EP1163449A1 - Variable displacement vane pump - Google Patents
Variable displacement vane pumpInfo
- Publication number
- EP1163449A1 EP1163449A1 EP00986603A EP00986603A EP1163449A1 EP 1163449 A1 EP1163449 A1 EP 1163449A1 EP 00986603 A EP00986603 A EP 00986603A EP 00986603 A EP00986603 A EP 00986603A EP 1163449 A1 EP1163449 A1 EP 1163449A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cam
- interior chamber
- variable displacement
- pump
- vane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/18—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
- F04C14/22—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
Definitions
- the subject invention relates to fuel metering systems, and more particularly, to an improved cam seal for a variable displacement fluid pressure vane pump for use with gas turbines.
- Vane pumps include a rotor element that has slots for supporting radially movable vane elements.
- the rotor element is mounted within a cam member defining a cam surface.
- the cam surface has a fluid inlet port through which fluid is delivered to the low pressure inlet areas of the rotor surface. The fluid is subsequently compressed and discharged from the high pressure outlet areas of the rotor surface as pressurized fluid.
- Variable displacement vane pumps are known, as disclosed for example in U.S. Patent Nos. 5,545,014 and 5,545,018, the disclosures of which are herein incorporated by reference in their entireties. These pumps contain a swing cam element which pivots relative to the rotor element, so as to change the relative volumes of the inlet and outlet discharge areas and thereby vary the displacement capacity of the pump.
- Variable displacement vane pumps often have leakage problems in the high pressure discharge arc area.
- Spring biased cam seal elements that frictionally engage the faces of the swing cam in the discharge arc area have been designed to overcome these problems, as described for example in U.S. Patent No. 5,783,500, the disclosure of which is incorporated by reference herein in its entirety.
- the subject invention is directed to an improved cam seal arrangement for a variable displacement vane pump which solves the problems associated with cam seals on prior art vane pumps.
- the subject invention is directed to a variable displacement vane pump in which the cam seals are located along the arc defined by the cam as it swings about its pivot point relative to the rotor member. Consequently, the seals function as static seals, and will not bind up in their slots. This will minimize cam seal leakage if a seal fails to follow the cam stroke.
- variable displacement vane pump in accordance with a preferred embodiment of the subject invention includes a pump housing having a cylindrical interior chamber defining a central axis through which a vertical centerline and a horizontal centerline extends.
- a cylindrical rotor member is mounted for rotational movement within the interior chamber of the pump housing about an axis aligned with the central axis of the interior chamber.
- the rotor member has a central vane section including a plurality of circumferentially spaced apart radial vane slots formed therein. Each vane slot supports a corresponding vane element which is mounted for radial movement therein, and each vane element has an outer tip surface.
- a cam member is mounted for pivotal movement within the interior chamber of the pump housing about a fulcrum aligned with the vertical centerline of the interior chamber.
- the cam member defines a cam body having a circular bore extending therethrough for receiving the rotor member.
- the circular bore forms a cam chamber defining a smooth cam surface making continuous contact with the outer tip surfaces of the vane elements during the rotation of the rotor member.
- the cam body has opposed lateral sealing lands formed thereon which have arcuate sealing surfaces that define segments of a cam arc through which the cam member pivots or swings relative to the rotor member.
- variable displacement vane pump of the subject invention further includes lateral cam seals supported within the interior chamber of the pump housing for sealingly isolating the high pressure zone of the pump from the relatively lower inlet pressure of the pump.
- Each cam seal is biased into a continuous contact position with an adjacent sealing surface of the cam member.
- the cam seals are oriented on each end of a chord of the cam arc.
- the chord of the cam arc extends parallel to and is located below the horizontal centerline of the interior chamber. Consequently, the cam seals act as static seals which are less likely to bind up during operation and cause internal leakage across the fixed clearance between the cam member and the sideplates.
- the variable displacement vane pump of the subject invention includes opposed sideplates disposed within the interior chamber of the pump housing.
- the sideplates support the rotor member and cam member therebetween.
- An axial spacer having an axial thickness slightly greater than an axial thickness of the cam member is preferably positioned between the opposed sideplates for reducing or eliminating friction between the sideplates and the cam member.
- the static cam seals are supported by the axial spacer and are oriented on each end of a chord of the cam arc through which the cam member swings so as to prevent fuel leakage between the high and low pressure zones formed in the area defined between the sideplates.
- Fig. 1 is a cross-sectional view of a prior art variable displacement vane pump, taken along a plane extending transverse to the longitudinal axis of the pump, wherein the cam seals are located along the horizontal center line of the pump housing;
- Fig. 2 is an enlarged localized view of a lateral cam seal of the variable displacement vane pump illustrated in Fig. 1 ;
- Fig. 3 is a cross-sectional view of a variable displacement vane pump constructed in accordance with a preferred embodiment of the subject invention taken along a plane extending parallel to the longitudinal axis of the pump, and illustrating the direction of fuel flow through the pump housing;
- Fig. 4 is a an exploded perspective view of the variable displacement vane pump of Fig. 4 with parts separated for ease of illustration;
- Fig. 5 is a cross-sectional view of the variable displacement vane pump of the subject invention, taken along line 5-5 of Fig. 4, wherein the cam seals are located at opposite ends of a chord of an arc through which the cam member swings, and the cam member is illustrated in a maximum stop position;
- Fig. 6 is an enlarged localized view of a cam seal of the variable displacement vane pump illustrated in Fig. 5 when the cam member is disposed in a maximum stop position;
- Fig. 7 is a cross-sectional view of the variable displacement vane pump of the subject invention, taken along line 5-5 of Fig. 4, wherein the cam member is illustrated in a minimum stop position; and Fig. 8 is an enlarged localized view of the cam illustrated in Fig. 6 when the cam member is disposed in the minimum stop position.
- Vane pump 10 which is substantially similar to the vane pump disclosed in commonly assigned U.S. Patent No. 5,545,014, includes a pump housing 12 defining an interior chamber which supports a cam member 14 and a rotor member 16.
- Rotor member 16 includes a plurality of radially extending slots, each for supporting a corresponding vane element 18.
- Cam member 14 is mounted for pivotal movement about pivot pin 20 supported in housing 12 and defines a circular bore 22 forming a cam chamber.
- the cam chamber defines a cam surface 24 making continuous contact with the outer tip surfaces of the vane elements 18.
- Spring biased cam seals 26a and 26b are supported within corresponding slots 28a and 28b formed in axial spacer member 30, as best seen in Fig. 2.
- Axial spacer 30 is supported within housing 12 by a plurality of threaded fasteners disposed about the periphery thereof.
- Cam seals 26a and 26b are aligned with the horizontal centerline of the rotor member 16 and are configured in such a manner so that the tips of the cam seals remain in contact with the radially outer surface of the cam member 14 regardless of the position of the cam member 14.
- the cam seals 26a and 26b are positioned so as to divide the cavity formed between the axial spacer 30 and the cam member 14 into a high pressure zone and a low pressure zone, and prevent circumferential fuel flow therebetween so as to improve pump efficiency.
- a variable displacement vane pump constructed in accordance with a preferred embodiment of the subject invention and designated generally by reference numeral 100.
- Vane pump 100 includes a pump housing 112 defining an interior pumping chamber having a central longitudinal axis extending therethrough and including an inlet region 104 for admitting low pressure fuel into the pumping chamber and a discharge region 106 for discharging high pressure fuel from the pumping chamber.
- a main drive shaft 132 extends through the interior chamber of pump housing 112 along the longitudinal axis thereof for driving a central shaft member 134.
- Shaft member 134 is supported for rotation by opposed journal bearings 136a and 136b, and is keyed to rotor member 116 for imparting rotational motion thereto.
- Rotor member 116 includes a plurality of radially extending slots 138, each for supporting a corresponding vane elements 118. The vane elements fit snugly within the slots and function like pistons as they are depressed radially inwardly during movement of the rotor member through the discharge arc of the pump.
- Each slot has an undervane cavity defining an area that is open to inlet pressure when the vane element is in the inlet arc region of the pump, and to discharge pressure when the vane element is in the discharge arc region of the pump.
- a cam member 114 is mounted for pivotal movement within pump housing 112 about pivot pin 120 defining a fulcrum, to vary the displacement of vane pump 100.
- Cam member 114 includes a one-piece body that defines a circular bore 122 forming a cam chamber 125.
- Cam chamber 125 defines a smooth continuous annular cam surface 124 dimensioned and configured to make continuous contact with the outer tip surfaces of the plural vane elements 118 as rotor member 116 rotates about the axis of the pump housing 112.
- a lever 145 extends from the body of cam member 114 and is pivotably connected to an actuation piston 135 for varying the position of the cam member 114 relative to the rotor member 116. (See Figs. 5 and 7).
- Opposed sideplates 140 and 142 disposed within a cylindrical housing member 150 form a sealed cavity between cam member 114 and rotor member 116, and provide inlet and discharge ports for the cavity.
- An axial spacer 130 having a thickness that is slightly greater than the thickness of cam member 114 is disposed between sideplates 140 and 142. This allows the sideplates 140 and 142 to be tightly clamped against the spacer 130 by a plurality of threaded fasteners 152 while allowing small gaps to remain between the cam member 114 and the sideplates to reduce or eliminate friction therebetween.
- cam member 114 includes opposed radially outwardly extending sealing lands 114a and 114b.
- the sealing lands define arcuate cam surfaces 115a and 115b, respectively.
- Cam surfaces 115a and 115b are configured in such a manner so as to define arcuate segments of the cam arc A-B through which cam member 114 swings relative to rotor member 116.
- Spring biased cam seals 126a and 126b are supported in slots 128a and
- Cam seals 126a and 126b have intersecting axes that are radially aligned with the fulcrum of cam member 114, and are positioned at each end of a chord of the cam arc A-B. The chord extends parallel to and is located below the horizontal centerline of the interior chamber of pump housing 112.
- the cam seals 126a and 126b are adapted and configured to remain in continuous contact with the radially outer surface of cam member 114 at all times during operation under the bias of coiled springs 146a and 146b. More particularly, as the cam member 114 moves between the maximum stop position illustrated in Figs. 5 and 6, and the minimum stop position illustrated in Fig. 7 and 8, the cam seals remain in a static condition, biased into contact with the cam member 114 by springs 146a and 146b.
- cam seals 126a and 126b function as static seals, in that they do not translate within slots 128a and 128 in response to pivotal movement of the cam member between the maximum and minimum stop positions. Consequently, the cam seals will not have a tendency to bind up in their slots during operation. This advantageously minimizes the risk of fuel leakage between the low pressure and high pressure zones of the pump.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17138299P | 1999-12-22 | 1999-12-22 | |
US171382P | 1999-12-22 | ||
PCT/US2000/034592 WO2001046591A1 (en) | 1999-12-22 | 2000-12-20 | Variable displacement vane pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1163449A1 true EP1163449A1 (en) | 2001-12-19 |
EP1163449B1 EP1163449B1 (en) | 2009-09-09 |
Family
ID=22623534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00986603A Expired - Lifetime EP1163449B1 (en) | 1999-12-22 | 2000-12-20 | Variable displacement vane pump |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1163449B1 (en) |
JP (1) | JP2003518227A (en) |
AT (1) | ATE442526T1 (en) |
DE (1) | DE60042920D1 (en) |
WO (1) | WO2001046591A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8156919B2 (en) * | 2008-12-23 | 2012-04-17 | Darrow David S | Rotary vane engines with movable rotors, and engine systems comprising same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354809A (en) | 1980-03-03 | 1982-10-19 | Chandler Evans Inc. | Fixed displacement vane pump with undervane pumping |
JPS59147890A (en) * | 1983-02-14 | 1984-08-24 | Toyoda Mach Works Ltd | Variable displacement type vane pump |
GB8518558D0 (en) * | 1985-07-23 | 1985-08-29 | Hobourn Eaton Ltd | Variable delivery pumps |
DE4011671C2 (en) * | 1990-04-11 | 1994-04-28 | Glyco Metall Werke | Adjustable vane pump |
US5545014A (en) | 1993-08-30 | 1996-08-13 | Coltec Industries Inc. | Variable displacement vane pump, component parts and method |
US5545018A (en) | 1995-04-25 | 1996-08-13 | Coltec Industries Inc. | Variable displacement vane pump having floating ring seal |
DE19533686C2 (en) * | 1995-09-12 | 1997-06-19 | Daimler Benz Ag | Adjustable vane pump as a lubricant pump |
-
2000
- 2000-12-20 EP EP00986603A patent/EP1163449B1/en not_active Expired - Lifetime
- 2000-12-20 AT AT00986603T patent/ATE442526T1/en not_active IP Right Cessation
- 2000-12-20 DE DE60042920T patent/DE60042920D1/en not_active Expired - Lifetime
- 2000-12-20 JP JP2001547465A patent/JP2003518227A/en active Pending
- 2000-12-20 WO PCT/US2000/034592 patent/WO2001046591A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO0146591A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1163449B1 (en) | 2009-09-09 |
DE60042920D1 (en) | 2009-10-22 |
JP2003518227A (en) | 2003-06-03 |
ATE442526T1 (en) | 2009-09-15 |
WO2001046591A1 (en) | 2001-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6634865B2 (en) | Vane pump with undervane feed | |
US6375435B2 (en) | Static cam seal for variable displacement vane pump | |
JPH03199687A (en) | Variable displacement type vane pump | |
EP0305618B1 (en) | Orbital pump | |
US20090291010A1 (en) | Vane pump | |
EP0012614A1 (en) | Improvements in scroll type fluid compressor units | |
EP0154856B1 (en) | Vane type compressor | |
US7207785B2 (en) | Vane pump wear sensor for predicted failure mode | |
JPH06272674A (en) | Vane pump | |
US6503071B2 (en) | High speed UniVane fluid-handling device | |
EP1163449B1 (en) | Variable displacement vane pump | |
US5879138A (en) | Two-stage rotary vane vacuum pump | |
GB2125901A (en) | Rotary positive-displacement gas-compressor | |
US6719543B2 (en) | Selectively adjustable fixed displacement vane pump | |
US6663357B2 (en) | Vane pump wear sensor for predicted failure mode | |
US4370111A (en) | Rotary pump or motor with drive rollers and free-floating rollers | |
JP3851999B2 (en) | Variable displacement pump | |
JPS5867977A (en) | Spherical piston pump | |
EP1320681B1 (en) | Vane pump | |
JPH03145592A (en) | Compressor | |
JPH0445677B2 (en) | ||
RU2230230C1 (en) | Pump | |
JPH0219683A (en) | Fluid compressor | |
US20050063854A1 (en) | Dual lobe, split ring, variable roller vane pump | |
JPH0443880A (en) | Vane pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GOODRICH PUMP & ENGINE CONTROL SYSTEMS, INC. |
|
17Q | First examination report despatched |
Effective date: 20061121 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 2/344 20060101ALI20090319BHEP Ipc: F04C 15/06 20060101AFI20090319BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60042920 Country of ref document: DE Date of ref document: 20091022 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091220 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100701 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20100610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091220 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090909 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170228 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60042920 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191230 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191227 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20201219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20201219 |