EP1159243A1 - Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid - Google Patents

Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid

Info

Publication number
EP1159243A1
EP1159243A1 EP00910721A EP00910721A EP1159243A1 EP 1159243 A1 EP1159243 A1 EP 1159243A1 EP 00910721 A EP00910721 A EP 00910721A EP 00910721 A EP00910721 A EP 00910721A EP 1159243 A1 EP1159243 A1 EP 1159243A1
Authority
EP
European Patent Office
Prior art keywords
reaction
temperature
reaction zone
propane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00910721A
Other languages
German (de)
French (fr)
Inventor
Harald Jachow
Andreas Tenten
Signe Unverricht
Heiko Arnold
Otto Machhammer
Susanne Haupt
Frank Rosowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1159243A1 publication Critical patent/EP1159243A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a process of heterogeneously catalyzed gas phase oxidation of propane to acrolein and / or acrylic acid, in which a reaction gas starting mixture containing> 50 vol.% Propane,> 10 vol.% 0 and 0 to 40 vol Temperature leads over a fixed bed catalyst, which consists of two spatially successive reaction zones A, B arranged catalyst beds A, B, the active mass of the catalyst bed A located in reaction zone A at least one multimetal oxide of the general formula I
  • M 1 Co, Ni, Mg, Zn, Mn and / or Cu,
  • the active composition of the catalyst bed B located in the reaction zone B is at least one multimetal oxide of the general formula II
  • ⁇ i W, V and / or Te
  • ⁇ 2 alkaline earth metal, Co, Ni, Zn, Mn, Cu, Cd, Sn and / or Hg
  • X 3 Fe, Cr and / or Ce
  • X ' a number which is determined by the valency and frequency of the elements in II other than oxygen
  • reaction gas starting mixture flows through the catalyst beds A, B in the sequence “first A”, “then B”.
  • reaction gas starting mixture at a temperature of 325 to 480 or 450 ° C, preferably at 350 to 420 ° C and particularly preferably at 350 to 400 ° C over the fixed bed catalyst consisting of the catalyst beds A, B. respectively. Furthermore, it is stated in the abovementioned documents that the catalyst beds A, B normally have identical temperatures.
  • the object of the present invention was therefore to provide a process as described at the outset with improved selectivity in the formation of valuable products.
  • a process for the heterogeneously catalyzed gas-phase oxidation of propane to acrolein and / or acrylic acid in which a> 50 Vol .-% of propane,> 10 vol .-% 0 2 and 0 to 40 Vol .-% inert gas-containing starting reaction gas mixture at elevated Temperature leads over a fixed bed catalyst, which consists of two spatially successive reaction zones A, B arranged catalyst beds A, B, the active mass of the catalyst bed A located in reaction zone A at least one multimetal oxide of the general formula I
  • M 1 Co, Ni, Mg, Zn, Mn and / or Cu, preferably Co, Ni and / or
  • Mg particularly preferably Co and / or Ni
  • M 2 W, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn and / or La, preferably Sn, W, P, Sb and / or Cr, particularly preferably W, Sn and / or Sb
  • a 0.5 to 1.5, preferably 0.7 to 1.2, particularly preferably 0.9 to 1.0
  • b 0 to 0.5, preferably> 0 to 0.5 and particularly preferred
  • the active composition of the catalyst bed B located in the reaction zone B is at least one multimetal oxide of the general formula II
  • X 1 W, V and / or Te, preferably W and / or V
  • X 2 alkaline earth metal, Co, Ni, Zn, Mn, Cu, Cd, Sn and / or Hg, preferably Co, Ni, Zn and / or Cu, particularly preferably Co, Ni and / or Zn
  • X 3 Fe, Cr and / or Ce, preferably Fe and / or Cr
  • X 4 P, As, Sb and / or B, preferably P and / or Sb
  • X 5 alkali metal, Tl and / or Sn, preferably K and / or Na
  • X 6 rare earth metal, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI,
  • Ga, In, Si, Ge, Th and / or U preferably Si, Zr, Al, Ag,
  • a ' 0.01 to 8, preferably 0.3 to 4 and particularly preferably 0.5 to 2
  • b' 0.1 to 30, preferably 0.5 to 15 and particularly preferably
  • the reaction gas starting mixture flows through the catalyst beds A, B in the sequence "first A", "then B", found, which is characterized in that the temperature of the reaction zone A is 380 to 480 ° C and the temperature of the Reaction zone B is on the one hand> 300 ° C and on the other hand is at least 20 ° C below the temperature of reaction zone A.
  • the temperature of a reaction zone is understood here to mean the temperature of the catalyst bed in the reaction zone when the process is carried out in the absence of a chemical reaction. If this temperature is not constant within the reaction zone, 5 the term temperature of a reaction zone here means the number average of the temperature of the catalyst bed along the reaction zone.
  • the temperature of reaction zone A in the process according to the invention is preferably 400 to 450 ° C.
  • the temperature of reaction zone B is preferably at least 10 40 ° C. below the temperature of reaction zone A.
  • the temperature of reaction zone B is 320 to 380 ° C. and particularly preferably 330 to 370 ° C.
  • Multimetal oxides I which are preferred according to the invention are therefore 15 of the general formula I '
  • x a number which is determined by the valency and frequency of the elements in I 'other than 25 oxygen.
  • Multimetal oxides I which are particularly preferred according to the invention are those of the general formula I "
  • such multimetal oxides I, I '35 and I are advantageous as active compositions, their average pore diameters ⁇ 0.09 ⁇ m and> 0.01 ⁇ m and their specific surface area
  • the aforementioned average pore diameter is particularly preferably> 0.02 ⁇ m and ⁇ 0.06 ⁇ m.
  • the aforementioned multimetal oxide compositions at the aforementioned average pore diameters 45 simultaneously have a specific surface area of __ 15 m 2 / g or of __ 25 m 2 / g.
  • the said specific The surface area of the multimetal oxide compositions according to the invention is ⁇ 50 m 2 / g.
  • the specific surface area 0 means the specific surface area determined according to DIN 66133 by means of the mercury intrusion method (measuring range: 1 ⁇ m to 3 nm pore diameter).
  • the mean pore diameter is defined in this document as four times the ratio of the total pore volume to the specific surface area 0 determined according to the aforementioned mercury intrusion method.
  • Multimetal oxides II preferred according to the invention are those of the general formula II '
  • the reaction gas starting mixture to be used for the process according to the invention advantageously comprises __ 30% by volume, preferably ⁇ 20% by volume and particularly preferably ⁇ 10% by volume or ⁇ 5% by volume of inert gas.
  • the reaction gas starting mixture can also comprise no inert gas.
  • Inert gas is understood here to mean those gases whose conversion when passing through the fixed bed catalyst to be used according to the invention is ⁇ 5 mol%.
  • the propane content of the reactant to be used according to the invention is generally ongas starting mixture at 90 vol.% or ⁇ 85 vol.%, often at ⁇ 83 or ⁇ 82 or ⁇ 81 or ⁇ 80 vol.%.
  • the content of molecular oxygen in the reaction gas starting mixture can be up to 35% by volume in the process according to the invention. It is advantageously at least 15% by volume or 20% by volume or at least 25% by volume.
  • Reaction gas starting mixtures which are favorable according to the invention contain> 65% by volume and ⁇ 90% by volume of propane and
  • the reaction gas starting mixture contains essentially no further components apart from the components mentioned.
  • suitable multimetal oxides I as active compositions to be used according to the invention can be prepared in a simple manner by generating an intimate, preferably finely divided, dry mixture of suitable stoichiometry from suitable sources of their elemental constituents, and this at temperatures of 450 to 1000, preferably 450 to 700, frequently 450 to 600 or 550 to 570 ° C calcined.
  • the calcination can take place both under inert gas and under an oxidative atmosphere, such as air or mixtures of inert gas and oxygen, and also under a reducing atmosphere, for example under mixtures of inert gas, oxygen and NH 3 , CO and / or H 2 .
  • the calcination time can range from a few minutes to a few hours and usually decreases with increasing calcination temperature.
  • the calcination can be carried out in a simple manner by placing the active mass precursor in a rotating container, heating the container to the calcination temperature and letting the corresponding gas mixture flow through it.
  • a rotating tube furnace or a rotating round quartz flask can be considered as a rotating container.
  • the preparation of the active material precursor is, for example possible by one of THE APPROPRIATE sources of the elemental constituents of the desired Mul - timetalloxids produces an aqueous solution and spray dried, the spray outlet temperatures expedient 100 • amounted to 150 ° C.
  • Halides, nitrates, formates, oxalates, citrates, acetates, carbonates, ammonium complexes, and ammonium compounds are the main sources for the elemental constituents of the multimetal oxy-active compounds (I). Salts and / or hydroxides into consideration (compounds such as NH0H, (NH) 2 C0 3 , NH 4 N0 3 , NHCH0 2 , CH 3 COOH, NHCH 3 C0 2 and / or ammonium oxalate, which become completely gaseous at the latest during the later galvanizing escaping compounds disintegrate and / or decompose can also be incorporated into the precursor to be calcined).
  • Salts and / or hydroxides into consideration compounds such as NH0H, (NH) 2 C0 3 , NH 4 N0 3 , NHCH0 2 , CH 3 COOH, NHCH 3 C0 2 and / or ammonium oxalate, which become completely gas
  • the intimate mixing of the starting compounds for the production of multimetal oxide compositions I can take place in dry or in wet form. If it is carried out in dry form, the starting compounds are expediently used as finely divided powders and are subjected to calcination after mixing and, if appropriate, compaction. However, the intimate mixing is preferably carried out in wet form. Usually, the starting compounds are mixed together in the form of an aqueous solution and / or suspension. Particularly intimate dry mixtures are obtained when only sources of the elementary constituents in dissolved form are used. Water is preferably used as the solvent. The aqueous mass obtained is then dried.
  • Particularly suitable starting compounds for Mo, V, W and Nb are their oxo compounds (molybdates, vanatates, tungstates and niobates) and the acids derived from them. This applies in particular to the corresponding ammonium compounds (ammonium molybdate, ammonium vanadate, ammonium wolf ramate).
  • the multimetal oxide materials I can be used for the process according to the invention both in powder form and in the form of certain catalyst geometries, the shaping being able to take place before or after the final calcination.
  • solid catalysts can be produced from the powder form of the active composition or its uncalcined precursor composition by compression to the desired catalyst geometry (e.g. by tableting, extrusion or extrusion), where appropriate auxiliaries such as e.g. Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate.
  • auxiliaries such as e.g. Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate.
  • Suitable unsupported catalyst geometries are e.g.
  • Solid cylinder or hollow cylinder with an outer diameter and a length of 2 to 10 mm.
  • a wall thickness of 1 to 3 mm is appropriate.
  • the full catalyst can of course also have a spherical geometry, the spherical diameter being 2 to 10 mm.
  • Precursor mass can also be made by application to preformed inert catalyst supports.
  • the coating of the carrier body for Production of the shell catalysts is generally carried out in a suitable rotatable container, as is known, for example, from DE-A 2909671 or from EP-A 293859.
  • the powder mass to be applied can expediently be moistened and dried again after application, for example by means of hot air.
  • the layer thickness of the powder mass applied to the carrier body is expediently selected in the range from 50 to 700 ⁇ m, preferably in the range from 150 to 500 ⁇ m. Of course, the layer thickness can also be 150 to 250 ⁇ m.
  • porous or non-porous aluminum oxides silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium or aluminum silicate can be used as carrier materials.
  • the carrier bodies can have a regular or irregular shape, with regularly shaped carrier bodies with a clearly formed surface roughness, e.g. Balls or hollow cylinders are preferred. It is suitable to use essentially non-porous, rough-surface, spherical supports made of steatite, the diameter of which is 1 to 8 mm, preferably 3 to 5 mm.
  • multimetal oxide compositions II With regard to the production of the multimetal oxide compositions II, what has been said for the multimetal oxide compositions I applies. However, the calcination temperature used is usually 350 to 650 ° C.
  • Particularly preferred multimetal oxide compositions II are the multimetal oxide compositions I disclosed in EP-B 575897, in particular their preferred embodiment variants. They are characterized in that multimetal oxides are initially formed from subsets of the elementary constituents and are used as an element source in the further course of production.
  • DE-C 2830765 discloses a preferred variant of a two-zone tube bundle reactor which can be used according to the invention.
  • the two-zone tube bundle reactors disclosed in DE-C 2513405, US-A 3147084, DE-A 2201528 and DE-A 2903582 are also suitable for carrying out the according to the invention
  • the fixed bed catalyst to be used according to the invention is in the simplest way in the metal tubes of a tube bundle reactor and two temperature media, generally salt melts, which are essentially spatially separated from one another, are guided around the metal tubes.
  • the tube section over which the respective salt bath extends represents a reaction zone. That is, in the simplest way each reaction tube of the tube bundle reactor contains the two catalyst beds A, B to be used according to the invention (for example, directly or separated by an inert layer) arranged in succession and a salt bath A flows around the section of the tubes in which the catalyst bed A is located and a salt bath B flows around the Section of the tubes in which the catalyst bed B is located.
  • the two salt baths can in relative to the flow direction of the reaction gas mixture flowing through the reaction tubes
  • reaction zone A Direct current or countercurrent through the space surrounding the reaction tubes.
  • a cocurrent flow can also be used in reaction zone A and a counterflow (or vice versa) in reaction zone B.
  • the reaction gas starting mixture is advantageously fed to the catalyst feed preheated to the reaction temperature.
  • the contact tubes are usually made of ferritic steel and typically have a wall thickness of 1 to 3 mm. Their inner diameter is usually 20 to 30 mm, often 22 to 26 mm.
  • the number of contact tubes accommodated in the tube bundle container is at least 5,000, preferably at least 10,000.
  • the number of contact tubes accommodated in the reaction container is often
  • Tube bundle reactors with a number of contact tubes above 40,000 are rather the exception.
  • the contact tubes are normally arranged homogeneously distributed within the container, the distribution being expediently chosen such that the distance between the central inner axes from the closest contact tubes (the so-called contact tube division) is 35 to 45 mm (cf. e.g. EP-B 468290).
  • Fluid temperature media are particularly suitable as the heat exchange medium.
  • the flow rate within the two required heat exchange medium circuits is selected such that the temperature of the heat exchange medium increases from 0 to 15 ° C. from the entry point into the reaction zone to the exit point from the reaction zone. That is, the aforementioned ⁇ T can be 1 to 10 ° C or 2 to 8 ° C or 3 to 6 ° C according to the invention.
  • the entry temperature of the heat exchange medium into reaction zone A is normally 380 to 480 ° C., frequently 400 to 450 ° C.
  • the entry temperature of the heat exchange medium into reaction zone B is normally on the one hand> 300 ° C. and on the other hand is normally at least 20 ° C. below the entry temperature of the heat exchange medium entering reaction zone A.
  • the entry temperature of the heat exchange medium into reaction zone B is preferably at least 40 ° C. below the entry temperature of the heat exchange medium entering reaction zone A.
  • the entry temperature of the heat exchange medium into reaction zone B is advantageously from 320 to 380 ° C. and particularly preferably from 330 to 370 ° C.
  • the two reaction zones A, B can also be implemented in spatially separated tube bundle reactors. If necessary, an intercooler (which can be filled with inert material) can be installed between the two reaction zones. It goes without saying that the two reaction zones A, B can also be designed as a fluidized bed.
  • the working pressure in the process according to the invention is generally> 0.5 bar.
  • the reaction pressure will not exceed 100 bar, ie 0.5 to 100 bar.
  • the reaction pressure is expediently often> 1 to 50 or> 1 to 20 bar.
  • the reaction pressure is preferably> 1.25 or> 1.5 or> 1.75 or> 2 bar. Often the upper limit of 10 bar or 20 bar is not exceeded. In many cases the reaction pressure will be 3 to 4 bar.
  • the reaction pressure can also be 1 bar (the above statements regarding the reaction pressure apply in general to the process according to the invention).
  • the loading is advantageously chosen so that the residence time of the reaction gas mixture over the two catalyst beds is 0.5 to 20 seconds, preferably 1 to 10 seconds, particularly preferably 1 to 4 seconds and often 3 seconds.
  • the ratio of the bulk volumes of the two catalyst beds A, B is advantageously 1:10 to 10: 1, preferably 1: 5 to 5: 1 and particularly preferably 1: 2 to 2: 1, often 1: 1.
  • Propane and / or propene and / or inert gas contained in the product mixture of the process according to the invention can be separated off and recycled into the gas phase oxidation according to the invention.
  • the process according to the invention can be followed by a further heterogeneously catalyzed oxidation stage, as are known for the heterogeneously catalyzed gas phase oxidation of acrolein to acrylic acid (for example from EP-A 700893), into which the product mixture of the process according to the invention, optionally with the addition of further molecular oxygen.
  • unreacted propane, propene and / or acrolein and / or inert gas can again be separated off and recycled into the gas phase oxidation.
  • Air as well as air depleted in nitrogen or pure oxygen are generally considered as oxygen sources for the process according to the invention.
  • the acrolein and / or the acrylic acid formed can be separated off from the product gas mixtures in a manner known per se.
  • the propane conversion achieved with the process according to the invention is __ 5 mol% or> 7.5 mol%. However, normally no propane conversions> 20 mol% are achieved.
  • the method according to the invention is particularly suitable for continuous implementation. If necessary, additional molecular oxygen can be injected at the level of the catalyst bed B. Otherwise, turnover, selectivity and retention time, unless otherwise stated, are defined in this document as follows: Mole number of propane converted
  • the heating was carried out at a heating rate of 75 ° C./h from room temperature 35 (25 ° C.) to 175 ° C.
  • the temperature was then maintained at 175 ° C. for 1 h and then the temperature was increased from 175 ° C. to 185 ° C. at a heating rate of 40 ° C./h. This temperature was then maintained for 3 hours.
  • the temperature was then increased to 40,300 ° C. at a heating rate of 38 ° C./h and maintained for 2 h.
  • the precursor mass obtained in this way was admixed with 3% by weight of graphite, based on its weight, and processed into fully catalytic converter cylinders of geometry 5 mm ⁇ 3 mm (outside diameter ⁇ height) with a side pressure resistance of 90.7 N (pressing pressure: 8600 N; Rotary tableting machine, Hörn company, type RP / 16H). 580 g of these full-cylinder tablets were calcined in an air-flowed muffle furnace (60 l internal volume, air flow 500 l / h) as follows:
  • the mixture was first heated from room temperature (25 ° C) to 550 ° C. This temperature was then maintained for 6 hours.
  • the lateral compressive strength of the calcined multimetal oxide full cylinders was 105.9 N. They were comminuted and, as a catalytically active multimetal oxide mass I of stoichiometry C ⁇ o / 95 MoO x, the grain fraction with a grain size diameter of 0.6 to 1.2 mm was separated off by sieving.
  • the average diameter of the pores of the active composition was 30 nm and the specific surface area was 13.2 m 2 / g.
  • the spray drying took place in a counter-rotating spray tower at a gas inlet temperature of 300 ⁇ : 10 ° C and a gas outlet temperature of 100 zh 10 ° C.
  • the spray powder obtained was then calcined at a temperature in the range from 780 to 810 ° C. (in a rotary kiln through which air flows (1.54 m 3 internal volume, 200 Nm 3 air / h)). It is essential for the exact setting of the calcination temperature that it has to be based on the desired phase composition of the calcination product.
  • the phases W0 3 (monoclinic) and Bi 2 W 2 0 9 are desired, the presence of ⁇ -Bi 2 W0 6 (Russelite) is undesirable.
  • the preparation must be repeated and the calcination temperature within the specified temperature range until the reflex disappears.
  • the preformed calcined mixed oxide thus obtained was ground so that the X 50 value (see FIG. Ullmann's Encyclopedia of Industrial Chemistry, 6 th Edition (1998), Electronic Release, Chapter 3.1.4 or DIN 66141) was the resulting particle size 5 .mu.m .
  • the millbase was then finely ground with 1% by weight (based on the millbase). Partial Si0 2 (vibrating weight 150 g / 1; X 50 value of the Si0 2 particles was 10 ⁇ m, the BET surface area was 100 m 2 / g).
  • a solution A was prepared by dissolving 213 kg of ammonium heptamolybdate in 600 l of water at 60 ° C. while stirring and the resulting solution while maintaining the 60 ° C. and stirring with 0.97 kg of an aqueous potassium hydroxide solution (46.8% by weight) at 20 ° C. . -% KOH) added.
  • a solution B was prepared by entering 116.25 kg of an aqueous iron nitrate solution (14.2% by weight of Fe) at 60 ° C. in 262.9 kg of an aqueous cobalt nitrate solution (12.4% by weight of Co). Solution B was then pumped continuously into solution A over a period of 30 minutes while maintaining the 60 ° C. The mixture was then stirred at 60 ° C for 15 minutes. Then the resulting aqueous mixture was 19.16 kg of a silica gel (46.80% by weight Si0 2 , density: 1.36 to 1.42 g / ml, pH 8.5 to 9.5, alkali content max. 0, 5% by weight) and then stirred for a further 15 minutes at 60 ° C.
  • a silica gel 46.80% by weight Si0 2 , density: 1.36 to 1.42 g / ml, pH 8.5 to 9.5, alkali content max. 0, 5% by weight
  • spray drying was carried out in counter-current in a turntable spray tower (gas inlet temperature: 400zh 10 ° C, gas outlet temperature: 140 ⁇ 5 ° C).
  • the resulting spray powder had a loss on ignition of approximately 30% by weight (3 hours at 600 ° C.).
  • the starting mass 1 was compared with the starting mass 2 for a multimetal oxide active mass of stoichiometry
  • Muffle furnace with air flowing through it was first heated from room temperature (25 ° C) to 190 ° C at a heating rate of 180 ° C / h. This temperature was maintained for 1 h and then increased to 210 ° C with a heating rate of 60 ° C / h. The 210 ° C was again maintained for 1 h before it was increased to 230 ° C at a heating rate of 60 ° C / h. This temperature was also maintained for 1 hour before it was increased again to 265 ° C. at a heating rate of 60 ° C./h. The 265 ° C was then also maintained for 1 h. Thereafter, the mixture was first cooled to room temperature, essentially completing the decomposition phase. The mixture was then heated to 465 ° C. at a heating rate of 180 ° C./h and this calcination temperature was maintained for 4 hours.
  • a reaction tube (V2A steel; 2.5 cm wall thickness; 8.5 mm inner diameter; electrically heatable in sections) with a length of 1.4 m is placed from bottom to top on a contact chair initially over a length of 48.7 cm with quartz chips (number-average large diameter 1 to 2 mm) and then loaded with the multimetal oxide active composition II over a length of 21.3 cm and then with the multimetal oxide active composition I over a length of 21.3 cm before the loading over a length of 48.7 cm with Quartz grit (number-average large diameter 1 to 2 mm) is completed (the quartz grit is essentially inert and serves, for example, to heat the reaction gas starting mixture to the reaction temperature).
  • the reaction tube charged as above is charged with a reaction gas starting mixture having a pressure of 2.7 bar and consisting of 80 vol.% Propane and 20% vol.% Oxygen from top to bottom.
  • the dwell time is set to 1.8 s.
  • the pressure loss across the reaction tube is 0.2 bar.
  • the temperature of the reaction tube is set as follows by means of hollow cylindrical, electrically heated aluminum blocks in contact with the reaction tube:
  • a comparison of the design variants (i), (ii) shows the superiority of the procedure according to the invention with regard to the formation of valuable products.
  • a reaction tube (V2A steel; 2.5 cm wall thickness; 8.5 mm inner diameter; electrically heatable in sections) with a length of 1.4 m was first built from bottom to top on a contact chair over a length of 35 cm with quartz chips (number-average large diameter 1 to 2 mm) and then over a length of 21.3 cm with the multimetal oxide active material II and then afterwards over a length of 19 cm with quartz chips (number-average large diameter 1 to 2 mm) and then over a length of 21.3 cm charged with the multimetal oxide active material I before the loading was completed over a length of 43.4 cm with quartz chips (number-average large diameter 1 to 2 mm) (the quartz chips are essentially inert and serve, for example, to heat the reaction gas starting mixture to the reaction temperature ).
  • the reaction tube charged as above was charged with a reaction gas starting mixture having a pressure of 2.7 bar and consisting of 80 vol.% Propane and 20% vol.% Oxygen from top to bottom.
  • the dwell time was on 1.8 s set.
  • the pressure drop across the reaction tube was 0.2 bar.
  • the temperature of the reaction tube was set as follows by means of hollow cylindrical, electrically heated aluminum blocks in contact with the reaction tube:
  • reaction tube length 70 cm first 405 ° C, then up to the contact tube end 365 ° C.

Abstract

The invention relates to a method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid in which the initial mixture of reaction gas is fed over a fixed-bed catalyst which is comprised of catalyst charges A, B arranged in two reaction zones A, B that are placed in a spatially successive manner, whereby the temperature of reaction zones A, B are kept at different temperatures.

Description

Verfahren der heterogen katalysierten Gasphasenoxidation von Pro- pan zu Acrolein und/oder AcrylsäureProcess of heterogeneously catalyzed gas phase oxidation of propane to acrolein and / or acrylic acid
Beschreibungdescription
Vorliegende Erfindung betrifft ein Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure, bei dem man ein > 50 Vol.-% Propan, > 10 Vol.-% 0 und 0 bis 40 Vol.-% Inertgas enthaltendes Reaktionsgasausgangsgemisch bei erhöhter Temperatur über einen Festbettkatalysator führt, der aus in zwei räumlich aufeinanderfolgenden Reaktionszonen A, B angeordneten Katalysatorschüttungen A, B besteht, wobei die Aktivmasse der in der Reaktionszone A befindlichen Katalysa- torschuttung A wenigstens ein Multimetalloxid der allgemeinen Formel IThe present invention relates to a process of heterogeneously catalyzed gas phase oxidation of propane to acrolein and / or acrylic acid, in which a reaction gas starting mixture containing> 50 vol.% Propane,> 10 vol.% 0 and 0 to 40 vol Temperature leads over a fixed bed catalyst, which consists of two spatially successive reaction zones A, B arranged catalyst beds A, B, the active mass of the catalyst bed A located in reaction zone A at least one multimetal oxide of the general formula I
M^MOi-bM^Ox (I),M ^ MOi-bM ^ Ox (I),
mitWith
M1 =Co, Ni, Mg, Zn, Mn und/oder Cu,M 1 = Co, Ni, Mg, Zn, Mn and / or Cu,
M2 = , V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn und/oder La, a = 0,5 bis 1,5, b = 0 bis 0, 5 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I bestimmt wird,M 2 =, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn and / or La, a = 0.5 to 1.5, b = 0 to 0, 5 and x = a number that is determined by the valency and frequency of the elements in I other than oxygen,
und die Aktivmasse der in der Reaktionszone B befindlichen Kata- lysatorschüttung B wenigstens ein Multimetalloxid der allgemeinen Formel IIand the active composition of the catalyst bed B located in the reaction zone B is at least one multimetal oxide of the general formula II
Bia-Mθb'X1c'X2d'X3e'X4 f'X5g'X6 h'Ox- (II) ,Bi a -Mθ b ' X 1 c ' X 2 d ' X 3 e ' X 4 f ' X 5 g ' X 6 h ' O x - (II),
mit χi =W, V und/oder Te, χ2 = Erdalkalimetall, Co, Ni, Zn, Mn, Cu, Cd, Sn und/oder Hg,with χi = W, V and / or Te, χ2 = alkaline earth metal, Co, Ni, Zn, Mn, Cu, Cd, Sn and / or Hg,
X3 = Fe, Cr und/oder Ce,X 3 = Fe, Cr and / or Ce,
X4 = P, As, Sb und/oder B, X5 = Alkalimetall, Tl und/oder Sn,X 4 = P, As, Sb and / or B, X 5 = alkali metal, Tl and / or Sn,
X6 = seltenes Erdmetall, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI, Ga, In, Si, Ge, Th und/oder ü, a' =0, 01 bis 8, b' =0,1 bis 30, c' =0 bis 20, d' =0 bis 20, e' =0 bis 20, f ' = 0 bis 6 , g ' = 0 bis 4 , h ' = 0 bis 15 ,X 6 = rare earth metal, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI, Ga, In, Si, Ge, Th and / or ü, a '= 0, 01 to 8, b '= 0.1 to 30, c' = 0 to 20, d '= 0 to 20, e' = 0 to 20, f '= 0 to 6, g' = 0 to 4, h '= 0 to 15,
X ' = eine Zahl die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt wird,X '= a number which is determined by the valency and frequency of the elements in II other than oxygen,
ist, und wobei das Reaktionsgasausgangsgemisch die Katalysator- schüttungen A, B in der Abfolge „erst A", „dann B", durchströmt.and the reaction gas starting mixture flows through the catalyst beds A, B in the sequence “first A”, “then B”.
Ein wie vorstehend beschriebenes Verfahren wird bereits in der DE-A 19807079 und in der DE-A 19746210 vorgeschlagen.A method as described above is already proposed in DE-A 19807079 and in DE-A 19746210.
Dabei wird in diesen Schriften empfohlen, das Reaktionsgasausgangsgemisch bei einer Temperatur von 325 bis 480 bzw. 450°C, vor- zugsweise bei 350 bis 420°C und besonders bevorzugt bei 350 bis 400°C über den aus den Katalysatorschüttungen A, B bestehenden Festbettkatalysator zu führen. Ferner wird in den vorgenannten Schriften zum Ausdruck gebracht, daß die Katalysatorschüttungen A, B im Normalfall identische Temperaturen aufweisen.It is recommended in these documents that the reaction gas starting mixture at a temperature of 325 to 480 or 450 ° C, preferably at 350 to 420 ° C and particularly preferably at 350 to 400 ° C over the fixed bed catalyst consisting of the catalyst beds A, B. respectively. Furthermore, it is stated in the abovementioned documents that the catalyst beds A, B normally have identical temperatures.
Nachteilig an einer solchen Verfahrensweise ist jedoch, daß die Selektivität der Wertproduktbildung nicht zu befriedigen vermag.However, a disadvantage of such a procedure is that the selectivity of the formation of the valuable product is unsatisfactory.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, ein wie eingangs beschriebenes Verfahren mit einer verbesserten Selektivität der Wertproduktbildung zur Verfügung zu stellen.The object of the present invention was therefore to provide a process as described at the outset with improved selectivity in the formation of valuable products.
Demgemäß wurde ein Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure, bei dem man ein > 50 Vol.-% Propan, > 10 Vol.-% 02 und 0 bis 40 Vol.-% Inertgas enthaltendes Reaktionsgasausgangsgemisch bei erhöhter Temperatur über einen Festbettkatalysator führt, der aus in zwei räumlich aufeinanderfolgenden Reaktionszonen A, B angeordneten Katalysatorschüttungen A, B besteht, wobei die Aktivmasse der in der Reaktionszone A befindlichen Katalysatorschüttung A wenigstens ein Multimetalloxid der allgemeinen Formel IAccordingly, a process for the heterogeneously catalyzed gas-phase oxidation of propane to acrolein and / or acrylic acid, in which a> 50 Vol .-% of propane,> 10 vol .-% 0 2 and 0 to 40 Vol .-% inert gas-containing starting reaction gas mixture at elevated Temperature leads over a fixed bed catalyst, which consists of two spatially successive reaction zones A, B arranged catalyst beds A, B, the active mass of the catalyst bed A located in reaction zone A at least one multimetal oxide of the general formula I
M^MOi-bM^Ox (I),M ^ MOi- b M ^ O x (I),
mitWith
M1 =Co, Ni, Mg, Zn, Mn und/oder Cu, vorzugsweise Co, Ni und/oderM 1 = Co, Ni, Mg, Zn, Mn and / or Cu, preferably Co, Ni and / or
Mg, besonders bevorzugt Co und/oder Ni, M2 =W, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn und/oder La, vorzugsweise Sn, W, P, Sb und/oder Cr, besonders bevorzugt W, Sn und/oder Sb, a = 0,5 bis 1,5, vorzugsweise 0,7 bis 1,2, besonders bevorzugt 0,9 bis 1, 0, b = 0 bis 0,5, vorzugsweise > 0 bis 0,5 und besonders bevorzugtMg, particularly preferably Co and / or Ni, M 2 = W, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn and / or La, preferably Sn, W, P, Sb and / or Cr, particularly preferably W, Sn and / or Sb, a = 0.5 to 1.5, preferably 0.7 to 1.2, particularly preferably 0.9 to 1.0, b = 0 to 0.5, preferably> 0 to 0.5 and particularly preferred
0, 01 bis 0, 3 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von0, 01 to 0, 3 as well as x = a number determined by the valency and frequency of the
Sauerstoff verschiedenen Elemente in I bestimmt wird,Oxygen different elements in I is determined
und die Aktivmasse der in der Reaktionszone B befindlichen Kata- lysatorschüttung B wenigstens ein Multimetalloxid der allgemeinen Formel IIand the active composition of the catalyst bed B located in the reaction zone B is at least one multimetal oxide of the general formula II
Bia-Mob1 c2 d-X3 e-χ4f,χ5 ,χ6h,, (ii).Bi a -Mo b1 c2 d -X 3 e -χ4 f , χ5, χ6 h , , (ii).
mitWith
X1 = W, V und/oder Te, vorzugsweise W und/oder V, X2 = Erdalkalimetall, Co, Ni, Zn, Mn, Cu, Cd, Sn und/oder Hg, vorzugsweise Co, Ni, Zn und/oder Cu, besonders bevorzugt Co, Ni und/oder Zn, X3 = Fe, Cr und/oder Ce, vorzugsweise Fe und/oder Cr, X4 = P, As, Sb und/oder B, vorzugsweise P und/oder Sb, X5 = Alkalimetall, Tl und/oder Sn, vorzugsweise K und/oder Na, X6 = seltenes Erdmetall, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI,X 1 = W, V and / or Te, preferably W and / or V, X 2 = alkaline earth metal, Co, Ni, Zn, Mn, Cu, Cd, Sn and / or Hg, preferably Co, Ni, Zn and / or Cu, particularly preferably Co, Ni and / or Zn, X 3 = Fe, Cr and / or Ce, preferably Fe and / or Cr, X 4 = P, As, Sb and / or B, preferably P and / or Sb, X 5 = alkali metal, Tl and / or Sn, preferably K and / or Na, X 6 = rare earth metal, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI,
Ga, In, Si, Ge, Th und/oder U, vorzugsweise Si, Zr, AI, Ag,Ga, In, Si, Ge, Th and / or U, preferably Si, Zr, Al, Ag,
Nb und/oder Ti, a' =0,01 bis 8, vorzugsweise 0,3 bis 4 und besonders bevorzugt 0, 5 bis 2, b' =0,1 bis 30, vorzugsweise 0,5 bis 15 und besonders bevorzugtNb and / or Ti, a '= 0.01 to 8, preferably 0.3 to 4 and particularly preferably 0.5 to 2, b' = 0.1 to 30, preferably 0.5 to 15 and particularly preferably
10 bis 13, c' =0 bis 20, vorzugsweise 0,1 bis 10 und besonders bevorzugt 0,5 bis 3 , d' =0 bis 20, vorzugsweise 2 bis 15 und besonders bevorzugt 3 bis10 to 13, c '= 0 to 20, preferably 0.1 to 10 and particularly preferably 0.5 to 3, d' = 0 to 20, preferably 2 to 15 and particularly preferably 3 to
10, e' =0 bis 20, vorzugsweise 0,5 bis 10 und besonders bevorzugt 1 bis 7, f =0 bis 6, vorzugsweise 0 bis 1, g' =0 bis 4, vorzugsweise 0,01 bis 1, h' =0 bis 15, vorzugsweise 1 bis 15 und x' = eine Zahl, die durch die Wertigkeit und Häufigkeit der von10, e '= 0 to 20, preferably 0.5 to 10 and particularly preferably 1 to 7, f = 0 to 6, preferably 0 to 1, g' = 0 to 4, preferably 0.01 to 1, h '= 0 to 15, preferably 1 to 15 and x '= a number which is determined by the valency and frequency of
Sauerstoff verschiedenen Elemente in II bestimmt wird,Oxygen various elements in II is determined
ist, und wobei das Reaktionsgasausgangsgemisch die Katalysatorschüttungen A, B in der Abfolge „erst A", „dann B", durchströmt, gefunden, das dadurch gekennzeichnet ist, daß die Temperatur der- Reaktionszone A 380 bis 480°C beträgt und die Temperatur der Reaktionszone B einerseits > 300°C beträgt und andererseits wenig - stens 20°C unterhalb der Temperatur der Reaktionszone A liegt. Unter der Temperatur einer Reaktionszone wird hier die Temperatur der Katalysatorschüttung in der Reaktionszone bei Ausübung des Verfahrens in Abwesenheit einer chemischen Reaktion verstanden. Ist diese Temperatur innerhalb der Reaktionszone nicht konstant, 5 so meint der Begriff Temperatur einer Reaktionszone hier den Zahlenmittelwert der Temperatur der Katalysatorschüttung längs der Reaktionszone. Vorzugsweise beträgt die Temperatur der Reaktions- zone A beim erfindungsgemäßen Verfahren 400 bis 450°C. Ferner liegt die Temperatur der Reaktionszone B vorzugsweise wenigstens 10 40°C unterhalb der Temperatur der Reaktionszone A. Mit Vorteil beträgt die Temperatur der Reaktionszone B 320 bis 380°C und besonders bevorzugt 330 bis 370°C.is, and wherein the reaction gas starting mixture flows through the catalyst beds A, B in the sequence "first A", "then B", found, which is characterized in that the temperature of the reaction zone A is 380 to 480 ° C and the temperature of the Reaction zone B is on the one hand> 300 ° C and on the other hand is at least 20 ° C below the temperature of reaction zone A. The temperature of a reaction zone is understood here to mean the temperature of the catalyst bed in the reaction zone when the process is carried out in the absence of a chemical reaction. If this temperature is not constant within the reaction zone, 5 the term temperature of a reaction zone here means the number average of the temperature of the catalyst bed along the reaction zone. The temperature of reaction zone A in the process according to the invention is preferably 400 to 450 ° C. Furthermore, the temperature of reaction zone B is preferably at least 10 40 ° C. below the temperature of reaction zone A. Advantageously, the temperature of reaction zone B is 320 to 380 ° C. and particularly preferably 330 to 370 ° C.
Erfindungsgemäß bevorzugte Multimetalloxide I sind demnach solche 15 der allgemeinen Formel I'Multimetal oxides I which are preferred according to the invention are therefore 15 of the general formula I '
[Co,Ni u./o. Mg]a Moi-btSn, W, P, Sb u./o. Cr]bOx (I'),[Co, Ni u./o. Mg] a MOI b TSN, W, P, Sb u./o. Cr] b O x (I '),
mit 20 a = 0,5 bis 1,5, vorzugsweise 0,7 bis 1,2, besonders bevorzugt 0,9 bis 1,0, b = 0 bis 0,5, vorzugsweise > 0 bis 0,5 und besonders bevorzugtwith 20 a = 0.5 to 1.5, preferably 0.7 to 1.2, particularly preferably 0.9 to 1.0, b = 0 to 0.5, preferably> 0 to 0.5 and particularly preferably
0,01 bis 0,3 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von 25 Sauerstoff verschiedenen Elemente in I' bestimmt wird.0.01 to 0.3 and x = a number which is determined by the valency and frequency of the elements in I 'other than 25 oxygen.
Erfindungsgemäß besonders bevorzugte Multimetalloxide I sind solcher der allgemeinen Formel I"Multimetal oxides I which are particularly preferred according to the invention are those of the general formula I "
30 [Co u./o. Νi]a!-b [W, Sn u./o. Sb] _ Ox (I")30 [Co u./o. Νi] a! - b [W, Sn u./o. Sb] _ O x (I ")
mit den vorstehenden Bedeutungen für a, b und x.with the above meanings for a, b and x.
Ganz allgemein sind erfindungsgemäß solche Multimetalloxide I, I' 35 und I" als Aktivmasse von Vorteil, deren mittlerer Porendurchmesser < 0,09 μm und > 0,01 μm und deren spezifische OberflächeIn general, according to the invention, such multimetal oxides I, I '35 and I "are advantageous as active compositions, their average pore diameters <0.09 μm and> 0.01 μm and their specific surface area
> 10 m2/g beträgt. Besonders bevorzugt beträgt der vorgenannte mittlere Porendurchmesser > 0,02 μm und < 0,06 μm. Darüber hinaus eignen sich erfindungsgemäß solche Multimetalloxidmassen I,> 10 m 2 / g. The aforementioned average pore diameter is particularly preferably> 0.02 μm and <0.06 μm. In addition, such multimetal oxide materials I
40 I' und I" als Aktivmassen, deren mittlerer Porendurchmesser40 I 'and I "as active compositions, their average pore diameter
> 0,025 μm und < 0,040 μm beträgt.Is> 0.025 μm and <0.040 μm.
Ferner ist es erfindungsgemäß günstig, wenn die vorgenannten Multimetalloxidmassen bei vorgenannten mittleren Porendurchmessern 45 gleichzeitig eine spezifische Oberfläche von __ 15 m2/g bzw. von __ 25 m2/g aufweisen. In der Regel wird die genannte spezifische Oberfläche der erfindungsgemäßen Multimetalloxidmassen <_ 50 m2/g betragen.Furthermore, it is advantageous according to the invention if the aforementioned multimetal oxide compositions at the aforementioned average pore diameters 45 simultaneously have a specific surface area of __ 15 m 2 / g or of __ 25 m 2 / g. As a rule, the said specific The surface area of the multimetal oxide compositions according to the invention is <50 m 2 / g.
Unter der spezifischen Oberfläche 0 wird in dieser Schrift die gemäß DIN 66133 mittels der Methode der Quecksilberintrusion (Meßbereich: 1 μm bis 3 nm Porendurchmesser) ermittelte spezifische Oberfläche verstanden.In this document, the specific surface area 0 means the specific surface area determined according to DIN 66133 by means of the mercury intrusion method (measuring range: 1 μm to 3 nm pore diameter).
Der mittlere Porendurchmesser ist in dieser Schrift als das vier- fache des Verhältnisses von gemäß vorgenannter Quecksilberintru- sionsmethode ermitteltem Porengesamtvolumen zu spezifischer Oberfläche 0 definiert.The mean pore diameter is defined in this document as four times the ratio of the total pore volume to the specific surface area 0 determined according to the aforementioned mercury intrusion method.
Erfindungsgemäß bevorzugte Multimetalloxide II sind solcher der allgemeinen Formel II'Multimetal oxides II preferred according to the invention are those of the general formula II '
Bia'Mθb'WC' [Co,Ni u./o. Zn] d<Fee' [P u. /o . Sb]£-[Ku./o. Na]g<X6 Ox<Bi a ' Mθb ' W C ' [Co, Ni u./o. Zn] d <Fe e ' [P u. / o. Sb] £ - [Ku./o. Na] g <X 6 O x <
(II'),(II '),
wobei X6 und die stöchiometrischen Koeffizienten die Bedeutung gemäß der allgemeinen Formel II besitzen.where X 6 and the stoichiometric coefficients have the meaning according to the general formula II.
Besonders bevorzugte Multimetalloxide II' sind jene mit X6 = Si, Zr, AI, Nb, Ag u./o. Ti , unter denen wiederum jene mit X6 = Si, bevorzugt sind.Particularly preferred multimetal oxides II 'are those with X 6 = Si, Zr, Al, Nb, Ag and / or. Ti, among which those with X 6 = Si are preferred.
Ferner ist es günstig, wenn e' = 0,5 bis 10 ist, was insbesondere dann gilt, wenn X6 = Si . Vorgenanntes gilt vor allem dann, wenn die Multimetalloxidmassen II' gemäß der EP-B 575897 hergestellt werden .It is also expedient if e '= 0.5 to 10, which is particularly true when X 6 = Si. The above applies especially when the multimetal oxide masses II 'are produced in accordance with EP-B 575897.
Besonders vorteilhafte Katalysatorschüttungspaare A, B sind die Kombinationen I', II' sowie I", II'. Dies gilt vor allem dann, wenn X6 = Si und e' = 0,5 bis 10.The combinations I ', II' and I ", II 'are particularly advantageous catalyst bed pairs A, B. This applies especially when X 6 = Si and e' = 0.5 to 10.
Das für das erfindungsgemäße Verfahren einzusetzende Reaktionsgasausgangsgemisch umfaßt mit Vorteil __ 30 Vol.-%, vorzugsweise < 20 Vol.-% und besonders bevorzugt < 10 Vol.-% bzw. < 5 Vol.-% Inertgas . Selbstverständlich kann das Reaktionsgasausgangsgemisch auch kein Inertgas umfassen. Unter Inertgas werden hier solche Gase verstanden, deren Umsatz beim Durchgang durch den erfindungsgemäß zu verwendenden Festbettkatalysator < 5 mol-% beträgt.The reaction gas starting mixture to be used for the process according to the invention advantageously comprises __ 30% by volume, preferably <20% by volume and particularly preferably <10% by volume or <5% by volume of inert gas. Of course, the reaction gas starting mixture can also comprise no inert gas. Inert gas is understood here to mean those gases whose conversion when passing through the fixed bed catalyst to be used according to the invention is <5 mol%.
Weiterhin enthält das Reaktionsgasausgangsgemisch zweckmäßigThe reaction gas starting mixture furthermore advantageously contains
> 60 Vol.-% oder > 70 Vol.-% oder > 80 Vol.-% Propan. Generell liegt der Propangehalt des erfindungsgemäß einzusetzenden Reakti- onsgasausgangsgemisches bei 90 Vol.-% bzw. < 85 Vol.-%, häufig bei < 83 oder < 82 oder < 81 oder < 80 Vol.-%. Der Gehalt des Reaktionsgasausgangsgemisches an molekularem Sauerstoff kann beim erfindungsgemäßen Verfahren bis zu 35 Vol.-% betragen. Mit Vor- teil liegt er bei wenigstens 15 Vol.-% bzw. 20 Vol.-% oder bei wenigstens 25 Vol.-%. Erfindungsgemäß günstige Reaktionsgasaus - gangsgemische enthalten > 65 Vol.-% und < 90 Vol.-% Propan sowie> 60 vol% or> 70 vol% or> 80 vol% propane. The propane content of the reactant to be used according to the invention is generally ongas starting mixture at 90 vol.% or <85 vol.%, often at <83 or <82 or <81 or <80 vol.%. The content of molecular oxygen in the reaction gas starting mixture can be up to 35% by volume in the process according to the invention. It is advantageously at least 15% by volume or 20% by volume or at least 25% by volume. Reaction gas starting mixtures which are favorable according to the invention contain> 65% by volume and <90% by volume of propane and
> 10 Vol.-% und < 35 Vol.-% molekularen Sauerstoff. Erfindungs- gemäß von Vorteil (im Hinblick auf Selektivität und Umsatz) ist, wenn das Molverhältnis von Propan zu molekularem Sauerstoff im Reaktionsgasausgangsgemisch < 8 : 1, bevorzugt < 5 : 1 bzw. 4,75 : 1, besser < 4,5 : 1 und besonders bevorzugt < 4 : 1 beträgt. In der Regel wird vorgenanntes Verhältnis > 1 : 1 bzw. 2 : 1 betragen. Normalerweise enthält das Reaktionsgasausgangs - gemisch neben den genannten Bestandteilen im wesentlichen keine weiteren Komponenten.> 10 vol% and <35 vol% molecular oxygen. According to the invention (in terms of selectivity and conversion) is advantageous if the molar ratio of propane to molecular oxygen in the reaction gas starting mixture is <8: 1, preferably <5: 1 or 4.75: 1, better <4.5: 1 and particularly preferably <4: 1. As a rule, the aforementioned ratio will be> 1: 1 or 2: 1. Normally, the reaction gas starting mixture contains essentially no further components apart from the components mentioned.
Prinzipiell können als erfindungsgemäß zu verwendende Aktivmassen geeignete Multimetalloxide I in einfacher Weise dadurch herge- stellt werden, daß man von geeigneten Quellen ihrer elementaren Konstituenten ein möglichst inniges, vorzugsweise feinteiliges, ihrer Stöchiometrie entsprechend zusammengesetztes, Trockengemisch erzeugt und dieses bei Temperaturen von 450 bis 1000, vorzugsweise 450 bis 700, häufig 450 bis 600 oder 550 bis 570°C cal- ciniert.In principle, suitable multimetal oxides I as active compositions to be used according to the invention can be prepared in a simple manner by generating an intimate, preferably finely divided, dry mixture of suitable stoichiometry from suitable sources of their elemental constituents, and this at temperatures of 450 to 1000, preferably 450 to 700, frequently 450 to 600 or 550 to 570 ° C calcined.
Die Calcination kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft oder Gemischen aus Inertgas und Sauerstoff sowie auch unter reduzierender Atmosphäre, z.B. unter Gemischen aus Inertgas, Sauerstoff und NH3, CO und/oder H2, erfolgen. Die Calcinationsdauer kann einige Minuten bis einige Stunden betragen und nimmt üblicherweise mit zunehmender Calcina- tionstemperatur ab. Die Calcination läßt sich in einfacher Weise dadurch realisieren, daß man den Aktivmassenvorläufer in einen rotierenden Behälter gibt, den Behälter auf die Calcinationstem- peratur erhitzt und vom entsprechenden Gasgemisch durchströmen läßt. Als rotierender Behälter kommen z.B. ein Drehrohrofen oder ein rotierender Quarzrundkolben in Betracht. Die Herstellung des Aktivmassenvorläufers ist z.B. dadurch möglich, daß man von geei- gneten Quellen der elementaren Konstituenten des gewünschten Mul - timetalloxids eine wäßrige Lösung erzeugt und diese sprühtrocknet, wobei die Sprühtrockenaustrittstemperaturen zweckmäßig 100 bis 150°C betragen.The calcination can take place both under inert gas and under an oxidative atmosphere, such as air or mixtures of inert gas and oxygen, and also under a reducing atmosphere, for example under mixtures of inert gas, oxygen and NH 3 , CO and / or H 2 . The calcination time can range from a few minutes to a few hours and usually decreases with increasing calcination temperature. The calcination can be carried out in a simple manner by placing the active mass precursor in a rotating container, heating the container to the calcination temperature and letting the corresponding gas mixture flow through it. A rotating tube furnace or a rotating round quartz flask can be considered as a rotating container. The preparation of the active material precursor is, for example possible by one of THE APPROPRIATE sources of the elemental constituents of the desired Mul - timetalloxids produces an aqueous solution and spray dried, the spray outlet temperatures expedient 100 amounted to 150 ° C.
Als Quellen für die elementaren Konstituenten der Multimetalloxi - daktivmassen (I) kommen vor allem Halogenide, Nitrate, Formiate, Oxalate, Citrate, Acetate, Carbonate, Ammoniumkomplexe, Ammonium- Salze und/oder Hydroxide in Betracht (Verbindungen wie NH0H, (NH )2C03, NH4N03, NHCH02, CH3COOH, NHCH3C02 und/oder Ammoniumoxa- lat, die spätestens beim späteren Galcinieren zu vollständig gasförmig entweichenden Verbindungen zerfallen und/oder zersetzt werden, können zusätzlich in den zu calcinierenden Aktivmassen- Vorläufer eingearbeitet werden) . Das innige Vermischen der Aus- gangsverbindungen zur Herstellung von Multimetalloxidmassen I kann in trockener oder in nasser Form erfolgen. Erfolgt er in trockener Form, so werden die AusgangsVerbindungen zweckmäßiger- weise als feinteilige Pulver eingesetzt und nach dem Mischen und gegebenenfalls Verdichten der Calcinierung unterworfen. Vorzugsweise erfolgt das innige Vermischen jedoch in nasser Form. Üblicherweise werden dabei die Ausgangsverbindungen in Form einer wäßrigen Lösung und/oder Suspension miteinander vermischt. Beson- ders innige Trockengemische werden dann erhalten, wenn ausschließlich von in gelöster Form vorliegenden Quellen der elementaren Konstituenten ausgegangen wird. Als Lösungsmittel wird bevorzugt Wasser eingesetzt. Anschließend wird die erhaltene wäßrige Masse getrocknet. Besonders geeignete Ausgangsverbindungen des Mo, V, W und Nb sind deren Oxoverbindungen (Molybdate, Vana- date, Wolframate und Niobate) bzw. die von diesen abgeleiteten Säuren. Dies gilt insbesondere für die entsprechenden Ammoniumverbindungen (Ammoniummolybdat, Ammoniumvanadat, Ammoniumwolfra- mat) .Halides, nitrates, formates, oxalates, citrates, acetates, carbonates, ammonium complexes, and ammonium compounds are the main sources for the elemental constituents of the multimetal oxy-active compounds (I). Salts and / or hydroxides into consideration (compounds such as NH0H, (NH) 2 C0 3 , NH 4 N0 3 , NHCH0 2 , CH 3 COOH, NHCH 3 C0 2 and / or ammonium oxalate, which become completely gaseous at the latest during the later galvanizing escaping compounds disintegrate and / or decompose can also be incorporated into the precursor to be calcined). The intimate mixing of the starting compounds for the production of multimetal oxide compositions I can take place in dry or in wet form. If it is carried out in dry form, the starting compounds are expediently used as finely divided powders and are subjected to calcination after mixing and, if appropriate, compaction. However, the intimate mixing is preferably carried out in wet form. Usually, the starting compounds are mixed together in the form of an aqueous solution and / or suspension. Particularly intimate dry mixtures are obtained when only sources of the elementary constituents in dissolved form are used. Water is preferably used as the solvent. The aqueous mass obtained is then dried. Particularly suitable starting compounds for Mo, V, W and Nb are their oxo compounds (molybdates, vanatates, tungstates and niobates) and the acids derived from them. This applies in particular to the corresponding ammonium compounds (ammonium molybdate, ammonium vanadate, ammonium wolf ramate).
Die Multimetalloxidmassen I können für das erfindungsgemäße Verfahren sowohl in Pulverform als auch zu bestimmten Katalysator - geometrien geformt eingesetzt werden, wobei die Formgebung vor oder nach der abschließenden Calcination erfolgen kann. Bei - spielsweise können aus der Pulverform der Aktivmasse oder ihrer uncalcinierten Vorläufermasse durch Verdichten zur gewünschten Katalysatorgeometrie (z.B. durch Tablettieren, Extrudern oder Strangpressen) Vollkatalysatoren hergestellt werden, wobei gegebenenfalls Hilfsmittel wie z.B. Graphit oder Stearinsäure als Gleitmittel und/oder Formhilfsmittel und Verstärkungsmittel wie Mikrofasern aus Glas, Asbest, Siliciumcarbid oder Kaliumtitanat zugesetzt werden können. Geeignete Vollkatalysatorgeometrien sind z.B. Vollzylinder oder Hohlzylinder mit einem Außendurchmesser und einer Länge von 2 bis 10 mm. Im Fall der Hohlzylinder ist eine Wandstärke von 1 bis 3 mm zweckmäßig. Selbstverständlich kann der Vollkatalysator auch Kugelgeometrie aufweisen, wobei der Kugeldurchmesser 2 bis 10 mm betragen kann.The multimetal oxide materials I can be used for the process according to the invention both in powder form and in the form of certain catalyst geometries, the shaping being able to take place before or after the final calcination. For example, solid catalysts can be produced from the powder form of the active composition or its uncalcined precursor composition by compression to the desired catalyst geometry (e.g. by tableting, extrusion or extrusion), where appropriate auxiliaries such as e.g. Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate. Suitable unsupported catalyst geometries are e.g. Solid cylinder or hollow cylinder with an outer diameter and a length of 2 to 10 mm. In the case of the hollow cylinder, a wall thickness of 1 to 3 mm is appropriate. The full catalyst can of course also have a spherical geometry, the spherical diameter being 2 to 10 mm.
Selbstverständlich kann die Formgebung der pulverförmigen Aktiv- masse oder ihrer pulverförmigen, noch nicht calcinierten,Of course, the shape of the powdery active composition or its powdery, not yet calcined,
Vorläufermasse auch durch Aufbringen auf vorgeformte inerte Katalysatorträger erfolgen. Die Beschichtung der Trägerkörper zur Herstellung der Schalenkatalysatoren wird in der Regel in einem geeigneten drehbaren Behälter ausgeführt, wie er z.B. aus der DE-A 2909671 oder aus der EP-A 293859 bekannt ist. Zweckmäßigerweise kann zur Beschichtung der Trägerkörper die aufzubringende Pulvermasse befeuchtet und nach dem Aufbringen, z.B. mittels heißer Luft, wieder getrocknet werden. Die Schichtdicke der auf den Trägerkörper aufgebrachten Pulvermasse wird zweckmäßigerweise im Bereich 50 bis 700 μm, bevorzugt im Bereich 150 bis 500 μm liegend, gewählt. Selbstredend kann die Schichtdicke auch 150 bis 250 μm betragen.Precursor mass can also be made by application to preformed inert catalyst supports. The coating of the carrier body for Production of the shell catalysts is generally carried out in a suitable rotatable container, as is known, for example, from DE-A 2909671 or from EP-A 293859. For coating the support bodies, the powder mass to be applied can expediently be moistened and dried again after application, for example by means of hot air. The layer thickness of the powder mass applied to the carrier body is expediently selected in the range from 50 to 700 μm, preferably in the range from 150 to 500 μm. Of course, the layer thickness can also be 150 to 250 μm.
Als Trägermaterialien können dabei übliche poröse oder unporöse Aluminiumoxide, Siliciumdioxid, Thoriumdioxid, Zirkondioxid, Si- liciumcarbid oder Silikate wie Magnesium- oder Aluminiumsilikat verwendet werden.Conventional porous or non-porous aluminum oxides, silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium or aluminum silicate can be used as carrier materials.
Die Trägerkörper können regelmäßig oder unregelmäßig geformt sein, wobei regelmäßig geformte Trägerkörper mit deutlich ausgebildeter Oberflächenrauhigkeit, z.B. Kugeln oder Hohlzylinder, bevorzugt werden. Geeignet ist die Verwendung von im wesentlichen unporösen, oberflächenrauhen, kugelförmigen Trägern aus Steatit, deren Durchmesser 1 bis 8 mm, bevorzugt 3 bis 5 mm beträgt.The carrier bodies can have a regular or irregular shape, with regularly shaped carrier bodies with a clearly formed surface roughness, e.g. Balls or hollow cylinders are preferred. It is suitable to use essentially non-porous, rough-surface, spherical supports made of steatite, the diameter of which is 1 to 8 mm, preferably 3 to 5 mm.
Bezüglich der Herstellung der Multimetalloxidmassen II gilt das für die Multimetalloxidmassen I gesagte. Allerdings beträgt die angewandte Calcinationstemperatur in der Regel 350 bis 650°C. Besonders bevorzugte Multimetalloxidmassen II sind die in der EP-B 575897 offenbarten Multimetalloxidmassen I, insbesondere deren bevorzugte Ausführungsvarianten. Sie sind dadurch charakte- risiert, daß zunächst aus Teilmengen der elementaren Konstituenten Multimetalloxide vorgebildet und im weiteren Herstellungsverlauf als Elementquelle eingesetzt werden.With regard to the production of the multimetal oxide compositions II, what has been said for the multimetal oxide compositions I applies. However, the calcination temperature used is usually 350 to 650 ° C. Particularly preferred multimetal oxide compositions II are the multimetal oxide compositions I disclosed in EP-B 575897, in particular their preferred embodiment variants. They are characterized in that multimetal oxides are initially formed from subsets of the elementary constituents and are used as an element source in the further course of production.
In anwendungstechnisch zweckmäßiger Weise erfolgt die Durchfüh- rung des erfindungsgemäßen Verfahrens in einem Zweizonenrohrbün- delreaktor. Eine bevorzugte Variante eines erfindungsgemäß einsetzbaren Zweizonenrohrbündelreaktors offenbart die DE-C 2830765. Aber auch die in der DE-C 2513405, der US-A 3147084, der DE-A 2201528 und der DE-A 2903582 offenbarten Zweizonenrohrbün- delreaktoren sind für eine Durchführung des erfindungsgemäßenThe process according to the invention is carried out in a manner which is expedient in terms of application technology in a two-zone tube bundle reactor. DE-C 2830765 discloses a preferred variant of a two-zone tube bundle reactor which can be used according to the invention. However, the two-zone tube bundle reactors disclosed in DE-C 2513405, US-A 3147084, DE-A 2201528 and DE-A 2903582 are also suitable for carrying out the according to the invention
Verfahrens geeignet. D.h., in einfachster Weise befindet sich der erfindungsgemäß zu verwendende Festbettkatalysator in den Metall - röhren eines Rohrbündelreaktors und um die Metallrohre werden zwei voneinander im wesentlichen räumlich getrennte Temperierme- dien, in der Regel Salzschmelzen, geführt. Der Rohrabschnitt, über den sich das jeweilige Salzbad erstreckt, repräsentiert erfindungsgemäß eine Reaktionszone. D.h., in einfachster Weise enthält jedes Reaktionsrohr des Rohrbündelreaktors die beiden erfindungsgemäß zu verwendenden Katalysatorschüttungen A, B (z.B. unmittelbar oder durch eine Inertschicht voneinander getrennt) aufeinanderfolgend angeordnet und ein Salzbad A umströmt den Ab- schnitt der Rohre in welchem sich die Katalysatorschüttung A befindet und ein Salzbad B umströmt den Abschnitt der Rohre in welchem sich die Katalysatorschüttung B befindet.Process suitable. In other words, the fixed bed catalyst to be used according to the invention is in the simplest way in the metal tubes of a tube bundle reactor and two temperature media, generally salt melts, which are essentially spatially separated from one another, are guided around the metal tubes. According to the invention, the tube section over which the respective salt bath extends represents a reaction zone. That is, in the simplest way each reaction tube of the tube bundle reactor contains the two catalyst beds A, B to be used according to the invention (for example, directly or separated by an inert layer) arranged in succession and a salt bath A flows around the section of the tubes in which the catalyst bed A is located and a salt bath B flows around the Section of the tubes in which the catalyst bed B is located.
Die beiden Salzbäder können relativ zur Strömungsrichtung des durch die Reaktionsrohre strömenden Reaktionsgasgemisches imThe two salt baths can in relative to the flow direction of the reaction gas mixture flowing through the reaction tubes
Gleichstrom oder im Gegenstrom durch den die Reaktionsrohre umgebenden Raum geführt werden. Selbstverständlich kann erfindungsgemäß auch in der Reaktionszone A eine Gleichströmung und in der Reaktionszone B eine Gegenströmung (oder umgekehrt) angewandt werden.Direct current or countercurrent through the space surrounding the reaction tubes. Of course, according to the invention, a cocurrent flow can also be used in reaction zone A and a counterflow (or vice versa) in reaction zone B.
Selbstverständlich kann man in allen vorgenannten Fallkonstellationen innerhalb der jeweiligen Reaktionszone der, relativ zu den Reaktionsrohren, erfolgenden Parallelströmung der Salzschmelze noch eine Querströmung überlagern, so daß die einzelne Reaktions - zone einem wie in der EP-A 700714 oder in der EP-A 700893 beschriebenen Rohrbündelreaktor entspricht und insgesamt im Längsschnitt durch das Kontaktrohrbündel ein mäanderförmiger Strömungsverlauf des Wärmeaustauschmittels resultiert.Of course, in all of the above-mentioned constellations, a transverse flow can be superimposed on the parallel flow of the molten salt relative to the reaction tubes, so that the individual reaction zone is as described in EP-A 700714 or in EP-A 700893 Corresponds to the tube bundle reactor and, overall, a longitudinal section through the contact tube bundle results in a meandering flow profile of the heat exchange medium.
Zweckmäßigerweise wird das Reaktionsgasausgangsgemisch der Katalysatorbeschickung auf die Reaktionstemperatur vorerwärmt zugeführt. Üblicherweise sind in solchen Rohrbündelreaktoren die Kon- taktrohre aus ferritischem Stahl gefertigt und weisen in typi- scher Weise eine Wanddicke von 1 bis 3 mm auf. Ihr Innendurchmesser beträgt in der Regel 20 bis 30 mm, häufig 22 bis 26 mm. Anwendungstechnisch zweckmäßig beläuft sich die im Rohrbündelbehälter untergebrachte Anzahl an Kontaktrohren auf wenigstens 5000, vorzugsweise auf wenigstens 10000. Häufig beträgt die Anzahl der im Reaktionsbehälter untergebrachten KontaktrohreThe reaction gas starting mixture is advantageously fed to the catalyst feed preheated to the reaction temperature. In such tube bundle reactors, the contact tubes are usually made of ferritic steel and typically have a wall thickness of 1 to 3 mm. Their inner diameter is usually 20 to 30 mm, often 22 to 26 mm. Appropriately from an application point of view, the number of contact tubes accommodated in the tube bundle container is at least 5,000, preferably at least 10,000. The number of contact tubes accommodated in the reaction container is often
15000 bis 30000. Rohrbündelreaktoren mit einer oberhalb von 40000 liegenden Anzahl an Kontaktrohren bilden eher die Ausnahme. Innerhalb des Behälters sind die Kontaktrohre im Normalfall homogen verteilt angeordnet, wobei die Verteilung zweckmäßig so gewählt wird, daß der Abstand der zentrischen Innenachsen von zueinander nächstliegenden Kontaktrohren (die sogenannte Kontaktrohrteilung) 35 bis 45 mm beträgt (vgl. z.B. EP-B 468290).15,000 to 30,000. Tube bundle reactors with a number of contact tubes above 40,000 are rather the exception. The contact tubes are normally arranged homogeneously distributed within the container, the distribution being expediently chosen such that the distance between the central inner axes from the closest contact tubes (the so-called contact tube division) is 35 to 45 mm (cf. e.g. EP-B 468290).
Als Wärmeaustauschmittel eignen sich insbesondere fluide Tempe- riermedien. Besonders günstig ist die Verwendung von Schmelzen von Salzen wie Kaliumnitrat, Kaliumnitrit, Natriumnitrit und/oder Natriumnitrat, oder von niedrig schmelzenden Metallen wie Natrium, Quecksilber sowie Legierungen verschiedener Metalle.Fluid temperature media are particularly suitable as the heat exchange medium. The use of melts of salts such as potassium nitrate, potassium nitrite, sodium nitrite and / or is particularly favorable Sodium nitrate, or of low-melting metals such as sodium, mercury and alloys of various metals.
In der Regel wird bei allen vorstehend erwähnten Konstellationen der Stromführung im Zweizonenrohrbündelreaktor die Fließgeschwindigkeit innerhalb der beiden erforderlichen Wärmeaustauschmittel - kreisläufen so gewählt, daß die Temperatur des Wärmeaustauschmittels von der Eintrittsstelle in die Reaktionszone bis zur Austrittstelle aus der Reaktionszone um 0 bis 15°C anteigt. D.h., das vorgenannte ΔT kann erfindungsgemäß 1 bis 10°C oder 2 bis 8°C oder 3 bis 6°C betragen.As a rule, in all of the above-mentioned constellations of current flow in the two-zone tube bundle reactor, the flow rate within the two required heat exchange medium circuits is selected such that the temperature of the heat exchange medium increases from 0 to 15 ° C. from the entry point into the reaction zone to the exit point from the reaction zone. That is, the aforementioned ΔT can be 1 to 10 ° C or 2 to 8 ° C or 3 to 6 ° C according to the invention.
Die Eintrittstemperatur des Wärmeaustauschmittels in die Reaktionszone A beträgt erfindungsgemäß normalerweise 380 bis 480°C, häufig 400 bis 450°C.According to the invention, the entry temperature of the heat exchange medium into reaction zone A is normally 380 to 480 ° C., frequently 400 to 450 ° C.
Die Eintrittstemperatur des Wärmeaustauschmittels in die Reaktionszone B beträgt erfindungsgemäß normalerweise einerseits > 300°C und liegt andererseits normalerweise wenigstens 20°C unter- halb der Eintrittstemperatur des in die Reaktionszone A eintretenden Wärmeaustauschmittels. Bevorzugt liegt die Eintrittstemperatur des Wärmeaustauschmittels in die Reaktionszone B erfindungsgemäß wenigstens 40°C unterhalb der Eintrittstemperatur des in die Reaktionszone A eintretenden Wärmeaustauschmittels. Mit Vorteil beträgt die Eintrittstemperatur des Wärmeaustauschmittels in die Reaktionszone B erfindungsgemäß 320 bis 380°C und besonders bevorzugt 330 bis 370°C.According to the invention, the entry temperature of the heat exchange medium into reaction zone B is normally on the one hand> 300 ° C. and on the other hand is normally at least 20 ° C. below the entry temperature of the heat exchange medium entering reaction zone A. According to the invention, the entry temperature of the heat exchange medium into reaction zone B is preferably at least 40 ° C. below the entry temperature of the heat exchange medium entering reaction zone A. According to the invention, the entry temperature of the heat exchange medium into reaction zone B is advantageously from 320 to 380 ° C. and particularly preferably from 330 to 370 ° C.
Selbstverständlich können beim erfindungsgemäßen Verfahren die beiden Reaktionszonen A, B auch in räumlich voneinander getrennten Rohrbündelreaktoren realisiert sein. Bei Bedarf kann zwischen den beiden Reaktionszonen auch ein Zwischenkühler (der mit Inert - material beschickt sein kann) angebracht werden. Selbstredend können die beiden Reaktionszonen A, B auch als Wirbelbett gestal- tet werden.Of course, in the process according to the invention, the two reaction zones A, B can also be implemented in spatially separated tube bundle reactors. If necessary, an intercooler (which can be filled with inert material) can be installed between the two reaction zones. It goes without saying that the two reaction zones A, B can also be designed as a fluidized bed.
Der Arbeitsdruck beträgt beim erfindungsgemäßen Verfahren im allgemeinen > 0,5 bar. Im Regelfall wird der Reaktionsdruck 100 bar nicht überschreiten, d.h. 0,5 bis 100 bar betragen. Zweckmäßig beträgt der Reaktionsdruck häufig > 1 bis 50 bzw. > 1 bis 20 bar. Bevorzugt liegt der Reaktionsdruck bei > 1,25 bzw. > 1,5 oder > 1,75 bzw. > 2 bar. Häufig wird dabei die Obergrenze von 10 bar bzw. 20 bar nicht überschritten. Vielfach wird der Reaktionsdruck 3 bis 4 bar betragen. Selbstverständlich kann der Reaktionsdruck auch 1 bar betragen (vorstehende Aussagen bezüglich des Reaktionsdruckes gelten für das erfindungsgemäße Verfahren ganz generell) .The working pressure in the process according to the invention is generally> 0.5 bar. As a rule, the reaction pressure will not exceed 100 bar, ie 0.5 to 100 bar. The reaction pressure is expediently often> 1 to 50 or> 1 to 20 bar. The reaction pressure is preferably> 1.25 or> 1.5 or> 1.75 or> 2 bar. Often the upper limit of 10 bar or 20 bar is not exceeded. In many cases the reaction pressure will be 3 to 4 bar. Of course, the reaction pressure can also be 1 bar (the above statements regarding the reaction pressure apply in general to the process according to the invention).
Ferner wird die Belastung mit Vorteil so gewählt, daß die Verweilzeit des Reaktionsgasgemisches über die beiden Katalysatorschüttungen 0,5 bis 20 sec. , bevorzugt 1 bis 10 sec, besonders bevorzugt 1 bis 4 sec. und häufig 3 sec. beträgt.Furthermore, the loading is advantageously chosen so that the residence time of the reaction gas mixture over the two catalyst beds is 0.5 to 20 seconds, preferably 1 to 10 seconds, particularly preferably 1 to 4 seconds and often 3 seconds.
Das Verhältnis der Schüttvolumina der beiden Katalysatorschüttungen A, B beträgt erfindungsgemäß vorteilhaft 1 : 10 bis 10 : 1, vorzugsweise 1 : 5 bis 5 : 1 und besonders bevorzugt 1 : 2 bis 2 : 1, häufig 1 : 1.According to the invention, the ratio of the bulk volumes of the two catalyst beds A, B is advantageously 1:10 to 10: 1, preferably 1: 5 to 5: 1 and particularly preferably 1: 2 to 2: 1, often 1: 1.
Im Produktgemisch des erfindungsgemäßen Verfahrens enthaltenes Propan und/oder Propen und/oder Inertgas kann abgetrennt und in die erfindungsgemäße Gasphasenoxidation rückgeführt werden. Ferner kann sich an das erfindungsgemäße Verfahren eine weitere heterogen katalysierte Oxidationsεtufe anschließen, wie sie für die heterogen katalysierte Gasphasenoxidation von Acrolein zu Acrylsäure bekannt sind (z.B. aus der EP-A 700893), in die das Produktgemisch des erfindungsgemäßen Verfahrens, gegebenenfalls unter Zusatz von weiterem molekularem Sauerstoff, überführt wird. Im Anschluß daran kann wiederum noch nicht umgesetztes Propan, Propen und/oder Acrolein und/oder Inertgas abgetrennt und in die Gasphasenoxidation rückgeführt werden. Als Sauerstoffquelle kommen für das erfindungsgemäße Verfahren generell sowohl Luft als auch an Stickstoff entreicherte Luft oder reiner Sauerstoff in Betracht.Propane and / or propene and / or inert gas contained in the product mixture of the process according to the invention can be separated off and recycled into the gas phase oxidation according to the invention. Furthermore, the process according to the invention can be followed by a further heterogeneously catalyzed oxidation stage, as are known for the heterogeneously catalyzed gas phase oxidation of acrolein to acrylic acid (for example from EP-A 700893), into which the product mixture of the process according to the invention, optionally with the addition of further molecular oxygen. Subsequently, unreacted propane, propene and / or acrolein and / or inert gas can again be separated off and recycled into the gas phase oxidation. Air as well as air depleted in nitrogen or pure oxygen are generally considered as oxygen sources for the process according to the invention.
Die Abtrennung des gebildeten Acrolein und/oder der gebildeten Acrylsäure aus den Produktgasgemischen kann in an sich bekannter Weise erfolgen. In der Regel beträgt der mit dem erfindungsgemäßen Verfahren erzielte Propanumsatz __ 5 mol-%, bzw. > 7,5 mol-%. Normalerweise werden jedoch keine Propanumsätze > 20 mol-% erzielt. Das erfindungsgemäße Verfahren eignet sich insbesondere für eine kontinuierliche Durchführung. Bei Bedarf kann auf der Höhe der Katalysatorschüttung B noch zusätzlicher molekularer Sauerstoff zugedüst werden. Im übrigen sind in dieser Schrift Um- satz, Selektivität und Verweilzeit, falls nichts anderes erwähnt wird, wie folgt definiert: Molzahl umgesetztes PropanThe acrolein and / or the acrylic acid formed can be separated off from the product gas mixtures in a manner known per se. As a rule, the propane conversion achieved with the process according to the invention is __ 5 mol% or> 7.5 mol%. However, normally no propane conversions> 20 mol% are achieved. The method according to the invention is particularly suitable for continuous implementation. If necessary, additional molecular oxygen can be injected at the level of the catalyst bed B. Otherwise, turnover, selectivity and retention time, unless otherwise stated, are defined in this document as follows: Mole number of propane converted
Umsatz an Propan (mol-%) : x lOO Molzahl eingesetztes PropanTurnover of propane (mol%) : x 100 mol number of propane used
Molzahl Propan umgesetzt zuMole number of propane converted to
Selektivität S der Acrolein- und/oder Acrolein und/oder Acrylsäure x lOO Acrylsäurebildung (mol-%) Molzahl umgesetztes PropanSelectivity S of acrolein and / or acrolein and / or acrylic acid x 100 acrylic acid formation (mol%) mole number of converted propane
1010
mit Katalysator gefülltes Leervolumen des Reaktors (1)Empty volume of the reactor filled with catalyst (1)
Verweilzeit (sec.) = x3600Dwell time (sec.) = X3600
15 durchgesetzte Menge Reaktionsgasausgangsgemisch (1)15 enforced amount of reaction gas starting mixture (1)
BeispieleExamples
Beispiel IExample I
2020th
A) Herstellung einer Multimetalloxidmasse IA) Production of a multimetal oxide mass I
In 3,6 kg Wasser wurden bei 45°C 876,9 g Ammoniumheptamolybdat (81,5 Gew. -% Mo03) gelöst und zu der resultierenden Lösung876.9 g of ammonium heptamolybdate (81.5% by weight of MoO 3 ) were dissolved in 3.6 kg of water at 45 ° C. and the resulting solution
25 2245,2 g wäßrige Cobaltnitratlösung (auf die Lösung bezogen 12,4 Gew. -% Co) zugegeben. Die entstandene klare rote Lösung wurde in einem Sprühtrockner der Fa. Niro bei einer Eingangstemperatur von 340°C und einer Ausgangstemperatur von 105°C sprühgetrocknet (A/S Niro Atomizer transportable Minor -Anlage) . 1,43 kg25 2245.2 g of aqueous cobalt nitrate solution (based on the solution, 12.4% by weight of Co) were added. The resulting clear red solution was spray-dried in a spray dryer from Niro at an inlet temperature of 340 ° C. and an outlet temperature of 105 ° C. (A / S Niro Atomizer transportable minor system). 1.43 kg
30 des erhaltenen, NHN03-haltigen, Sprühpulvers wurden wie folgt in einem luftdurchströmten Muffelofen (60 1 Innenvolumen, Luftdurchsatz 500 1/h) zersetzt:30 of the NHN0 3 -containing spray powder obtained were decomposed as follows in a muffle furnace through which air flows (60 1 internal volume, air throughput 500 1 / h):
Zunächst wurde mit einer Aufheizrate von 75°C/h von Raumtemperatur 35 (25°C) auf 175°C aufgeheizt. Anschließend wurde die Temperatur von 175°C während 1 h aufrechterhalten und danach wurde die Temperatur mit einer Aufheizrate von 40°C/h von 175°C auf 185°C erhöht. Diese Temperatur wurde anschließend während 3 h aufrechterhalten. Danach wurde die Temperatur mit einer Aufheizrate von 38°C/h auf 40 300°C erhöht und für 2 h aufrechterhalten.First, the heating was carried out at a heating rate of 75 ° C./h from room temperature 35 (25 ° C.) to 175 ° C. The temperature was then maintained at 175 ° C. for 1 h and then the temperature was increased from 175 ° C. to 185 ° C. at a heating rate of 40 ° C./h. This temperature was then maintained for 3 hours. The temperature was then increased to 40,300 ° C. at a heating rate of 38 ° C./h and maintained for 2 h.
Die so erhaltene Vorläufermasse wurde mit, bezogen auf ihr Gewicht, 3 Gew. -% Graphit versetzt und zu Vollkatalysatorzylindern der Geometrie 5 mm x 3 mm (Außendurchmesser x Höhe) mit einer 45 Seitendruckfestigkeit von 90,7 N verarbeitet (Pressdruck: 8600 N; Rundläufer Tablettier-Maschine, Fa. Hörn, Typ RP/16H) . 580 g dieser Vollzylindertabletten wurden in einem luftdurchströmten Muffelofen (60 1 Innenvolumen, Luftdurchsatz 500 1/h) wie folgt calciniert:The precursor mass obtained in this way was admixed with 3% by weight of graphite, based on its weight, and processed into fully catalytic converter cylinders of geometry 5 mm × 3 mm (outside diameter × height) with a side pressure resistance of 90.7 N (pressing pressure: 8600 N; Rotary tableting machine, Hörn company, type RP / 16H). 580 g of these full-cylinder tablets were calcined in an air-flowed muffle furnace (60 l internal volume, air flow 500 l / h) as follows:
Mit einer Aufheizrate von 87,5°C/h wurde zunächst von Raumtemperatur (25°C) auf 550°C aufgeheizt. Diese Temperatur wurde anschließend während 6 h aufrechterhalten. Die Seitendruckfestigkeit der calcinierten Multimetalloxidvollzylinder betrug 105,9 N. Sie wurden zerkleinert und als katalytisch aktive Multimetalloxidmasse I der Stöchiometrie Cθo/95MoOx die Kornfraktion mit einem Korngrößt - durchmesser von 0,6 bis 1,2 mm durch Sieben abgetrennt. Der mittlere Durchmesser der Poren der Aktivmasse betrug 30 nm und die spezifische Oberfläche betrug 13,2 m2/g.With a heating rate of 87.5 ° C / h the mixture was first heated from room temperature (25 ° C) to 550 ° C. This temperature was then maintained for 6 hours. The lateral compressive strength of the calcined multimetal oxide full cylinders was 105.9 N. They were comminuted and, as a catalytically active multimetal oxide mass I of stoichiometry Cθo / 95 MoO x, the grain fraction with a grain size diameter of 0.6 to 1.2 mm was separated off by sieving. The average diameter of the pores of the active composition was 30 nm and the specific surface area was 13.2 m 2 / g.
B) Herstellung einer Multimetalloxidmasse IIB) Production of a multimetal oxide mass II
1. Herstellung einer Ausgangsmasse 11. Production of a starting mass 1
In 775 kg einer wäßrigen salpetersauren Wismutnitratlösung (11,2 Gew.-% Bi, freie Salpetersäure 3 bis 5 Gew.-%; Massendichte: 1,22 bis 1,27 g/ml) wurden bei 25°C portionsweise 209,3 kg Wolframsäure (72,94 Gew. -% W) eingerührt. Das resultierende wäßrige Gemisch wurde anschließend noch 2 h bei 25°C gerührt und anschließend sprühgetrocknet.209.3 kg were added in portions at 25 ° C. to 775 kg of an aqueous bismuth nitrate solution (11.2% by weight Bi, free nitric acid 3 to 5% by weight; mass density: 1.22 to 1.27 g / ml) Tungsten acid (72.94 wt.% W) stirred in. The resulting aqueous mixture was then stirred for a further 2 hours at 25 ° C. and then spray-dried.
Die Sprühtrocknung erfolgte in einem Drehscheibensprühturm im Ge- genstrom bei einer Gaseintrittstemperatur von 300 ά: 10°C und einer Gasaustrittstemperatur von 100 zh 10°C. Das erhaltene Sprühpulver wurde anschließend bei einer Temperatur im Bereich von 780 bis 810°C calciniert (im luftdurchströmten Drehrohrofen (1,54 m3 Innenvolumen, 200 Nm3 Luft/h) ) . Wesentlich bei der genauen Einstellung der Calcinationstemperatur ist, daß sie an der angestrebten Phasenzusammensetzung des Calcinationsprodukts orientiert zu erfolgen hat. Gewünscht sind die Phasen W03 (monoklin) und Bi2W209, unerwünscht ist das Vorhandensein von γ-Bi2W06 (Russel- lit) . Sollte daher nach der Calcination die Verbindung γ-Bi2W06 anhand eines Reflexes im Pulverröntgendiffraktogramm bei einem Reflexwinkel von 2© = 28,4° (CuK - Strahlung) noch nachweisbar sein, so ist die Präparation zu wiederholen und die Calcinations- temperatur innerhalb des angegebenen Temperaturbereichs zu erhöhen, bis das Verschwinden des Reflexes erreicht wird. Das so erhaltene vorgebildete calcinierte Mischoxid wurde gemahlen, so daß der X50-Wert (vgl. Ulimann' s Encyclopedia of Industrial Chemistry, 6th Edition (1998) Electronic Release, Kapitel 3.1.4 oder DIN 66141) der resultierenden Körnung 5 μm betrug. Das Mahlgut wurde dann mit 1 Gew. -% (bezogen auf das Mahlgut) fein- teiligem Si02 (Rüttelgewicht 150 g/1; X50-Wert der Si02-Partikel betrug 10 μm, die BET-Oberflache betrug 100 m2/g) gemischt.The spray drying took place in a counter-rotating spray tower at a gas inlet temperature of 300 ά: 10 ° C and a gas outlet temperature of 100 zh 10 ° C. The spray powder obtained was then calcined at a temperature in the range from 780 to 810 ° C. (in a rotary kiln through which air flows (1.54 m 3 internal volume, 200 Nm 3 air / h)). It is essential for the exact setting of the calcination temperature that it has to be based on the desired phase composition of the calcination product. The phases W0 3 (monoclinic) and Bi 2 W 2 0 9 are desired, the presence of γ-Bi 2 W0 6 (Russelite) is undesirable. If the compound γ-Bi 2 W0 6 can therefore still be detected after the calcination using a reflection in the powder X-ray diffractogram at a reflection angle of 2 © = 28.4 ° (CuK radiation), the preparation must be repeated and the calcination temperature within the specified temperature range until the reflex disappears. The preformed calcined mixed oxide thus obtained was ground so that the X 50 value (see FIG. Ullmann's Encyclopedia of Industrial Chemistry, 6 th Edition (1998), Electronic Release, Chapter 3.1.4 or DIN 66141) was the resulting particle size 5 .mu.m . The millbase was then finely ground with 1% by weight (based on the millbase). Partial Si0 2 (vibrating weight 150 g / 1; X 50 value of the Si0 2 particles was 10 μm, the BET surface area was 100 m 2 / g).
2. Herstellung einer Ausgangsmasse 22. Production of a starting mass 2
Eine Lösung A wurde hergestellt indem man bei 60°C unter Rühren in 600 1 Wasser 213 kg Ammoniumheptamolybdat löste und die resultierende Lösung unter Aufrechterhaltung der 60°C und Rühren mit 0,97 kg einer 20°C aufweisenden wäßrigen Kaliumhydroxidlösung (46,8 Gew. -% KOH) versetzte.A solution A was prepared by dissolving 213 kg of ammonium heptamolybdate in 600 l of water at 60 ° C. while stirring and the resulting solution while maintaining the 60 ° C. and stirring with 0.97 kg of an aqueous potassium hydroxide solution (46.8% by weight) at 20 ° C. . -% KOH) added.
Eine Lösung B wurde hergestellt indem man bei 60°C in 262,9 kg einer wäßrigen Cobaltnitratlösung (12,4 Gew. -% Co) 116,25 kg einer wäßrigen Eisennitratlösung (14,2 Gew. -% Fe) eintrug. An- schließend wurde unter Aufrechterhaltung der 60°C die Lösung B über einen Zeitraum von 30 Minuten kontinuierlich in die vorgelegte Lösung A gepumpt. Anschließend wurde 15 Minuten bei 60°C gerührt. Dann wurden dem resultierenden wäßrigen Gemisch 19,16 kg eines Kieselgels (46,80 Gew. -% Si02, Dichte: 1,36 bis 1,42 g/ml, pH 8,5 bis 9,5, Alkaligehalt max. 0,5 Gew. -%) zugegeben und danach noch weitere 15 Minuten bei 60°C gerührt.A solution B was prepared by entering 116.25 kg of an aqueous iron nitrate solution (14.2% by weight of Fe) at 60 ° C. in 262.9 kg of an aqueous cobalt nitrate solution (12.4% by weight of Co). Solution B was then pumped continuously into solution A over a period of 30 minutes while maintaining the 60 ° C. The mixture was then stirred at 60 ° C for 15 minutes. Then the resulting aqueous mixture was 19.16 kg of a silica gel (46.80% by weight Si0 2 , density: 1.36 to 1.42 g / ml, pH 8.5 to 9.5, alkali content max. 0, 5% by weight) and then stirred for a further 15 minutes at 60 ° C.
Anschließend wurde in einem Drehscheibensprühturm im Gegenstrom sprühgetrocknet (Gaseintrittstemperatur: 400zh 10°C, Gasaustritts - temperatur: 140± 5°C) . Das resultierende Sprühpulver wies einen Glühverlust von ca. 30 Gew.-% auf (3 h bei 600°C glühen).Subsequently, spray drying was carried out in counter-current in a turntable spray tower (gas inlet temperature: 400zh 10 ° C, gas outlet temperature: 140 ± 5 ° C). The resulting spray powder had a loss on ignition of approximately 30% by weight (3 hours at 600 ° C.).
3. Herstellung der Multimetalloxidaktivmasse II3. Production of the multimetal oxide active composition II
Die Ausgangsmasse 1 wurde mit der Ausgangsmasse 2 in der für eine Multimetalloxidaktivmasse der StöchiometrieThe starting mass 1 was compared with the starting mass 2 for a multimetal oxide active mass of stoichiometry
[B i2W209 2W03] 0 , 5 [Mθi25 5Fe2 , 9 S iι / 59 Ko , θ 8θx] l [B i 2 W 2 0 9 2W0 3 ] 0 , 5 [Mθi 25 5 Fe 2 , 9 S iι / 59 Ko, θ 8 θ x ] l
erforderlichen Menge homogen vermischt. Bezogen auf die vorgenannte Gesamtmasse wurden zusätzlich 1,5 Gew. -% feinteiliges Graphit (Siebanalyse: min. 50 Gew.-% < 24 μm, max. 10 Gew. -% > 24 μm und < 48 μm, max. 5 Gew. -% > 48 μm, BET-Oberflache: 6 bis 13 m2/g) homogen eingemischt. Das resultierende Trockengemisch wurde zu Hohlzylindern mit 3 mm Länge, 5 mm Außendurchmesser und 1,5 mm Wandstärke verpreßt und anschließend wie folgt thermisch behandelt.required amount homogeneously mixed. Based on the aforementioned total mass, an additional 1.5% by weight of finely divided graphite (sieve analysis: min. 50% by weight <24 μm, max. 10% by weight> 24 μm and <48 μm, max. 5% by weight) was used. -%> 48 μm, BET surface area: 6 to 13 m 2 / g) homogeneously mixed. The resulting dry mixture was pressed into hollow cylinders with a length of 3 mm, an outer diameter of 5 mm and a wall thickness of 1.5 mm and then thermally treated as follows.
Im Luft durchströmten Muffelofen (60 1 Innenvolumen, 1 1/h Luft pro Gramm Aktivmassevorläufermasse) wurde mit einer Aufheizrate von 180°C/h zunächst von Raumtemperatur (25°C) auf 190°C aufgeheizt. Diese Temperatur wurde für 1 h aufrechterhalten und dann mit einer Aufheizrate von 60°C/h auf 210°C erhöht. Die 210°C wurden wiederum während 1 h aufrechterhalten, bevor sie mit einer Aufheizrate von 60°C/h, auf 230°C erhöht wurde. Diese Temperatur wurde ebenfalls 1 h aufrechterhalten bevor sie, wiederum mit einer Aufheizrate von 60°C/h, auf 265°C erhöht wurde. Die 265°C wurden anschließend ebenfalls während 1 h aufrechterhalten. Danach wurde zunächst auf Raumtemperatur abgekühlt und damit die Zersetzungsphase im wesentlichen abgeschlossen. Dann wurde mit einer Aufheizrate von 180°C/h auf 465°C erhitzt und diese Calcina- tionstemperatur während 4 h aufrechterhalten.Muffle furnace with air flowing through it (60 l internal volume, 1 l / h air per gram of active mass precursor mass) was first heated from room temperature (25 ° C) to 190 ° C at a heating rate of 180 ° C / h. This temperature was maintained for 1 h and then increased to 210 ° C with a heating rate of 60 ° C / h. The 210 ° C was again maintained for 1 h before it was increased to 230 ° C at a heating rate of 60 ° C / h. This temperature was also maintained for 1 hour before it was increased again to 265 ° C. at a heating rate of 60 ° C./h. The 265 ° C was then also maintained for 1 h. Thereafter, the mixture was first cooled to room temperature, essentially completing the decomposition phase. The mixture was then heated to 465 ° C. at a heating rate of 180 ° C./h and this calcination temperature was maintained for 4 hours.
200 g der resultierenden Aktivmasse wurden zerkleinert und die Kornfraktion 0,6 bis 1,2 mm als Multimetalloxidaktivmasse II ausgesiebt.200 g of the resulting active mass were comminuted and the grain fraction 0.6 to 1.2 mm was screened out as multimetal oxide active mass II.
C) Gasphasenkatalytische Oxidation von PropanC) Gas phase catalytic oxidation of propane
Ein Reaktionsrohr (V2A Stahl; 2 , 5 cm Wandstärke; 8,5 mm Innendurchmesser; elektrisch abschnittsweise beheizbar) der Länge 1,4 m wird von unten nach oben auf einem Kontaktstuhl zunächst auf einer Länge von 48,7 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) und anschließend auf einer Länge von 21,3 cm mit der Multimetalloxidaktivmasse II sowie daran anschließend auf einer Länge von 21,3 cm mit der Multimetalloxidak- tivmasse I beschickt, bevor die Beschickung auf einer Länge von 48,7 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) abgeschlossen wird (der Quarzsplitt verhält sich im wesentlichen inert und dient z.B. dazu, das Reaktionsgasausgangsgemisch auf die Reaktionstemperatur zu erwärmen) . Das wie vorstehend be- schickte Reaktionsrohr wird mit einer einen Druck von 2,7 bar aufweisenden Reaktionsgasausgangsmischung aus 80 Vol.-% Propan und 20 % Vol.-% Sauerstoff von oben nach unten beschickt. Die Verweilzeit wird auf 1,8 s eingestellt. Der Druckverlust über das Reaktionsrohr beträgt 0,2 bar.A reaction tube (V2A steel; 2.5 cm wall thickness; 8.5 mm inner diameter; electrically heatable in sections) with a length of 1.4 m is placed from bottom to top on a contact chair initially over a length of 48.7 cm with quartz chips (number-average large diameter 1 to 2 mm) and then loaded with the multimetal oxide active composition II over a length of 21.3 cm and then with the multimetal oxide active composition I over a length of 21.3 cm before the loading over a length of 48.7 cm with Quartz grit (number-average large diameter 1 to 2 mm) is completed (the quartz grit is essentially inert and serves, for example, to heat the reaction gas starting mixture to the reaction temperature). The reaction tube charged as above is charged with a reaction gas starting mixture having a pressure of 2.7 bar and consisting of 80 vol.% Propane and 20% vol.% Oxygen from top to bottom. The dwell time is set to 1.8 s. The pressure loss across the reaction tube is 0.2 bar.
In zwei Versuchen (i) , (ii) wird die Temperatur des Reaktionsrohres mittels hohlzylindrischer, mit dem Reaktionsrohr in Kontakt befindlicher, elektrisch beheizter Aluminiumblöcke wie folgt eingestellt:In two experiments (i), (ii), the temperature of the reaction tube is set as follows by means of hollow cylindrical, electrically heated aluminum blocks in contact with the reaction tube:
(i) : über das gesamte Kontaktrohr 404°C;(i): over the entire contact tube 404 ° C;
(ii) : in Strömungsrichtung auf einer Reaktionsrohrlänge von 70 cm zunächst 405°C, danach bis zum Kontaktrohrende 365°C; Bei einfachem Durchgang werden Produktgasgemische erhalten, die die nachfolgende Charakteristik aufweisen (Analyse mittels Gaschromatographie) :(ii): in the direction of flow on a reaction tube length of 70 cm first 405 ° C, then up to the contact tube end 365 ° C; In a single pass, product gas mixtures are obtained which have the following characteristics (analysis using gas chromatography):
Fall (i): Propanumsatz: 9,1 mol-%Case (i): propane conversion: 9.1 mol%
Selektivität der Acroleinbildung: 60 mol-% Selektivität der Acrylsäurebildung: 11 mol-% Summe = 71 mol-% Selektivität der Propenbildung: 5,5 mol-%Selectivity of acrolein formation: 60 mol% selectivity of acrylic acid formation: 11 mol% total = 71 mol% selectivity of propene formation: 5.5 mol%
Fall (ii): Propattumsatz: 9,0 mol-%Case (ii): Propatt conversion: 9.0 mol%
Selektivität der Acroleinbildung: 67 mol-% Selektivität der Acrylsäurebildung: 8,9 mol-% Summe = 75,9 mol-% Selektivität der Propenbildung: 3J mol-%Selectivity of acrolein formation: 67 mol% selectivity of acrylic acid formation: 8.9 mol% total = 75.9 mol% selectivity of propene formation: 3J mol%
Ein Vergleich der Ausführungsvarianten (i) , (ii) weist die Überlegenheit der erfindungsgemäßen Verfahrensweise hinsichtlich der Wertproduktbildung aus.A comparison of the design variants (i), (ii) shows the superiority of the procedure according to the invention with regard to the formation of valuable products.
Beispiel IIExample II
A) Herstellung der Multimetalloxidmasen I und IIA) Production of the multimetal oxide masks I and II
Es wurden dieselben Multimetalloxidmassen I und II wie in Bei- spiel I verwendet.The same multimetal oxide masses I and II were used as in example I.
B) Gasphasenkatalytische Oxidation von PropanB) Gas phase catalytic oxidation of propane
Ein Reaktionsrohr (V2A Stahl; 2,5 cm Wandstärke; 8,5 mm Innen- durchmesser; elektrisch abschnittsweise beheizbar) der Länge 1,4 m wurde von unten nach oben auf einem Kontaktstuhl zunächst auf einer Länge von 35 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) und anschließend auf einer Länge von 21,3 cm mit der Multimetalloxidaktivmasse II sowie daran an- schließend zunächst auf einer Länge von 19 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) und dann auf einer Länge von 21,3 cm mit der Multimetalloxidaktivmasse I beschickt, bevor die Beschickung auf einer Länge von 43,4 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) abgeschlossen wurde (der Quarzsplitt verhält sich im wesentlichen inert und dient z.B. dazu, das Reaktionsgasausgangsgemisch auf die Reaktionstemperatur zu erwärmen) . Das wie vorstehend beschickte Reaktionsrohr wurde mit einer einen Druck von 2,7 bar aufweisenden Reaktions - gasausgangsmischung aus 80 Vol.-% Propan und 20 % Vol.-% Sauer- Stoff von oben nach unten beschickt. Die Verweilzeit wurde auf 1,8 s eingestellt. Der Druckverlust über das Reaktionsrohr betrug 0,2 bar.A reaction tube (V2A steel; 2.5 cm wall thickness; 8.5 mm inner diameter; electrically heatable in sections) with a length of 1.4 m was first built from bottom to top on a contact chair over a length of 35 cm with quartz chips (number-average large diameter 1 to 2 mm) and then over a length of 21.3 cm with the multimetal oxide active material II and then afterwards over a length of 19 cm with quartz chips (number-average large diameter 1 to 2 mm) and then over a length of 21.3 cm charged with the multimetal oxide active material I before the loading was completed over a length of 43.4 cm with quartz chips (number-average large diameter 1 to 2 mm) (the quartz chips are essentially inert and serve, for example, to heat the reaction gas starting mixture to the reaction temperature ). The reaction tube charged as above was charged with a reaction gas starting mixture having a pressure of 2.7 bar and consisting of 80 vol.% Propane and 20% vol.% Oxygen from top to bottom. The dwell time was on 1.8 s set. The pressure drop across the reaction tube was 0.2 bar.
Die Temperatur des Reaktionsrohres wurde mittels hohlzylin- drischer, mit dem Reaktionsrohr in Kontakt befindlicher, elektrisch beheizter Aluminiumblöcke wie folgt eingestellt:The temperature of the reaction tube was set as follows by means of hollow cylindrical, electrically heated aluminum blocks in contact with the reaction tube:
in Strömungsrichtung auf einer Reaktionsrohrlänge von 70 cm zunächst 405°C, danach bis zum Kontaktrohrende 365°C.in the direction of flow on a reaction tube length of 70 cm first 405 ° C, then up to the contact tube end 365 ° C.
Bei einfachem Durchgang wurden Produktgasgemische erhalten, die die nachfolgende Charakteristik aufwiesen (Analyse mittels Gaschromatographie) : In a single pass, product gas mixtures were obtained which had the following characteristics (analysis using gas chromatography):
Propanumsatz: 8,7 mol-% %.Propane conversion: 8.7 mol%%.
Selektivität der Acroleinbildung: 69 mol-% r _Selectivity of acrolein formation: 69 mol% r _
Selektivität der Acrylsäurebildung: 8,5 mol-% Summe - 77,5 mol- /_ Selektivität der Propenbildung: 2,5 mol-% Selectivity of acrylic acid formation: 8.5 mol% total - 77.5 mol- / _ selectivity of propene formation: 2.5 mol%

Claims

Patentansprüche claims
1. Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure, bei dem man ein > 50 Vol.-% Propan, > 10 Vol.-% 02 und 0 bis 40 Vol.-% Inertgas enthaltendes Reaktionsgasausgangsgemisch bei erhöhter Temperatur über einen Festbettkatalysator führt, der aus in zwei räumlich aufeinanderfolgenden Reaktionszonen A, B angeordneten Katalysatorschüttungen A, B besteht, wobei die Aktivmasse der in der Reaktionszone A befindlichen Katalysatorschüttung A wenigstens ein Multimetalloxid der allgemeinen Formel I1. Process of heterogeneously catalyzed gas phase oxidation of propane to acrolein and / or acrylic acid, in which a reaction gas starting mixture containing> 50 vol.% Propane,> 10 vol.% 0 2 and 0 to 40 vol.% Inert gas at elevated temperature leads over a fixed bed catalyst which consists of catalyst beds A, B arranged in two spatially successive reaction zones A, B, the active composition of the catalyst bed A located in reaction zone A at least one multimetal oxide of the general formula I
Ml aMθι-bM2 bOx (I),M l a Mθι -b M 2 b O x (I),
mitWith
M1 =Co, Ni, Mg, Zn, Mn und/oder Cu,M 1 = Co, Ni, Mg, Zn, Mn and / or Cu,
M2 =W, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn und/oder La, a = 0,5 bis 1,5, b = 0 bis 0,5 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I bestimmt wird,M 2 = W, V, Te, Nb, P, Cr, Fe, Sb, Ce, Sn and / or La, a = 0.5 to 1.5, b = 0 to 0.5 and x = a number, which is determined by the valency and frequency of the elements in I other than oxygen,
und die Aktivmasse der in der Reaktionszone B befindlichen Katalysatorschüttung B wenigstens ein Multimetalloxid der allgemeinen Formel IIand the active composition of the catalyst bed B located in the reaction zone B is at least one multimetal oxide of the general formula II
Bia'Mθb'X1c'X2d'X3e'X4 f'X5g'X6 h'0:x' (II)Bi a ' Mθb ' X 1 c'X 2 d ' X 3 e ' X 4 f ' X 5 g ' X 6 h ' 0 : x' (II)
mitWith
X1 =W, V und/oder Te,X 1 = W, V and / or Te,
X2 = Erdalkalimetall, Co, Ni, Zn, Mn, Cu, Cd, Sn und/oder Hg, X3 =Fe, Cr und/oder Ce,X 2 = alkaline earth metal, Co, Ni, Zn, Mn, Cu, Cd, Sn and / or Hg, X 3 = Fe, Cr and / or Ce,
X4 =P, As, Sb und/oder B,X 4 = P, As, Sb and / or B,
X5 = Alkalimetall, TI und/oder Sn,X 5 = alkali metal, TI and / or Sn,
X6 = seltenes Erdmetall, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI, Ga, In, Si, Ge, Th und/oder U, a' =0,01 bis 8, b' =0,1 bis 30,X 6 = rare earth metal, Ti, Zr, Nb, Ta, Re, Ru, Rh, Ag, Au, AI, Ga, In, Si, Ge, Th and / or U, a '= 0.01 to 8, b '= 0.1 to 30,
C =0 bis 20, d' =0 bis 20, e' =0 bis 20, f =0 bis 6, g' =0 bis 4, h' =0 bis 15, x' =eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt wird,C = 0 to 20, d '= 0 to 20, e' = 0 to 20, f = 0 to 6, g '= 0 to 4, h' = 0 to 15, x '= a number which is determined by the valency and frequency of the elements in II other than oxygen,
ist, und wobei das Reaktionsgasausgangsgemisch die Katalysatorschüttungen A, B in der Abfolge „erst A", „dann B", durchströmt, dadurch gekennzeichnet,and the reaction gas starting mixture flows through the catalyst beds A, B in the sequence “first A”, “then B”, characterized in that
daß die Temperatur der Reaktionszone A 380 bis 480°C beträgt und die Temperatur der Reaktionszone B einerseits > 300°C beträgt und andererseits wenigstens 20°C unterhalb der Temperatur der Reaktionszone A liegt.that the temperature of reaction zone A is 380 to 480 ° C and the temperature of reaction zone B is on the one hand> 300 ° C and on the other hand is at least 20 ° C below the temperature of reaction zone A.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur der Reaktionszone B wenigstens 40°C unterhalb der2. The method according to claim 1, characterized in that the temperature of the reaction zone B at least 40 ° C below the
Temperatur der Reaktionszone A liegt.Temperature of reaction zone A is.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Temperatur der Reaktionszone B 320 bis 380°C beträgt.3. The method according to claim 1 or claim 2, characterized in that the temperature of the reaction zone B is 320 to 380 ° C.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Reaktionsgasausgangsgemisch > 60 Vol.-% Propan enthält.4. The method according to any one of claims 1 to 3, characterized in that the reaction gas starting mixture contains> 60 vol .-% propane.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Reaktionsgasausgangsgemisch > 20 Vol.-% 02 enthält.5. The method according to any one of claims 1 to 4, characterized in that the reaction gas starting mixture contains> 20 vol .-% 0 2 .
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß M1 = Co und/oder Ni, M2 = W, Sn und/oder Sb, a = 0,9 bis 1,0 und b = 0,01 bis 0,3.6. The method according to any one of claims 1 to 5, characterized in that M 1 = Co and / or Ni, M 2 = W, Sn and / or Sb, a = 0.9 to 1.0 and b = 0.01 up to 0.3.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekenn- zeichnet, daß X1 = W und/oder V, X2 = Co, Ni und/oder Zn, X3 =7. The method according to any one of claims 1 to 6, characterized in that X 1 = W and / or V, X 2 = Co, Ni and / or Zn, X 3 =
Fe und/oder Cr, X4 = P und/oder Sb, X5 = K und/oder Na, X6 = Si, Zr, AI, Ag, Nb und/oder Ti, a' = 0,5 bis 2 und b' = 0,1 bis 30, C = 0,5 bis 3, d' = 3 bis 10, e' = 1 bis 7, f = 0 bis 1, g' = 0,01 bis 1 und h' = 1 bis 15.Fe and / or Cr, X 4 = P and / or Sb, X 5 = K and / or Na, X 6 = Si, Zr, Al, Ag, Nb and / or Ti, a '= 0.5 to 2 and b '= 0.1 to 30, C = 0.5 to 3, d' = 3 to 10, e '= 1 to 7, f = 0 to 1, g' = 0.01 to 1 and h '= 1 to 15.
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das wenigstens eine Multimetalloxid I ein sol-' ches der allgemeinen Formel I"8. The method according to any one of claims 1 to 6, characterized in that the at least one multimetal oxide I is such a ' ches of the general formula I "
[Co u./o. Νi]a MOi-b [W, Sn u . /o . Sb] b Ox (I"),[Co u./o. V i] a MOI b [W, Sn u. / o. Sb] b O x (I "),
mit a = 0,5 bis 1, 5, b = 0 bis 0,5 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I" bestimmt wird 5 ist.With a = 0.5 to 1.5, b = 0 to 0.5 and x = a number which is determined by the valency and frequency of the elements other than oxygen in I "5.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das wenigstens eine Multimetalloxid II ein solches der allgemeinen Formel II' 109. The method according to claim 8, characterized in that the at least one multimetal oxide II is one of the general formula II '10th
Bia''Wc- [Co,Ni u./o. Zn]d-Fee' [P u./o. Sb]f- [Ku./o. Na]g-X6 'Ox<Bi a '' W c - [Co, Ni u./o. Zn] d -Fe e ' [P u./o. Sb] f - [Ku./o. Na] g -X 6 ' O x <
(II'),(II '),
15 mit15 with
X6 = seltenes Erdmetall, Ti, Zr, Nb, Ta, Ru, Rn, Rh, Ag, Au,X 6 = rare earth metal, Ti, Zr, Nb, Ta, Ru, Rn, Rh, Ag, Au,
AI, Ga, In, Si, Ge, Th und/oder U, a' =0,01 bis 8, b' =0,1 bis 30, 20 C =0 bis 20, d' =0 bis 20, e' =0 bis 20, f ' =0 bis 6, g' =0 bis 4, 25 h' =0 bis 15 und x' =eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II' bestimmt wird, ist.Al, Ga, In, Si, Ge, Th and / or U, a '= 0.01 to 8, b' = 0.1 to 30, 20 C = 0 to 20, d '= 0 to 20, e' = 0 to 20, f '= 0 to 6, g' = 0 to 4, 25 h '= 0 to 15 and x' = a number which is determined by the valency and frequency of the elements other than oxygen in II ', is.
30 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man es kontinuierlich durchführt.30 10. The method according to any one of claims 1 to 9, characterized in that it is carried out continuously.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Molverhältnis von Propan zu molekularem11. The method according to any one of claims 1 to 10, characterized in that the molar ratio of propane to molecular
35 Sauerstoff im Reaktionsgasausgangsgemisch 8 beträgt.35 oxygen in the reaction gas starting mixture 8 is 8.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Verhältnis der Schüttvolumina der beiden Katalysatorschüttungen A, B 1 : 5 bis 5 : 1 beträgt.12. The method according to any one of claims 1 to 11, characterized in that the ratio of the bulk volumes of the two catalyst beds A, B is 1: 5 to 5: 1.
4040
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Reaktionsdruck > 1 bar beträgt.13. The method according to any one of claims 1 to 12, characterized in that the reaction pressure is> 1 bar.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekenn- 45 zeichnet, daß es in einem Zweizonenrohrbündelreaktor durchgeführt wird, dessen Reaktionsrohre die Katalysatorschüttungen A, B aufeinanderfolgend angeordnet enthalten und in dem ein Salzbad A die Reaktionsrohrabschnitte in welchen sich die Katalysatorschüttung A befindet und ein Salzbad B die Reaktionsrohrabschnitte in welchen sich die Katalysatorschüttung B befindet umströmt.14. The method according to any one of claims 1 to 13, characterized 45 characterized in that it is carried out in a two-zone tube bundle reactor, the reaction tubes contain the catalyst beds A, B arranged in succession and in the a salt bath A flows around the reaction tube sections in which the catalyst bed A is located and a salt bath B flows around the reaction tube sections in which the catalyst bed B is located.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Salzbäder A und B über die jeweilige Reaktionszone betrachtet einen mäanderförmigen Strömungsverlauf des Wärmeaustauschmittels aufweisen. 15. The method according to claim 14, characterized in that the salt baths A and B viewed over the respective reaction zone have a meandering flow course of the heat exchange medium.
EP00910721A 1999-03-10 2000-02-28 Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid Withdrawn EP1159243A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910507A DE19910507A1 (en) 1999-03-10 1999-03-10 Process of heterogeneously catalyzed gas phase oxidation of propane to acrolein and / or acrylic acid
DE19910507 1999-03-10
PCT/EP2000/001632 WO2000053555A1 (en) 1999-03-10 2000-02-28 Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid

Publications (1)

Publication Number Publication Date
EP1159243A1 true EP1159243A1 (en) 2001-12-05

Family

ID=7900364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910721A Withdrawn EP1159243A1 (en) 1999-03-10 2000-02-28 Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid

Country Status (6)

Country Link
EP (1) EP1159243A1 (en)
JP (1) JP2002539099A (en)
CN (1) CN1343189A (en)
BR (1) BR0008824A (en)
DE (1) DE19910507A1 (en)
WO (1) WO2000053555A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049466B2 (en) * 2000-09-29 2006-05-23 Rohm And Haas Company Recycle process
MXPA02011489A (en) * 2001-12-04 2003-06-30 Rohm & Haas Improved processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes.
CN1599708A (en) * 2001-12-27 2005-03-23 三菱化学株式会社 Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
KR100807972B1 (en) * 2005-08-10 2008-02-28 주식회사 엘지화학 Complex metal oxide catalyst with high acrylic acid selectivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622331A1 (en) * 1996-06-04 1997-12-11 Basf Ag Process of heterogeneously catalyzed gas phase oxidation of propane to acrolein
DE19807079A1 (en) * 1998-02-20 1999-08-26 Basf Ag Production of acrolein and acrylic acid by catalytic oxidation of propane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0053555A1 *

Also Published As

Publication number Publication date
CN1343189A (en) 2002-04-03
WO2000053555A1 (en) 2000-09-14
BR0008824A (en) 2002-01-15
DE19910507A1 (en) 2000-09-14
JP2002539099A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
EP1159247B1 (en) Method for the catalytic gas phase oxidation of propene into acrylic acid
EP1159244B1 (en) Method for the catalytic gas phase oxidation of propene into acrolein
EP1159248B1 (en) Method for the catalytic gas phase oxidation of propene into acrylic acid
EP1159246B1 (en) Method for the catalytic gas phase oxidation of acrolein into acrylic acid
EP1973641B1 (en) Process for heterogeneously catalysed gas phase partial oxidation of at least one organic starting compound
DE19910506A1 (en) Production of acrolein or acrylic acid by gas-phase oxidation of propene uses two catalyst beds at different temperatures
DE19948523A1 (en) Gas phase oxidation of propylene to acrylic acid using ring-shaped multi-metal oxide catalyst of specified geometry to maximize selectivity and space-time yield
EP1025073B1 (en) Method of heterogeneous catalyzed vapor-phase oxidation of propane to acrolein and/or acrylic acid
EP1230204A1 (en) Method for carrying out the catalytic gas phase oxidation of propene to form acrylic acid
EP0756894A2 (en) Multimetal oxide masses
DE19927624A1 (en) Gas phase oxidation of propylene to acrylic acid using ring-shaped multi-metal oxide catalyst of specified geometry to maximize selectivity and space-time yield
WO2008087115A2 (en) Method for producing a multi-element oxide material containing the element iron in the oxidised form
DE19948241A1 (en) Gas phase oxidation of propylene to acrylic acid using ring-shaped multi-metal oxide catalyst of specified geometry to maximize selectivity and space-time yield
WO2002049757A2 (en) Method for producing a multi-metal oxide active material containing mo, bi, fe and ni and/or co
EP1069948B1 (en) Multi-metal oxide materials with a two-phase structure
DE19746210A1 (en) Production of acrolein and acrylic acid by heterogeneous catalyzed gas phase oxidation of propane
EP1060129B1 (en) Polymetallic oxide materials
EP1159243A1 (en) Method for carrying out the heterogeneously catalyzed gas phase oxidation of propane into acrolein and/or acrylic acid
WO1999008788A1 (en) Method for producing multi-metal oxide masses containing mo, v and cu
DE19736105A1 (en) Multi-metal oxide catalyst for gas-phase oxidation of acrolein
DE19807269A1 (en) Multimetal oxides used as catalysts in oxidative dehydrogenation of propane to propene
DE10121592A1 (en) Production of acrolein or acrylic acid involves absorption of propane and propene from a gas mixture followed by desorption and oxidation, with no catalytic dehydrogenation of propane and no added oxygen
WO1999051342A1 (en) Multi-metal oxide compounds with a two-phase structure
DE19740493A1 (en) Production of multimetal oxide for gas phase catalytic oxidation of acrolein to acrylic acid
DE19838312A1 (en) Mixed oxide catalysts containing molybdenum used for the dehydrogenation of propane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020914

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR IT