EP1155423A1 - Flat magnetic core - Google Patents

Flat magnetic core

Info

Publication number
EP1155423A1
EP1155423A1 EP00910511A EP00910511A EP1155423A1 EP 1155423 A1 EP1155423 A1 EP 1155423A1 EP 00910511 A EP00910511 A EP 00910511A EP 00910511 A EP00910511 A EP 00910511A EP 1155423 A1 EP1155423 A1 EP 1155423A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
component according
foils
surface roughness
magnetic foils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00910511A
Other languages
German (de)
French (fr)
Other versions
EP1155423B1 (en
Inventor
Harald Hundt
Johannes Beichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1155423A1 publication Critical patent/EP1155423A1/en
Application granted granted Critical
Publication of EP1155423B1 publication Critical patent/EP1155423B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets

Definitions

  • the invention relates to a component of low overall height for circuit boards having formed at least one layer of egg ⁇ nem soft magnetic material magnetic field.
  • Such a component is known from US-A-5, 529, 831.
  • the known component is produced in that insulating layers, conductor layers and a magnetic layer are applied to the substrate. A conventional sputtering process is used to apply these layers.
  • a disadvantage of such a component is that it can only be produced with the aid of a complex thin-film process. In addition, due to the process, only small layer thicknesses in the range of a few ⁇ m can be produced. The cross sections of the magnetic areas produced using these methods are correspondingly small. Another disadvantage is that with such a component, the windings must also be produced with the aid of a complex thin-film process.
  • the object of the invention is to create a component of high inductance for use on printed circuit boards which can be produced in a simple manner.
  • the magnetic area is formed by at least one soft magnetic film.
  • the surface roughness of each film is at least equal to the skin penetration depth at the frequency of use.
  • Magnetic foils can typically be produced with thicknesses in the range from 10 to 25 ⁇ m. Stacked on top of each other compared to magnetic areas produced in thin-film processes, the cross-sections of the magnetic area are much larger. As a result, the inductance of a component equipped with such a magnetic area is relatively high. Nevertheless, in accordance with, the component of the dung OF INVENTION ⁇ a low overall height and thus is suitable for the SMD technique. The fact that the surface roughness of each film is at least equal to the skin penetration depth at the operating frequency is particularly advantageous for high-frequency applications.
  • Figure 2 is a perspective view of a series of magnetic foils stacked one on top of the other;
  • FIG. 3 shows a series of magnetic foils stacked one on top of the other, which are provided with a gap;
  • FIG. 4 shows an exploded view of a magnetic region formed from magnetic foils with an offset gap
  • FIG. 5 shows a cross-sectional view of a stack embedded in a plastic trough of FIG
  • FIG. 6 shows a cross-sectional view through a stack of magnetic foils surrounded by a polymer layer
  • Figure 7 is an illustration showing the definition of
  • Figure 8 is a schematic representation of the course of the eddy currents in a smooth belt
  • FIG. 9 shows a schematic illustration of the course of the eddy currents in the case of a rough band.
  • FIG. 10 shows a diagram with the frequency response of components made of smooth and rough magnetic foils.
  • the magnetic foil 1 shown in FIG. 1A has a circular ring shape.
  • the magnetic foils 1 from FIG. 1B and IC have an annular shape with rectangular contours.
  • the magnetic foils 1 are expediently made of an amorphous or nanocrystalline alloy.
  • Amorphous iron-based alloys are known, for example, from US-A-4, 144, 058.
  • Amorphous cobalt-based alloys are known, for example, from EP-A-0 021 101.
  • nanocrystalline alloys are described in EP-A-0 271 657. Thin films with a typical thickness of 10 to 25 ⁇ m, sometimes with smaller or larger thicknesses, can be produced from the materials mentioned.
  • the ring-shaped magnetic foils 1 can then be punched out of the thin foils.
  • the magnetic foils 1 can be glued to one another.
  • it is also expedient to damp eddy currents by electrically isolating the magnetic foils 1 on one side or on both sides by applying an insulating layer.
  • the adhesive layer can take on the function of an insulating layer.
  • a slot 4 is made in the toroidal core 3 shown in FIG. 3, through which the hysteresis loop is sheared.
  • the slot 4 was introduced after the magnetic foils 1 had been stacked on top of one another and the magnetic foils 1 had been glued.
  • the magnetic foils 1 are first individually provided with the slot 4 and then stacked on top of one another and glued to one another.
  • the production of the exemplary embodiment shown in FIG. 4 is more complex, but instead the toroidal core 3 from FIG. 4 has a higher mechanical strength.
  • FIG. 5 In order to protect the toroidal core 3 from mechanical damage, provision is made according to FIG. 5 to insert the toroidal core 3 into a trough 5 made of plastic. The trough 5 can then be wrapped with a winding through an inner hole 5 'without the risk that the ring core 3 formed by the magnetic foils 1 will be damaged during winding. There is also the possibility of surrounding the toroidal core 3 with a polymer layer 6. In this polymer layer 6 han ⁇ it delt expediently to a deposited from the gaseous phase polymer layer, for example a poly para-xylylene.
  • This method has the advantage that the gaseous polymer material penetrates even the finest cracks and that in this way the magnetic foils 1 are also mechanically connected to one another without the magnetic foils 1 being mechanically stressed. Because a mechanical load can change the magnetic properties of the magnetic sheet 1 to a disadvantage due to the magnetostriction.
  • the surface roughness R A of the magnetic foils 1 is approximately equal to the skin penetration depth ⁇ sk ⁇ n at the application frequencies .
  • the definition of the roughness depth is explained below with reference to FIG. 7.
  • the X axis lies parallel to the surface of a body whose surface roughness R A is to be determined.
  • the Y axis is parallel to the surface normal of the surface to be measured.
  • the surface roughness R A then corresponds to the height of a rectangle 7, the length of which is equal to a total measuring distance l m and which has the same area as the sum of the areas 10 enclosed between a roughness profile 8 and a middle line 9.
  • the surface roughness R A of the magnetic foils 1 affects the length of the current paths relevant for the eddy currents. If the skin penetration depth ⁇ sk ⁇ n at the application frequencies is less than half the film thickness, then the currents flowing in the magnetic film 1 are mainly one
  • Edge layer of the magnetic film 1 is limited by the thickness of the skin penetration depth ⁇ sk ⁇ n . If the surface roughness R A the magnetic sheet 1 in the area of the skin penetration ⁇ sk- . n lies, the eddy currents must follow the surface modulated by the surface roughness R A , which leads to extended current paths and thus to an apparently increased specific resistance. But it also follows one he ⁇ creased eddy current critical frequency.
  • FIGS. 8 and 9 The winding currents 11 flowing in an outer winding cause eddy currents 12 in the magnetic foil 1 in a surface area of the thickness of the skin penetration depth ⁇ Sk n. If the surface roughness of the magnetic film 1 is greater than the skin penetration depth ⁇ S kin, then longer current paths result for the eddy currents 12, which leads to an increased eddy current limit frequency.
  • the surface roughness cannot be chosen to be as large as desired, since in extreme cases the magnetic foils 1 have holes, which greatly reduces the permeability that can be achieved.
  • FIG. 10 shows the described influence of surface roughness on the frequency dependence of permeability ⁇ on the basis of measurement results.
  • the measured magnetic foils 1 are magnetic foils 1 made of an alloy with the composition (CoFeNi) 7 8, s (MnSiB) 2 ⁇ , 5 .
  • a dashed curve 13 represents the dependency of the permeability ⁇ on the frequency f with a total surface roughness of 2.1% based on the thickness of the magnetic film 1.
  • a solid curve 14 also illustrates the dependence of the permeability ⁇ on the frequency f a total surface roughness of 4.7% based on the thickness of the magnetic film 1. It can clearly be seen that the eddy current cutoff frequency is shifted towards higher values due to the greater surface roughness.
  • the smallest ferrite core currently available on the market is a MnZn ferrite ring core from Taiyo Yuden with an outer diameter of 2.54 mm, an inner diameter of 1.27 mm and a height of 0.8 mm.
  • the toroidal core 3 comes into question with an outer diameter of 2.54 mm, an inner diameter of 1.8 mm and a height of 0.4 mm. Compared to the ferrite core, this toroidal core 3 has an inner hole which is twice as large, which enables either more turns or turns with an enlarged conductor cross section.
  • the same A L value can also be achieved with the ring core 3 with an outer diameter of 4.0 mm, an inner diameter of 2.85 mm and a height of 0.4 mm.
  • This ring core 3 has an inner hole that is 5 times larger than the ferrite core.
  • Ring core 3 can be further reduced.
  • a ring core 3 made of the alloy with the composition Co 8 ⁇ -o8Fe 4 , 2 ⁇ Si 943 Mo 2 , 9 3 B2, 3 5, which has an initial permeability ⁇ 80,000, requires an outer diameter of 2.54 mm and an inner diameter diameter of 1.27 mm only a height of 0.125 mm to achieve an A value of 1 ⁇ H.
  • the toroidal core 3 made from this alloy has a construction height that is 6.4 times smaller.
  • Ring cores 3 as S 0 transmitters in PCMCIA cards.
  • S 0 transmitters with a height of 2.2 mm are required so that the permissible height of 3.3 mm for a PCMCIA card is not exceeded.
  • a maximum overall height of 1 mm remains for the ring core 3.
  • a ring core 3 with an outside diameter of 8.6 mm an inside diameter of 3.1 mm and a height of 1 mm is required.
  • the toroidal cores previously used for this purpose are mechanically very sensitive and can therefore only be produced with a high reject rate.
  • One problem for example, is the high winding offset, which means that the core height is not maintained.
  • the toroidal core 3 can be easily manufactured with high dimensional accuracy.
  • the amorphous or nanocrystalline alloys By using the amorphous or nanocrystalline alloys, suitable heat treatments in an external magnetic field can be used to achieve linear hysteresis loops with low losses and high permeability.
  • the natural insulating surface layer of these alloys in contrast to crystalline le- not necessary to isolate the magnetic foils 1 from each other by an additional insulating layer.
  • the amorphous or nanocrystalline alloys also have a higher specific resistance, which leads to higher eddy current limit frequencies. Due to the manufacturing process, the amorphous and nanocrystalline alloys also have a more or less strong natural surface roughness, which, however, can be further increased by grinding or etching.
  • the thickness of the magnetic foils 1 are between 5 and 40 ⁇ m. In the extreme case, the ring core 3 is formed by a single magnetic film 1. This means that extremely low overall heights can be achieved with simultaneous, favorable high-frequency behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A toroidal tape core is produced from magnetic sheets (1) which may have slits (4). In order to improve the behavior of the toroidal cores (3) at high frequencies, the magnetic sheets (1) have a high surface roughness. The surface roughness of each magnetic sheet (1) is at least equal to the skin penetration depth at the frequency being used.

Description

Beschreibungdescription
Flacher MagnetkernFlat magnetic core
Die Erfindung betrifft ein Bauelement geringer Bauhöhe für Leiterplatten mit einem von wenigstens einer Schicht aus ei¬ nem weichmagnetischen Material gebildeten Magnetbereich.The invention relates to a component of low overall height for circuit boards having formed at least one layer of egg ¬ nem soft magnetic material magnetic field.
Ein derartiges Bauelement ist aus der US-A-5, 529, 831 bekannt. Das bekannte Bauelement wird dadurch hergestellt, daß Isolierschichten, Leiterschichten und eine magnetische Schicht auf das Substrat aufgebracht werden. Um diese Schichten aufzubringen, wird ein herkömmliches Sputterverfahren verwendet.Such a component is known from US-A-5, 529, 831. The known component is produced in that insulating layers, conductor layers and a magnetic layer are applied to the substrate. A conventional sputtering process is used to apply these layers.
Ein Nachteil eines derartigen Bauelements ist, daß es sich nur mit Hilfe eines aufwendigen Dünnschichtverfahrens herstellen läßt. Außerdem lassen sich verfahrensbedingt nur geringe Schichtdicken im Bereich weniger μm herstellen. Dementsprechend klein sind die Querschnitte der mit Hilfe dieser Verfahren hergestellten Magnetbereiche. Ein weiterer Nachteil ist, daß bei einem derartigen Bauelement auch die Wicklungen mit Hilfe eines aufwendigen Dünnschichtverfahrens hergestellt werden müssen.A disadvantage of such a component is that it can only be produced with the aid of a complex thin-film process. In addition, due to the process, only small layer thicknesses in the range of a few μm can be produced. The cross sections of the magnetic areas produced using these methods are correspondingly small. Another disadvantage is that with such a component, the windings must also be produced with the aid of a complex thin-film process.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein auf einfache Weise herstellbares Bauelement hoher Induktivität zur Verwendung auf Leiterplatten zu schaffen.On the basis of this prior art, the object of the invention is to create a component of high inductance for use on printed circuit boards which can be produced in a simple manner.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Magnetbereich von wenigstens einer weichmagnetischen Folie gebildet ist. Die Oberflächenrauhigkeit jeder Folie ist wenigstens gleich der Skineindringtiefe bei der Einsatzfrequenz .This object is achieved in that the magnetic area is formed by at least one soft magnetic film. The surface roughness of each film is at least equal to the skin penetration depth at the frequency of use.
Magnetfolien lassen sich typischerweise mit Dicken im Bereich von 10 bis 25 μm herstellen. Aufeinandergestapelt ergeben sich somit im Vergleich zu in Dünnschichtverfahren hergestellten Magnetbereichen wesentlich größere Querschnitte des Magnetbereichs. Folglich ist die Induktivität eines mit einem derartigen Magnetbereich ausgestatteten Bauelements verhält- nismäßig hoch. Dennoch weist das Bauelement gemäß der Erfin¬ dung eine geringe Bauhöhe auf und eignet sich insofern auch für die SMD-Technik. Daß die Oberflächenrauhigkeit jeder Folie wenigstens gleich der Skineindringtiefe bei der Einsatzfrequenz ist, ist besonders für Hochfrequenzanwendungen gün- stig.Magnetic foils can typically be produced with thicknesses in the range from 10 to 25 μm. Stacked on top of each other compared to magnetic areas produced in thin-film processes, the cross-sections of the magnetic area are much larger. As a result, the inductance of a component equipped with such a magnetic area is relatively high. Nevertheless, in accordance with, the component of the dung OF INVENTION ¬ a low overall height and thus is suitable for the SMD technique. The fact that the surface roughness of each film is at least equal to the skin penetration depth at the operating frequency is particularly advantageous for high-frequency applications.
Weitere Ausführungsformen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.Further embodiments and refinements are the subject of the dependent claims.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der beigefügten Zeichnung erläutert. Es zeigen:Exemplary embodiments of the invention are explained below with reference to the attached drawing. Show it:
Figur 1A bis IC verschiedene Ausführungsformen von Magnetfolien, die für die Verwendung in einem Ma- gnetbereich eines Bauelements in Frage kommen;1A to IC different embodiments of magnetic foils which are suitable for use in a magnetic area of a component;
Figur 2 eine perspektivische Ansicht einer Reihe von aufeinander gestapelten Magnetfolien;Figure 2 is a perspective view of a series of magnetic foils stacked one on top of the other;
Figur 3 eine Reihe von aufeinander gestapelten Magnetfolien, die mit einem Spalt versehen sind;FIG. 3 shows a series of magnetic foils stacked one on top of the other, which are provided with a gap;
Figur 4 eine Explosionsansicht eines aus Magnetfolien mit versetztem Spalt gebildeten Magnetbereichs;FIG. 4 shows an exploded view of a magnetic region formed from magnetic foils with an offset gap;
Figur 5 eine Querschnittsansicht eines in einen Kunststofftrog eingebetteten Stapels vonFIG. 5 shows a cross-sectional view of a stack embedded in a plastic trough of FIG
Magnetfolien; Figur 6 eine Querschnittsansicht durch einen von einer Polymerschicht umgebenen Stapel von Magnetfolien;Magnetic foils; FIG. 6 shows a cross-sectional view through a stack of magnetic foils surrounded by a polymer layer;
Figur 7 eine Darstellung, die die Definition derFigure 7 is an illustration showing the definition of
Oberflächenrauhigkeit verdeutlicht;Surface roughness clarified;
Figur 8 eine schematische Darstellung des Verlaufs der Wirbelströme bei einem glatten Band;Figure 8 is a schematic representation of the course of the eddy currents in a smooth belt;
Figur 9 eine schematische Darstellung des Verlaufs der Wirbelströme bei rauhem Band; undFIG. 9 shows a schematic illustration of the course of the eddy currents in the case of a rough band; and
Figur 10 ein Diagramm mit dem Frequenzgang von Bau- elementen aus glatten und rauhen Magnetfolien.FIG. 10 shows a diagram with the frequency response of components made of smooth and rough magnetic foils.
In Figur 1A bis IC sind verschiedene Ausführungsformen einer Magnetfolie 1 dargestellt. Die in Figur 1A dargestellte Ma- gnetfolie 1 weist eine kreisförmige Ringgestalt auf. Demgegenüber weisen die Magnetfolien 1 aus Figur 1B und IC eine ringförmige Gestalt mit rechteckigen Konturen auf. Die Magnetfolien 1 sind zweckmäßigerweise aus einer amorphen oder nanokristallinen Legierung hergestellt. Amorphe Legierungen auf Eisenbasis sind beispielsweise aus der US-A-4, 144, 058 bekannt. Amorphe Legierungen auf Kobaltbasis gehen beispielsweise aus der EP-A-0 021 101 hervor. Nanokristalline Legierungen sind schließlich in der EP-A-0 271 657 beschrieben. Aus den genannten Materialien lassen sich dünne Folien mit einer typischen Dicke von 10 bis 25 μm, fallweise auch mit geringeren oder größeren Dicken herstellen. Aus den dünnen Folien lassen sich dann die ringförmigen Magnetfolien 1 ausstanzen.1A to IC show different embodiments of a magnetic film 1. The magnetic foil 1 shown in FIG. 1A has a circular ring shape. In contrast, the magnetic foils 1 from FIG. 1B and IC have an annular shape with rectangular contours. The magnetic foils 1 are expediently made of an amorphous or nanocrystalline alloy. Amorphous iron-based alloys are known, for example, from US-A-4, 144, 058. Amorphous cobalt-based alloys are known, for example, from EP-A-0 021 101. Finally, nanocrystalline alloys are described in EP-A-0 271 657. Thin films with a typical thickness of 10 to 25 μm, sometimes with smaller or larger thicknesses, can be produced from the materials mentioned. The ring-shaped magnetic foils 1 can then be punched out of the thin foils.
Die aufeinander gestapelten Magnetfolien 1 ergeben, wie in Figur 2 dargestellt, einen Ringkern 3, wobei in Figur 2 die Dicke der Magnetfolien 1 im Vergleich zum Durchmesser über- höht dargestellt ist, da der Durchmesser der Magnetfolien 1 im Bereich weniger Millimeter liegt, während die Dicke der Magnetfolien 1 im Bereich von 10 μm liegen.The magnetic foils 1 stacked on top of one another, as shown in FIG. 2, form an annular core 3, the thickness of the magnetic foils 1 being greater than the diameter in FIG. is shown height, since the diameter of the magnetic sheets 1 is in the range of a few millimeters, while the thickness of the magnetic sheets 1 are in the range of 10 μm.
Um die Festigkeit des Ringkerns 3 zu erhöhen, können die Magnetfolien 1 untereinander verklebt sein. Für Hochfrequenzanwendungen ist es zur Dämpfung von Wirbelströmen außerdem zweckmäßig, die Magnetfolien 1 einseitig oder beidseitig durch das Aufbringen einer Isolierschicht elektrisch vonein- ander zu isolieren. Die KlebstoffSchicht kann dabei die Aufgabe einer Isolierschicht übernehmen.In order to increase the strength of the toroidal core 3, the magnetic foils 1 can be glued to one another. For high-frequency applications, it is also expedient to damp eddy currents by electrically isolating the magnetic foils 1 on one side or on both sides by applying an insulating layer. The adhesive layer can take on the function of an insulating layer.
Um die magnetischen Eigenschaften des Ringkerns 3 einzustellen, ist in den in Figur 3 dargestellten Ringkern 3 ein Schlitz 4 eingebracht, durch den die Hystereseschleife geschert ist. Bei dem in Figur 3 dargestellten Ausführungsbeispiel ist der Schlitz 4 nach dem Aufeinanderstapeln der Magnetfolien 1 und dem Verkleben der Magnetfolien 1 nachträglich eingebracht worden.In order to adjust the magnetic properties of the toroidal core 3, a slot 4 is made in the toroidal core 3 shown in FIG. 3, through which the hysteresis loop is sheared. In the exemplary embodiment shown in FIG. 3, the slot 4 was introduced after the magnetic foils 1 had been stacked on top of one another and the magnetic foils 1 had been glued.
Bei dem in Figur 4 dargestelltem Ausführungsbeispiel werden jedoch die Magnetfolien 1 zunächst einzeln mit dem Schlitz 4 versehen und anschließend aufeinandergestapelt und untereinander verklebt. Im Vergleich zu dem Ausführungsbeispiel aus Figur 3 ist die Herstellung des in Figur 4 dargestellten Aus- führungsbeispiels aufwendiger, aber dafür weist der Ringkern 3 aus Figur 4 eine höhere mechanische Festigkeit auf.In the embodiment shown in FIG. 4, however, the magnetic foils 1 are first individually provided with the slot 4 and then stacked on top of one another and glued to one another. In comparison to the exemplary embodiment from FIG. 3, the production of the exemplary embodiment shown in FIG. 4 is more complex, but instead the toroidal core 3 from FIG. 4 has a higher mechanical strength.
Um den Ringkern 3 vor mechanischen Beschädigungen zu schüt- zen, ist gemäß Figur 5 vorgesehen, den Ringkern 3 in einen aus Kunststoff gefertigten Trog 5 einzubringen. Der Trog 5 kann dann durch ein Innenloch 5' hindurch mit einer Wicklung umwickelt werden, ohne daß die Gefahr besteht, daß der von den Magnetfolien 1 gebildete Ringkern 3 beim Wickeln beschä- digt wird. Außerdem besteht die Möglichkeit, den Ringkern 3 mit einer Polymerschicht 6 zu umgeben. Bei dieser Polymerschicht 6 han¬ delt es sich zweckmäßigerweise um eine aus der gasförmigen Phase abgeschiedene Polymerschicht, beispielsweise ein Poly- paraxylylen. Dieses Verfahren weist den Vorteil auf, daß das gasförmige Polymermaterial auch in feinste Ritzen eindringt und daß auf diese Weise die Magnetfolien 1 auch untereinander mechanisch verbunden werden, ohne daß die Magnetfolien 1 mechanisch belastet werden. Denn eine mechanische Belastung kann aufgrund der Magnetostriktion die magnetischen Eigenschaften der Magnetfolie 1 zum Nachteil verändern.In order to protect the toroidal core 3 from mechanical damage, provision is made according to FIG. 5 to insert the toroidal core 3 into a trough 5 made of plastic. The trough 5 can then be wrapped with a winding through an inner hole 5 'without the risk that the ring core 3 formed by the magnetic foils 1 will be damaged during winding. There is also the possibility of surrounding the toroidal core 3 with a polymer layer 6. In this polymer layer 6 han ¬ it delt expediently to a deposited from the gaseous phase polymer layer, for example a poly para-xylylene. This method has the advantage that the gaseous polymer material penetrates even the finest cracks and that in this way the magnetic foils 1 are also mechanically connected to one another without the magnetic foils 1 being mechanically stressed. Because a mechanical load can change the magnetic properties of the magnetic sheet 1 to a disadvantage due to the magnetostriction.
Für Hochfrequenzanwendungen ist es ferner günstig, wenn die Oberflächenrauhigkeit RA der Magnetfolien 1 in etwa gleich der Skineindringtiefe δskιn bei den Einsatzfrequenzen ist.For high-frequency applications, it is also advantageous if the surface roughness R A of the magnetic foils 1 is approximately equal to the skin penetration depth δ skιn at the application frequencies .
Die Definition der Rauhtiefe sei nachfolgend anhand Figur 7 erläutert. Dabei liegt die X-Achse parallel zur Oberfläche eines Körpers, dessen Oberflächenrauhigkeit RA zu bestimmen ist. Die Y-Achse ist dagegen parallel zur Flächennormale der zu vermessenden Oberfläche. Die Oberflächenrauhigkeit RA entspricht dann der Höhe eines Rechtecks 7, dessen Länge gleich einer Gesamtmeßstrecke lm und das flächengleich mit der Summe der zwischen einem Rauheitsprofil 8 und einer mittleren Linie 9 eingeschlossenen Flächen 10 ist. Die auf die Dicke der Magnetfolie 1 bezogene, beidseitige Oberflächenrauhigkeit RA reι ergibt sich dann gemäß der Formel A rel = ( A Oberseite + A Unterseite) /d, wobei d die Dicke der Magnetfolie 1 ist.The definition of the roughness depth is explained below with reference to FIG. 7. The X axis lies parallel to the surface of a body whose surface roughness R A is to be determined. The Y axis, on the other hand, is parallel to the surface normal of the surface to be measured. The surface roughness R A then corresponds to the height of a rectangle 7, the length of which is equal to a total measuring distance l m and which has the same area as the sum of the areas 10 enclosed between a roughness profile 8 and a middle line 9. The two-sided surface roughness R A re ι, based on the thickness of the magnetic film 1, then results according to the formula A rel = (A top side + A bottom side) / d, where d is the thickness of the magnetic film 1.
Die Oberflächenrauhigkeit RA der Magnetfolien 1 wirkt sich auf die Länge der für die Wirbelströme maßgeblichen Strompfade aus. Wenn die Skineindringtiefe δskιn bei den Einsatzfrequenzen kleiner als die halbe Foliendicke ist, so sind die in der Magnetfolie 1 fließenden Ströme hauptsächlich auf eineThe surface roughness R A of the magnetic foils 1 affects the length of the current paths relevant for the eddy currents. If the skin penetration depth δ skιn at the application frequencies is less than half the film thickness, then the currents flowing in the magnetic film 1 are mainly one
Randschicht der Magnetfolie 1 von der Dicke der Skineindringtiefe δskιn beschränkt. Wenn nun die Oberflächenrauhigkeit RA der Magnetfolie 1 im Bereich der Skineindringtiefe δsk-.n liegt, müssen die Wirbelströme der durch die Oberflächenrauhigkeit RA modulierten Oberfläche folgen, was zu verlängerten Strompfaden und damit zu einem scheinbar erhöhten spezifi- sehen Widerstand führt. Daraus ergibt sich aber auch eine er¬ höhte Wirbelstromgrenzfrequenz.Edge layer of the magnetic film 1 is limited by the thickness of the skin penetration depth δ skιn . If the surface roughness R A the magnetic sheet 1 in the area of the skin penetration δ sk- . n lies, the eddy currents must follow the surface modulated by the surface roughness R A , which leads to extended current paths and thus to an apparently increased specific resistance. But it also follows one he ¬ creased eddy current critical frequency.
Diese Verhältnisse sind in den Figuren 8 und 9 veranschaulicht. Die in einer äußeren Wicklung fließenden Wicklungs- ströme 11 rufen in der Magnetfolie 1 in einem Oberflächenbereich von der Dicke der Skineindringtiefe δSkn Wirbelströme 12 hervor. Wenn nun die Oberflächenrauhigkeit der Magnetfolie 1 größer als die Skineindringtiefe δSkin ist, ergeben sich für die Wirbelströme 12 verlängerte Strompfade, was zu einer er- höhten Wirbelstromgrenzfrequenz führt.These relationships are illustrated in FIGS. 8 and 9. The winding currents 11 flowing in an outer winding cause eddy currents 12 in the magnetic foil 1 in a surface area of the thickness of the skin penetration depth δ Sk n. If the surface roughness of the magnetic film 1 is greater than the skin penetration depth δ S kin, then longer current paths result for the eddy currents 12, which leads to an increased eddy current limit frequency.
Die Oberflächenrauhigkeit kann jedoch nicht beliebig groß gewählt werden, da die Magnetfolien 1 im Extremfall dann Löcher aufweisen, was die erreichbaren Permeabilitäten stark senkt.However, the surface roughness cannot be chosen to be as large as desired, since in extreme cases the magnetic foils 1 have holes, which greatly reduces the permeability that can be achieved.
In Figur 10 ist anhand von Meßergebnissen der beschriebene Einfluß der Oberflächenrauhigkeit auf die Frequenzabhängigkeit der Permeabilität μ dargestellt. Bei den vermessenen Magnetfolien 1 handelt sich um Magnetfolien 1 aus einer Legie- rung mit der Zusammensetzung (CoFeNi)78,s (MnSiB)2ι,5. Eine gestrichelte Kurve 13 stellt die Abhängigkeit der Permeabilität μ von der Frequenz f bei einer auf die Dicke der Magnetfolie 1 bezogenen gesamten Oberflächenrauhigkeit von 2,1 % dar. Eine durchgezogene Kurve 14 veranschaulicht ferner die Abhän- gigkeit der Permeabilität μ von der Frequenz f bei einer auf die Dicke der Magnetfolie 1 bezogenen gesamten Oberflächenrauhigkeit von 4,7 %. Man erkennt deutlich, daß die Wirbelstromgrenzfrequenz durch die größere Oberflächenrauhigkeit zu höheren Werten hin verschoben ist. Als günstig hat sich her- ausgestellt, wenn die auf die Dicke der Magnetfolien 1 bezogene, beidseitige Oberflächenrauhigkeit von Ober- und Unterseite > 3 % ist. Nachfolgend werden die Vorteile des aus den Magnetfolien 1 hergestellten Ringkerns 3 anhand eines Beispiels erläutert. Als Beispiel sollen in der Nachrichtentechnik verwendete Drosseln dienen. Für eine solche Drossel in möglichst flacher Bauform wird ein AL-Wert von 1 μH gefordert. Die Induktivität L ist dabei A x N2, wobei N die Zahl der Windungen ist. Die typischen Einsatzfrequenzen einer derartigen Drossel liegen im Bereich von 20 kHz bis 100 kHz, fallweise auch höher. Der kleinste zur Zeit auf dem Markt erhältliche Ferritkern ist ein MnZn-Ferrit-Ringkern der Firma Taiyo Yuden mit einem Außendurchmesser von 2,54 mm, einem Innendurchmesser von 1,27 mm und einer Höhe von 0,8 mm. Das zur Herstellung des MnZn-Ferrit-Ringkerns verwendete Material AH 91 weist eine Anfangspermeabilität von μ = 10 000 auf.FIG. 10 shows the described influence of surface roughness on the frequency dependence of permeability μ on the basis of measurement results. The measured magnetic foils 1 are magnetic foils 1 made of an alloy with the composition (CoFeNi) 7 8, s (MnSiB) 2 ι, 5 . A dashed curve 13 represents the dependency of the permeability μ on the frequency f with a total surface roughness of 2.1% based on the thickness of the magnetic film 1. A solid curve 14 also illustrates the dependence of the permeability μ on the frequency f a total surface roughness of 4.7% based on the thickness of the magnetic film 1. It can clearly be seen that the eddy current cutoff frequency is shifted towards higher values due to the greater surface roughness. It has turned out to be favorable if the surface roughness on both sides of the top and bottom sides, based on the thickness of the magnetic foils 1, is> 3%. The advantages of the ring core 3 produced from the magnetic foils 1 are explained below using an example. Chokes used in telecommunications are to serve as an example. An A L value of 1 μH is required for such a choke in a design that is as flat as possible. The inductance L is A x N 2 , where N is the number of turns. The typical application frequencies of such a choke are in the range from 20 kHz to 100 kHz, in some cases even higher. The smallest ferrite core currently available on the market is a MnZn ferrite ring core from Taiyo Yuden with an outer diameter of 2.54 mm, an inner diameter of 1.27 mm and a height of 0.8 mm. The material AH 91 used to manufacture the MnZn ferrite ring core has an initial permeability of μ = 10,000.
Bei Verwendung einer amorphen Kobaltbasislegierung mit der Zusammensetzung Co82,_-6Fe3,92Mn1,1Si9/72Mθo.4oB2,_i6/ die eine Anfangspermeabilität μ = 50 000 aufweist, läßt sich ein A-Wert von 1 μH mit einem wesentlich kleineren Ringkern 3 erzielen. In Frage kommt beispielsweise der Ringkern 3 mit einem Außendurchmesser von 2,54 mm, einem Innendurchmesser von 1,8 mm und einer Höhe von 0,4 mm. Im Vergleich zu dem Ferritkern weist dieser Ringkern 3 ein doppelt so großes Innenloch auf, was entweder mehr Windungen oder aber Windungen mit vergrößertem Leiterquerschnitt ermöglicht.When using a cobalt-based amorphous alloy having the composition Co 8 2, _- 6Fe 3, 9 2 Mn 1, 1 Si 9/7 2 Mθo.4oB 2, _i6 / μ which has an initial permeability = 50 000 can be an A-value of 1 μH with a much smaller toroid 3. For example, the toroidal core 3 comes into question with an outer diameter of 2.54 mm, an inner diameter of 1.8 mm and a height of 0.4 mm. Compared to the ferrite core, this toroidal core 3 has an inner hole which is twice as large, which enables either more turns or turns with an enlarged conductor cross section.
Der gleiche AL-Wert läßt sich auch mit dem Ringkern 3 mit einem Außendurchmesser von 4,0 mm, einem Innendurchmesser von 2,85 mm und einer Bauhöhe von 0,4 mm erzielen. Dieser Ringkern 3 weist einen im Vergleich zum Ferritkern um den Faktor 5 größeres Innenloch auf.The same A L value can also be achieved with the ring core 3 with an outer diameter of 4.0 mm, an inner diameter of 2.85 mm and a height of 0.4 mm. This ring core 3 has an inner hole that is 5 times larger than the ferrite core.
Umgekehrt genügt bei gleichem Außen- und Innendurchmesser, also einen Außendurchmesser von 2,54 mm und einem Innendurchmesser von 1,27 mm, eine Bauhöhe von 0,2 mm, um den gleichen AL-Wert zu erzielen. Falls Material mit noch höheren Anfangspermeabilitäten, beispielsweise eine Legierung der Zusammensetzung Co8ι,o8Fe4.2iSi9,43Mo2,93B2,35 verwendet wird, die eine Anfangsper- meabilität von μ = 80 000 aufweist, kann die Bauhöhe desConversely, with the same outside and inside diameters, i.e. an outside diameter of 2.54 mm and an inside diameter of 1.27 mm, a height of 0.2 mm is sufficient to achieve the same A L value. If material with even higher initial permeabilities, for example an alloy with the composition Co 8ι, o8 Fe 4.2 iSi9, 43 Mo 2 , 9 3 B 2 , 35 is used, which has an initial permeability of μ = 80,000, the overall height of the
Ringkerns 3 weiter verringert werden. Ein Ringkern 3 aus der Legierung mit der Zusammensetzung Co8ι-o8Fe4,2ιSi943Mo2,93B2,35 die eine Anfangspermeabilität μ = 80 000 aufweist, benötigt bei einem Außendurchmesser von 2,54 mm und einem Innendurch- messer von 1,27 mm lediglich eine Bauhöhe von 0,125 mm, um einen A-Wert von 1 μH zu erreichen. Im Vergleich zu dem Ferritkern weist der aus dieser Legierung gefertigte Ringkern 3 eine um den Faktor 6,4 kleinere Bauhöhe auf.Ring core 3 can be further reduced. A ring core 3 made of the alloy with the composition Co 8 ι-o8Fe 4 , 2 ιSi 943 Mo 2 , 9 3 B2, 3 5, which has an initial permeability μ = 80,000, requires an outer diameter of 2.54 mm and an inner diameter diameter of 1.27 mm only a height of 0.125 mm to achieve an A value of 1 μH. Compared to the ferrite core, the toroidal core 3 made from this alloy has a construction height that is 6.4 times smaller.
Eine weitere Anwendungs öglichkeit ist die Verwendung derAnother application is the use of the
Ringkerne 3 als S0-Übertrager in PCMCIA-Karten. Beim Kartentyp I werden S0-Ubertrager mit einer Bauhöhe von 2,2 mm benötigt, damit die zulässige Bauhöhe von 3,3 mm für eine PCMCIA- Karte nicht überschritten wird. Unter Berücksichtigung der Wicklung und der Gehäusewände verbleibt für den Ringkern 3 eine maximale Bauhöhe von 1 mm. Zur Erzielung der erforderlichen Induktivität von etwa 5 mH bei 20 kHz ist beispielsweise ein Ringkern 3 mit einem Außendurchmesser von 8, 6 mm, einem Innendurchmesser von 3,1 mm und einer Bauhöhe von 1 mm erfor- derlich. Die bisher zu diesem Zweck verwendeten Ringbandkerne sind mechanisch sehr empfindlich und lassen sich deshalb nur mit einer hohen Ausschußrate herstellen. Ein Problem ist beispielsweise der hohe Wickelversatz, durch den die Kernhöhe nicht eingehalten wird. Demgegenüber lassen sich die Ringker- ne 3 auf einfache Weise mit hoher Maßhaltigkeit herstellen.Ring cores 3 as S 0 transmitters in PCMCIA cards. With card type I, S 0 transmitters with a height of 2.2 mm are required so that the permissible height of 3.3 mm for a PCMCIA card is not exceeded. Taking into account the winding and the housing walls, a maximum overall height of 1 mm remains for the ring core 3. To achieve the required inductance of approximately 5 mH at 20 kHz, for example, a ring core 3 with an outside diameter of 8.6 mm, an inside diameter of 3.1 mm and a height of 1 mm is required. The toroidal cores previously used for this purpose are mechanically very sensitive and can therefore only be produced with a high reject rate. One problem, for example, is the high winding offset, which means that the core height is not maintained. In contrast, the toroidal core 3 can be easily manufactured with high dimensional accuracy.
Durch die Verwendung der amorphen oder nanokristallinen Legierungen lassen sich durch geeignete Wärmebehandlungen in einem äußeren Magnetfeld lineare Hystereseschleifen mit ge- ringen Verlusten und hoher Permeabilität erreichen. Außerdem ist es aufgrund der natürlichen isolierenden Oberflächenschicht dieser Legierungen im Gegensatz zu kristallinen Le- gierung nicht nötig, die Magnetfolien 1 durch eine zusätzliche Isolierschicht gegeneinander zu isolieren. Im Vergleich zu kristallinen Legierungen weisen die amorphen oder nanokri- stallinen Legierungen darüber hinaus einen höheren spezifi- sehen Widerstand auf, was zu höheren Wirbelstromgrenzfrequen- zen führt. Herstellungsbedingt weisen darüber hinaus die amorphen und nanokristallinen Legierungen eine mehr oder weniger starke natürliche Oberflächenrauhigkeit auf, die jedoch durch Schleifen oder Atzen weiter erhöht werden kann. Die Dicke der Magnetfolien 1 liegen zwischen 5 und 40 μm. Im Extremfall wird der Ringkern 3 von einer einzelnen Magnetfolie 1 gebildet. Somit lassen sich extrem geringe Bauhöhen bei gleichzeitigem, günstigem Hochfrequenzverhalten erzielen. By using the amorphous or nanocrystalline alloys, suitable heat treatments in an external magnetic field can be used to achieve linear hysteresis loops with low losses and high permeability. In addition, due to the natural insulating surface layer of these alloys, in contrast to crystalline le- not necessary to isolate the magnetic foils 1 from each other by an additional insulating layer. Compared to crystalline alloys, the amorphous or nanocrystalline alloys also have a higher specific resistance, which leads to higher eddy current limit frequencies. Due to the manufacturing process, the amorphous and nanocrystalline alloys also have a more or less strong natural surface roughness, which, however, can be further increased by grinding or etching. The thickness of the magnetic foils 1 are between 5 and 40 μm. In the extreme case, the ring core 3 is formed by a single magnetic film 1. This means that extremely low overall heights can be achieved with simultaneous, favorable high-frequency behavior.

Claims

Patentansprüche claims
1. Bauelement geringer Bauhöhe für Leiterplatten mit einem von wenigstens einer Schicht aus einem weichmagnetischen Ma- terial gebildeten Magnetbereieh, dadurch gekennzeichnet, daß der Magnetbereieh von wenigstens einer weichmagnetischen Magnetfolie (1) gebildet ist, und die Oberflächenrauhigkeit jeder Magnetfolie (1) wenigstens gleich der Skineindringtiefe bei der Einsatzfrequenz ist.1. Component of low overall height for printed circuit boards with a magnetic area formed by at least one layer of a soft magnetic material, characterized in that the magnetic area is formed by at least one soft magnetic magnetic sheet (1), and the surface roughness of each magnetic sheet (1) is at least equal to that Is the skin penetration depth at the operating frequency.
2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Magnetfolien (1) aus einer nanokristallinen oder amorphen Legierung hergestellt sind.2. Component according to claim 1, characterized in that the magnetic foils (1) are made of a nanocrystalline or amorphous alloy.
3. Bauelement nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenrauhigkeit jeder Magnetfolie (1) bezogen auf die Dicke > 3 % beträgt.3. Component according to claim 2, characterized in that the surface roughness of each magnetic film (1) is> 3% based on the thickness.
4. Bauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Magnetbereieh von einer Vielzahl untereinander verklebter Magnetfolien (1) gebildet ist.4. Component according to one of claims 1 to 3, characterized in that the magnetic area is formed by a plurality of mutually bonded magnetic foils (1).
5. Bauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Magnetfolien (1) durch isolierende Zwischenschichten ge- geneinander isoliert sind.5. Component according to one of claims 1 to 4, characterized in that the magnetic foils (1) are insulated from one another by insulating intermediate layers.
6. Bauelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Magnetfolien (1) ringförmig ausgebildet sind.6. Component according to one of claims 1 to 5, characterized in that the magnetic foils (1) are annular.
7 . Bauelement nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die ringförmig ausgebildeten Magnetfolien (1) Schlitze (4) aufweisen.7. Component according to claim 6, characterized in that the ring-shaped magnetic foils (1) have slots (4).
8. Bauelement nach Anspruch 7, dadurch gekennzeichnet, daß die Schlitze (4) übereinander angeordnet sind.8. The component according to claim 7, characterized in that the slots (4) are arranged one above the other.
9. Bauelement nach Anspruch 10, dadurch gekennzeichnet, daß die Schlitzen (4) winkelmäßig versetzt angeordnet sind.9. The component according to claim 10, characterized in that the slots (4) are arranged angularly offset.
10. Bauelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die gestapelten Magnetfolien (1) in einem Kunststofftrog (5) eingebettet sind.10. The component according to one of claims 1 to 9, characterized in that the stacked magnetic foils (1) are embedded in a plastic trough (5).
11. Bauelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die aufeinander gestapelten Magnetfolien (1) von einer Poly- merschicht (6) umschlossen sind. 11. Component according to one of claims 1 to 10, characterized in that the stacked magnetic foils (1) are surrounded by a polymer layer (6).
EP00910511A 1999-02-22 2000-02-01 Flat magnetic core Expired - Lifetime EP1155423B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19907542 1999-02-22
DE19907542A DE19907542C2 (en) 1999-02-22 1999-02-22 Flat magnetic core
PCT/DE2000/000300 WO2000051146A1 (en) 1999-02-22 2000-02-01 Flat magnetic core

Publications (2)

Publication Number Publication Date
EP1155423A1 true EP1155423A1 (en) 2001-11-21
EP1155423B1 EP1155423B1 (en) 2006-10-25

Family

ID=7898417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910511A Expired - Lifetime EP1155423B1 (en) 1999-02-22 2000-02-01 Flat magnetic core

Country Status (5)

Country Link
US (1) US6580348B1 (en)
EP (1) EP1155423B1 (en)
DE (2) DE19907542C2 (en)
TW (1) TW493105B (en)
WO (1) WO2000051146A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
US6873239B2 (en) * 2002-11-01 2005-03-29 Metglas Inc. Bulk laminated amorphous metal inductive device
US7178755B2 (en) * 2003-07-30 2007-02-20 Lincoln Global, Inc Retainer ring for wire package
US7367452B1 (en) * 2004-06-22 2008-05-06 Lincoln Global, Inc. Retainer ring for a wire package and method of using the same
DE102004051129A1 (en) * 2004-10-18 2006-04-20 Siemens Ag Throttle, in particular for operation in a frequency converter system, and frequency converter system
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
DE102007001606A1 (en) 2007-01-10 2008-07-17 Vacuumschmelze Gmbh & Co. Kg Arrangement for measuring the position of a magnet relative to a magnetic core
US7771545B2 (en) * 2007-04-12 2010-08-10 General Electric Company Amorphous metal alloy having high tensile strength and electrical resistivity
KR20150143251A (en) * 2014-06-13 2015-12-23 삼성전기주식회사 Core and coil component having the same
EP3312618B1 (en) * 2016-10-18 2022-03-30 LEM International SA Electrical current transducer

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT29331B (en) 1906-02-21 1907-07-25 Louis Detaine Gymnastics equipment.
US4144058A (en) 1974-09-12 1979-03-13 Allied Chemical Corporation Amorphous metal alloys composed of iron, nickel, phosphorus, boron and, optionally carbon
DE2924280A1 (en) 1979-06-15 1981-01-08 Vacuumschmelze Gmbh AMORPHE SOFT MAGNETIC ALLOY
JPS5841649B2 (en) * 1980-04-30 1983-09-13 株式会社東芝 wound iron core
JPS575314A (en) * 1980-06-11 1982-01-12 Mitsubishi Electric Corp Inductor
US4608297A (en) 1982-04-21 1986-08-26 Showa Denka Kabushiki Kaisha Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
JPS6039160B2 (en) 1982-07-22 1985-09-04 新日本製鐵株式会社 Magnetic amorphous alloy material with excellent insulation and corrosion resistance
DE3244823A1 (en) * 1982-12-03 1984-06-07 E. Blum GmbH & Co, 7143 Vaihingen ELECTRIC SHEET FOR PRODUCING LAMINATED IRON CORES FOR STATIC OR DYNAMIC ELECTRICAL MACHINES
FR2560711B1 (en) * 1984-03-02 1987-03-20 Metalimphy COMPOSITE MAGNETIC CIRCUIT AND METHOD FOR MANUFACTURING SAID CIRCUIT
DE3503019C2 (en) * 1985-01-30 1994-10-06 Blum Gmbh & Co E Electrical sheet for the production of iron cores for electrical devices consisting of a large number of sheet layers
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
US4882834A (en) * 1987-04-27 1989-11-28 Armco Advanced Materials Corporation Forming a laminate by applying pressure to remove excess sealing liquid between facing surfaces laminations
DE3926556A1 (en) * 1989-08-11 1991-02-14 Renk Ag Thrust bearing with shoes - has opposite facing slide surfaces and incorporates piston and cylinder unit with support
CA2052295A1 (en) * 1990-09-28 1992-03-29 Hitoshi Saito Method of reducing noise in magnetic core and magnetic core
DE4310401A1 (en) * 1993-03-31 1994-10-06 Vacuumschmelze Gmbh Process for encasing a ring core as edge protection
JP3027081B2 (en) 1993-12-09 2000-03-27 アルプス電気株式会社 Thin film element
JP3482046B2 (en) * 1995-09-28 2003-12-22 株式会社東芝 Planar magnetic element and planar magnetic device using the same
TW306006B (en) * 1995-10-09 1997-05-21 Kawasaki Steel Co
JPH09246034A (en) * 1996-03-07 1997-09-19 Alps Electric Co Ltd Magnetic core for pulse transformer
TW342506B (en) * 1996-10-11 1998-10-11 Matsushita Electric Ind Co Ltd Inductance device and wireless terminal equipment
TW455631B (en) * 1997-08-28 2001-09-21 Alps Electric Co Ltd Bulky magnetic core and laminated magnetic core
US6469259B2 (en) * 2000-02-29 2002-10-22 Kyocera Corporation Wiring board
US6818907B2 (en) * 2000-10-17 2004-11-16 The President And Fellows Of Harvard College Surface plasmon enhanced illumination system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0051146A1 *

Also Published As

Publication number Publication date
EP1155423B1 (en) 2006-10-25
WO2000051146A1 (en) 2000-08-31
TW493105B (en) 2002-07-01
DE19907542C2 (en) 2003-07-31
US6580348B1 (en) 2003-06-17
DE19907542A1 (en) 2000-08-31
DE50013663D1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
DE68925171T2 (en) Planar inductance
DE4117878C2 (en) Planar magnetic element
DE60013402T2 (en) METHOD FOR TREATING A THIN AND FRAGILE METAL STRIP AND MAGNETIC WORKPIECES MADE FROM A NANOCRYSTALLINE ALLOY STRIP
DE4306655C2 (en) Method of manufacturing a planar induction element
DE10121337A1 (en) Magnetic thin film for magnetic component, has photosensitive or non-photosensitive resin film having fine particles of either ferrous, cobalt, nickel, manganese and chromium
WO2004066438A1 (en) Antenna core
EP1155423B1 (en) Flat magnetic core
EP1058964B1 (en) Low-pass filter for a diplexer
DE10302646B4 (en) Antenna core and method of manufacturing an antenna core
EP0809263B1 (en) Flat-type inductive component
DE69211438T2 (en) Magnetoresistant effect element
DE69714103T2 (en) Magnetic core for pulse transmitters
EP1129459B1 (en) Use of a magnetic core for a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
DE3435519C2 (en)
DE2917388C2 (en)
EP1188235B1 (en) High-pass branch of a frequency separating filter for adsl systems
DE69828073T2 (en) METHOD FOR INCREASING THE WORKING FREQUENCY OF A MAGNETIC CIRCLE AND CORRESPONDING MAGNETIC CIRCUIT
DE3206058A1 (en) THICK LAYER MAGNETIC HEAD AND METHOD FOR THE PRODUCTION THEREOF
DE112021002613T5 (en) SHAFT STEERING MEDIUM, SHAFT STEERING ELEMENT, SHAFT STEERING DEVICE AND METHOD OF MAKING A SHAFT STEERING MEDIUM
DE102019132543A1 (en) MAGNETIC CORE MADE OF NANOCRYSTALLINE LAMINATE FOR AN INDUCTIVE COMPONENT
DE2922039C2 (en) Magnetic erase head
DE69308596T2 (en) METHOD FOR DETERMINING INTRINSIC MAGNETIC PERMEABILITY OF LONG STRETCHED FERROMAGNETIC ELEMENTS
EP1776260A1 (en) Transmitting antenna arrangement for emitting a longwave wake-up signal for an id transmitter in a keyless motor vehicle access system
DE60307735T2 (en) High efficiency quarter-wave transformer
DE10111460A1 (en) Magnetic HF device with magnetically soft layer system e.g. for telecommunications systems, has adjustment of permeability of layer system by at least one other layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013663

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070122

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100219

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160330

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901