EP1163378B1 - Chemically passivated object made of magnesium or alloys thereof - Google Patents

Chemically passivated object made of magnesium or alloys thereof Download PDF

Info

Publication number
EP1163378B1
EP1163378B1 EP00918709A EP00918709A EP1163378B1 EP 1163378 B1 EP1163378 B1 EP 1163378B1 EP 00918709 A EP00918709 A EP 00918709A EP 00918709 A EP00918709 A EP 00918709A EP 1163378 B1 EP1163378 B1 EP 1163378B1
Authority
EP
European Patent Office
Prior art keywords
groups
conversion layer
carbon atoms
passivation
object according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00918709A
Other languages
German (de)
French (fr)
Other versions
EP1163378A2 (en
Inventor
Peter Kurze
Ulrike KRÜGER
Marco Kohler
Dora Banerjee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7902184&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1163378(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Publication of EP1163378A2 publication Critical patent/EP1163378A2/en
Application granted granted Critical
Publication of EP1163378B1 publication Critical patent/EP1163378B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to an article made of magnesium or its alloys, the conversion layer created by passivation of the surface has, and a method for producing such an object and its Use.
  • Magnesium and its alloys are the lightest, but also the least noble metallic Construction materials (normal potential of Mg: -2.34 volts) and therefore tend very strongly to corrosion.
  • magnesium and its alloys are treated in aqueous passivation electrolytes. Due to the redox process taking place (without external power source) a conversion layer, which consists of oxides of magnesium material and oxidic Reaction products consisting of the components of the aqueous passivation electrolyte originate, exists.
  • conversion layer here and below means a layer not by applying it to a surface, but by chemical transformation (Conversion) of the metallic surface and various components of the aqueous passivation electrolyte is formed (cf. H. Simon, M. Thoma "Angewandte Surface technology for metallic materials ", Carl Hanser Verlag, Kunststoff (1985) p. 4).
  • the chromating of objects made of magnesium or its alloys is known.
  • the corresponding procedures are described in particular in MIL specifications M3171 Type I to Type III.
  • Chromic acid or its salts are used for the passivation.
  • the use of sodium dichromate in combination with potassium permanganate has also been described (Dow Chemical Treatment, No. 22).
  • the chemical passivation using chromium (VI) -containing aqueous passivation electrolytes is easy to carry out.
  • this has the serious disadvantage that the chromate-containing substances which are also contained in the conversion layers formed are carcinogenic.
  • the reusability of chromated articles made of magnesium or its alloys is a considerable problem, since they can only be recycled to so-called "high-purity" materials with considerable effort because of their heavy metal content.
  • a chromate-free aqueous passivation electrolyte for the passivation of objects made of magnesium or its alloys are, for example, from Dow Chemically marketed aqueous passivation electrolytes based on stannate are known. It However, it has been shown that the corrosion protection effect of the conversion layer obtained in this way is lower compared to the chromated magnesium materials.
  • US 5 743 971 describes a process for the formation of corrosion protection coatings on metals such as Zn, Ni, Ag, Fe, Cd, Al, Mg and their alloys. These metals are immersed in a solution that contains an oxidizing agent, a silicate and at least one cation from the group of Ti, Zr, Ce, Sr, V, W and Mo.
  • the pH of this solution is in particular in a range between 1.5 and 3.0.
  • the oxidizing agent is selected exclusively from the group of peroxo compounds. Potassium permanganate is not mentioned as an oxidizing agent. This document also does not show what actual improvements the process described there brings for magnesium or its alloys compared to conventional chromating.
  • aqueous passivation electrolyte a solution of potassium permanganate alone or in combination with small amounts of acids (HNO 3 , H 2 SO 4 , HF) is contained in an aqueous passivation electrolyte.
  • the temperature of the aqueous passivation electrolyte required for chemical passivation is between 40 and 84 ° C.
  • the conversion layer obtainable in this way shows a good protective effect, but the stability of the aqueous passivation electrolyte is not sufficient for an industrial application of this method.
  • brown stone (MnO 2 ) precipitates, which renders the aqueous passivation electrolyte unusable for the further passivation of magnesium materials.
  • the object of the invention is to provide a chemically passivated object Made of magnesium or its alloys, the conversion layer of which by an electrolytic, Electroless method is available that is easy to use and is transferable to an industrial scale.
  • the corrosion protection effect of a Such a conversion layer should not be worse than that of the known, chromated objects made of magnesium or its alloys.
  • This object is achieved according to the invention by an object made of magnesium or its alloys, the surface of which has a conversion layer in whole or in part, characterized in that the conversion layer comprises MgO, Mn 2 O 3 and MnO 2 and at least one oxide from the group of vanadium, molybdenum and Has tungsten.
  • the conversion layer according to the invention can be obtained by passivating the object by means of an aqueous passivation electrolyte, this aqueous passivation electrolyte containing potassium permanganate and at least one alkali metal or ammonium salt of an anion from the group of vanadate, molybdate and tungstate.
  • the object on which the invention is based is equally achieved by a method for producing a conversion layer on an object made of magnesium or its alloys, characterized in that the object is subjected to passivation by means of an aqueous passivation electrolyte, the aqueous passivation electrolyte being potassium permanganate and at least one alkali or ammonium salt contains an anion from the group of vanadate, molybdate and tungstate.
  • the conversion layer according to the invention has a golden brown to gray-brown, iridescent color and contains MgO, Mn 2 O 3 , MnO 2 and at least one oxide from the group of vanadium, molybdenum and tungsten. Investigations have shown that the corrosion protection effect of this conversion layer is no less than that of a conventional chromate layer.
  • the anions used according to the invention have a lower oxidizing power than chromate ions when compared individually with the chromate ions, it becomes clear that a synergistic effect is only achieved by combining the permanganate ions with the corresponding vanadate, molybdate and / or tungsten ions , which leads to the formation of a corrosion-inhibiting conversion layer on objects made of magnesium or its alloys.
  • a particular advantage of the process according to the invention is the fact that the aqueous passivation electrolyte is still stable even after a long standing time, without brown stone precipitating in an amount which would render the aqueous passivation electrolyte unusable for the passivation of objects made of magnesium or its alloys. Therefore, in the present method it is possible in a simple manner to replenish the chemicals used after a long period of use in a simple manner without having to replace the aqueous passivation electrolyte itself.
  • a polymer layer is additionally applied to the conversion layer and can be obtained by polymerizing and / or crosslinking a solution which contains at least one alkoxysilane compound.
  • the conversion layer according to the invention acts as a primer.
  • the conversion layer obtainable in accordance with the method according to the invention has pores with a size between 200 and 1,000 nm.
  • an alkoxysilane compound as the compound to be polymerized and / or crosslinked ensures that the polymer layer on the conversion layer is connected to the surface of the conversion layer on the one hand as a result of chemisorption via Si-O bonds, and on the other hand also via chemisorption inside the pores.
  • the penetration of the alkoxysilane compound into the pores of the conversion layer increases the contact area and thus the chemisorption between the conversion layer and the polymer layer.
  • the formation of the polymer layer takes place by means of those known per se and familiar to the person skilled in the art Polymerization processes (e.g. air drying, heating or UV radiation):
  • the amount of alkoxysilane compound in the solution to be applied can vary widely Limits vary. In general, the solution contains 5 to 45 wt .-%, in particular 10 to 30% by weight of the alkoxysilane compound. Depending on the required viscosity the solution additionally contain a polar solvent, which is to be chosen so that it does not react with the alkoxysilane compound (e.g. ethanol).
  • a polar solvent which is to be chosen so that it does not react with the alkoxysilane compound (e.g. ethanol).
  • a corresponding alkoxysilane compound can be a tetraalkoxysilane, epoxyalkoxysilane or aminoalkoxysilane. Very good results were obtained with tetraethoxysilane, 3-glycidyloxypropyl-trimethoxysilane, 3-aminopropyl-trimethoxysilane and 3- (aminoethylamine) propyl-trimethoxysilane as the alkoxysilane compound.
  • compound capable of forming a titanium complex denotes compounds which form TiO 2 -SiO 2 systems which are bridged with the alkoxysilane compound and the conversion layer via complex bonding. The reaction between the alkoxysilane compound and the titanium compound also results in a crosslinked polymer layer.
  • a particularly suitable compound is an alkoxytitanium compound, a titanium acid ester or a titanium chelate, in particular a compound of the formula Ti (OR) 4 , in which R represents an alkyl radical having 1 to 6 carbon atoms, which is preferably selected from the group of methyl, ethyl , n-propyl, i-propyl and butyl radicals. Very good results were achieved with tetraethoxytitanate Ti (OC 2 H 5 ) 4 .
  • the molar ratio between alkoxysilane compound and titanium compound is not critical and is generally between 1 and 20.
  • Solutions containing both an alkoxysilane compound and one to form a Titanium complex capable compound are included, for example, in the DE 41 38 218 A1 and can be obtained from various companies (e.g. Deltacoll® 80 from Dörken).
  • the polymer layer can also have a color.
  • the solution to be polymerized and / or crosslinked additionally contains at least one dye which is soluble in a polar solvent, in particular a melall complex dye.
  • a metal complex dye is available, for example, under the trade name Neozapon® from BASF, Orasol® from Ciba-Geigy, Savinyl® from Sandoz or Lampronol® from ICI. Due to the solubility of the dye in a polar solvent, a homogeneous solution and thus a homogeneous structure of the polymer layer is achieved. There is therefore no accumulation of the dye in the polymer layer, which could act as a "predetermined breaking point" between the conversion and polymer layers.
  • the passivation is preferably carried out in a pH range of the aqueous passivation electrolyte from 7.0 to 8.0. It is therefore not necessary to add acids. This means that it is not necessary to reduce the pH by adding acids in order to increase the oxidizing power of the permanganate anions.
  • the method according to the invention it is possible for the first time to carry out an adequate passivation at a temperature of the aqueous passivation electrolyte of 15 to 50 ° C., in particular 20 to 30 ° C.
  • the passivation is usually carried out for a period of 2 to 10 minutes.
  • the concentration of potassium permanganate in the aqueous passivation electrolyte according to the invention is preferably 1 to 10 g / l; that of the alkali or ammonium salt the vanadate, molybdate and / or tungsten ions preferably 1 to 10 g / l.
  • concentration of potassium permanganate in the aqueous passivation electrolyte according to the invention is preferably 1 to 10 g / l; that of the alkali or ammonium salt the vanadate, molybdate and / or tungsten ions preferably 1 to 10 g / l.
  • the upper limit of the vanadate, molybdate and / or tungstate concentration not critical.
  • the method according to the invention is also the same with an electrolyte feasible, which is a saturated solution of these salts, even with undissolved components, contains.
  • the objects passivated according to the invention are, for example, parts for the motor vehicle industry, electrical and electronics industry, mechanical engineering industry, aerospace technology and parts of sports equipment.
  • Magnesium alloys that can be used are all common die casting, Cast and wrought alloys. Examples of these are in particular AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZK61 and AZ31, AZ60, ZK30, ZK60, WE43 and WE54 (designations according to ASTM).
  • the articles are used as pretreatment for the chemical passivation according to the invention magnesium or its alloys previously in a manner known per se pickled with mineral acids such as phosphoric acid, hydrofluoric acid, nitric acid etc.
  • a varnish or a paint is additionally applied to the conversion layer with or without an additional polymer layer.
  • All commercially available powder or epoxy-based paints and electro-dip paints are suitable as paints. Powder coatings based on high molecular weight epoxy resins of the bisphenol-A type are preferred, optionally combined with a carboxyl-containing polyester resin, as are available, for example, under the name Delta-S-NT powder coating from Dörken, Herdecke.
  • Table III clearly shows improved corrosion protection for the invention Conversion layer when using a silane combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An article made of magnesium or its alloys, some or all of whose surface has a conversion coating, the conversion coating comprising MgO, Mn2O3 and MnO2 plus at least one oxide from the group consisting of vanadium, molybdenum and tungsten; and also a process for producing such an article, and its use.

Description

Die vorliegende Erfindung betrifft einen Gegenstand aus Magnesium oder seinen Legierungen, der eine durch Passivierung der Oberfläche erzeugte Konversionsschicht aufweist, sowie ein Verfahren zur Herstellung eines solchen Gegenstandes und dessen Verwendung.The present invention relates to an article made of magnesium or its alloys, the conversion layer created by passivation of the surface has, and a method for producing such an object and its Use.

Magnesium und seine Legierungen sind die leichtesten, aber auch unedelsten metallischen Konstruktionswerkstoffe (Normalpotential von Mg : -2,34 Volt) und neigen deshalb sehr stark zu Korrosion. Um dieser nachteiligen Eigenschaft entgegenzuwirken, werden Magnesium und seine Legierungen in wäßrigen Passivierungselektrolyten behandelt. Durch den dabei ablaufenden Redoxvorgang (ohne äußere Stromquelle) bildet sich eine Konversionsschicht, die aus Oxiden des Magnesiumwerkstoffes und oxidischen Reaktionsprodukten, die aus den Bestandteilen des wäßrigen Passivierungselektrolyten herrühren, besteht.Magnesium and its alloys are the lightest, but also the least noble metallic Construction materials (normal potential of Mg: -2.34 volts) and therefore tend very strongly to corrosion. To counteract this disadvantageous property, magnesium and its alloys are treated in aqueous passivation electrolytes. Due to the redox process taking place (without external power source) a conversion layer, which consists of oxides of magnesium material and oxidic Reaction products consisting of the components of the aqueous passivation electrolyte originate, exists.

Unter dem Begriff "Konversionsschicht" wird hier und im folgenden eine Schicht verstanden, die nicht durch Auftrag auf eine Oberfläche, sondern durch chemische Umwandlung (Konversion) der metallischen Oberfläche und verschiedenen Bestandteilen des wäßrigen Passivierungselektrolyten gebildet wird (vgl. H. Simon, M. Thoma "Angewandte Oberflächentechnik für metallische Werkstoffe", Carl Hanser Verlag, München (1985) S. 4).The term "conversion layer" here and below means a layer not by applying it to a surface, but by chemical transformation (Conversion) of the metallic surface and various components of the aqueous passivation electrolyte is formed (cf. H. Simon, M. Thoma "Angewandte Surface technology for metallic materials ", Carl Hanser Verlag, Munich (1985) p. 4).

So ist zum Beispiel die Chromatierung von Gegenständen aus Magnesium oder seinen Legierungen bekannt. Die entsprechenden Verfahren werden insbesondere in den MIL-Spezifikationen M3171 Typ I bis Typ III beschrieben. Dabei werden zur Passivierung Chromsäure oder deren Salze eingesetzt. Auch die Verwendung von Natriumdichromat in Kombination mit Kaliumpermanganat ist beschrieben (Dow Chemical Treatment, No. 22). Die chemische Passivierung mittels Chrom(VI)-haltiger wäßriger Passivierungselektrolyte ist einfach durchzuführen. Diese hat aber den gravierenden Nachteil, daß die chromathaltigen Stoffe, die auch in den gebildeten Konversionsschichten enthalten sind, kanzerogen sind.
Darüber hinaus stellt die Wiederverwertbarkeit chromatierter Gegenstände aus Magnesium oder seinen Legierungen ein erhebliches Problem dar, da diese aufgrund ihres Gehalts an Schwermetallen nur mit erheblichem Aufwand zu sogenannten "High-Purity"-Materialien recycelt werden können.
For example, the chromating of objects made of magnesium or its alloys is known. The corresponding procedures are described in particular in MIL specifications M3171 Type I to Type III. Chromic acid or its salts are used for the passivation. The use of sodium dichromate in combination with potassium permanganate has also been described (Dow Chemical Treatment, No. 22). The chemical passivation using chromium (VI) -containing aqueous passivation electrolytes is easy to carry out. However, this has the serious disadvantage that the chromate-containing substances which are also contained in the conversion layers formed are carcinogenic.
In addition, the reusability of chromated articles made of magnesium or its alloys is a considerable problem, since they can only be recycled to so-called "high-purity" materials with considerable effort because of their heavy metal content.

Aus Gründen des Umweltschutzes und der Arbeitssicherheit ist es das Bestreben von Herstellern und Verarbeitern passivierter Gegenstände aus Magnesium oder seinen Legierungen, einen Ersatz für die herkömmliche Chromatierung unter Verwendung von chromatfreien wäßrigen Passivierungselektrolyten zu finden.For reasons of environmental protection and occupational safety, it is the aim of Manufacturers and processors of passivated objects made of magnesium or its Alloys, using a substitute for conventional chromating of chromate-free aqueous passivation electrolytes.

Als chromatfreie wäßrige Passivierungselektrolyte für die Passivierung von Gegenständen aus Magnesium oder seinen Legierungen sind beispielsweise von der Firma Dow Chemical vertriebene wäßrige Passivierungselektrolyte auf Stannat-Basis bekannt. Es hat sich aber gezeigt, daß die Korrosionsschutzwirkung der dabei erhaltenen Konversionsschicht im Vergleich zu den chromatierten Magnesiumwerkstoffen geringer ist.As a chromate-free aqueous passivation electrolyte for the passivation of objects made of magnesium or its alloys are, for example, from Dow Chemically marketed aqueous passivation electrolytes based on stannate are known. It However, it has been shown that the corrosion protection effect of the conversion layer obtained in this way is lower compared to the chromated magnesium materials.

Die US 5 743 971 beschreibt ein Verfahren zur Bildung von Korrosionsschutzüberzügen auf Metallen wie Zn, Ni, Ag, Fe, Cd, Al, Mg und deren Legierungen.
Dabei werden diese Metalle in eine Lösung getaucht, die ein Oxidationsmittel, ein Silikat und mindestens ein Kation aus der Gruppe von Ti, Zr, Ce, Sr, V, W und Mo enthält. Der pH-Wert dieser Lösung liegt insbesondere in einem Bereich zwischen 1,5 und 3,0.
Das Oxidationsmittel ist ausschließlich gewählt aus der Gruppe der Peroxoverbindungen. Kaliumpermanganat wird als Oxidationsmittel nicht erwähnt. Auch ist dieser Entgegenhaltung nicht zu entnehmen, welche tatsächlichen Verbesserungen das dort beschriebene Verfahren für Magnesium oder dessen Legierungen im Vergleich zu herkömmlichen Chromatierungen mit sich bringt.
US 5 743 971 describes a process for the formation of corrosion protection coatings on metals such as Zn, Ni, Ag, Fe, Cd, Al, Mg and their alloys.
These metals are immersed in a solution that contains an oxidizing agent, a silicate and at least one cation from the group of Ti, Zr, Ce, Sr, V, W and Mo. The pH of this solution is in particular in a range between 1.5 and 3.0.
The oxidizing agent is selected exclusively from the group of peroxo compounds. Potassium permanganate is not mentioned as an oxidizing agent. This document also does not show what actual improvements the process described there brings for magnesium or its alloys compared to conventional chromating.

Darüber hinaus ist auch das Phosphatieren von Gegenständen aus Magnesium oder seinen Legierungen bekannt (vgl. Dow Chemical Treatment No. 18). Eine Phosphatierung unter gleichzeitiger Verwendung von Kaliumpermanganat ist in D. Hawk, D.L. Albright, "A Phosphate-Permanganate Conversion Coating for Magnesium", Metal Finishing, October 1995, S. 34- 38, beschrieben. Auch hier ist der unter Verwendung dieser wäßrigen Passivierungselektrolyte erhaltene Korrosionsschutz im Vergleich zu einer chromatierten Schicht wesentlich geringer.
Eine weitere Möglichkeit zur chemischen Passivierung wird von CHIBA Institute of Technology, Japan (veröffentlicht im Tagungsmaterial INTERFINISHING 96 World Congress, Birmingham, England, 10. - 12. September 1996, S. 425- 432) beschrieben, wonach eine Lösung von Kaliumpermanganat alleine oder in Kombination mit geringen Mengen an Säuren (HNO3, H2SO4, HF) in einem wäßrigen Passivierungselektrolyten enthalten ist. Die für die chemische Passivierung erforderliche Temperatur des wäßrigen Passivierungselektrolyten liegt zwischen 40 und 84 °C.
Die auf diese Weise erhältliche Konversionsschicht zeigt eine gute Schutzwirkung, allerdings ist die Stabilität des wäßrigen Passivierungselektrolyten für eine technische Anwendung dieses Verfahrens nicht ausreichend. So fällt nach kurzer Zeit Braunstein (MnO2) aus, der den wäßrigen Passivierungselektrolyten für die weitere Passivierung von Magnesiumwerkstoffen unbrauchbar macht.
The phosphating of objects made of magnesium or its alloys is also known (cf. Dow Chemical Treatment No. 18). Phosphating with simultaneous use of potassium permanganate is described in D. Hawk, DL Albright, "A Phosphate-Permanganate Conversion Coating for Magnesium", Metal Finishing, October 1995, pp. 34-38. Here, too, the corrosion protection obtained using these aqueous passivation electrolytes is significantly lower compared to a chromated layer.
Another possibility for chemical passivation is described by the CHIBA Institute of Technology, Japan (published in the conference material INTERFINISHING 96 World Congress, Birmingham, England, September 10-12, 1996, pp. 425-432), according to which a solution of potassium permanganate alone or in combination with small amounts of acids (HNO 3 , H 2 SO 4 , HF) is contained in an aqueous passivation electrolyte. The temperature of the aqueous passivation electrolyte required for chemical passivation is between 40 and 84 ° C.
The conversion layer obtainable in this way shows a good protective effect, but the stability of the aqueous passivation electrolyte is not sufficient for an industrial application of this method. After a short time, brown stone (MnO 2 ) precipitates, which renders the aqueous passivation electrolyte unusable for the further passivation of magnesium materials.

Aufgabe der Erfindung ist die Bereitstellung eines chemisch passivierten Gegenstands aus Magnesium oder seinen Legierungen, dessen Konversionsschicht durch ein elektrolytisches, stromfreies Verfahren erhältlich ist, das auf einfache Weise anwendbar und auf einen industriellen Maßstab übertragbar ist. Die Korrosionsschutzwirkung einer solchen Konversionsschicht sollte darüber hinaus nicht schlechter sein, als die der bekannten, chromatierten Gegenstände aus Magnesium oder seinen Legierungen.The object of the invention is to provide a chemically passivated object Made of magnesium or its alloys, the conversion layer of which by an electrolytic, Electroless method is available that is easy to use and is transferable to an industrial scale. The corrosion protection effect of a Such a conversion layer should not be worse than that of the known, chromated objects made of magnesium or its alloys.

Diese Aufgabe wird erfindungsgemäß gelöst durch einen Gegenstand aus Magnesium oder seinen Legierungen, dessen Oberfläche ganz oder teilweise eine Konversionsschicht aufweist, dadurch gekennzeichnet, daß die Konversionsschicht MgO, Mn2O3 und MnO2 sowie mindestens ein Oxid aus der Gruppe von Vanadium, Molybdän und Wolfram aufweist.This object is achieved according to the invention by an object made of magnesium or its alloys, the surface of which has a conversion layer in whole or in part, characterized in that the conversion layer comprises MgO, Mn 2 O 3 and MnO 2 and at least one oxide from the group of vanadium, molybdenum and Has tungsten.

Die erfindungsgemäße Konversionsschicht kann erhältlich sein durch Passivierung des Gegenstands mittels eines wäßrigen Passivierungselektrolyten, wobei dieser wäßrige Passivierungselektrolyt Kaliumpermanganat und mindestens ein Alkali- oder Ammoniumsalz eines Anions aus der Gruppe von Vanadat, Molybdat und Wolframat enthält.
Die der Erfindung zugrunde liegende Aufgabe wird gleichermaßen gelöst durch ein Verfahren zur Erzeugung einer Konversionsschicht auf einem Gegenstand aus Magnesium oder seinen Legierungen, dadurch gekennzeichnet, daß der Gegenstand einer Passivierung mittels eines wäßrigen Passivierungselektrolyten unterzogen wird, wobei der wäßrige Passivierungselektrolyt Kaliumpermanganat und mindestens ein Alkalioder Ammoniumsalz eines Anions aus der Gruppe von Vanadat, Molybdat und Wolframat enthält.
The conversion layer according to the invention can be obtained by passivating the object by means of an aqueous passivation electrolyte, this aqueous passivation electrolyte containing potassium permanganate and at least one alkali metal or ammonium salt of an anion from the group of vanadate, molybdate and tungstate.
The object on which the invention is based is equally achieved by a method for producing a conversion layer on an object made of magnesium or its alloys, characterized in that the object is subjected to passivation by means of an aqueous passivation electrolyte, the aqueous passivation electrolyte being potassium permanganate and at least one alkali or ammonium salt contains an anion from the group of vanadate, molybdate and tungstate.

Die erfindungsgemäße Konversionsschicht hat eine goldbraune bis graubraune, irisierende Farbe und enthält MgO, Mn2O3, MnO2 und mindestens ein Oxid aus der Gruppe von Vanadium, Molybdän und Wolfram.
Untersuchungen haben gezeigt, daß die Korrosionsschutzwirkung dieser Konversionsschicht nicht geringer ist, als die einer herkömmlichen Chromatschicht.
The conversion layer according to the invention has a golden brown to gray-brown, iridescent color and contains MgO, Mn 2 O 3 , MnO 2 and at least one oxide from the group of vanadium, molybdenum and tungsten.
Investigations have shown that the corrosion protection effect of this conversion layer is no less than that of a conventional chromate layer.

Insbesondere vor dem Hintergrund, daß die erfindungsgemäß verwendeten Anionen im Vergleich mit den Chromationen einzeln betrachtet eine geringere Oxidationskraft als Chromationen besitzen, wird deutlich, daß erst durch Kombination der Permanganationen mit den entsprechenden Vanadat-, Molybdat- und/oder Wolframationen ein synergistischer Effekt erzielt wird, der zur Bildung einer korrosionshemmenden Konversionsschicht auf Gegenständen aus Magnesium oder seinen Legierungen führt.
Dies ist von besonderer Bedeutung, da die Kaliumpermanganat enthaltenden wäßrigen Passivierungselektrolyte des Standes der Technik eine solche Oxidationskraft der Elektrolytlösung nur durch eine Senkung des pH-Werts und/oder Temperaturerhöhung erzielen können.
Especially against the background that the anions used according to the invention have a lower oxidizing power than chromate ions when compared individually with the chromate ions, it becomes clear that a synergistic effect is only achieved by combining the permanganate ions with the corresponding vanadate, molybdate and / or tungsten ions , which leads to the formation of a corrosion-inhibiting conversion layer on objects made of magnesium or its alloys.
This is of particular importance since the aqueous passivation electrolytes of the prior art containing potassium permanganate can only achieve such an oxidizing power of the electrolyte solution by lowering the pH and / or increasing the temperature.

Eine mögliche Erklärung für diesen synergistischen Effekt kann in der Bildung sehr starker, sogenannter Heteropolysäuren in Form ihrer löslichen Ammonium- oder Alkalisalze liegen.A possible explanation for this synergistic effect can be found in education strong, so-called heteropolyacids in the form of their soluble ammonium or alkali salts lie.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist die Tatsache, daß der wäßrige Passivierungselektrolyt auch nach einer längeren Standzeit noch stabil ist, ohne daß hierbei Braunstein in einer Menge ausfällt, die den wäßrigen Passivierungselektrolyten für die Passivierung von Gegenständen aus Magnesium oder seinen Legierungen unbrauchbar machen würde.
Daher ist es bei dem vorliegenden Verfahren in einfacher Weise möglich, nach längerer Anwendungszeit die verbrauchten Chemikalien auf einfache Weise nachzudosieren, ohne daß der wäßrige Passivierungselektrolyt selber ausgewechselt werden muß.
A particular advantage of the process according to the invention is the fact that the aqueous passivation electrolyte is still stable even after a long standing time, without brown stone precipitating in an amount which would render the aqueous passivation electrolyte unusable for the passivation of objects made of magnesium or its alloys.
Therefore, in the present method it is possible in a simple manner to replenish the chemicals used after a long period of use in a simple manner without having to replace the aqueous passivation electrolyte itself.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist zusätzlich auf der Konversionsschicht eine Polymerschicht aufgebracht, die erhältlich ist durch Polymerisieren und/oder Vernetzen einer Lösung, die mindestens eine Alkoxysilanverbindung enthält.
Auf diese Weise werden die mechanischen und chemischen Eigenschaften der Konversionsschicht (z.B. Korrosionsbeständigkeit oder Abriebfestigkeit) deutlich erhöht. Die erfindungsgemäße Konversionsschicht wirkt hierbei als Haftgrund.
So weist die entsprechend dem erfindungsgemäßen Verfahren erhältliche Konversionsschicht Poren mit einer Größe zwischen 200 und 1.000 nm auf.
Durch die Wahl einer Alkoxysilanverbindung als zu polymerisierende und/oder zu vernetzende Verbindung ist gewährleistet, daß die auf der Konversionsschicht befindliche Polymerschicht zum einen infolge einer Chemisorption über Si-O-Bindungen mit der Oberfläche der Konversionsschicht verbunden ist, zum anderen aber auch über eine Chemisorption im Inneren der Poren. Das Eindringen der Alkoxysilanverbindung in die Poren der Konversionsschicht bewirkt eine Vergrößerung der Kontaktfläche und damit der Chemisorption zwischen Konversionsschicht und Polymerschicht.
According to a preferred embodiment of the present invention, a polymer layer is additionally applied to the conversion layer and can be obtained by polymerizing and / or crosslinking a solution which contains at least one alkoxysilane compound.
In this way, the mechanical and chemical properties of the conversion layer (eg corrosion resistance or abrasion resistance) are significantly increased. The conversion layer according to the invention acts as a primer.
Thus, the conversion layer obtainable in accordance with the method according to the invention has pores with a size between 200 and 1,000 nm.
The choice of an alkoxysilane compound as the compound to be polymerized and / or crosslinked ensures that the polymer layer on the conversion layer is connected to the surface of the conversion layer on the one hand as a result of chemisorption via Si-O bonds, and on the other hand also via chemisorption inside the pores. The penetration of the alkoxysilane compound into the pores of the conversion layer increases the contact area and thus the chemisorption between the conversion layer and the polymer layer.

Die Bildung der Polymerschicht erfolgt durch an sich bekannte, dem Fachmann geläufige Polymerisationsverfahren (z.B. Lufttrocknung, Erhitzen oder UV-Bestrahlung):The formation of the polymer layer takes place by means of those known per se and familiar to the person skilled in the art Polymerization processes (e.g. air drying, heating or UV radiation):

Die Menge an Alkoxysilanverbindung in der aufzubringenden Lösung kann in weiten Grenzen variieren. Im allgemeinen enthält die Lösung 5 bis 45 Gew.-%, insbesondere 10 bis 30 Gew.-% der Alkoxysilanverbindung. Je nach erforderlicher Viskosität kann die Lösung zusätzlich ein polares Lösungsmittel enthalten, das so zu wählen ist, daß es nicht mit der Alkoxysilanverbindung reagiert (z.B. Ethanol).The amount of alkoxysilane compound in the solution to be applied can vary widely Limits vary. In general, the solution contains 5 to 45 wt .-%, in particular 10 to 30% by weight of the alkoxysilane compound. Depending on the required viscosity the solution additionally contain a polar solvent, which is to be chosen so that it does not react with the alkoxysilane compound (e.g. ethanol).

Gemäß einer bevorzugten Ausführungsform entspricht die Alkoxysilanverbindung der allgemeinen Formel R1aR2bSiX(4-a-b)    in der

  • X eine Alkoxy-, eine Aryloxy- oder eine Acyloxygruppe mit 1 bis 12 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen darstellt, und insbesondere ausgewählt ist aus der Gruppe der Methoxy-, Ethoxy-, n-Propoxy-, i-Propoxy-, Butoxy-, Phenoxy-, Acetoxy- und Propionyloxygruppen;
  • R1 und R2, gleich oder verschieden voneinander, ausgewählt sind aus der Gruppe der
    • Amino-, Monoalkylamino- oder Dialkylaminoreste;
    • Alkylreste, insbesondere der Alkylreste mit 1 bis 6 Kohlenstoffatomen, vorzugsweise der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, s-Butyl-, t-Butyl-, Pentyl-, Hexyl- oder Cyclohexylreste;
    • Alkenylreste, insbesondere der Alkenylreste mit 2 bis 6 Kohlenstoffatomen, vorzugsweise der Vinyl-, 1-Propenyl-, 2-Propenyl- oder Butenylreste;
    • Alkinylreste, insbesondere der Alkenylreste mit 2 bis 6 Kohlenstoffatomen, vorzugsweise der Acetylenyl- oder Propargylreste;
    • Arylreste, insbesondere der Arylreste mit 6 bis 10 Kohlenstoffatomen, vorzugsweise Phenyl- oder Naphtenylreste;
    • Epoxyreste, insbesondere der Epoxyreste mit 3 bis 16 Kohlenstoffatomen, vorzugsweise der Glycidyl-, Glycidylether-, Glycidylester- oder Glycidyloxyalkylreste; oder
    • zuvor beschriebenen Gruppe X; und
  • a und b, gleich oder verschieden voneinander, den Wert 0, 1, 2 oder 3 darstellen, wobei die Summe von a und b den Wert 3 nicht überschreitet.
According to a preferred embodiment, the alkoxysilane compound corresponds to the general formula R 1 a R 2 b SiX (4-ab) in the
  • X represents an alkoxy, an aryloxy or an acyloxy group with 1 to 12 carbon atoms, preferably with 1 to 4 carbon atoms, and is particularly selected from the group of methoxy, ethoxy, n-propoxy, i-propoxy, butoxy -, phenoxy, acetoxy and propionyloxy groups;
  • R 1 and R 2 , identical or different from one another, are selected from the group of
    • Amino, monoalkylamino or dialkylamino residues;
    • Alkyl radicals, in particular the alkyl radicals having 1 to 6 carbon atoms, preferably the methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, hexyl or cyclohexyl radicals;
    • Alkenyl residues, in particular alkenyl residues with 2 to 6 carbon atoms, preferably vinyl, 1-propenyl, 2-propenyl or butenyl residues;
    • Alkynyl radicals, in particular the alkenyl radicals having 2 to 6 carbon atoms, preferably the acetylenyl or propargyl radicals;
    • Aryl radicals, in particular aryl radicals having 6 to 10 carbon atoms, preferably phenyl or naphtenyl radicals;
    • Epoxy radicals, in particular the epoxy radicals having 3 to 16 carbon atoms, preferably the glycidyl, glycidyl ether, glycidyl ester or glycidyloxyalkyl radicals; or
    • previously described group X; and
  • a and b, identical or different from one another, represent the value 0, 1, 2 or 3, the sum of a and b not exceeding 3.

Eine entsprechende Alkoxysilanverbindung kann ein Tetraalkoxysilan, Epoxyalkoxysilan oder Aminoalkoxysilan sein.
Sehr gute Ergebnisse wurden mit Tetraethoxysilan, 3-Glycidyloxypropyl-trimethoxysilan, 3-Aminopropyl-trimethoxysilan und 3-(Aminoethylamin)propyl-trimethoxysilan als Alkoxysilanverbindung erhalten.
A corresponding alkoxysilane compound can be a tetraalkoxysilane, epoxyalkoxysilane or aminoalkoxysilane.
Very good results were obtained with tetraethoxysilane, 3-glycidyloxypropyl-trimethoxysilane, 3-aminopropyl-trimethoxysilane and 3- (aminoethylamine) propyl-trimethoxysilane as the alkoxysilane compound.

Um die Haftung zwischen Konversions- und Polymerschicht noch weiter zu verbessern empfiehlt es sich, der auf die Konversionsschicht aufzubringenden Lösung zusätzlich eine zur Bildung eines Titankomplexes fähige Verbindung zuzusetzen. Der Begriff "zur Bildung eines Titankomplexes fähige Verbindung" bezeichnet Verbindungen, die mit der Alkoxysilanverbindung und der Konversionsschicht über Komplexbindung verbrückte TiO2-SiO2-Systeme bilden. Durch die Reaktion zwischen Alkoxysilanverbindung und Titanverbindung wird darüber hinaus eine vernetzte Polymerschicht erhalten.
Eine besonders geeignete Verbindung ist eine Alkoxytitanverbindung, ein Titansäureester oder ein Titanchelat, insbesondere eine Verbindung der Formel Ti(OR)4, in der R einen Alkylrest mit 1 bis 6 Kohlenstoffatomen darstellt, der vorzugsweise ausgewählt ist aus der Gruppe der Methyl-, Ethyl-, n-Propyl-, i-Propyl- und Butylreste.
Sehr gute Ergebnisse wurden mit Tetraethoxytitanat Ti(OC2H5)4 erzielt.
Das molare Verhältnis zwischen Alkoxysilanverbindung und Titanverbindung ist nicht kritisch und liegt im allgemeinen zwischen 1 und 20.
In order to further improve the adhesion between the conversion and polymer layers, it is advisable to add an additional compound capable of forming a titanium complex to the solution to be applied to the conversion layer. The term “compound capable of forming a titanium complex” denotes compounds which form TiO 2 -SiO 2 systems which are bridged with the alkoxysilane compound and the conversion layer via complex bonding. The reaction between the alkoxysilane compound and the titanium compound also results in a crosslinked polymer layer.
A particularly suitable compound is an alkoxytitanium compound, a titanium acid ester or a titanium chelate, in particular a compound of the formula Ti (OR) 4 , in which R represents an alkyl radical having 1 to 6 carbon atoms, which is preferably selected from the group of methyl, ethyl , n-propyl, i-propyl and butyl radicals.
Very good results were achieved with tetraethoxytitanate Ti (OC 2 H 5 ) 4 .
The molar ratio between alkoxysilane compound and titanium compound is not critical and is generally between 1 and 20.

Lösungen, die sowohl eine Alkoxysilanverbindung als auch eine zur Bildung eines Titankomplexes fähige Verbindung enthalten, sind beispielsweise in der DE 41 38 218 A1 beschrieben und können von verschiedenen Firmen bezogen werden (z.B. Deltacoll® 80 von der Fa. Dörken).Solutions containing both an alkoxysilane compound and one to form a Titanium complex capable compound are included, for example, in the DE 41 38 218 A1 and can be obtained from various companies (e.g. Deltacoll® 80 from Dörken).

Sofern erforderlich, kann die Polymerschicht auch noch eine Farbe aufweisen. In diesem Fall enthält die zu polymerisierende und/oder zu vernetzende Lösung zusätzlich mindestens einen in einem polaren Lösemittel löslichen Farbstoff, insbesondere einen Melallkomplex-Farbstoff. Solch ein Metallkomplex-Farbstoff ist beispielsweise unter der Handelsbezeichnung Neozapon® von der Fa. BASF, Orasol® von der Fa. Ciba-Geigy, Savinyl® von der Fa. Sandoz oder Lampronol® von der Fa. ICI erhältlich.
Aufgrund der Löslichkeit des Farbstoffs in einem polaren Lösungsmittel wird eine homogene Lösung und damit ein homogener Aufbau der Polymerschicht erreicht. Es findet sich somit keine Anreicherung des Farbstoffs in der Polymerschicht, die als "Sollbruchstelle" zwischen Konversions- und Polymerschicht wirken könnte.
If necessary, the polymer layer can also have a color. In this case, the solution to be polymerized and / or crosslinked additionally contains at least one dye which is soluble in a polar solvent, in particular a melall complex dye. Such a metal complex dye is available, for example, under the trade name Neozapon® from BASF, Orasol® from Ciba-Geigy, Savinyl® from Sandoz or Lampronol® from ICI.
Due to the solubility of the dye in a polar solvent, a homogeneous solution and thus a homogeneous structure of the polymer layer is achieved. There is therefore no accumulation of the dye in the polymer layer, which could act as a "predetermined breaking point" between the conversion and polymer layers.

Bei dem erfindungsgemäßen Verfahren zur Herstellung einer Konverionssschicht wird die Passivierung bevorzugterweise in einem pH-Bereich des wäßrigen Passivierungselektrolyten von 7,0 bis 8,0 durchgeführt.
Somit kann auf einen Zusatz von Säuren verzichtet werden. Das bedeutet, daß keine Verringerung des pH-Werts durch Zugabe von Säuren notwendig ist, um die Oxidationskraft der Permanganatanionen zu erhöhen.
In the process according to the invention for producing a conversion layer, the passivation is preferably carried out in a pH range of the aqueous passivation electrolyte from 7.0 to 8.0.
It is therefore not necessary to add acids. This means that it is not necessary to reduce the pH by adding acids in order to increase the oxidizing power of the permanganate anions.

Weiter ist es mit dem erfindungsgemäßen Verfahren erstmals möglich, eine ausreichende Passivierung bei einer Temperatur des wäßrigen Passivierungselektrolyten von 15 bis 50 °C, insbesondere von 20 bis 30 °C, durchzuführen.
Die Passivierung wird dabei üblicherweise für eine Zeitdauer von 2 bis 10 Minuten durchgeführt.
Furthermore, with the method according to the invention it is possible for the first time to carry out an adequate passivation at a temperature of the aqueous passivation electrolyte of 15 to 50 ° C., in particular 20 to 30 ° C.
The passivation is usually carried out for a period of 2 to 10 minutes.

Die Konzentration an Kaliumpermanganat im erfindungsgemäßen wäßrigen Passivierungselektrolyten beträgt bevorzugt 1 bis 10 g/l; die des Alkali- oder Ammoniumsalzes der Vanadat-, Molybdat- und/oder Wolframationen vorzugsweise 1 bis 10 g/l. Insbesondere die Obergrenze der Vanadat-, Molybdat- und/oder Wolframatkonzentration ist nicht kritisch. So ist das erfindungsgemäße Verfahren auch mit einem Elektrolyten durchführbar, der eine gesättigte Lösung dieser Salze, sogar mit ungelösten Bestandteilen, enthält.The concentration of potassium permanganate in the aqueous passivation electrolyte according to the invention is preferably 1 to 10 g / l; that of the alkali or ammonium salt the vanadate, molybdate and / or tungsten ions preferably 1 to 10 g / l. In particular is the upper limit of the vanadate, molybdate and / or tungstate concentration not critical. The method according to the invention is also the same with an electrolyte feasible, which is a saturated solution of these salts, even with undissolved components, contains.

Der synergistische Effekt zwischen Permanganationen und Vanadat-, Molybdatund/oder Wolframationen wird besonders deutlich, wenn man versucht, einen Gegenstand aus Magnesium nur mit einer wäßrigen Kaliumpermanganatlösung mit einer Konzentration von 1 bis 10 g/l bei gleichen Arbeitsparametern zu passivieren. Denn unter diesen Bedingungen ist es nicht möglich, eine Konversionsschicht mit ausreichender Korrosionsschutzwirkung zu erhalten.The synergistic effect between permanganate ions and vanadate, molybdate and / or Tungsten is particularly evident when trying to find an object made of magnesium only with an aqueous potassium permanganate solution with a Passivating a concentration of 1 to 10 g / l with the same working parameters. Because under these conditions it is not possible to use a conversion layer with sufficient Preserve corrosion protection.

Bei den erfindungsgemäß passivierten Gegenständen handelt es sich beipielsweise um Teile für die Kraftfahrzeugindustrie, Elektro- und Elektronikindustrie, Maschinenbauindustrie, Luft- und Raumfahrttechnik sowie um Teile von Sportgeräten.
Zu nennen sind insbesondere Teile von Motoren und Getriebegehäusen, Instrumententafeln, Türen und Einzelteile hiervon, Lenkgetriebegehäuse, Radsterne für Motorräder, Drosselklappengehäuse, Aufnahmevorrichtungen für Fräser, Rotoren oder Verdrängergehäuse für Kompressoren, Siegelbacken für Verpackungsmaschinen, Teile für Steckerleisten und elektrische Verbinder, Lampenträger, Lampengehäuse, Rotorgehäuse von Helikoptern, Gehäuse für elektrische Geräte und Teile von Sportbögen.
The objects passivated according to the invention are, for example, parts for the motor vehicle industry, electrical and electronics industry, mechanical engineering industry, aerospace technology and parts of sports equipment.
In particular, parts of engines and gearboxes, instrument panels, doors and individual parts thereof, steering gearboxes, wheel stars for motorcycles, throttle valve housings, mounting devices for milling cutters, rotors or displacement housings for compressors, sealing jaws for packaging machines, parts for plug strips and electrical connectors, lamp holders, lamp housings, Rotor housings for helicopters, housings for electrical devices and parts for sports arches.

Besonders einsetzbare Magnesiumlegierungen sind alle gebräuchlichen Druckguß-, Guß- und Knetlegierungen. Beispiele hierfür sind insbesondere AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZK61 und AZ31, AZ60, ZK30, ZK60, WE43 und WE54 (Bezeichnungen nach ASTM). Magnesium alloys that can be used are all common die casting, Cast and wrought alloys. Examples of these are in particular AZ91, AZ81, AZ61, AM60, AM50, AM20, AS41, AS21, AE42, QE22, ZE41, ZK61 and AZ31, AZ60, ZK30, ZK60, WE43 and WE54 (designations according to ASTM).

Als Vorbehandlung für die erfindungsgemäße chemische Passivierung werden die Gegenstände aus Magnesium oder seinen Legierungen zuvor in an sich bekannter Weise mit Mineralsäuren wie Phosphorsäure, Flußsäure, Salpetersäure etc. gebeizt.The articles are used as pretreatment for the chemical passivation according to the invention magnesium or its alloys previously in a manner known per se pickled with mineral acids such as phosphoric acid, hydrofluoric acid, nitric acid etc.

Des weiteren ist es möglich, daß zusätzlich auf die Konversionsschicht mit oder ohne zusätzlicher Polymerschicht ein Lack oder eine Farbe aufgetragen wird.
Als Lacke eignen sich alle handelsüblichen Lacke auf Pulver- oder Epoxybasis sowie Elektrotauchlacke. Bevorzugt sind Pulverlacke auf Basis hochmolekularer Epoxyharze vom Bisphenol-A Typ, ggf. kombiniert mit einem carboxylgruppenhaltigen Polyesterharz, wie sie z.B. unter der Bezeichnung Delta-S-NT-Pulverlack von der Fa. Dörken, Herdecke, erhältlich sind.
Furthermore, it is possible that a varnish or a paint is additionally applied to the conversion layer with or without an additional polymer layer.
All commercially available powder or epoxy-based paints and electro-dip paints are suitable as paints. Powder coatings based on high molecular weight epoxy resins of the bisphenol-A type are preferred, optionally combined with a carboxyl-containing polyester resin, as are available, for example, under the name Delta-S-NT powder coating from Dörken, Herdecke.

Die folgenden Beispiele dienen der Erläuterung der Erfindung.The following examples serve to illustrate the invention.

Vergleichsbeispiel 1Comparative Example 1

12 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert.
Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit speziellen Lacküberzügen versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen.
Als Versiegelung wird eine Silankombination (DELTACOLL 80 der Fa. Dörken) und/oder ein Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Fa. Dörken) gemäß den in der Tabelle I angegebenen Bedingungen verwendet.
Die Ergebnisse der Salznebeltests sind in Tabelle I angegeben.
12 plates made of the AZ91HP magnesium alloy with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I.
Three of the plates passivated in this way are subjected to a salt spray test in accordance with DIN 50021-SS in their original state (without sealing) and with special lacquer coatings.
A silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I.
The results of the salt spray tests are given in Table I.

Beispiel 1example 1

12 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden 30 Sekunden lang in 75 %iger H3PO4 gebeizt. Anschließend wird mit entionisiertem Wasser gespült und die Platten bei Raumtemperatur 30 Sekunden lang in 10 %iger NaOH neutralisiert; danach werden die Platten nochmals mit entionisiertem Wasser gespült. Die Platten werden in nassem Zustand 5 Minuten lang bei Raumtemperatur in einen wäßrigen Passivierungselektrolyten getaucht, bestehend aus einer wäßrigen Lösung von 3 g/l KMnO4 und 1 g/l NH4VO3. Nach dem Herausnehmen der Platten aus dem Passivierungsbad wird die grau-braun aussehende Konversionsschicht mit entionisiertem Wasser gespült und danach 30 Minuten lang bei 110 °C getrocknet.
Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit speziellen Lacküberzügen versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen.
Als Versiegelung wird eine Silankombination (DELTACOLL 80 der Fa. Dörken) und/oder ein Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Fa. Dörken) gemäß den in der Tabelle I angegebenen Bedingungen verwendet.
Die Ergebnisse der Salznebeltests sind in Tabelle I angegeben.

Figure 00100001
12 plates made of the magnesium alloy AZ91HP with the dimensions 50 x 100 x 2 mm are pickled in 75% H 3 PO 4 for 30 seconds. It is then rinsed with deionized water and the plates are neutralized in 10% NaOH at room temperature for 30 seconds; then the plates are rinsed again with deionized water. The wet plates are immersed for 5 minutes at room temperature in an aqueous passivation electrolyte consisting of an aqueous solution of 3 g / l KMnO 4 and 1 g / l NH 4 VO 3 . After removing the plates from the passivation bath, the gray-brown-looking conversion layer is rinsed with deionized water and then dried at 110 ° C. for 30 minutes.
Three of the plates passivated in this way are subjected to a salt spray test in accordance with DIN 50021-SS in their original state (without sealing) and with special lacquer coatings.
A silane combination (DELTACOLL 80 from Dörken) and / or an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) is used as the sealer in accordance with the conditions specified in Table I.
The results of the salt spray tests are given in Table I.
Figure 00100001

Vergleichsbeispiel 2Comparative Example 2

6 Platten aus der Magnesiumlegierung AM50HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert.
Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) versiegelt, einem Salznebeltest nach DIN 50021-SS unterzogen.
Die Ergebnisse der Salznebeltests sind in Tabelle II angegeben.
6 plates made of the magnesium alloy AM50HP with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I.
Three of the plates passivated in this way are subjected to a salt spray test according to DIN 50021-SS in the original state (without sealing) and with a silane combination (DELTACOLL 80 from Dörken).
The results of the salt spray tests are given in Table II.

Beispiel 2Example 2

6 Platten aus der Magnesiumlegierung AM50HP mit den Abmessungen 50 x 100 x 2 mm werden in 40 %iger HF 60 Sekunden lang bei Raumtemperatur gebeizt. Nach dem Spülen mit entionisiertem Wasser werden die Platten in einen wäßrigen Passivierungselektrolyten, bestehend aus einer wäßrigen Lösung mit 4 g/l KMnO4 und 1,5 g/l Na2WO4, 10 Minuten lang bei Raumtemperatur eingetaucht. Nach dem Herausnehmen der Platten wird die goldbraun irisierende Konversionsschicht mit entionisiertem Wasser gespült und 60 Minuten lang bei 110 °C getrocknet.
Je drei der auf diese Weise passivierten Platten werden im Originalzustand (ohne Versiegelung), sowie mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) versiegelt. einem Salznebeltest nach DIN 50021-SS unterzogen.
Die Ergebnisse der Salznebeltests sind in Tabelle II angegeben.

Figure 00110001
6 plates made of the magnesium alloy AM50HP with the dimensions 50 x 100 x 2 mm are pickled in 40% HF for 60 seconds at room temperature. After rinsing with deionized water, the plates are immersed in an aqueous passivation electrolyte consisting of an aqueous solution with 4 g / l KMnO 4 and 1.5 g / l Na 2 WO 4 for 10 minutes at room temperature. After removing the plates, the golden-brown iridescent conversion layer is rinsed with deionized water and dried at 110 ° C. for 60 minutes.
Three of the plates passivated in this way are sealed in their original condition (without sealing) and with a silane combination (DELTACOLL 80 from Dörken). subjected to a salt spray test according to DIN 50021-SS.
The results of the salt spray tests are given in Table II.
Figure 00110001

Vergleichsbeispiel 3Comparative Example 3

6 Platten aus der Magnesiumlegierung AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden entsprechend der MIL-Spezifikation M3171 Typ I chromatiert.
Je drei der auf diese Weise passivierten Platten werden mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) und mit einem Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Firma Dörken) versiegelt, und anschließend einem Salznebeltest nach DIN 50021-SS unterzogen.
Es wurde die Anzahl der Korrosionspunkte in Abhängigkeit der Zeit ermittelt. Die Ergebnisse sind in Tabelle III angegeben.
6 plates made of the magnesium alloy AZ91HP with the dimensions 50 x 100 x 2 mm are chromated according to the MIL specification M3171 type I.
Three of the plates passivated in this way are sealed with a silane combination (DELTACOLL 80 from Dörken) and with an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken) and then subjected to a salt spray test according to DIN 50021-SS ,
The number of corrosion points as a function of time was determined. The results are shown in Table III.

Beispiel 3Example 3

6 Platten aus AZ91HP mit den Abmessungen 50 x 100 x 2 mm werden in 75 %iger H3PO4 30 Sekunden lang gebeizt. Danach wird mit entionisiertem Wasser gespült und die Platten mit einer 10 %igen wäßrigen NaOH 45 Sekunden lang neutralisiert und anschließend nochmals mit entionisiertem Wasser gespült. Die Platten werden dann in nassem Zustand 4 Minuten lang bei Raumtemperatur in einen wäßrigen Passivierungselektrolyten getaucht, bestehend aus einer wäßrigen Lösung von 3 g/l KMnO4 und 1 g/l NaVO3. Nach dem Herausnehmen der Platten wird die graubraun aussehende Konversionsschicht mit entionisiertem Wasser gespült und anschließend 45 Minuten lang bei 110 °C getrocknet.
Je drei der auf diese Weise passivierten Platten werden mit einer Silankombination (DELTACOLL 80 der Fa. Dörken) und mit einem Epoxid-Polyesterpulverlack (Delta-S-NT-Pulverlack der Firma Dörken) versiegelt, und anschließend einem Salznebeltest nach DIN 50021-SS unterzogen.
Es wurde die Anzahl der Korrosionspunkte in Abhängigkeit von der Zeit ermittelt. Die Ergebnisse sind in Tabelle III angegeben.

Figure 00120001
6 plates of AZ91HP with the dimensions 50 x 100 x 2 mm are pickled in 75% H 3 PO 4 for 30 seconds. It is then rinsed with deionized water and the plates are neutralized with a 10% aqueous NaOH for 45 seconds and then rinsed again with deionized water. The plates are then immersed in the wet state for 4 minutes at room temperature in an aqueous passivation electrolyte consisting of an aqueous solution of 3 g / l KMnO 4 and 1 g / l NaVO 3 . After removing the plates, the gray-brown-looking conversion layer is rinsed with deionized water and then dried at 110 ° C. for 45 minutes.
Three of the plates passivated in this way are sealed with a silane combination (DELTACOLL 80 from Dörken) and with an epoxy polyester powder coating (Delta-S-NT powder coating from Dörken), and then subjected to a salt spray test according to DIN 50021-SS ,
The number of corrosion points as a function of time was determined. The results are shown in Table III.
Figure 00120001

Die Tabelle III zeigt deutlich einen verbesserten Korrosionsschutz für die erfindungsgemäße Konversionsschicht bei Verwendung einer Silankombination.Table III clearly shows improved corrosion protection for the invention Conversion layer when using a silane combination.

Claims (18)

  1. Object made of magnesium or alloys thereof, the whole or part of the surface of which has a conversion layer, characterised in that the conversion layer contains MgO, Mn2O3 and MnO2 as well as at least one oxide selected from vanadium, molybdenum and tungsten.
  2. Object according to claim 1, characterised in that the conversion layer is obtainable by passivating the object by means of an aqueous passivating electrolyte, this aqueous passivating electrolyte containing potassium permanganate and at least one alkali metal salt or ammonium salt of an anion selected from vanadate, molybdate and tungstate.
  3. Object according to claim 1 or 2, characterised in that in addition a polymer layer, obtainable by polymerisation and/or cross-linking of a solution which contains at least one alkoxysilane compound, is applied to the conversion layer.
  4. Object according to claim 3, characterised in that the alkoxysilane compound corresponds to the general formula R1aR2bSiX(4-a-b) wherein
    X denotes an alkoxy, an aryloxy or an acyloxy group having 1 to 12 carbon atoms, preferably having 1 to 4 carbon atoms, and in particular is selected from the methoxy, ethoxy, n-propoxy, i-propoxy, butoxy, phenoxy, acetoxy and propionyloxy groups;
    R1 and R2, identical to or different from one another, are selected from the
    amino, monoalkylamino or dialkylamino groups;
    alkyl groups, in particular the alkyl groups having 1 to 6 carbon atoms, preferably the methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, hexyl or cyclohexyl groups;
    alkenyl groups, in particular the alkenyl groups having 2 to 6 carbon atoms, preferably the vinyl, 1-propenyl, 2-propenyl or butenyl groups;
    alkinyl groups, in particular the alkenyl groups having 2 to 6 carbon atoms, preferably the acetylenyl or propargyl groups;
    aryl groups, in particular the aryl groups having 6 to 10 carbon atoms, preferably phenyl or naphthenyl groups;
    epoxy groups, in particular the epoxy groups having 3 to 16 carbon atoms, preferably the glycidyl, glycidyl ether, glycidyl ester or glycidyl oxyalkyl groups; or
    the previously described group X; and
    a and b, identical to or different from one another, represent the value 0, 1, 2 or 3, the sum of a and b not exceeding the value 3.
  5. Object according to claim 4, characterised in that the alkoxysilane compound is a tetraalkoxysilane, epoxyalkoxysilane or aminoalkoxysilane.
  6. Object according to claim 5, characterised in that the alkoxysilane compound is selected from tetraethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane and 3 - (aminoethylamine)propyltrimethoxysilane.
  7. Object according to one of claims 3 to 6, characterised in that the solution contains in addition a compound which is capable of forming a titanium complex.
  8. Object according to claim 7, characterised in that the compound which is capable of forming a titanium complex is an alkoxytitanium compound, a titanate ester or a titanium chelate and in particular corresponds to the formula Ti(OR)4, wherein R denotes an alkyl group having 1 to 6 carbon atoms, which is preferably selected from the methyl, ethyl, n-propyl, i-propyl and butyl groups.
  9. Object according to claim 8, characterised in that the compound which is capable of forming a titanium complex is tetraethoxytitanate Ti(OC2H5)4.
  10. Object according to one of claims 3 to 9, characterised in that the solution contains in addition at least one dye which is soluble in a polar solvent, in particular a metal-complex dye.
  11. Process for producing a conversion layer on an object made of magnesium or alloys thereof, characterised in that the object is subjected to a passivation by means of an aqueous passivating electrolyte, the aqueous passivating electrolyte containing potassium permanganate and at least one alkali metal salt or ammonium salt of an anion selected from vanadate, molybdate and tungstate.
  12. Process according to claim 11, characterised in that the passivation is carried out using an aqueous passivating electrolyte in a pH range of 7.0 to 8.0.
  13. Process according to claim 11 or 12, characterised in that the passivation is carried out using an aqueous passivating electrolyte at a temperature of 15 to 50°C, in particular of 20 to 30°C.
  14. Process according to one of claims 11 to 13, characterised in that the passivation is carried out for a period of 2 to 10 minutes.
  15. Process according to one of claims 11 to 14, characterised in that the concentration of potassium permanganate in the aqueous passivating electrolyte is 1 to 10 g/l.
  16. Process according to one of claims 11 to 15, characterised in that the concentration of the alkali metal salt or ammonium salt selected from vanadate, molybdate and tungstate in the aqueous passivating electrolyte is 1 to 10 g/l.
  17. Process according to one of claims 11 to 16, characterised in that a coating or a paint has been or is applied to the conversion layer.
  18. Use of an object according to one of claims 1 to 10 and of an object obtainable by a process according to one of claims 11 to 17 in the automobile industry, electrical and electronic industry, engineering industry, aeronautical engineering and space technology.
EP00918709A 1999-03-24 2000-03-22 Chemically passivated object made of magnesium or alloys thereof Expired - Lifetime EP1163378B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19913242A DE19913242C2 (en) 1999-03-24 1999-03-24 Chemically passivated article made of magnesium or its alloys, method of manufacture and its use
DE19913242 1999-03-24
PCT/DE2000/000872 WO2000056950A2 (en) 1999-03-24 2000-03-22 Chemically passivated object made of magnesium or alloys thereof

Publications (2)

Publication Number Publication Date
EP1163378A2 EP1163378A2 (en) 2001-12-19
EP1163378B1 true EP1163378B1 (en) 2002-11-20

Family

ID=7902184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00918709A Expired - Lifetime EP1163378B1 (en) 1999-03-24 2000-03-22 Chemically passivated object made of magnesium or alloys thereof

Country Status (16)

Country Link
US (1) US6794046B1 (en)
EP (1) EP1163378B1 (en)
JP (1) JP2003508625A (en)
KR (1) KR20010053604A (en)
CN (1) CN1154751C (en)
AT (1) ATE228177T1 (en)
AU (1) AU777284B2 (en)
BR (1) BR0006920A (en)
CA (1) CA2367509A1 (en)
DE (2) DE19913242C2 (en)
EA (1) EA004143B1 (en)
ES (1) ES2184708T3 (en)
MX (1) MXPA01001157A (en)
NZ (1) NZ510937A (en)
PT (1) PT1163378E (en)
WO (1) WO2000056950A2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538138B (en) * 2000-04-27 2003-06-21 Otsuka Kagaku Kk Process for treating and producing the parts made of magnesium and/or magnesium alloy
DE60236006D1 (en) * 2001-06-28 2010-05-27 Alonim Holding Agricultural Co METHOD FOR ANODIZING MAGNESIUM AND MAGNESIUM ALLOYS AND FOR PRODUCING CONDUCTIVE LAYERS ON AN ANODIZED SURFACE
AU2002301945B2 (en) * 2001-11-21 2008-07-17 Chiyoda Chemical Co., Ltd Surface treatment method of metal member, and metal goods
EP1490443B1 (en) * 2001-12-05 2019-08-28 Chemetall GmbH Polymeric coating mixture, method for applying this coating mixture to a metallic base for protecting an edge or a part, protective layer, a base coated in this manner and the use thereof
MXPA05009076A (en) * 2003-02-25 2005-10-19 Chemetall Gmbh Method for coating metallic surfaces with a silane-rich composition.
DE10327365B4 (en) * 2003-06-16 2007-04-12 AHC-Oberflächentechnik GmbH & Co. OHG An article with a corrosion protection layer and its use
US7304013B2 (en) * 2003-06-30 2007-12-04 Corning Incorporated Metal oxide catalysts
KR100510005B1 (en) * 2003-07-23 2005-08-26 (주)에스이 플라즈마 Method for blocking moisture-absorption of protective layer for dielectric layer
US20080171211A1 (en) * 2004-08-03 2008-07-17 Chemetall Gmbh Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating
WO2006050915A2 (en) * 2004-11-10 2006-05-18 Chemetall Gmbh Method for coating metallic surfaces with an aqueous composition comprising silanes silanols siloxanes and polysiloxanes and said composition
US20060099332A1 (en) 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
US8101014B2 (en) * 2004-11-10 2012-01-24 Chemetall Gmbh Process for coating metallic surfaces with a multicomponent aqueous composition
US20080138615A1 (en) 2005-04-04 2008-06-12 Thomas Kolberg Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition
DE102006060501A1 (en) * 2006-12-19 2008-06-26 Biotronik Vi Patent Ag Forming corrosion-inhibiting anodized coating on bio-corrodible magnesium alloy implant, treats implant in aqueous or alcoholic solution containing specified ion concentration
DE102007007879A1 (en) 2007-02-14 2008-08-21 Gkss-Forschungszentrum Geesthacht Gmbh Coating of a component
KR100971248B1 (en) * 2007-12-21 2010-07-20 주식회사 포스코 Method for coating passivated layer on magnesium and magnesium alloy with excellent anti-corrosion
JP2009185363A (en) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd Surface treating composition
DE102008009069A1 (en) 2008-02-13 2009-08-20 Gkss-Forschungszentrum Geesthacht Gmbh Coating of a Magnesuimbauteils
DE102008043970A1 (en) * 2008-11-21 2010-05-27 Biotronik Vi Patent Ag A method for producing a corrosion-inhibiting coating on an implant of a biocorrodible magnesium alloy and implant produced by the method
KR101117800B1 (en) * 2009-08-12 2012-03-09 주식회사 포스코 Surface treatment process for magnesium parts and magnesium parts treated by using the same
US8506728B2 (en) * 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
DE102009039887A1 (en) 2009-09-03 2011-03-17 Innovent E.V. Method for surface-treatment of magnesium-containing component, comprises applying a chemical passivating solution that consists of thixotropic agent, on a part of the surface and leaving the passivating solution on the surface
DE102010062357B4 (en) 2010-12-02 2013-08-14 Innovent E.V. Apparatus and method for producing a magnesium-containing substrate coated with at least one anticorrosion layer
JP6083020B2 (en) * 2012-10-24 2017-02-22 株式会社正信 Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
JP6083562B2 (en) * 2013-03-27 2017-02-22 株式会社正信 Surface treatment method, chemical conversion treatment agent, and chemical conversion treatment structure
KR101471095B1 (en) * 2013-06-26 2014-12-09 주식회사 위스코하이텍 Manufacturing method of magnesium alloy substrate
KR101520838B1 (en) * 2013-10-10 2015-05-21 주식회사 위스코하이텍 Method for treating surface of metal nano wire
TWI487809B (en) * 2014-01-06 2015-06-11 Univ Nat Taiwan Chemical conversion coating and method of fabricating the same
CN104357817B (en) * 2014-11-13 2016-10-26 无锡伊佩克科技有限公司 Compound chrome-free tanning agent of magnesium alloy and preparation method thereof
WO2017047105A1 (en) * 2015-09-16 2017-03-23 奥野製薬工業株式会社 Chemical conversion solution for aluminum or aluminum alloy, chemical conversion method, and chemical conversion film
CN106399992A (en) * 2016-12-26 2017-02-15 巢湖云海镁业有限公司 Compound-mixed tea polyphenol-rare-earth salt conversion liquid for magnesium alloy surface treatment and use method thereof
WO2020050844A1 (en) * 2018-09-06 2020-03-12 Hewlett-Packard Development Company, L.P. Decorated panels for electronic devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392008B2 (en) * 1996-10-30 2003-03-31 日本表面化学株式会社 Metal protective film forming treatment agent and treatment method
US1723067A (en) * 1926-04-16 1929-08-06 Pacz Aladar Method and composition of matter for coating and coloring metal articles
GB314769A (en) * 1928-03-02 1929-07-02 Otto Sprenger Patentverwertung An improved process for coating metals
US3620939A (en) * 1969-03-17 1971-11-16 Us Army Coating for magnesium and its alloys and method of applying
CA1228000A (en) * 1981-04-16 1987-10-13 David E. Crotty Chromium appearance passivate solution and process
JPH0835073A (en) * 1994-05-18 1996-02-06 Matsufumi Takatani Method for modifying surface of magnesium-base molded metallic body
US5814703A (en) * 1995-08-17 1998-09-29 Shin-Etsu Chemical Co., Ltd. Coating composition
JP3523383B2 (en) * 1995-08-21 2004-04-26 ディップソール株式会社 Liquid rust preventive film composition and method of forming rust preventive film
JP3598163B2 (en) * 1996-02-20 2004-12-08 ソニー株式会社 Metal surface treatment method
US5750197A (en) * 1997-01-09 1998-05-12 The University Of Cincinnati Method of preventing corrosion of metals using silanes
JPH10219473A (en) * 1997-02-05 1998-08-18 Matsufumi Takatani Surface treatment of magnesium-base metallic compact

Also Published As

Publication number Publication date
WO2000056950A2 (en) 2000-09-28
DE19913242A1 (en) 2000-09-28
AU3956600A (en) 2000-10-09
EA004143B1 (en) 2004-02-26
US6794046B1 (en) 2004-09-21
ATE228177T1 (en) 2002-12-15
WO2000056950A3 (en) 2001-04-19
MXPA01001157A (en) 2002-04-24
NZ510937A (en) 2003-09-26
DE19913242C2 (en) 2001-09-27
AU777284B2 (en) 2004-10-07
CN1154751C (en) 2004-06-23
EP1163378A2 (en) 2001-12-19
EA200100043A1 (en) 2002-04-25
KR20010053604A (en) 2001-06-25
ES2184708T3 (en) 2003-04-16
DE50000793D1 (en) 2003-01-02
CN1327487A (en) 2001-12-19
JP2003508625A (en) 2003-03-04
PT1163378E (en) 2003-03-31
BR0006920A (en) 2001-11-13
CA2367509A1 (en) 2000-09-28

Similar Documents

Publication Publication Date Title
EP1163378B1 (en) Chemically passivated object made of magnesium or alloys thereof
EP3019563B1 (en) Method for coating metal surfaces of substrates and objects coated in accordance with said method
EP2475468B1 (en) Two-stage method for the corrosion protection treatment of metal surfaces
DE10320765A1 (en) Means for coating metals to protect against corrosion
EP0356855B1 (en) Pretreatment of aluminium or aluminium alloy surfaces to be coated with organic materials without using chromium
DE2732753A1 (en) PREPARATION FOR SURFACE TREATMENT OF METALS
DE102016205815A1 (en) Process for nickel-free phosphating of metallic surfaces
DE102010033082A1 (en) Electrocoating process for mixed metal motor vehicle bodies
EP2817434A1 (en) Pretreating zinc surfaces prior to a passivating process
EP3234221B1 (en) Method for firmly adhering coating of metallic surfaces, particularly of aluminium materials
EP1254279A2 (en) Anti-corrosive agents and method for protecting metal surfaces against corrosion
EP0359296B1 (en) Phosphating process
DE10327365B4 (en) An article with a corrosion protection layer and its use
DE10014035B4 (en) Colored conversion layer, a solution for their preparation and their use
WO2014090752A1 (en) Aqueous agent and coating method for the anticorrosive treatment of metallic substrates
EP1019564A1 (en) Method for phosphatizing a steel strip
DE102018127345A1 (en) PROCESS FOR COATING A RAW BODY STRUCTURE WITH AT LEAST ONE SURFACE CONTAINING AN ALUMINUM ALLOY
WO2001059180A1 (en) Method for coating metal surfaces, aqueous concentrate used therefor and use of coated metal parts
DE102017011379A1 (en) Anti-corrosion coating for metallic substrates
WO2005047566A1 (en) Coloured conversion layers devoid of chromium, applied to metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001221

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20001221;LT PAYMENT 20001221;LV PAYMENT 20001221;MK PAYMENT 20001221;RO PAYMENT 20001221;SI PAYMENT 20001221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020214

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20001221;LT PAYMENT 20001221;LV PAYMENT 20001221;MK PAYMENT 20001221;RO PAYMENT 20001221;SI PAYMENT 20001221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021120

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021120

REF Corresponds to:

Ref document number: 228177

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000793

Country of ref document: DE

Date of ref document: 20030102

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALT DIPL. ING. WOLFGANG HEISEL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030322

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2184708

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20021120

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1163378E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20060322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060328

Year of fee payment: 7

Ref country code: BE

Payment date: 20060328

Year of fee payment: 7

Ref country code: ES

Payment date: 20060328

Year of fee payment: 7

Ref country code: NL

Payment date: 20060328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060329

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060330

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070924

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070322

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070322

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

BERE Be: lapsed

Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50000793

Country of ref document: DE

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 50000793

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50000793

Country of ref document: DE

Representative=s name: MOSER & GOETZE PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50000793

Country of ref document: DE

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R011

Ref document number: 50000793

Country of ref document: DE

Ref country code: DE

Ref legal event code: R124

Ref document number: 50000793

Country of ref document: DE