of this same transition and transmitted by the transmitter 13 at time t 5 ', separated from the instant t 4 'by the response time Tr of the second relay housing 11, substantially equal to the response time of the first relay housing 6.
- the identification device I receives said part of the signal 14 at the instant t 6 'and responds to the part of the signal S 2 representative of this same transition at the instant t 7 ', with the same response delay R as at normal use of the system.
- the propagation and processing times of the signals S 2 , 17 and S 2 'constituting the communication of the identification device I to the vehicle V are identical to the times involved in the communication of the signal S 1 .
- the total propagation time 2d l / c is of the order of 100 to 1000 ns for a distance d l of between 15 m and 150 m.
- the low frequency generator 24 is able to delay the signal 41 transmitted to the phase comparator module 40 by an operational delay Dr relative to the carrier wave 27.
- the operational delay Dr is chosen substantially equal to the sum of the response delay R of the identification device I and the reception delay Q.
- the delayed signal 41 serves as a reference signal in the phase comparator module 40.
- the signal 42 received by the phase comparator module 40 comprises the signal 34 representative of the carrier wave 27. This signal 42 presents, for its part, the reception by the phase comparator 40, a delay (t B -t 1 ) with respect to the carrier wave 27 generated by the low frequency generator 24.
- FIG. 4 shows, for a given period T BF , the signal 41 compliant with FIGS. to the carrier wave at low frequency 27 and delayed the operational delay Dr relative to it.
- Curve 44 represents the phase of this signal varying over the interval [0, 2 ⁇ [.
- the signal 41 is shown as a sinusoidal signal for the sake of clarity, but in practice it may be clipped so as to be substantially a square wave signal whose transitions correspond to the passages by the zero value of the sinusoidal signal represented.
- phase of the signal 41 at the input of the phase comparator 40 is represented by the point A
- phase of the signal 42 is represented by the point B.
- the phase shift measured by the phase comparator 40 is substantially zero in this case.
- the phase of the signal 41 is unchanged, but the phase of the signal 42 at the same time t 0 given is represented by the point B '.
- the transmission delay ⁇ t is substantially constant throughout this period.
- the phase shift ⁇ B 'proportional to the transmission delay ⁇ t is substantially constant throughout the duration of said dialogue.
- the control system comprises, in the central unit 1, a random signal sequence generator 39 controlled by the microcontroller 20 and connected at the output to the low frequency generator 24 to randomly modulate the phase of the generated carrier wave 27.
- the phase modulation of the carrier wave 27 is carried out as follows: the random signal sequence generator 39 periodically delivers, with a modulation period T m , a modulation bit b m equal to 0 or 1.
- L Transmission of the modulation bits b m is controlled by clock signals supplied to the random signal sequence generator 39 by the microcontroller 20, which includes a clock (not shown).
- the modulation bits b m are transmitted to the low-frequency generator 24 by a voltage signal V m which can assume a high value h and a low value l.
- the voltage signal V m makes a transition between its two values h and l each time a bit of value 1 is emitted, and keeps a constant value between times.
- the generated carrier wave 27 is unchanged; if the value of the modulation bit b m received by the low-frequency generator 24 is 1, the low-frequency generator 24 instantaneously undergoes a phase jump of amplitude ⁇ to the carrier wave 27.
- the generated phase jumps by the generator 24 are alternately a phase advance and a phase delay.
- the signal 41 delivered by the generator 24 to the phase comparator 40 is of course still in accordance with the carrier wave 27, following its phase jumps.
- the transmission delay ⁇ t is such that the measured phase shift ⁇ B "is substantially equal to 2 ⁇ at said given time t 0.
- a first phase jump ⁇ has necessarily been inserted in the carrier wave 27.
- the random signal generator 39 generates only 0, which is excluded.
- the phase in the carrier wave 27 has the effect of suddenly transforming the curve 41 into the curve 41 'sketched in FIG. 4, as represented by the arrow 51.
- the first phase jump is a phase delay of amplitude ⁇ equal to ⁇ / 2.
- FIG. 5 shows the signal 41 'in which the phase jump has been reflected, as well as its phase 44', and the signal 42 in which, because of the delay substantially equal to an integer greater than or equal to 1 of periods T BF that it has with respect to the signal 41, the phase jump has not yet been passed on, as well as its phase 50.
- the phase comparator 40 compares the phase 44 with the delayed phase 50 of T BF .
- the phase shift measured by the comparator module 40 becomes, as represented in FIG. 5, substantially equal to ⁇ .
- the modulation bit generated will be a 0 and the carrier wave 27 will remain continuous, or the modulation bit b m generated will be a 1 and the carrier wave 27 will undergo a phase advance of amplitude equal to ⁇ . Because of the unpredictable succession of phase jumps ⁇ of the carrier 27, it is no longer possible to choose the transmission delay ⁇ t so as to produce a measured phase shift ⁇ B "which remains permanently zero.
- the phase signal ⁇ at the output of the phase comparator 40 has, in superposition, a DC component ⁇ c and a fluctuating component ⁇ f whose amplitude is that of the phase jump ⁇ .
- the random phase modulation of the carrier wave 27 has the effect of frequency spreading the signal S 1 . More precisely, the carrier wave 27 of fundamental frequency f 0 has, after frequency modulation, a spread spectrum substantially in the range [f 0 - ⁇ / (2 ⁇ T m ), f 0 + ⁇ / (2 ⁇ T m )] .
- the modulation period T m may be lengthened or the amplitude of the phase jump ⁇ may be decreased.
- the modulation period T m is thus chosen greater than or equal to the period of the low frequency signal T BF .
- the modulation period T m is of the order of 5 to 10 times T BF , ie 40 to 80 ⁇ s.
- the modulation period T m is preferably longer than the transmission delay ⁇ t.
- the typical frequency f f of fluctuations of the fluctuating phase signal ⁇ f is therefore of the order of 1 / ⁇ t, for example a few tens of kilohertz (kHz).
- phase signal ⁇ at the output of the comparator module phase 40 is sent to a decision module 43 able to detect the presence of a significant phase shift between the signals 41 and 42.
- the decision module 43 comprises a low-pass filter 65, of cut-off frequency f c for example substantially equal to 100 kHz in order to suppress the noise, connected in series with a signal comparator 66 with a predetermined maximum level E.
- the signal comparator 66 is able to deliver the cancellation signal An to the microcontroller 20 when the value of the phase signal ⁇ is greater than the maximum level E.
- the corresponding phase jump of amplitude ⁇ chosen equal to ⁇ in this example is reflected on the reference signal 41 with the operational delay Dr and on the signal 42 with the delay ⁇ t + Q + R.
- the phase signal ⁇ has from time t 1 + Dr a time width slot substantially equal to the transmission delay ⁇ t. Because of the low-pass filter 65, this slot is rounded.
- An oscillation 68 marks the location of the slot corresponding to the phase jump introduced at t 1 .
- the oscillation 68 is of very low amplitude because it is very attenuated by the low-pass filter 65.
- the oscillation 70 marks the phase jump introduced at t 1 .
- the oscillation 72 of greater amplitude than the previous ones because less attenuated by the filter 65, marks the phase jump introduced at t 1 .
- the choice of a threshold E substantially equal to -0.5V makes it possible to detect a transmission delay greater than or equal to 2 ⁇ s. In these examples, it is the average value of the phase signal ⁇ which allows the detection and the phase jumps are not exploited.
- the phase signal ⁇ is represented when the transmission delay ⁇ t is an integer number of periods T BF .
- the phase signal ⁇ is on average substantially equal to -0.75V, but that it has a large oscillation corresponding to the phase jump introduced at t 1 .
- the curves 75, 76 and 77 represent the phase signal ⁇ in the case of a transmission delay ⁇ t equal to respectively 2, 4 and 8 T BF .
- the threshold E -0.5V also makes it possible to detect any transmission delay ⁇ t substantially equal to an integer N greater than or equal to 1 of periods T BF .
- phase signal ⁇ is represented as produced by an analog system, but it is of course that a digital processing system can be used to obtain a equivalent result.
- the decision module 43 has two branches.
- a first branch comprises a low-pass filter 45 for smoothing the phase signal ⁇ .
- the cut-off frequency f 1 of the low-pass filter 45 is, for example, less than 1 kHz, so that the signal at the output of the low-pass filter 45 is a so-called continuous phase signal ⁇ c , which does not fluctuate on a very long time before the period T BF of the low frequency carrier wave 27.
- the continuous phase signal ⁇ c is sent to a first signal comparator 46 with a predetermined threshold e , said continuous threshold.
- the signal comparator element 46 is able to deliver a characteristic signal 47 when the value of the continuous phase signal ⁇ c is greater than or equal to the continuous threshold e , and to deliver no signal when the value of the continuous phase signal ⁇ c is below the continuous threshold e .
- the decision module 43 comprises, in parallel with the first branch, a second branch with a high-pass filter 52 for detecting the fluctuating phase signal ⁇ f .
- the cut-off frequency f 2 of the high-pass filter 52 is, for example, less than 10 kHz, to select the fluctuating component ⁇ f and eliminate the DC component ⁇ c .
- the high-pass filter 52 is connected at the output to an amplifier 53 for amplifying the fluctuating phase signal ⁇ f , then to a second signal comparator element 54, able to deliver a characteristic signal 57 when the absolute value of the fluctuating phase signal ⁇ f is greater than or equal to a fluctuation threshold ⁇ , and does not deliver any signal when the absolute value of the fluctuating phase signal ⁇ f is less than the fluctuation threshold ⁇ .
- the decision module 43 comprises a non-exclusive OR logic gate 55, connected at input to the two signal comparator elements 46 and 54. and capable of outputting the cancellation signal An to the microcontroller 20 when it receives the characteristic signal 47 and / or the characteristic signal 57.
- the curve 60 represents the evolution of the absolute value of the fluctuating component ⁇ f as a function of time over several modulation period T m during normal use of the system.
- the fluctuating phase signal ⁇ f has a succession of slots 61 of time width substantially equal to the propagation time P, a few nanoseconds.
- the curve 62 represents the evolution of the absolute value of the fluctuating component ⁇ f as a function of time over several modulation period T m , during an attempt at piracy by relay boxes.
- each phase jump is reflected on the signal 42 with the delay ⁇ t + Q + R.
- the fluctuating phase signal ⁇ f has in this case a succession of slots 63 of time width substantially equal to the transmission delay ⁇ t, ie of the order of a few microseconds.
- a fluctuating component ⁇ f that is not zero is also observed, but it has a very short characteristic time, of the order a few nanoseconds.
- the integral of the fluctuating component ⁇ f over a modulation period T m therefore has a value of at least a factor of at least 100 in the case of normal use of the system compared to the case of an attempted hacking.
- the second signal comparator element 54 is preferably adapted to integrating the fluctuating phase signal ⁇ f on an integration time T i longer than the modulation period T m and comparing said fluctuating phase signal ⁇ f with the fluctuation threshold ⁇ after this integration.
- the integration time T i is of the order of 50 to 100 times T m .
- the integration time T i is of course less than the total duration of the bidirectional dialogue.
- the operational delay Dr can be chosen to be zero, in order to limit the cost of the system for example.
- the continuous threshold e of the first signal comparator 46 is then chosen greater than the reference value ⁇ 0 .
- the fluctuating phase signal ⁇ f during normal use and attempted hacking, has a characteristic elongated fluctuation time substantially of R + Q.
- the second comparator element 54 is then designed to discriminate from one another the signal in crenets of typical width R + Q + P, obtained in normal use, of the square wave signal of typical width R + Q + ⁇ t, which would be obtained during a hacking attempt.
- the modulation period T m is chosen greater than the delay R + Q.
- the microcontroller 20 is able to inactivate the transmission of the activation command 38 as soon as it receives the cancellation signal An.
- the microcontroller 20 is able to interrupt the current communication protocol before the data of the signal S i necessary for the transmission of the order 38 have not been received by the central unit 1 and / or to prohibit the transmission of the order 38 during a prohibition period determined from the reception cancellation signal An.
- the fitness module 31 is connected to the second microcontroller 30, as can be seen in FIG. 12.
- the crenellated signal 64 is sent to a demodulator 87 in the fitness module 31 for recovering the modulation bits b m .
- the demodulator 87 includes a clock recovery module 79 for recovering a signal 83 conforming to the carrier wave 27 at 125 kHz and an exclusive OR gate 80.
- the signal 83 and the slot signal 64 are sent to the input of the exclusive OR gate. 80, to output a crimped signal 81 representing the modulation bit sequence b m used to modulate the wave 27 at its transmission.
- the second microcontroller 30 is able to use the signal 81 to generate, according to a predetermined algorithm and known to the central unit 1, an alteration signal 82 for altering the square-wave signal 64.
- the alteration signal 82 is sent in input of a second exclusive OR gate 88 of the fitness module 31.
- a crenellated signal 64 ' is generated by a frequency divider 78 of the reset module 31.
- the crenellated signal 64 ' represents the transitions of the square wave signal 64 at a frequency f 0 ' equal to a fraction of the fundamental frequency f 0 .
- the frequency divider 78 makes it possible to limit the bandwidth necessary for the transport of the signal 34 to the central unit 1.
- the phase signal 34 is finally obtained at the output of the second exclusive OR gate 88.
- the signal 34 represents the transitions of the carrier wave 27 with its phase jumps introduced by the generator 24, at a possibly reduced frequency, and by means of alterations introduced by the second microcontroller 30.
- the second microcontroller 30 can, with the aid of the alteration signal 82, invert during a determined period the phase of the signal 34 compared to that of signal 64.
- the phase signal ⁇ at the input of the comparator module 66 is represented as a function of time for a period of several modulation periods T m .
- Curve 84 represents the voltage signal Vm corresponding to a random sequence of modulation bits b m .
- the phase signal ⁇ is consistent with that represented by the curve 85 and has a small amplitude oscillation following each transmission of a modulation bit of value 1, as previously explained.
- the second microcontroller 30 can introduce a phase inversion into the signal 34 at the instant t I , which causes a phase opposition between the signals 41 and 42 compared by the phase comparator 40.
- the phase signal ⁇ then takes a maximum value, as represented by the curve 86, until the second microcontroller 30 introduces a second phase inversion that will return the phase signal ⁇ to its minimum value.
- the decision module 43 is able to recognize the alterations introduced by the microcontroller 20 according to a predetermined algorithm and as a function of the bit sequence b m received, so as not to trigger the cancellation signal An when a such alteration causes the momentary crossing of the threshold E by the phase signal ⁇ .
- the introduction by the second microcontroller 30 of alterations of the phase signal 34 makes it possible to defeat a possible hacking attempt by means of a simple signal repeater which would transmit to the vehicle V a signal identical to the signal S 1 sent by this one to the identification device I.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Lock And Its Accessories (AREA)
Claims (14)
- Fernsteuerungsverfahren zum Steuern eines Organs (O) eines Kraftfahrzeugs (V), insbesondere eines Mittels zur Zugangsverhinderung zu dem Fahrzeug und/oder eines Mittels zum Anlassen des Fahrzeugs, das darin besteht, einen bidirektionalen Dialog über eine Funkstrecke zwischen einer von dem Fahrzeug (V) getragenen Zentraleinheit (1) und einer tragbaren Identifikationseinrichtung (I), welche von einem Benutzer (U) getragen werden kann, einzurichten, wobei der Dialog wenigstens eine erste kontinuierliche oder unterbrochene Übertragung eines ersten Signals (S1), das von einem ersten Sender (2,24) der Zentraleinheit (1) in Richtung eines ersten Empfängers (3) der Identifikationseinrichtung (I) ausgestrahlt wird und eine zweite kontinuierliche oder unterbrochene Übertragung eines zweiten Signals (S2), das von einem zweiten Sender (4) der Identifikationseinrichtung (I) in Richtung eines zweiten Empfängers (5) der Zentraleinheit (1) ausgestrahlt wird, umfasst, wobei der Dialog sich nur dann entwickeln kann, wenn der Abstand zwischen der Zentraleinheit (1) und der Identifikationseinrichtung (I) im Wesentlichen geringer als ein vorgegebener Kommunikationsabstand (dc) ist, wobei das Verfahren die Schritte aufweist, bestehend aus:(i) dem Auslösen der ersten Übertragung, wobei das erste Signal (S1) mit einer ersten Trägerwelle (27) übermittelt wird;(ii) dem Auslösen der zweiten Übertragung, wobei die zweite Übertragung wenigstens teilweise dann abläuft, während die erste Übertragung erfolgt, wobei das zweite Signal (S2) ein Identifikationssignal (Si) der Identifikationseinrichtung und ein Phasenbildsignal (34) aufweist, das die Phase der von der Identifikationseinrichtung empfangenen ersten Trägerwelle (27) repräsentiert,(iii) der Ausstrahlung eines Aktivierungsbefehls (38), um das Organ (O) nach Empfang des Identifikationssignals (Si) durch die Zentraleinheit (1) zu aktivieren; wobei das Verfahren außerdem, gleichzeitig mit den ersten und zweiten Übertragungen, einen Schritt der sukzessiven Vergleiche zwischen dem aktuellen Wert der durch das von dem zweiten Empfänger (5) empfangenen Phasenbildsignals (42) repräsentierten Phase und dem aktuellen Wert der Phase eines Referenzsignals (41) aufweist, das der Trägerwelle (27) bei der Ausstrahlung durch den ersten Sender (2,24), verzögert um eine vorgegebene, verschwindende oder von Null verschiedene Referenzverzögerung (Dr), entspricht, wobei die von dem Phasenbildsignal (42) repräsentierte Phase bei dem Vergleichsschritt eine Übertragungsverzögerung gegenüber der Phase der Trägerwelle (27) während der Ausstrahlung durch den ersten Sender (2, 24) aufweist, wobei die Ausstrahlung des Aktivierungsbefehls (38) verhindert wird, sobald das Ergebnis der sukzessiven Vergleiche (Φ) ein vorgegebenes Annullierungskriterium erfüllt, wobei das Annullierungskriterium erfüllt ist, wenn die Abweichung zwischen den beiden verglichenen Phasenwerten (Φc, Φ) ein vorgegebenes Maximalniveau (e, E) überschreitet, dadurch gekennzeichnet, das die Phase der ersten Trägerwelle (27) einer zufälligen Modulation unterliegt, welche die Einführung von Phasensprüngen während der Dauer ihrer Ausstrahlung umfasst, wobei jeder Phasensprung durch eine Oszillation (68, 74-77) des sich aus den sukzessiven Vergleichen ergebenden Phasensignals angezeigt wird, dessen zeitliche Ausdehnung von der Übertragungsverzögerung und der Referenzverzögerung abhängt, wobei das Phasensignal durch einen Tiefpassfilter (45, 65) gefiltert wird, der die Oszillation (68) für eine Übertragungsverzögerung, wie sie für eine normalen Anwendung des Fernsteuerungsverfahrens typisch ist, abschwächen kann.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Phasensprünge in die erste Trägerwelle (27) an zufälligen Zeitpunkten eingefügt werden, die in unregelmäßigen Intervallen aufeinander folgen, die größer oder gleich einer vorgegebenen Modulationsperiode (Tm) sind.
- Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Modulationsperiode (Tm) im Wesentlichen größer als die Periode (TBF) der ersten Trägerwelle (27) ist und vorzugsweise in der Größenordnung des 5- bis 10-fachen der Periode (TBF) der ersten Trägerwelle (27) liegt.
- Verfahren gemäß einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Amplitude der Phasensprünge (δϕ) im Wesentlichen fest ist.
- Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, dass das Verhältnis zwischen der Amplitude (δϕ) und der Modulationsperiode (Tm) deutlich kleiner als die Fundamentalfrequenz (f0) der ersten Trägerwelle (27) ist, vorzugsweise kleiner als 1/5 der Fundamentalfrequenz (f0).
- Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die durch das Phasenbildsignal (42) repräsentierte Phase bezüglich der Phase der Trägerwelle (27) Änderungen zeigt, die durch die Identifikationseinrichtung (I) in Abhängigkeit von den Phasensprüngen gemäß einem vorgegebenen, der Zentraleinzeit (1) bekannten Algorithmus eingefügt wurden.
- Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Übertragungsverzögerung von der benötigten Zeit für die Strecke des ersten Signals (S1) zwischen der Zentraleinheit (1) und der Identifikationseinrichtung (I) und der benötigten Zeit für die Strecke des zweiten Signals (S2) zwischen der Identifikationseinrichtung (I) und der Zentraleinheit (1) abhängt, wobei die Referenzverzögerung (Dr) im Wesentlichen gleich einer vorgegebenen Normalverzögerung (R+Q) gewählt wird, wobei die Normalverzögerung (R+Q) im Wesentlichen dem festen Wert der Übertragungsverzögerung entspricht, wenn der Abstand zwischen der Zentraleinheit (1) und der Identifikationseinrichtung (I) im Wesentlichen kleiner als der vorgegebene Kommunikationsabstand (dc) ist.
- Verfahren gemäß einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Abstand zwischen den beiden verglichenen Phasenwerten (Φ) die Summe einer während einer längeren Dauer als der Modulationsperiode (Tm) im Wesentlichen konstanten, kontinuierlichen Komponente (Φc) und einer während der Dauer der Modulationsperiode (Tm) fluktuierenden Komponente (Φf) enthält, wobei das Annullierungskriterium erfüllt ist, sobald der Absolutwert der kontinuierlichen Komponente (Φc) einen ersten vorgegebenen Grenzwert (e) überschreitet.
- Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass das Annullierungskriterium erfüllt ist, sobald das Integral der Amplitude der fluktuierenden Komponente (Φf) während eine vorgegeben Integrationszeit (Ti) einen ersten vorgegebenen Grenzwert (ε) überschreitet.
- System zur Durchführung des Verfahrens gemäß Anspruch 1, mit der Zentraleinheit (1) und der tragbaren Identifikationseinrichtung (I), wobei die Zentraleinheit (1) einen mit dem Organ (O) verbundenen ersten Mikrokontroller (20) aufweist, um diesem den Aktivierungsbefehl (38) zu übermitteln, dem ersten, mit dem ersten Mikrokontroller (20) verbundenen Hochfrequenzsender (2, 24) zur Ausstrahlung der ersten Trägerwelle (27) und des ersten Signals (S1), dem zweiten Hochfrequenzempfänger (5) zum Empfang des zweiten Signals (S2), einem mit dem zweiten Empfänger (5) und dem ersten Sender (2, 24) verbundenen Phasenkomparatormodul (40), zur Durchführung der sukzessiven Vergleiche; wobei die Identifikationseinrichtung (I) den ersten Hochfrequenzempfänger (3) zum Empfang des ersten Signals (S1), einen zweiten Mikrokontroller (30) zur Erzeugung des Identifikationssignals (Si), den zweiten Hochfrequenzsender (4) zur Ausstrahlung des zweiten Signals (S2) aufweist, wobei der zweite Sender (4) mit dem ersten Empfänger (3) um Empfang des Phasenbildsignals (34) und dem zweiten Mikrokontroller (30) zum Empfang des Identifikationssignals (Si) verbunden ist, dadurch gekennzeichnet, dass die Zentraleinheit (1) einen Generator für zufällige Signalsequenzen (39) aufweist, der zur Modulation der Phase der ersten Trägerwelle (27) durch Einfügen von Phasensprüngen während ihrer Ausstrahlung mit dem ersten Sender (2, 24) verbunden ist und ein Entscheidungsmodul (43) aufweist, das mit dem Phasenkomparatormodul (40) zum Empfang der Ergebnisse der Vergleiche (Φ) und mit dem ersten Mikrokontroller (20) verbunden ist, um diesem ein Annullierungssignal (An) für die Ausstrahlung des Aktivierungsbefehls (38) zu Übermitteln sobald das Annullierungskriterium erfüllt ist, wobei das Entscheidungsmodul (43) den Tiefpassfilter (45, 65) aufweist, dessen Eingang mit dem Ausgang des Phasenkomparatormoduls (40) verbunden ist und dessen Ausgang mit einem Signalkomparator (46, 66) zum Vergleich des Abstandes zwischen den beiden verglichenen Phasenwerten (Φc, Φ) von einem vorgegebenen Maximalniveau (e, E) verbunden ist.
- System gemäß Anspruch 10, dadurch gekennzeichnet, dass das System außerdem zur Durchführung des Verfahrens gemäß Anspruch 2 dient, wobei der Generator für zufällige Signalsequenzen (39) ausgelegt ist, periodisch an den ersten Sender (2) ein binäres Zufallssignal (bm) abzugeben, wobei der erste Sender (2, 24) geeignet ist, jedes Mal dann, wenn das empfangene binäre Signal (bm) einen bestimmten Wert annimmt, einen Phasensprung in die erste Trägerwelle (27) einzufügen.
- System gemäß Anspruch 11, dadurch gekennzeichnet, dass das System auch zur Durchführung des Verfahrens gemäß Anspruch 6 dient, wobei die Identifikationseinrichtung (I) einen Demodulator (87) aufweist, der zum Empfang der ersten Trägerwelle (27) mit dem ersten Empfänger (3) verbunden ist, sowie mit dem zweiten Mikrokontroller (30), um an diesen das demodulierte binäre Zufallssignal (bm) der ersten Trägerwelle (27) abzugeben; wobei der zweite Mikrokontroller (30) das Phasenbildsignal (34) in Abhängigkeit von dem binären Zufallssignal (bm) verändern kann.
- System gemäß Anspruch 11 oder 12, dadurch gekennzeichnet, dass das System außerdem zur Durchführung des Verfahrens gemäß Anspruch 9 dient, wobei das Entscheidungsmodul (43) einen Hochpassfilter (52) aufweist, dessen Eingang mit dem Ausgang des Phasenkomparatormoduls (40) verbunden ist, um die fluktuierende Komponente (Φf) des Ergebnisses der Vergleiche (Φ) zu extrahieren und dessen Ausgang mit einem zweiten, von dem Signalkomparator (66) verschiedenen oder nicht verschiedenen Komparator (54) verbunden ist, um die fluktuierende Komponente (Φf) mit dem zweiten vorgegebenen Grenzwert (ε) zu vergleichen.
- System gemäß einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der erste Sender (2, 24) das erste Signal (S1) durch Amplituden- oder Phasenmodulation der ersten Trägerwelle (27) ausstrahlen kann.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0010248 | 2000-08-03 | ||
FR0010248A FR2812679B1 (fr) | 2000-08-03 | 2000-08-03 | Procede anti-piratage de commande a distance pour vehicule automobile et systeme pour sa mise en oeuvre |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1178169A1 EP1178169A1 (de) | 2002-02-06 |
EP1178169B1 true EP1178169B1 (de) | 2005-06-22 |
Family
ID=8853265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010402079 Expired - Lifetime EP1178169B1 (de) | 2000-08-03 | 2001-08-01 | Gegen Betrug gerichtetes Fernsteuerungsverfahren für Fahrzeuge und System zur Durchführung des Verfahrens |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1178169B1 (de) |
DE (1) | DE60111596T2 (de) |
FR (1) | FR2812679B1 (de) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1595796A (en) * | 1978-04-21 | 1981-08-19 | Hugh John Pushman | Security systems |
JPS56500818A (de) * | 1979-05-23 | 1981-06-18 | ||
SE456118B (sv) * | 1985-12-12 | 1988-09-05 | Stiftelsen Inst Mikrovags | Forfarande och anordning for att meta avstand mellan ett forsta och ett andra foremal med signaler av mikrovagsfrekvens |
DE4440855C2 (de) * | 1994-11-15 | 2000-04-06 | Simons & Vos Identifikationssy | Kontrollsystem |
ES2203174T3 (es) * | 1998-09-01 | 2004-04-01 | LEOPOLD KOSTAL GMBH & CO. KG | Procedimiento para efectuar un control de autorizacion de acceso sin llave y unidad de control de autorizacion de acceso sin llave. |
DE19839695C1 (de) * | 1998-09-01 | 2000-05-04 | Kostal Leopold Gmbh & Co Kg | Verfahren zum Durchführen einer schlüssellosen Zugangsberechtigungskontrolle sowie schlüssellose Zugangsberechtigungskontrolleinrichtung |
DE19941428B4 (de) * | 1998-09-02 | 2015-09-10 | Marquardt Gmbh | Schließsystem, insbesondere für ein Kraftfahrzeug |
FR2791834B1 (fr) * | 1999-03-29 | 2001-06-08 | Valeo Securite Habitacle | Systeme pour securiser une transmission bidirectionnelle de donnees entre un identifiant et un identifieur |
-
2000
- 2000-08-03 FR FR0010248A patent/FR2812679B1/fr not_active Expired - Fee Related
-
2001
- 2001-08-01 EP EP20010402079 patent/EP1178169B1/de not_active Expired - Lifetime
- 2001-08-01 DE DE2001611596 patent/DE60111596T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE60111596T2 (de) | 2006-05-18 |
DE60111596D1 (de) | 2005-07-28 |
EP1178169A1 (de) | 2002-02-06 |
FR2812679A1 (fr) | 2002-02-08 |
FR2812679B1 (fr) | 2003-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3306576B1 (de) | Verfahren und system zum gesicherten zugang zu einem bestimmten raum mittels eines tragbaren objekts | |
FR2706934A1 (de) | ||
FR2897708A1 (fr) | Procede et dispositif de condamnation automatique des portes d'un vehicule | |
FR2786047A1 (fr) | Systeme pour securiser une transmission bidirectionnelle de donnees pour l'acces a un espace clos, en particulier pour l'acces a un vehicule | |
WO2020260164A1 (fr) | Procédé et moyens de commande à distance, par un terminal de communication mobile, d'une fonction sécurisée de véhicule automobile | |
EP1152109B1 (de) | Handfreies Zugangs- und/oder Startsystem für Kraftfahrzeuge | |
FR2814842A1 (fr) | Procede d'emission et de reception, notamment pour la detection d'un generateur d'identification | |
FR2794603A1 (fr) | Procede de transmission bidirectionnelle de donnees, et systeme pour sa mise en oeuvre | |
EP0570289A1 (de) | Einrichtung zur Detektion der Durchfahrt eines Fahrzeuges mittels eines passiven Transponders | |
EP1178169B1 (de) | Gegen Betrug gerichtetes Fernsteuerungsverfahren für Fahrzeuge und System zur Durchführung des Verfahrens | |
EP1152108B1 (de) | Handfreies Zugangssystem für Kraftfahrzeuge | |
FR2807588A1 (fr) | Dispositif d'acces "mains libres", notamment pour vehicule automobile | |
EP1152107B1 (de) | Gegen Betrug gerichtetes System für den freihändigen Zugang zu einem Automobil | |
WO2003019481A1 (fr) | Procede d'autorisation de deverrouillage et/ou de demarrage d'un vehicule automobile et dispositif associe | |
EP1101671A1 (de) | Verfahren und System zur gesicherten bidirektionalen Datenübertragung | |
EP1378864A1 (de) | Verfahren zur Zugangskontrolle eines bestimmten Raumes mit einem personalisierten tragbaren Gerät, und personalisiertes tragbares Gerät zum Durchführen des Verfahrens | |
EP1061211B1 (de) | Verfahren zur Sicherung einer bidirektionellen Datenübertragung mit einer Kennzeichnung und System zu dessen Durchführung | |
EP1759327B1 (de) | Kontaktloses synchronphasendemodulationsverfahren und assoziierter leser | |
EP1041225B1 (de) | System zum Sichern einer bidirektionalen Datenübertragung zwischen einem zu identifizierenden Objekt und einem Identifizierer | |
EP1178170B1 (de) | Fernsteuerungssystem für Kraftfahrzeuge mit einer verbesserten Empfangsantenne | |
FR2834148A1 (fr) | Procede de communication entre un emeteur d'un systeme mains libres et un recepteur correspondant | |
FR2834398A1 (fr) | Procede d'emission d'une requete vers un badge | |
FR2823167A1 (fr) | Dispositif pour commander un dispositif de securite | |
WO2004064257A2 (fr) | Procede de communication entre un emetteur d'ordres et un emetteur-recepteur d'ordres | |
EP0322059A1 (de) | Verfahren und Vorrichtung zur Tonverschlüsselung oder -entschlüsselung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020311 |
|
17Q | First examination report despatched |
Effective date: 20020603 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 07C 9/00 B Ipc: 7E 05B 49/00 A |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050622 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60111596 Country of ref document: DE Date of ref document: 20050728 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20050622 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60111596 Country of ref document: DE Representative=s name: REITSTOETTER KINZEBACH, DE Ref country code: DE Ref legal event code: R081 Ref document number: 60111596 Country of ref document: DE Owner name: APTIV TECHNOLOGIES LIMITED, BB Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190826 Year of fee payment: 19 Ref country code: FR Payment date: 20190826 Year of fee payment: 19 Ref country code: SE Payment date: 20190828 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200724 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60111596 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |