EP1165732B1 - Composant d'adoucissant de textiles - Google Patents

Composant d'adoucissant de textiles Download PDF

Info

Publication number
EP1165732B1
EP1165732B1 EP00919923A EP00919923A EP1165732B1 EP 1165732 B1 EP1165732 B1 EP 1165732B1 EP 00919923 A EP00919923 A EP 00919923A EP 00919923 A EP00919923 A EP 00919923A EP 1165732 B1 EP1165732 B1 EP 1165732B1
Authority
EP
European Patent Office
Prior art keywords
component
weight
acid
alkyl
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00919923A
Other languages
German (de)
English (en)
Other versions
EP1165732A1 (fr
Inventor
Robin Gibson Hall
Nathalie Sophie Letzelter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1165732A1 publication Critical patent/EP1165732A1/fr
Application granted granted Critical
Publication of EP1165732B1 publication Critical patent/EP1165732B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions

Definitions

  • the present invention relates to a softening component for use as softener for fabrics, comprising a clay and a flocculating agent, a surfactant system and a carrier material.
  • the component may also be used in detergent compositions.
  • Clays have been used for several years in detergents to provide softening of the fabrics washed with the compositions. The have been described as materials which can be dry-added to the other detergent granules, or can be mixed with other ingredients.
  • EP-A-313146 described clay particles 60% to 99% clay and a humectant, which are added to a detergent composition.
  • Clay flocculating agents have also been known for several years, to improve the deliver of the clay to the fabric.
  • EP-A-313146 also describes that the detergents containing the clay particles comprise preferably a clay flocculating agent.
  • the inventors have now found that when the efficiency of the clay deposition can be enhanced when the clay and the flocculating agent are present in an intimate mixture with one another. Not only does this improve clay deposition efficiency but this also allows for the same softness performance to be delivered with reduced levels of clay.
  • the clay Whilst deposition of the clay is enhanced by the use of the intimate mixtures, it has been found that it is also important to effectively distribute the flocculating clay during the wash. The inventors have found that this is achieved by mixing the mixture of clay and flocculating agent with a surfactant. However, the also found that the delivery is even further improved when also a powdered or granular carrier material is mixed with the clay, flocculating agent and surfactant. Furthermore, the use of the surfactant improves the ease of mixing of the clay and the flocculating agent whilst the carrier material allows the formation of a con-sticky and easy handable mixture, which can be processed easily in to its required form. In this form, the mixture has also be found to more storage stable, which is advantages because the mixture can then be stored until final use and it does not to be further processed immediately.
  • the carrier material comprises an alkalinity source and/ or a builder, because then a multi-purpose softening component is obtained.
  • a component can be useful in several applications, including as component of a detergent composition, as a component of a fabric softener composition, or as washing and softening component on its own, in particular for hand washing or washing of small washing loads or of washing loads which are not to heavily soiled.
  • the invention relates to a solid fabric softening component as defined in claim 1.
  • the component is in the form of an agglomerate.
  • the component can be used in this form to treat fabrics, or it can be used as part of a detergent compositions or fabric softener composition.
  • the component can be used in both automatic washing and band washing, including also pre-treatment or soaking, or post-treatment such as fabric conditioning.
  • the component of the invention comprises at least a clay, a flocculating agent, a surfactant and a solid carrier material.
  • the total level of surfactant in the component is preferably form 5% to 90%, more preferably from 10% to 70% or even 60% , more preferably from 15% to 60% or even 50% by weight of the component.
  • the surfactant comprises at least an anionic sulphate surfactant or an anionic sulphonate surfactant.
  • anionic sulphate surfactant or an anionic sulphonate surfactant.
  • Preferred sulphonate and sulphate surfactants are described herein after.
  • the sulphonate or sulphate surfactant or mixtures thereof are preferably present at a level of from 5% to 60% by weight of the component, more preferably from 10% to 60% or even from 15% to 50% by weight of the component.
  • the component comprises a nonionic surfactant or mixtures thereof, either as only surfactant or combined with other surfactants.
  • the nonionic surfactant are preferably present at a level of from 2% to 60% by weight of the component, more preferably from 5% to 50% or even from 10% to 45% by weight of the component
  • the carrier material is preferably in granular or powdered form.
  • the carrier material comprises preferably an alkalinity source and/ or a builder.
  • Preferred alkalinity sources are inorganic carbonate salts.
  • Preferred builders (which are often also alkaline) are aluminosilicates, crystalline silicates, amorphous silicates, crystalline layered silicates, phosphate salts, carboxylic acids or salts thereof.
  • Preferred salts of the types mentioned above are sodium salts. It may be preferred that at least one potassium salt is present in the intimate mixture with the clay.
  • the carrier material is preferably present at a level of from 20% to 95% by weight, more preferably from 25% to 90% or even to 80% by weight, more preferably even form 30% to 70% by weight.
  • the inorganic carbonate salt is present at least 10% or even 15% by of the component, preferably up to levels of 60% or even 50% or even 40% by weight.
  • the presence of at least a phosphate salt or aluminosilicate builder is particularly preferred.
  • the builder preferably the phosphate and/ or alumnisilicate builder is or are present at least 10% or even 15% by of the component, preferably up to levels of 60% or even 50% or even 40% by weight.
  • silicates are useful and even preferred herein, they are preferably used in addition to at least one other builder or alkalinity source.
  • the clay is present at a level of at least 1%, more preferably at a level of from 2% to 60%, more preferably from 5% to 40% or even form 5% to 30% or even from 7% to 25% by weight of the component.
  • the component is prepared by mixing the clay, flocculating agent, carrier material and surfactant.
  • the materials are intimately mixed with one another. This can be done my any mixing process or granulation process known in the art. However, the order of mixing can highly influence the final performance of the component. Preferred mixing processes are:
  • the clay herein can be any clay, capable to provide softness to the fabric.
  • clay as used herein, excludes sodium aluminosilicate zeolite builder compounds, which however, may be included in the components of the invention as carrier material or part thereof.
  • the component comprises a mixture of clays.
  • One preferred clay may be a bentonite clay.
  • Highly preferred are smectite clays, as for example are disclosed in the US Patents No.s 3,862,058 3,948,790 , 3,954,632 and 4,062,647 and European Patents No.s EP-A-299,575 and EP-A-313,146 all in the name of the Procter and Gamble Company.
  • smectite clays herein includes both the clays in which aluminium oxide is present in a silicate lattice and the clays in which magnesium oxide is present in a silicate lattice.
  • Typical smectite clay compounds include the compounds having the general formula Al 2 (Si 2 O 5 ) 2 (OH) 2 .nH 2 O and the compounds having the general formula Mg 3 (Si 2 O 5 ) 2 (OH) 2 .nH 2 O. Smectite clays tend to adopt an expandable three layer structure.
  • Suitable smectite clays include those selected from the classes of the montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure.
  • Sodium or calcium montmorillonite are particularly preferred.
  • Suitable smectite clays are sold by various suppliers including English China Clays, Laviosa, Georgia Kaolin and Colin Stewart Minerals.
  • Clays for use herein preferably have a largest particle dimension of from 0.01 ⁇ m to 800 ⁇ m, more preferably from 1mm to 400 mm, most preferably from 5mm to 200 mm.
  • Particles of the clay mineral compound may be included as components of agglomerate particles containing other detergent compounds.
  • the term "largest particle dimension" of the clay mineral compound refers to the largest dimension of the clay mineral component as such, and not to the agglomerated particle as a whole.
  • Substitution of small cations, such as protons, sodium ions, potassium ions, magnesium ions and calcium ions, and of certain organic molecules including those having positively charged functional groups can typically take place within the crystal lattice structure of the smectite clays.
  • a clay may be chosen for its ability to preferentially absorb one cation type, such ability being assessed by measurements of relative ion exchange capacity.
  • the smectite clays suitable herein typically have a cation exchange capacity of at least 50 meq/100g.
  • U.S. Patent No. 3,954,632 describes a method for measurement of cation exchange capacity.
  • the crystal lattice structure of the clay mineral compounds may have, in a preferred execution, a cationic fabric softening agent substituted therein.
  • a cationic fabric softening agent substituted therein Such substituted clays have been termed "hydrophebically activated' clays.
  • the cationic fabric softening agents are typically present at a weight ratio, cationic fabric softening agent to clay, of from 1:200 to 1:10, preferably from 1:100 to 1:20.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340 .
  • a preferred commercially available "hydrophobically activated" clay is a bentonite clay containing approximately 40% by weight of a dimethyl ditallow quaternary ammonium salt sold under the tradename Claytone EM by English China Clays International.
  • Organophilic clays may also be used herein. These are hydrophobically modified clays which have organic ions replacing inorganic metal ions by ion exchange processes known in the art. These kinds of clay are readily mixable with organic solvent and have the capability to absorb organic solvent at the interlayers. Suitable examples or organophilic clays useful in the invention are Bentone SD-1, SD-2 and SD-3 from Rheox of Highstown, N.J.
  • the clay, and optionally also the flocculating polymer is present in a mixture with a wax and a structuring agent.
  • the components of the invention may contain a clay flocculating agent, present at a level of from 0.005% to 10%, more preferably from 0.05% to 5%, most preferably from 0.1% to 2% by weight of the component.
  • the clay flocculating agent functions such as to bring together the particles of clay compound in the wash solution and hence to aid their deposition onto the surface of the fabrics in the wash. This functional requirement is hence different from that of clay dispersant compounds which are commonly added to laundry detergent components to aid the removal of clay soils from fabrics and enable their dispersion within the wash solution.
  • Preferred as clay flocculating agents herein are organic polymeric materials having an average weight of from 100,000 to 10,000,000, preferably from 150,000 to 5,000,000, more preferably from 200,000 to 2,000,000.
  • Suitable organic polymeric materials comprise homopolymers or copolymers containing monomeric units selected from alkylene oxide, particularly ethylene oxide, acrylamide, acrylic acid, vinyl alcohol, vinyl pyrrolidone, and ethylene imine. Homopolymers of, on particular, ethylene oxide, but also acrylamide and acrylic acid are preferred.
  • EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe preferred organic polymeric clay flocculating agents for use herein.
  • Inorganic clay flocculating agents are also suitable herein, typical examples of which include lime and alum.
  • Suitable alkali and/ or earth alkali inorganic carbonate salts herein include carbonate and hydrogen carbonate and percarbonate of potassium, lithium, sodium, and the like amongst which sodium and potassium carbonate are preferred.
  • Suitable bicarbonates to be used herein include any alkali metal salt of bicarbonate like lithium, sodium, potassium and the like, amongst which sodium and potassium bicarbonate are preferred.
  • the choice of carbonate or bicarbonate or mixtures thereof in the dry effervescent granules may be made depending on the pH desired in the aqueous medium wherein the granules are dissolved.
  • the inorganic alkali and/ or earth alkali carbonate salt of the components of the invention comprises preferably a potassium or more preferably a sodium salt of carbonate and/ or bicarbonate.
  • the carbonate salt comprises sodium carbonate, optionally also a sodium bicarbonate.
  • an effervescence source is present, preferably comprising an organic acid, such as carboxylic acids or aminoacids, and a carbonate. Then it may be preferred that part or all of the carbonate salt herein is premixed with the organic acid, and thus present in an separate granular component.
  • the carbonate may have any particle size.
  • the carbonate salt in particular when the carbonate salt is present in a granule and not as separately added compound, the carbonate salt has preferably a volume median particle size from 5 to 375 ⁇ m, whereby preferably at least 60%, preferably at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 425 ⁇ m.
  • the carbon dioxide source has a volume median particle size of 10 to 250, whereby preferably at least 60 %, or even at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 375 ⁇ m; or even preferably a volume median particle size from 10 to 200 ⁇ m, whereby preferably at least 60 %, preferably at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 250 ⁇ m.
  • Preferred builders are alumniosilicate materials, such a s zeolites and/ or phosphate salts.
  • Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • the phosphate builder material most preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [(AlO 2 ) z (SiO 2 )y]. xH 2 O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula: Na 12 [AlO 2 ) 12 (SiO 2 ) 12 ].xH 2 O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ]. 276 H 2 O.
  • Zeolite MAP is described in EP 384070-A . It is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
  • zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
  • the zeolite MAP detergent builder has a particle size, expressed as a d 50 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
  • the d 50 value indicates that 50% by weight of the particles have a diameter smaller than that figure.
  • the particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing d 50 values are disclosed in EP 384070A .
  • crystalline layered silicate material such as SKS-6 (as sold by Clariant), and also amorphous silicates, preferably 1.6 or 2 ratio sodium silicates.
  • The may be present as powdered material of low density, e.g. below 40g/litre, or as compacted materials, e.g. of density of more than 400 g/ litre, for example obtained by roller compaction.
  • The may also be present in the form of a mixture with one another, or with other builder materials or inorganic salts.
  • the component may also preferably comprise water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
  • the most preferred polycarboxylic acid containing three carboxy groups is citric acid, preferably present at a level of from 0.1% to 15%, more preferably from 0.5% to 8% by weight of the composition.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829 , 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448 , and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000 .
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • the component comprises a surfactant system.
  • the surfactant system may contain any surfactant commonly employed in detergent compositions, such as anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants or mixtures thereof. As set out above, preferred is that at least an anionic sulphate and/ or sulphonate surfactant is present. Also preferred are nonionic surfactants.
  • cationic surfactants When cationic surfactants, zwitterionic surfactants or amphoteric surfactants are present, it may be preferred that at least an anionic surfactant or an nonionic surfactant is present as well.
  • anionic surfactant useful for detersive purposes can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • Anionic sulfonates surfactants are preferably present as the anionic surfactant or part of the anionic surfactants.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • the performance benefits which result when an anionic surfactant is also used in the components of the invention are particularly useful for longer carbon chain length anionic surfactants such as those having a carbon chain length of C 12 or greater, particularly of C 14-15 or even up to C 16-18 carbon chain lengths.
  • Anionic sulfate surfactants suitable for use in the components or components of the invention include the primary and secondary alkyl sulfates, having a linear or branched alkyl or alkenyl moiety having from 9 to 22 carbon atoms or more preferably C 12 to C 18 alkyl; alkyl ethoxysulfates; fatty oleoyl glycerol sulfates; alkyl phenol ethylene oxide ether sulfates; the C 5 -C 17 acyl-N-(C 1 -C 4 alkyl) and -N-(C 1 -C 2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 9 -C 22 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C 11 -C 18 , most preferably C 11 -C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
  • a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124 .
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of a C 5 -C 20 , more preferably a C 10 -C 16 , more preferably a C 11 -C 13 (linear) alkylbenzene sulfonates, alkyl ester sulfonates, C 6 -C 22 primary or secondary alkane sulfonates, C 6 -C 24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • the alkyl ester sulfonated surfactant are preferably of the formula R 1 - CH(SO 3 M) - (A) x - C(O) - OR 2 wherein R 1 is a C 6 -C 22 hydrocarbyl, R 2 is a C 1 -C 6 alkyl, A is a C 6 -C 22 alkylene, alkenylene, x is 0 or 1, and M is a cation.
  • the counterion M is preferably sodium, potassium or ammonium.
  • the alkyl ester sulfonated surfactant is preferably a ⁇ -sulpho alkyl ester of the formula above, whereby thus x is 0.
  • R 1 is an alkyl or alkenyl group of from 10 to 22, preferably 16 C atoms and x is preferably 0.
  • R 2 is preferably ethyl or more preferably methyl.
  • R1 of the ester is derived from unsaturated fatty acids, with preferably 1, 2 or 3 double bonds. It can also be preferred that R 1 of the ester is derived from a natural occurring fatty acid, preferably palmic acid or stearic acid or mixtures thereof.
  • Dianionic surfactants are also suitable anionic surfactants for use in the components or components of the present invention.
  • Preferred are the dianionic surfactants of the formula: where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C 1 to C 28 , preferably C 3 to C 24 , most preferably C 8 to C 20 , or hydrogen;
  • a nad B are independently selected from alkylene, alkenylene, (poly) alkoxylene, hydroxyalkylene, arylalkylene or amido alkylene groups of chain length C 1 to C 28 preferably C 1 to C 5 , most preferably C 1 or C 2 , or a covalent bond, and preferably A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms;
  • X and Y are anionic groups selected from the group comprising carboxylate, and
  • the most preferred dianionic surfactant has the formula as above where R is an alkyl group of chain length from C 10 to C 18 , A and B are independently C 1 or C 2 , both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
  • Preferred dianionic surfactants herein include:
  • dianionic surfactants are alkoxylated dianionic surfactants.
  • a preferred alkoxylated dianionic surfactant has the formula where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C 1 to C 28 , preferably C 3 to C 24 , most preferably C 8 to C 20 , or hydrogen; A and B are independently selected from, optionally substituted, alkyl and alkenyl group of chain length C 1 to C 28 , preferably C 1 to C 5 , most preferably C 1 or C 2 , or a covalent bond; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propoxy groups, wherein n and m are independently within the range of from about 0 to about 10, with at least m or n being at least 1; A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic groups selected from
  • the most preferred alkoxylated dianionic surfactant has the formula as above where R is an alkyl group of chain length from C 10 to C 18 , A and B are independently C 1 or C 2 , n and m are both 1, both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
  • Mid-chain branched alkyl sulfates or sulphonates are also suitable anionic surfactants for use in the components or components of the invention.
  • Preferred are the mid-chain branched alkyl sulfates.
  • Preferred mid-chain branched primary alkyl_sulfate surfactants are of the formula
  • These surfactants have a linear primary alkyl sulfate chain backbone (i.e., the longest linear carbon chain which includes the sulfated carbon atom) which preferably comprises from 12 to 19 carbon atoms and their branched primary alkyl moieties comprise preferably a total of at least 14 and preferably no more than 20, carbon atoms.
  • the average total number of carbon atoms for the branched primary alkyl moieties is preferably within the range of from greater than 14.5 to about 17.5.
  • the surfactant system preferably comprises at least one branched primary alkyl sulfate surfactant compound having a longest linear carbon chain of not less than 12 carbon atoms or not more than 19 carbon atoms, and the total number of carbon atoms including branching must be at least 14, and further the average total number of carbon atoms for the branched primary alkyl moiety is within the range of greater than 14.5 to about 17.5.
  • Preferred mono-methyl branched primary alkyl sulfates are selected from the group consisting of: 3-methyl pentadecanol sulfate, 4-methyl pentadecanol sulfate, 5-methyl pentadecanol sulfate, 6-methyl pentadecanol sulfate, 7-methyl pentadecanol sulfate, 8-methyl pentadecanol sulfate, 9-methyl pentadecanol sulfate, 10-methyl pentadecanol sulfate, 11-methyl pentadecanol sulfate, 12-methyl pentadecanol sulfate, 13-methyl pentadecanol sulfate, 3-methyl hexadecanol sulfate, 4-methyl hexadecanol sulfate, 5-methyl hexadecanol sulfate; 6-methyl hexadecanol
  • Preferred di-methyl branched primary alkyl sulfates are selected from the group consisting of: 2,3-methyl tetradecanol sulfate, 2,4-methyl tetradecanol sulfate, 2,5-methyl tetradecanol sulfate, 2,6-methyl tetradecanol sulfate, 2,7-methyl tetradecanol sulfate, 2,8-methyl tetradecanol sulfate, 2,9-methyl tetradecanol sulfate, 2,10-methyl tetradecanol sulfate, 2,11-methyl tetradecanol sulfate, 2,12-methyl tetradecanol sulfate, 2,3-methyl pentadecanol sulfate, 2,4-methyl pentadecanol sulfate, 2,5-methyl pentadecanol sulfate, 2,6-methyl penta
  • branched primary alkyl sulfates comprising 16 carbon atoms and having one branching unit are examples of preferred branched surfactants useful in the present invention components:
  • branched primary alkyl sulfates comprising 17 carbon atoms and having two branching units are examples of preferred branched surfactants according to the present invention:
  • Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Suitable alkyl ethoxy carboxylates include those with the formula RO(CH 2 CH 2 0) x CH 2 C00 - M + wherein R is a C 6 to C 18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
  • Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR 1 -CHR 2 -O)-R 3 wherein R is a C 6 to C 18 alkyl group, x is from 1 to 25, R 1 and R 2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R 3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid. Certain soaps may also be included as suds suppressors.
  • alkali metal sarcosinates of formula R-CON (R 1 ) CH 2 COOM, wherein R is a C 5 -C 17 linear or branched alkyl or alkenyl group, R 1 is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 5 -C 17 linear or branched alkyl or alkenyl group
  • R 1 is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • the detergent component may comprise or also comprise a nonionic surfactant system comprising at least two nonionic alkoxylated surfactants.
  • any alkoxylated nonionic surfactants are suitable herein.
  • the ethoxylated and propoxylated nonionic surfactants are preferred.
  • Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic alkoxylated fatty acid amides, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
  • At least one of the nonionic surfactants is an alkoxylated alcohol surfactant as described herein after.
  • nonionic alkoxylated fatty acid amides which can provide even more additional softening to the fabric, or to the skin when the detergent is in contact with the skin.
  • nonionic surfactant system which comprises at least two nonionic alkoxylated alcohol surfactants whereof preferably one surfactant has an average alkoxylation degree of 5 or less and one surfactant has an average alkoxylation degree of more than 5.
  • systems comprising at least a nonionic alkoxylated alcohol with an average alkoxylation degree of 3 or 5 and at least one nonionic alkoxylated alcohol having an average alkoxylation degree of from 5.5 to 15, preferably 6 or 9.
  • the alkoxylation groups of the nonionic surfactants preferably are propoxylate groups, more preferably ethoxylate groups.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms.
  • the nonioninc surfactant system of the invention may comprise an alkoxylated fatty acid amide, which comprises preferably a compound of the formula wherein R 1 is a C 12 -C 18 alkyl or alkenyl group, R 2 is a C 2 -C 4 alkylene group, R 3 is a hydrogen or a C 1 -C 4 alkyl group, R 4 is a C 1 -C 4 alkyl group or hydrogen and n is a number from 3 to 12.
  • Preferred alkoxylated fatty acid amides have a R 1 being a C 12 -C 14 or a C 16 -C 18 alkyl group, R 2 being a propylene or more preferably ethylene, n being from 5 to 10, R 4 being methyl or hydrogen, R 3 being hydrogen, or a methyl or ethyl group.
  • the detergent components herein may also comprise additionally non-alkoxylated nonionic surfactnats including polyhydroxy fatty acid amides.
  • Those suitable for use herein have the structural formula R 2 CONR 1 Z wherein : R1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight-chain C 5 -C 19 alkyl or alkenyl, more preferably straight-chain C 9 -C 17 alkyl or alkenyl, most preferably straight-chain C 11 -C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly
  • the detergent components herein may also comprise additionally alkyl- polysaccharides, such as are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986 , having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
  • alkyl- polysaccharides such as are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986 , having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
  • Preferred alkylpolyglycosides have the formula: R 2 O(C n H 2n O)t(glycosyl) x wherein R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
  • the glycosyl is preferably derived from glucose.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • Suitable amine oxides include those compounds having the formula R 3 (OR 4 ) x N 0 (R 5 ) 2 wherein R 3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R 5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
  • Preferred are C 10 -C 18 alkyl dimethylamine oxide, and C 10-18 acylamido alkyl dimethylamine oxide.
  • a suitable example of an alkyl amphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
  • Zwitterionic surfactants can also be incorporated into the detergent components in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Suitable betaines are those compounds having the formula R(R') 2 N + R 2 COO - wherein R is a C 6 -C 18 hydrocarbyl group, each R 1 is typically C 1 -C 3 alkyl, and R 2 is a C 1 -C 5 hydrocarbyl group.
  • Preferred betaines are C 12-18 dimethyl-ammonio hexanoate and the C 10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein.
  • Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants.
  • the quaternary ammonium surfactant is a mono C 6 -C 16 , preferably C 6 -C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
  • cationic ester surfactants Another suitable group of cationic surfactants which can be used in the detergent components or components thereof herein are cationic ester surfactants.
  • the cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
  • Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042 , 4239660 and 4260529 .
  • ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
  • the atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain.
  • spacer groups having, for example, -O-O- (i.e.
  • spacer groups having, for example -CH 2 -O- CH 2 - and -CH 2 -NH-CH 2 -linkages are included.
  • the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
  • R 1 is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms
  • R 2 and R 3 are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R 2 and R 3 are methyl groups
  • R 4 is selected from hydrogen (preferred), methyl and ethyl
  • X- is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality
  • A is a alkoxy group, especially a ethoxy, propoxy or butoxy group
  • p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
  • Particularly preferred ApR 4 groups are -CH 2 CH 2 OH, -CH 2 CH 2 CH 2 OH, -CH 2 CH(CH 3 )OH and -CH(CH 3 )CH 2 OH, with -CH 2 CH 2 OH being particularly preferred.
  • Preferred R 1 groups are linear alkyl groups. Linear R 1 groups having from 8 to 14 carbon atoms are preferred.
  • R 1 is C 10 -C 18 hydrocarbyl and mixtures thereof, especially C 10 -C 14 alkyl, preferably C 10 and C 12 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
  • compounds of the foregoing type include those wherein the ethoxy (CH 2 CH 2 O) units (EO) are replaced by butoxy, isopropoxy [CH(CH 3 )CH 2 O] and [CH 2 CH(CH 3 O] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
  • EO ethoxy
  • i-Pr isopropoxy units
  • Pr n-propoxy units
  • the levels of the cationic mono-alkoxylated amine surfactants used in detergent components of the invention is preferably from 0.5% to 30%, more preferably from 1% to 25%, most preferably from 1% to 10% by weight of the component.
  • the cationic bis-alkoxylated amine surfactant preferably has the general formula II: wherein R 1 is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R 2 is an alkyl group containing from one to three carbon atoms, preferably methyl; R 3 and R 4 can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X- is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality.
  • a and A' can vary independently and are each selected from C 1 -C 4 alkoxy, especially ethoxy, (i.e., -CH 2 CH 2 O-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
  • Highly preferred cationic bis-alkoxylated amine surfactants for use herein are of the formula wherein R 1 is C 10 -C 18 hydrocarbyl and mixtures thereof, preferably C 10 , C 12 , C 14 alkyl and mixtures thereof.
  • X is any convenient anion to provide charge balance, preferably chloride.
  • cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula: wherein R 1 is C 10 -C 18 hydrocarbyl, preferably C 10 -C 14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R 2 is C 1 -C 3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
  • the component may comprise additional ingredients. These ingredients are preferably ingredients commonly employed in laundry detergents or laundry softeners, as described herein after.
  • the fabric softening component of the invention may be present in a detergent composition or softening compositions. These compositions are preferably solid, in the form of granules, extrudates, flakes, bars or tablets.
  • compositions can be used in automatic washing or hand washing. Also, the compositions can be such that they are suitable for pre-treatment or soaking, or for rinsing or conditioning of the fabric after the main wash.
  • compositions in accord with the invention may also contain additional detergent components.
  • additional detergent components The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component, and the precise nature of the washing operation for which it is to be used.
  • compositions of the invention preferably contain one or more additional detergent components selected from additional surfactants, as described above, bleaches, bleach catalysts, alkalinity systems, additional builders, additional organic polymeric compounds, enzymes, suds suppressers, soaps, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brighteners, photo-bleaching agents and additional corrosion inhibitors.
  • additional surfactants as described above, bleaches, bleach catalysts, alkalinity systems, additional builders, additional organic polymeric compounds, enzymes, suds suppressers, soaps, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brighteners, photo-bleaching agents and additional corrosion inhibitors.
  • soil release polymers in particular polyesters or polysaccherides or derivatives thereof, cellulose based polymers, including carboxy methyl cellulose, cellulose ethers or ester or amine or amide modified celluloses, encapsulated perfumes, effervescence sources, preferably based on carbonate and acid compounds, in particular citric acid, malic acid or maleic acid, phosphonate- builders, dye transfer inhibitors, and process aids such as hydrotropes.
  • cellulose based polymers including carboxy methyl cellulose, cellulose ethers or ester or amine or amide modified celluloses
  • encapsulated perfumes effervescence sources, preferably based on carbonate and acid compounds, in particular citric acid, malic acid or maleic acid, phosphonate- builders, dye transfer inhibitors, and process aids such as hydrotropes.
  • Highly preferred may be to include a carboxy methyl cellulose compound at a level of at least 0.5% or even 0.75% or even 1% by weight of the composition, or alternatively, or in addition a polysaccheride at a level of at least 0.5% or even 0.75% or even 1% by weight of the composition.
  • compositions comprise a cationic softener.
  • Highly preferred water-insoluble quaternary ammonium compounds are those having two C 12 -C 24 alkyl or alkenyl chains, optionally substituted by functional groups such as -OH,-O-,-CONH,-COO- etc.
  • R 1 ⁇ R 2 ⁇ R 3 ⁇ R 4 ⁇ N ⁇ X wherein R 1 and R 2 represent hydrocarbyl groups from about 12 to about 24 carbon atoms; R 3 and R 4 represent hydrocarbyl groups containing from 1 to about 4 carbon atoms; and X is an anion, preferably selected from halide, methyl sulfate and ethyl sulfate radicals.
  • quaternary softeners include ditallow dimethylammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hydrogenated tallow alkyl)dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; di(coconut alkyl) dimethyl ammonium chloride.
  • Ditallow dimethyl ammonium chloride, di(hydrogenated tallow alkyl) dimethyl ammonium chloride, di(coconut alkyl) dimethyl ammonium methosulfate are preferred.
  • fabric softening agent excludes, cationic detergent active materials which have a solubility above 10 g/l in water at 20°C at a pH of about 6.
  • ditallowyl methylamine is Especially preferred.
  • This is commercially available as Armeen M2HT from AKZO NV, as Genamin SH301 from FARBWERKE HOECHST, and as Noram M2SH from the CECA COMPANY.
  • An preferred additional components of the components or composition is a perhydrate bleach, such as metal perborates, metal percarbonates, particularly the sodium salts.
  • Perborate can be mono or tetra hydrated.
  • Sodium percarbonate has the formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate, sodium per is another optional inorganic perhydrate salt of use in the detergent components herein.
  • a preferred feature of the composition or component is an organic peroxyacid bleaching system.
  • the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
  • the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches, such as the perborate bleach of the claimed invention.
  • a preformed organic peroxyacid is incorporated directly into the composition.
  • Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
  • Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789 .
  • Suitable esters are disclosed in GB-A-836988 , 864798 , 1147871 , 2143231 and EP-A-0170386 .
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of: and mixtures thereof, wherein R 1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R 3 is an alkyl chain containing from 1 to 8 carbon atoms, R 4 is H or R 3 , and Y is H or a solubilizing group. Any of R 1 , R 3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.
  • the preferred solubilizing groups are -SO 3 - M + , -CO 2 - M + , -SO 4 - M + , -N + (R 3 ) 4 X - and O ⁇ --N(R 3 ) 3 and most preferably -SO 3 - M + and -CO 2 - M + wherein R 3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N 1 N 1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms.
  • Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • the TAED is preferably not present in the agglomerated particle of the present invention, but preferably present in the detergent composition, comprising the particle.
  • alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: wherein R 1 is an alkyl group with from 1 to 14 carbon atoms, R 2 is an alkylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Amide substituted bleach activator compounds of this type are described in EP-A-0170386 .
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
  • Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed hydrophobic organic peroxyacid, typically at a level of from 0.05% to 20% by weight, more preferably from 1% to 10% by weight of the composition.
  • a preferred class of hydrophobic organic peroxyacid compounds are the amide substituted compounds of the following general formulae: wherein R 1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R 2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and R 5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • R 1 preferably contains from about 6 to 12 carbon atoms.
  • R 2 preferably contains from about 4 to 8 carbon atoms.
  • R 1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
  • R 2 can include alkyl, aryl, wherein said R 2 may also contain halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
  • R 5 is preferably H or methyl.
  • R 1 and R 5 should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386 .
  • Suitable examples of this class of agents include (6-octylamino)-6-oxo-caproic acid, (6-nonylamino)-6-oxo-caproic acid, (6-decylamino)-6-oxo-caproic acid, magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. 4,483,781 , U.S. 4,634,551 , EP 0,133,354 , U.S. 4,412,934 and EP 0,170,386 .
  • a preferred hydrophobic preformed peroxyacid bleach compound for the purpose of the invention is monononylamido peroxycarboxylic acid.
  • Suitable organic peroxyacids include diperoxyalkanedioc acids having more than 7 carbon atoms, such as diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • organic peroxyacids include diamino peroxyacids, which are disclosed in WO 95/ 03275 , with the following general formula: wherein:
  • the substituent X on the benzene nucleus is preferably a hydrogen or a meta or para substituent, selected from the group comprising halogen, typically chlorine atom, or some other non-released non-interfering species such as an alkyl group, conveniently up to C6 for example a methyl, ethyl or propyl group.
  • X can represent a second amido-percarboxylic acid substituent of formula:- -CO-NY-R(Z)-CO-OOH in which R, Y, Z and n are as defined above.
  • R 1 is selected from the group consisting of C 1 -C 12 alkylene, C 5 -C 12 cycloalkylene, C 6 -C 12 arylene and radical combinations thereof;
  • PAP phthaloylamido peroxyacid
  • composition or component can contain a transition metal containing bleach catalyst.
  • One suitable type of bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • a transition metal cation of defined bleach catalytic activity such as copper, iron or manganese cations
  • an auxiliary metal cation having little or no bleach catalytic activity such as zinc or aluminum cations
  • a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594 .
  • Preferred examples of these catalysts include Mn IV 2 (u-O) 3 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(PF 6 ) 2 , Mn III 2 (u-O) 1 (u-OAc) 2 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 2 , Mn IV 4 (u-O) 6 (1,4,7-triazacyclononane) 4 -(ClO 4 ) 2 , Mn III Mn IV 4 (u-O) 1 (u-OAc) 2- (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 3 , and mixtures thereof.
  • ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts useful herein may also be selected as appropriate for the present invention.
  • suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084 .
  • U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH 3 ) 3- (PF 6 ).
  • Still another type of bleach catalyst is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso-erythritol, meso-inositol, lactose, and mixtures thereof.
  • U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand.
  • B is a bridging group selected from O, S.
  • R 5 , R 6 , and R 7 can each be H, alkyl, or aryl groups, including substituted or unsubstituted groups.
  • Preferred ligands include pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, and triazole rings.
  • said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and nitro.
  • substituents such as alkyl, aryl, alkoxy, halide, and nitro.
  • Particularly preferred is the ligand 2,2'-bispyridylamine.
  • Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridylmethane and -bispyridylamine complexes.
  • Highly preferred catalysts include Co(2,2'-bispyridylamine)Cl 2 , Di(isothiocyanato)bispyridylamine-cobalt (II), trisdipyridylamine-cobalt(II) perchlorate, Co(2,2-bispyridylamine) 2 O 2 ClO 4 , Bis-(2,2'-bispyridylamine) copper(II) perchlorate, tris(di-2-pyridylamine) iron(II) perchlorate, and mixtures thereof.
  • binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands including N 4 Mn III (u-O) 2 Mn IV N 4 ) + and [Bipy 2 Mn III (u-O) 2 Mn IV bipy 2 ]-(ClO 4 ) 3 .
  • bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503 , and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952 , (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat.
  • the bleach catalyst is typically used in a catalytically effective amount in the compositions and processes herein.
  • catalytically effective amount is meant an amount which is sufficient, under whatever comparative test conditions are employed, to enhance bleaching and removal of the stain or stains of interest from the target substrate.
  • the test conditions will vary, depending on the type of washing appliance used and the habits of the user. Some users elect to use very hot water; others use warm or even cold water in laundering operations. Of course, the catalytic performance of the bleach catalyst will be affected by such considerations, and the levels of bleach catalyst used in fully-formulated detergent and bleach compositions can be appropriately adjusted.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 1 ppm to about 200 ppm of the catalyst species in the wash liquor.
  • 3 micromolar manganese catalyst is effective at 40°C, pH 10 under European conditions using perborate and a bleach precursor. An increase in concentration of 3-5 fold may be required under U.S. conditions to achieve the same results.
  • compositions or component of the invention preferably contain as an optional component a heavy metal ion sequestrant.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3% to 2% by weight of the compositions or component
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.
  • Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133 .
  • iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable.
  • Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
  • diethylenetriamine pentacetic acid ethylenediamine-N,N'-disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • Another preferred ingredient useful in the components or compositions herein is one or more additional enzymes.
  • Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139 .
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain ofB licheniformis, described in more detail in GB-1,269,839 (Novo ).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S.
  • Highly preferred amylase enzymes maybe those described in PCT/ US 9703635 , and in WO95/26397 and WO96/23873 .
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001 % to 1% by weight, most preferably from 0.001 % to 0.5% by weight of the compositions.
  • the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes , which is described in Granted European Patent, EP-B-0218272 .
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza , as host, as described in European Patent Application, EP-A-0258 068 , which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase.
  • This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989 .
  • organic polymeric compounds are preferred additional components of the compositions or components herein and are preferably present as components of any particulate components where they may act such as to bind the particulate component together.
  • organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent composition.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756 .
  • salts are polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282 , EP-A-305283 and EP-A-351629 .
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • Polyethylene oxides are preferred additional ingredients, in particular present in a particle with the clay herein, as a humectant, preferably also combined with a wax or oil.
  • Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al. , and U.S. Patent 5,415,807, Gosselink et al. , and in particular according to US application no.60/051517 .
  • Another organic compound which is a preferred clay dispersant/ anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula: wherein X is a nonionic group selected from the group consisting of H, C 1 -C 4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g.
  • the detergent compositions or the components of the invention when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01 % to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John .
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • high molecular weight fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • a preferred suds suppressing system comprises:
  • a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
  • the component or compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
  • compositions herein preferably contain from about 0.05% to 5%, more preferably from 0.07 to 3% or even 0.1% to 2.5% by weight of the component or from about 0.05% to 5%, more preferably from 0.1 to 3% or even 0.12% to 2.5% by weight of composition of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula: wherein R 1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R 2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • R 1 is anilino
  • R 2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation.
  • Tinopal-CBS-X and Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • R 1 is anilino
  • R 2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • R 1 is anilino
  • R 2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
  • This particular brightener species are commercially marketed under the tradename Tinopal-DMS-X and Tinopal AMS-GX by Ciba Geigy Corporation.
  • SRA Polymeric soil release agents, hereinafter "SRA" can optionally be employed in the present compositions or components. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1 % to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
  • Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
  • Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
  • esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
  • Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink .
  • ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1,2-propylene glycol (“PG”) in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water.
  • DMT dimethyl terephthalate
  • PG 1,2-propylene glycol
  • SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al.
  • SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink , such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
  • Gosselink for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al.
  • ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
  • SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays , May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975 ; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C 1 -C 4 alkyl celluloses and C 4 hydroxyalkyl celluloses, see U.S. 4,000,093, December 28, 1976 to Nicol, et al.
  • methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution.
  • METOLOSE SM100 and METOLOSE SM200 are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
  • polysaccheride polymers are also highly preferred.
  • SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al. ; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
  • Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al. .
  • Other classes include: (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al. ;
  • compositions or components of the invention include perfumes, colours and other filler salts as replacement for sulphate filler salt.
  • a carbonate salt preferably combined with a carbonate salt, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides, photo-bleaches, speckles, dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 , can be present.
  • neutralizing agents e.g., less than about 20% by weight
  • buffering agents e.g., phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides, photo-bleaches, speckles, dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 , can be present.
  • phase regulants e.g.,
  • composition of the invention can be made via a variety of methods, including dry- mixing, agglomerating, compaction, or spray-drying of the various compounds comprised in the detergent component, or mixtures of these techniques.
  • compositions herein can take a variety of physical forms including liquid, but preferably solid forms such as tablet, flake, pastille and bar, and preferably granular forms.
  • compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
  • Detergent compositions herein in particular laundry detergents, preferably have a bulk density of from 280 g/litre to 200 g/litre, or preferably from 300 g/litre or even 350g/litre or 420g/litre to 2000g/litre or more preferably to 1500g/litre or 100 g/litre or even to 700g/litre.
  • the detergent compositions can include as an additional component a chlorine-based bleach.
  • a chlorine-based bleach since preferred detergent compositions of the invention are solid, most liquid chlorine-based bleaching will not be suitable for these detergent compositions and only granular or powder chlorine-based bleaches will be suitable.
  • the detergent compositions can be formulated such that they are chlorine-based bleach-compatible, thus ensuring that a chlorine based bleach can be added to the detergent composition by the user at the beginning or during the washing process.
  • the chlorine-based bleach is such that a hypochlorite species is formed in aqueous solution.
  • the hypochlorite ion is chemically represented by the formula OCI - .
  • bleaching agents which yield a hypochlorite species in aqueous solution include alkali metal and alkaline earth metal hypochlorites, hypochlorite addition products, chloramines, chlorimines, chloramides, and chlorimides.
  • Specific examples of compounds of this type include sodium hypochlorite, potassium hypochlorite, monobasic calcium hypochlorite, dibasic magnesium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium dichloroisocyanurate, sodium dichloroisocyanurate sodium dichloroisocyanurate dihydrate, trichlorocyanuric acid, 1,3-dichloro-5,5-dimethylhydantoin, N-chlorosulfamide, Chloramine T, Dichloramine T, chloramine B and Dichloramine B.
  • a preferred bleaching agent for use in the compositions of the instant invention is sodium hypochlorite, potassium hypochlorite, or a mixture thereof.
  • hypochlorite-yielding bleaching agents are available in solid or concentrated form and are dissolved in water during preparation of the compositions of the instant invention. Some of the above materials are available as aqueous solutions.
  • Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
  • an effective amount of the detergent composition it is meant from 10g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • compositions herein can be useful in both conventional washing machines and low-water fill washing machines.
  • the composition hand washing.
  • the detergent composition is a pre-treatment or soaking composition, to be used to pre-treat or soak soiled and stained fabrics.
  • the abbreviated component identifications have the following meanings: LAS : Sodium linear C 11-13 alkyl benzene sulfonate TAS : Sodium tallow alkyl sulfate CxyAS : Sodium C 1x - C 1y alkyl sulfate C46SAS : Sodium C 14 - C 16 secondary (2,3) alkyl sulfate CxyEzS : Sodium C 1x -C 1y alkyl sulfate condensed with z moles of ethylene oxide CxyEz : C 1x -C 1y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide
  • QAS 1 R 2 .
  • Alcalase Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S Cellulase : Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme
  • Amylase Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T
  • Amylase II Amylolytic enzyme, as disclosed in PCT/ US9703635
  • Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
  • Lipase II Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
  • Lipolase Ultra Endolase Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S PB4 : Sodium perborate tetrahydrate of nominal formula NaBO 2 .3
  • Photoactivated Sulfonated zinc phthlocyanine encapsulated in bleach (1) dextrin soluble polymer Photoactivated : Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 : Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 : Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP : 1,1-hydroxyethane diphosphonic acid PEGx : Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO : Polyethylene oxide, with an average molecular weight of 50,000 TEPAE : Tetraethylenepentaamine ethoxylate PVI : Polyvinyl imidasole, with an average molecular weight of 20,000 P
  • a B C D Component I- XII balance balance balance balance bablance Spray on Brightener 0.02 - - 0.02 C45E7 or E9 - - 2.0 1.0 C45E3 or E4 - - 2.0 4.0 Perfume 0.5 - 0.5 0.2 Silicone antifoam 0.3 - - - Dry additives QEA - - - 1.0 HEDP/ EDDS 0.3 - 0.5 0.5 Sulfate 2.0 - 0.5 1.0 Carbonate 2.0 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Claims (15)

  1. Adoucissant solide pour tissus comprenant
    a) au moins 1 %, en poids du composant, d'une argile ;
    b) au moins 5 %, en poids du composant, d'un système tensioactif ;
    c) au moins 15 % en poids d'un matériau de support solide ;
    d) de 0,005 % à 10 %, en poids du composant, d'un agent de floculation, dans lequel le composant est sous la forme d'un agglomérat, et dans lequel l'argile et ragent. de floculation sont dans un mélange intime l'un avec l'autre,
  2. Composant selon l'une quelconque des revendications précédentes, dans lequel le matériau de support comprend un adjuvant d'aluminosilicate et/ou un adjuvant de sel de phosphate, qui est de préférence présent à un niveau allant de 15 % à 60 % en poids du composant.
  3. Composant selon l'une quelconque des revendications précédentes, dans lequel le matériau de support comprend un sel de carbonate inorganique qui est de préférence présent à un niveau allant de 10 % à 60 % en poids du composant.
  4. Composant selon l'une quelconque des revendications précédentes, dans lequel le système tensioactif est présent à un niveau allant de 10 % à 70 % en poids et comprend au moins un agent tensioactif sulfonate anionique ou un agent tensioactif sulfate anionique.
  5. Composant selon l'une quelconque des revendications précédentes, dans lequel le composant comprend un agent tensioactif non ionique ou leurs mélanges, de préférence comprenant au moins un agent tensioactif d'alcool alcoxylé, de préférence au moins deux agents tensioactifs d'alcool alcoxylé.
  6. Composition selon l'une quelconque des revendications précédentes, dans laquelle un agent de floculation comprend un oxyde de polyéthylène d'une masse moléculaire moyenne de 150 000 à 3 000 000.
  7. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'argile est présente à un niveau allant de 5 % à 60 % en poids, de préférence comprenant une argile smectite.
  8. Composant selon l'une quelconque des revendications précédentes, comprenant au moins 0,1 % en poids d'un azurant.
  9. Composant selon l'une quelconque des revendications précédentes, comprenant au moins 5 % en poids d'eau.
  10. Composant selon l'une quelconque des revendications précédentes, comprenant un agent pour le soin des tissus choisi dans le groupe comprenant des polymères antisalissure, des polymères cellulosiques, des inhibiteurs de décoloration, des adoucissants cationiques, ou leurs mélanges.
  11. Composant selon l'une quelconque des revendications précédentes, comprenant un sel de carbonate et un désintégrant pouvant gonfler dans l'eau ou un composé acide susceptible de réagir avec un carbonate pour produire une effervescence, de préférence étant un acide carboxylique, ou leurs mélanges.
  12. Composant selon l'une quelconque des revendications précédentes, comprenant un mélange d'argiles.
  13. Procédé de fabrication du composant selon l'une quelconque des revendications précédentes, comprenant les étapes consistant à mélanger d'abord l'argile et l'agent de floculation pour former un mélange intime et mélanger ultérieurement le mélange intime avec le système tensioactif et le matériau de support.
  14. Procédé de fabrication du composant selon l'une quelconque des revendications 1 à 12, comprenant les étapes consistant à mélanger d'abord l'agent de floculation, le système tensioactif ou une partie de celui-ci et/ou le matériau de support ou une partie de celui-ci pour former un mélange intime et mélanger ultérieurement le mélange intime avec l'argile et facultativement la partie restante du système tensioactif et/ou la partie restante du matériau de support.
  15. Composition détergente pour le ravage du Linge comprenant le composant selon l'une quelconque des revendications 1 à 12.
EP00919923A 1999-04-01 2000-03-30 Composant d'adoucissant de textiles Expired - Lifetime EP1165732B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9907593A GB2348435A (en) 1999-04-01 1999-04-01 Softening compositions
GB9907593 1999-04-01
PCT/US2000/008517 WO2000060039A1 (fr) 1999-04-01 2000-03-30 Composant d'adoucissant de textiles

Publications (2)

Publication Number Publication Date
EP1165732A1 EP1165732A1 (fr) 2002-01-02
EP1165732B1 true EP1165732B1 (fr) 2008-02-13

Family

ID=10850857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00919923A Expired - Lifetime EP1165732B1 (fr) 1999-04-01 2000-03-30 Composant d'adoucissant de textiles

Country Status (12)

Country Link
EP (1) EP1165732B1 (fr)
JP (1) JP4744696B2 (fr)
CN (1) CN1352677A (fr)
AR (1) AR023244A1 (fr)
AT (1) ATE386097T1 (fr)
AU (1) AU4053300A (fr)
BR (1) BR0009502A (fr)
CA (1) CA2365964A1 (fr)
DE (1) DE60038009D1 (fr)
GB (1) GB2348435A (fr)
MX (1) MXPA01009878A (fr)
WO (1) WO2000060039A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048721A1 (fr) * 1999-04-30 2000-11-02 The Procter & Gamble Company Compositions détergentes
US6627598B1 (en) 1999-07-22 2003-09-30 The Procter & Gamble Company Solid detergent compositions comprising an organophilic smectite clay
GB2352245A (en) * 1999-07-22 2001-01-24 Procter & Gamble Detergent compositions
GB0207484D0 (en) 2002-03-28 2002-05-08 Unilever Plc Solid fabric conditioning compositions
GB0207483D0 (en) 2002-03-28 2002-05-08 Unilever Plc Fabric conditioning compositions
ATE310797T1 (de) * 2002-09-16 2005-12-15 Unilever Nv Reinigungs- oder waschmittelzusammensetzungen
WO2005012629A1 (fr) * 2003-07-21 2005-02-10 Amcol International Corporation Composition de traitement de textiles
TWI350309B (en) 2003-12-26 2011-10-11 Kao Corp Softening detergent composition
DE102004005000A1 (de) * 2004-01-30 2005-08-18 Basf Ag Verfahren zur Behandlung von faserigem Material
CN100519717C (zh) * 2004-02-13 2009-07-29 花王株式会社 洗涤剂组合物
WO2005097962A1 (fr) 2004-04-09 2005-10-20 Unilever N.V. Granules utilises dans un produit de nettoyage et procede de fabrication
WO2006027179A1 (fr) * 2004-09-08 2006-03-16 Clariant Produkte (Deutschland) Gmbh Melanges d'agents de blanchiment
US8034760B2 (en) 2005-08-01 2011-10-11 Kao Corporation Softening detergent composition
ATE395401T1 (de) * 2005-08-05 2008-05-15 Procter & Gamble Teilchenförmige textilbehandlungsmittelzusammensetzung enthaltend silikone, schichtsilikate und anionische tenside
AU2006203268A1 (en) * 2005-08-08 2007-02-22 Kao Corporation Detergent composition for clothing
US8067354B2 (en) 2005-12-28 2011-11-29 Kao Corporation Softening detergent composition
CN101410502B (zh) 2006-03-31 2011-09-07 花王株式会社 柔软洗净剂组合物
WO2014090573A1 (fr) 2012-12-12 2014-06-19 Unilever N.V. Composition de nettoyage
GB201419691D0 (en) * 2014-11-05 2014-12-17 Armstrong John S Apparatus method and substance for washing glassware and/or dishware
GB201815390D0 (en) * 2018-09-21 2018-11-07 Univ Dublin A process for producing a bio-based surfactant
BR112022011356A2 (pt) * 2019-12-11 2022-08-23 Unilever Ip Holdings B V Composição detergente, método para lavar tecido e uso
PL4157983T3 (pl) * 2020-05-27 2024-05-27 Unilever Ip Holdings B.V. Kompozycja do zmiękczania materiałów włókienniczych

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU549000B2 (en) * 1981-02-26 1986-01-09 Colgate-Palmolive Pty. Ltd. Base beads for detergent compositions
GB8331823D0 (en) * 1983-11-29 1984-01-04 Procter & Gamble Laundry compositions
US4609473A (en) * 1984-11-26 1986-09-02 Colgate Palmolive Company Bentonite-sulfate fabric softening particulate agglomerate, processes for manufacture and use thereof, and detergent compositions containing it
GB2172910B (en) * 1985-03-28 1989-06-21 Procter & Gamble Detergent containing a fabric conditioner
ATE97691T1 (de) * 1987-06-30 1993-12-15 Procter & Gamble Hektorittonhaltige waschmittel/weichsp¨lerzusammensetzungen.
EP0299575B1 (fr) * 1987-07-14 1994-01-12 The Procter & Gamble Company Compositions détergentes
EP0313146B2 (fr) * 1987-10-19 2001-09-05 The Procter & Gamble Company Compositions détergentes
US4844821A (en) * 1988-02-10 1989-07-04 The Procter & Gamble Company Stable liquid laundry detergent/fabric conditioning composition
DE69019973T2 (de) * 1990-10-29 1995-11-16 Procter & Gamble Wäschebehandlungszusammensetzung.
WO1995027037A1 (fr) * 1994-03-30 1995-10-12 The Procter & Gamble Company Detergent en pains pour lessive contenant de l'argile adoucissant le tissu
GB2297977A (en) * 1995-02-07 1996-08-21 Procter & Gamble Detergent composition containing Zeolite MAP
BR9610465A (pt) * 1995-09-01 1999-03-02 Procter & Gamble Composição detergente compreendendo polímero floculante de argila com tamanho de partícula menor do que 250 micros
MA24525A1 (fr) * 1997-04-14 1998-12-31 Procter & Gamble Particule detergente
GB2327949A (en) * 1997-08-02 1999-02-10 Procter & Gamble Detergent tablet

Also Published As

Publication number Publication date
GB9907593D0 (en) 1999-05-26
WO2000060039A1 (fr) 2000-10-12
CN1352677A (zh) 2002-06-05
AR023244A1 (es) 2002-09-04
JP2002541342A (ja) 2002-12-03
GB2348435A (en) 2000-10-04
ATE386097T1 (de) 2008-03-15
AU4053300A (en) 2000-10-23
JP4744696B2 (ja) 2011-08-10
MXPA01009878A (es) 2002-04-24
DE60038009D1 (de) 2008-03-27
EP1165732A1 (fr) 2002-01-02
CA2365964A1 (fr) 2000-10-12
BR0009502A (pt) 2002-03-26

Similar Documents

Publication Publication Date Title
EP1165732B1 (fr) Composant d'adoucissant de textiles
EP1121406B1 (fr) Compositions ou composants detergents
US6444634B1 (en) Bleaching compositions
US6482789B1 (en) Detergent composition comprising mid-chain branched surfactants
EP1165733B1 (fr) Compositions detergentes
GB2344597A (en) Effervescence components
US6689739B1 (en) Detergent compositions
WO2000066688A1 (fr) Pastilles et compositions de nettoyage
EP1021509B1 (fr) Composition detergente
US6881717B1 (en) Fabric softening component
US6551983B1 (en) Bleach-containing detergent composition
GB2348436A (en) Detergent compositions
US6610644B1 (en) Detergent compositions comprising aggolomerates of layered silicate and anionic surfactant
GB2339575A (en) Cellulose disintegrant for detergent compositions
US6723693B1 (en) Method for dispensing a detergent comprising an amionic/silicate agglomerate
WO2000002988A1 (fr) Adjuvant lessiviel
EP1124929B1 (fr) Composition detergente a base d'agent de blanchiment
EP1095129B1 (fr) Procede de distribution
WO1999064558A1 (fr) Composition detergentes contenant des particules colorees
WO2001012767A1 (fr) Composant de desintegration et composition detergente contenant ce composant
GB2339574A (en) Disintegrating components
WO2000002436A2 (fr) Compositions detergentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20041207

17Q First examination report despatched

Effective date: 20041207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60038009

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080714

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130225

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140330