EP1154140A2 - Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine - Google Patents

Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine Download PDF

Info

Publication number
EP1154140A2
EP1154140A2 EP01108113A EP01108113A EP1154140A2 EP 1154140 A2 EP1154140 A2 EP 1154140A2 EP 01108113 A EP01108113 A EP 01108113A EP 01108113 A EP01108113 A EP 01108113A EP 1154140 A2 EP1154140 A2 EP 1154140A2
Authority
EP
European Patent Office
Prior art keywords
storage capacitor
switching means
connection
solenoid valve
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01108113A
Other languages
German (de)
French (fr)
Other versions
EP1154140A3 (en
Inventor
Achim Herzog
Traugott Degler
Andreas Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1154140A2 publication Critical patent/EP1154140A2/en
Publication of EP1154140A3 publication Critical patent/EP1154140A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor

Definitions

  • the invention relates to a control circuit for Control of at least one solenoid valve for the Fuel metering in an internal combustion engine according to the Preamble of claim 1.
  • Such a control circuit is such. B. from the German Patent application 195 39 071 of Robert Bosch GmbH known. With this known control circuit, fast Solenoid valves e.g. B. for "common rail injection” or “Direct petrol injection” from internal combustion engines Booster and battery supply voltage FET switches controlled, which at the transition from the starting current to the holding current released energy in a capacitor is saved.
  • This circuit arrangement requires a variety of Components and complex driver circuits that it allow the valves to be controlled with large flows heading for.
  • the resulting ones are disadvantageous Dependencies of the switch-off edges for quick extinguishing of the solenoid valves from the battery voltage.
  • the core of the control circuit is a Recharge circuit that with the first and second connection the supply voltage to generate a pre-stabilized recharge voltage for the Storage capacitor from the battery supply voltage and is connected to the first switching means, the Reload circuit via third switching means between the first connection of the at least one solenoid valve and the recharge circuit are arranged, the solenoid valves from the energy stored in the storage capacitor in the Booster phase energized and the storage capacitor as well fourth switching means, which, controlled by the Control means, the reload circuit for reloading the Storage capacitor activated.
  • the battery voltage can cover a wide range, without affecting the switch-off time of the solenoid valves, the stabilized voltage above or below the Battery voltage may lie.
  • FIG. 1 graphically shows the course over time of the current intensity I (in amperes) through a solenoid valve during a control process of the same.
  • the HS booster FET 140 or 141 controls the current profile in the booster phase B from the energy stored in the storage capacitor 145.
  • the control circuit uses the first switching means, the U BATT -FET 115, to perform a starting current control AR at a relatively high starting current during a starting phase. This is followed by a first quick erasure SL to the holding current which is less than the starting current.
  • the control circuit according to the invention carries out a holding current regulation HR. This is followed by a second quick erase SL to the current level 0.
  • Figure 2 shows a block diagram of an inventive Control circuit as an example for two banks I and II.
  • Bank I contains, for example, three solenoid valves 100, 101 and 102, which are interconnected with their high-side ends and via the high-side booster FET 140 during the booster phase and via the high-side U during the pull-in phase and the holding phase BATT -FET 115 are energized.
  • the other ends of the solenoid valves 100, 101, 102 are each connected via diodes to the recharging circuit 1 and via one of the low-side FETs 120, 121, 122 and a measuring resistor R1 to a ground connection GND of the battery supply voltage U BATT .
  • the interconnected high-side ends of the solenoid valves 100, 101 and 102 are connected to the recharging circuit 1 via a diode and the high-side booster FET 140.
  • the proposed recharging circuit 1 has a choke coil 110 between a first battery supply voltage connection U BR and the second connection GND of the battery supply voltage, serially connected to it a diode 112, a storage capacitor 145 and a measuring resistor 111 and, parallel to the series connection of the diode 112 with the storage capacitor 145, a field effect transistor 113 on.
  • the function of the drive circuit shown in Figure 2 is as follows.
  • the solenoid valves 100, 101, 102 of bank I and 200, 201, 202 of bank II to be controlled are each selected via the corresponding low-side FET 120, 121, 122 or 220, 221, 222.
  • the high-side booster FET 140 from bank I or 141 from bank II controls the current profile.
  • the current profile is controlled by the high-side U BATT -FET 115 or 116.
  • the quick-erase phases SL are replaced by simultaneous Switching off the low-side field-effect transistors 120, 121, 122 or 220, 221, 222 and high-side field effect transistors 115 or 116 generated.
  • the high-side U BATT- FET 115 or 116 when the high-side U BATT- FET 115 or 116 is switched on, additional energy is fed back into the storage capacitor via the quick- erase diodes. To improve the energy balance, the high-side field-effect transistor 115 or 116 can also remain switched on after the starting phase.
  • the proposed recharging circuit 1 performs the Energy losses back to the storage capacitor 145.
  • the recharging circuit 1 either clocks continuously and / or is regulated accordingly to achieve a desired voltage.
  • the resistor 111 which is connected in series between the storage capacitor 145 and the second connection GND of the supply voltage U BATT , is used to measure the voltage at the storage capacitor 145.
  • the "hot" end of the measuring resistor 111 is connected to the driver circuit 11 or the control means.
  • the driver circuit 11 is connected via a line system a higher-level control unit (not shown) connected.

Abstract

The drive circuit has a first switching device (115,116) switched off to minimize battery voltage dependency during rapid transitions and a re-charging circuit (1) that supplies voltage to the magnetic valve(s) (100-102;200-202) via a third switching device (140,141) during a booster phase from energy stored in a storage capacitor (145). The storage capacitor is charged with a pre-stabilized recharging voltage produced from the battery voltage.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Ansteuerschaltung zur Ansteuerung wenigstens eines Magnetventils für die Kraftstoffzumessung in einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a control circuit for Control of at least one solenoid valve for the Fuel metering in an internal combustion engine according to the Preamble of claim 1.

Eine solche Ansteuerschaltung ist z. B. aus der Deutschen Patentanmeldung 195 39 071 der Robert Bosch GmbH bekannt. Mit dieser bekannten Ansteuerschaltung werden schnelle Magnetventile z. B. für die "Common Rail-Einspritzung" oder "Benzindirekteinspritzung" von Brennkraftmaschinen über Booster- und Batterieversorgungsspannungs-FET-Schalter angesteuert, wobei die beim Übergang vom Anzugsstrom auf den Haltestrom freiwerdende Energie in einem Kondensator gespeichert wird.Such a control circuit is such. B. from the German Patent application 195 39 071 of Robert Bosch GmbH known. With this known control circuit, fast Solenoid valves e.g. B. for "common rail injection" or "Direct petrol injection" from internal combustion engines Booster and battery supply voltage FET switches controlled, which at the transition from the starting current to the holding current released energy in a capacitor is saved.

Diese Schaltungsanordnung erfordert eine Vielzahl von Bauelementen und komplexe Treiberschaltungen, die es erlauben, die anzusteuernden Ventile mit großen Strömen aufzusteuern. Nachteilig sind hierbei die sich ergebenden Abhängigkeiten der Abschaltflanken bei der Schnelllöschung der Magnetventile von der Batteriespannung. This circuit arrangement requires a variety of Components and complex driver circuits that it allow the valves to be controlled with large flows heading for. The resulting ones are disadvantageous Dependencies of the switch-off edges for quick extinguishing of the solenoid valves from the battery voltage.

Aufgabe und Vorteile der ErfindungObject and advantages of the invention

Es ist Aufgabe der Erfindung, eine Ansteuerschaltung zur Ansteuerung wenigstens eines Magnetventils für die Kraftstoffzumessung in einer Brennkraftmaschine so zu ermöglichen, dass die Abschaltflanken bei der Schnelllöschung weitgehend unabhängig von Änderungen der Batteriespannung sind.It is an object of the invention to provide a control circuit for Control of at least one solenoid valve for the Fuel metering in an internal combustion engine so too enable the shutdown edges at the Quick delete largely independent of changes in Are battery voltage.

Diese Aufgabe wird anspruchsgemäß gelöst.This task is solved according to the requirements.

Kern der erfindungsgemäßen Ansteuerschaltung ist eine Nachladeschaltung, die mit dem ersten und zweiten Anschluss der Versorgungsspannung zur Erzeugung einer vorstabilisierten Nachladespannung für den Speicherkondensator aus der Batterieversorgungsspannung und mit den ersten Schaltmitteln verbunden ist, wobei die Nachladeschaltung über dritte Schaltmittel, die zwischen dem ersten Anschluss des wenigstens einen Magnetventils und der Nachladeschaltung angeordnet sind, die Magnetventile aus der im Speicherkondensator gespeicherten Energie in der Boosterphase bestromt und den Speicherkondensator sowie ein viertes Schaltmittel enthält, das, angesteuert von den Ansteuermitteln, die Nachladeschaltung zum Nachladen des Speicherkondensators aktiviert.The core of the control circuit according to the invention is a Recharge circuit that with the first and second connection the supply voltage to generate a pre-stabilized recharge voltage for the Storage capacitor from the battery supply voltage and is connected to the first switching means, the Reload circuit via third switching means between the first connection of the at least one solenoid valve and the recharge circuit are arranged, the solenoid valves from the energy stored in the storage capacitor in the Booster phase energized and the storage capacitor as well fourth switching means, which, controlled by the Control means, the reload circuit for reloading the Storage capacitor activated.

Die Abhängigkeit der Magnetventilabschaltung von Batteriespannungsänderungen entfallen weitestgehend. Der nutzbare Betriebsbereich wird somit erweitert.The dependence of the solenoid valve shutdown on Changes in battery voltage are largely eliminated. The usable operating area is thus expanded.

Die Batteriespannung kann einen weiten Bereich umfassen, ohne die Ausschaltzeit der Magnetventile zu beeinflussen, wobei die stabilisierte Spannung ober- oder unterhalb der Batteriespannung liegen kann.The battery voltage can cover a wide range, without affecting the switch-off time of the solenoid valves, the stabilized voltage above or below the Battery voltage may lie.

Ein Ausführungsbeispiel der Erfindung wird unter Bezug auf die Zeichnung nachstehend näher erläutert.An embodiment of the invention is described with reference to FIG the drawing is explained in more detail below.

Zeichnungdrawing

Figur 1Figure 1
zeigt graphisch einen Stromverlauf über der Zeit bei der Ansteuerung eines Magnetventils mit der erfindungsgemäßen Ansteuerschaltung undshows graphically a current curve over time when controlling a solenoid valve with the control circuit according to the invention and
Figur 2Figure 2
zeigt schematisch ein Schaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Ansteuerschaltung.shows schematically a circuit diagram of a Embodiment of an inventive Control circuit.
AusführungsbeispielEmbodiment

Figur 1 zeigt graphisch den zeitlichen Verlauf der Stromstärke I (in Ampere) durch ein Magnetventil während eines Ansteuervorgangs desselben. Zunächst steuert der HS-Booster-FET 140 bzw. 141 (drittes Schaltmittel) den Stromverlauf in der Boosterphase B aus der im Speicherkondensator 145 gespeicherten Energie. Dann führt die Ansteuerschaltung über die ersten Schaltmittel, dem UBATT-FET 115, während einer Anzugsphase eine Anzugsstromregelung AR bei einer relativ hohen Anzugsstromstärke aus. Danach erfolgt eine erste Schnelllöschung SL auf die Haltestromstärke, die geringer ist als die Anzugsstromstärke. Während der Haltephase führt die erfindungsgemäße Ansteuerschaltung eine Haltestromregelung HR aus. Danach erfolgt eine zweite Schnelllöschung SL auf die Stromstärke 0.FIG. 1 graphically shows the course over time of the current intensity I (in amperes) through a solenoid valve during a control process of the same. First, the HS booster FET 140 or 141 (third switching means) controls the current profile in the booster phase B from the energy stored in the storage capacitor 145. The control circuit then uses the first switching means, the U BATT -FET 115, to perform a starting current control AR at a relatively high starting current during a starting phase. This is followed by a first quick erasure SL to the holding current which is less than the starting current. During the holding phase, the control circuit according to the invention carries out a holding current regulation HR. This is followed by a second quick erase SL to the current level 0.

Figur 2 zeigt ein Blockschaltbild einer erfindungsgemäßen Ansteuerschaltung beispielhaft für zwei Bänke I und II.Figure 2 shows a block diagram of an inventive Control circuit as an example for two banks I and II.

Es ist zu erkennen, dass die Schaltungsanordnung der beiden Bänke I und II identisch ist und dass die Nachladeschaltung 1 beiden Bänken gemeinsam ist. Die Steueranschlüsse der High-Side-UBATT-FETs 115, 116 der High-Side-Booster-FETs 140, 141 und der Low-Side-FETs 120, 121, 122 und 220, 221 und 222 der beiden Bänke sind durch (nicht dargestellte) Ansteuerleitungen mit Treiberschaltungen 10 und 11 (Ansteuermittel) verbunden.It can be seen that the circuit arrangement of the two banks I and II is identical and that the recharging circuit 1 is common to both banks. The control connections of the high-side U BATT FETs 115, 116 of the high-side booster FETs 140, 141 and the low-side FETs 120, 121, 122 and 220, 221 and 222 of the two banks are through (not shown) control lines connected to driver circuits 10 and 11 (control means).

Da die Schaltungsanordnung der Bänke identisch ist, wird nur die Anordnung der Bank I beschrieben. Die Bank I enthält beispielhaft drei Magnetventile 100, 101 und 102, die mit ihren High-Side-Enden zusammengeschaltet sind und während Boosterphase über den High-Side-Booster-FET 140 und während der Anzugsphase und der Haltephase über den High-Side-UBATT-FET 115 bestromt werden. Die anderen Enden der Magnetventile 100, 101, 102 sind jeweils über Dioden mit der Nachladeschaltung 1 und über jeweils einen der Low-Side-FETs 120, 121, 122 und einen Messwiderstand R1 mit einem Masseanschluss GND der Batterieversorgungsspannung UBATT verbunden. Weiterhin sind die zusammengeschalteten High-Side-Enden der Magnetventile 100, 101 und 102 über eine Diode und den High-Side-Booster-FET 140 mit der Nachladeschaltung 1 verbunden.Since the circuit arrangement of the banks is identical, only the arrangement of bank I will be described. Bank I contains, for example, three solenoid valves 100, 101 and 102, which are interconnected with their high-side ends and via the high-side booster FET 140 during the booster phase and via the high-side U during the pull-in phase and the holding phase BATT -FET 115 are energized. The other ends of the solenoid valves 100, 101, 102 are each connected via diodes to the recharging circuit 1 and via one of the low-side FETs 120, 121, 122 and a measuring resistor R1 to a ground connection GND of the battery supply voltage U BATT . Furthermore, the interconnected high-side ends of the solenoid valves 100, 101 and 102 are connected to the recharging circuit 1 via a diode and the high-side booster FET 140.

Die vorgeschlagene Nachladeschaltung 1 weist zwischen einem ersten Batterieversorgungsspannungsanschluss UBR und dem zweiten Anschluss GND der Batterieversorgungsspannung eine Drosselspule 110, seriell damit verbunden eine Diode 112, einen Speicherkondensator 145 sowie einen Messwiderstand 111 und parallel zur Reihenschaltung aus der Diode 112 mit dem Speicherkondensator 145 einen Feldeffekttransistor 113 auf.The proposed recharging circuit 1 has a choke coil 110 between a first battery supply voltage connection U BR and the second connection GND of the battery supply voltage, serially connected to it a diode 112, a storage capacitor 145 and a measuring resistor 111 and, parallel to the series connection of the diode 112 with the storage capacitor 145, a field effect transistor 113 on.

Die Funktion der in Figur 2 dargestellten Ansteuerschaltung ist wie folgt. Die anzusteuernden Magnetventile 100, 101, 102 der Bank I sowie 200, 201, 202 der Bank II werden jeweils über den entsprechenden Low-Side-FET 120, 121, 122 bzw. 220, 221, 222 selektiert. Während der zu Anfang eingeleiteten Boosterphase B steuert der High-Side-Booster-FET 140 der Bank I bzw. 141 der Bank II den Stromverlauf. In der Anzugs- und Haltephase wird der Stromverlauf vom High-Side-UBATT-FET 115 bzw. 116 gesteuert.The function of the drive circuit shown in Figure 2 is as follows. The solenoid valves 100, 101, 102 of bank I and 200, 201, 202 of bank II to be controlled are each selected via the corresponding low-side FET 120, 121, 122 or 220, 221, 222. During the booster phase B initiated at the beginning, the high-side booster FET 140 from bank I or 141 from bank II controls the current profile. In the pull-in and hold phase, the current profile is controlled by the high-side U BATT -FET 115 or 116.

Die Schnelllöschphasen SL werden durch gleichzeitiges Abschalten der Low-Side-Feldeffekttransistoren 120, 121, 122 bzw. 220, 221, 222 und High-Side-Feldeffekttransistoren 115 bzw. 116 erzeugt.The quick-erase phases SL are replaced by simultaneous Switching off the low-side field-effect transistors 120, 121, 122 or 220, 221, 222 and high-side field effect transistors 115 or 116 generated.

Die in Figur 1 gestrichelt eingezeichneten batteriespannungsabhängigen Kurvenverläufe der Übergänge in den Schnelllöschphasen SL, die einen Mengeneinfluss nach der Haltephase bei der Haupteinspritzung und gegebenenfalls nach der Anzugsphase bei Voreinspritzung haben, werden vermieden.The dashed lines in Figure 1 battery voltage dependent curves of the transitions in the quick extinguishing phases SL, which influence the quantity the holding phase in the main injection and if necessary after the pre-injection tightening phase avoided.

Während den Schnelllöschphasen SL wird bei eingeschaltetem High-Side-UBATT-FET 115 bzw. 116 über die Schnelllöschdioden zusätzliche Energie in den Speicherkondensator zurückgeführt. Zur Verbesserung der Energiebilanz kann nach der Anzugphase der High-Side-Feldeffekttransistor 115 bzw. 116 auch eingeschaltet bleiben.During the quick- erase phases SL, when the high-side U BATT- FET 115 or 116 is switched on, additional energy is fed back into the storage capacitor via the quick- erase diodes. To improve the energy balance, the high-side field-effect transistor 115 or 116 can also remain switched on after the starting phase.

Die vorgeschlagene Nachladeschaltung 1 führt die Energieverluste dem Speicherkondensator 145 zurück.The proposed recharging circuit 1 performs the Energy losses back to the storage capacitor 145.

Die Nachladeschaltung 1 taktet entweder dauernd und/oder wird zum Erreichen einer gewünschten Spannung entsprechend geregelt. Zur Messung der Spannung am Speicherkondensator 145 dient der Widerstand 111, der in Reihe zwischen dem Speicherkondensator 145 und dem zweiten Anschluss GND der Versorgungsspannung UBATT geschaltet ist. Das "heiße" Ende des Messwiderstands 111 ist mit der Treiberschaltung 11 bzw. den Ansteuermitteln verbunden. The recharging circuit 1 either clocks continuously and / or is regulated accordingly to achieve a desired voltage. The resistor 111, which is connected in series between the storage capacitor 145 and the second connection GND of the supply voltage U BATT , is used to measure the voltage at the storage capacitor 145. The "hot" end of the measuring resistor 111 is connected to the driver circuit 11 or the control means.

Die Treiberschaltung 11 ist über ein Leitungssystem mit einer (nicht gezeigten) übergeordneten Steuereinheit verbunden.The driver circuit 11 is connected via a line system a higher-level control unit (not shown) connected.

Damit ergeben sich folgende Vorteile:

  • Es ist möglich, die Magnetventile unabhängig von der Batteriespannung abzusteuern.
  • Die Batteriespannung kann somit einen weiten Bereich umfassen, ohne die Ausschaltzeit des Magnetventils zu beeinflussen.
  • Die bei bisherigen Ansteuerschaltungen bekannte Batteriespannungskompensation der Ansteuerdauer kann somit wesentlich vereinfacht werden.
  • Batteriespannungsabhängigkeiten für die Magnetventilansteuerung entfallen weitestgehend. Damit wird der nutzbare Betriebsbereich erweitert.
This has the following advantages:
  • It is possible to shut down the solenoid valves independently of the battery voltage.
  • The battery voltage can thus cover a wide range without influencing the switch-off time of the solenoid valve.
  • The battery voltage compensation of the control duration known in previous control circuits can thus be significantly simplified.
  • Battery voltage dependencies for solenoid valve control are largely eliminated. This extends the usable operating range.

Claims (9)

Schaltungsanordnung zur Ansteuerung wenigstens eines Magnetventils für die Kraftstoffzumessung in einer Brennkraftmaschine, mit ersten Schaltmitteln (115, 116), die zwischen einem ersten Anschluss (UBR) einer Batterieversorgungsspannung (UBATT) und einem ersten Anschluss des wenigstens einen Magnetventils (100, 101, 102; 200, 201, 202) angeordnet sind, zweiten Schaltmitteln (120, 121, 122; 220, 221, 222), die jeweils zwischen einem zweiten Anschluss eines zugeordneten Magnetventils (100, 101, 102; 200, 201, 202) und dem zweiten Anschluss (GND) der Versorgungsspannung (UBATT) angeordnet sind, und mit Ansteuermitteln (10, 11), die die Schaltmittel so ansteuern, dass die beim schnellen Übergang von einem Anzugsstromwert (IA) auf einen Haltestromwert (IH) oder von einem Haltestromwert (IH) auf die Stromstärke Null frei werdende Energie in einem mit einem jeweiligen zweiten Anschluss des Magnetventils oder der Magnetventile verbundenen Speicherkondensator (145) speicherbar und dem oder den Magnetventil(en) in seiner/ihrer Boosterphase wieder zuführbar ist, dadurch gekennzeichnet, dass der HS-FET (115 bzw. 116) zur Minimierung der Batteriespannungsabhängigkeit während den schnellen Übergängen abgeschaltet ist, dritte Schaltmittel (140, 141) zwischen dem ersten Anschluss des wenigstens einen Magnetventils (100, 101, 102; 200, 201, 202) und einer Nachladeschaltung (1; 110, 111, 112, 113, 145) angeordnet sind, wobei die Nachladeschaltung zur Spannungsversorgung des Magnetventils bzw. der Magnetventile (100, 101, 102; 200, 201, 202) über die dritten Schaltmittel (140, 141) während der Boosterphase (B) aus der im Speicherkondensator gespeicherten Energie dient und mit dem ersten und zweiten Anschluss (UBR, GND) der Batterieversorgungsspannung (UBATT) verbunden ist und eine vorstabilisierte Nachladespannung für den Speicherkondensator (145) aus der Batterieversorgungsspannung (UBATT) erzeugt und den Speicherkondensator (145) sowie ein viertes Schaltmittel (113) enthält, welches, angesteuert von den Ansteuermitteln (10, 11), die Nachladeschaltung (1; 110, 111, 112, 113, 145) zum Nachladen des Speicherkondensators (145) aktiviert.Circuit arrangement for controlling at least one solenoid valve for fuel metering in an internal combustion engine, with first switching means (115, 116) which are connected between a first connection (U BR ) of a battery supply voltage (U BATT ) and a first connection of the at least one solenoid valve (100, 101, 102; 200, 201, 202) are arranged, second switching means (120, 121, 122; 220, 221, 222), each between a second connection of an associated solenoid valve (100, 101, 102; 200, 201, 202) and the second connection (GND) of the supply voltage (U BATT ) are arranged, and with control means (10, 11) which control the switching means in such a way that during the rapid transition from a starting current value (I A ) to a holding current value (I H ) or Energy released from a holding current value (I H ) to the current intensity zero can be stored in a storage capacitor (145) connected to a respective second connection of the solenoid valve or the solenoid valves d the solenoid valve (s) can be fed back in its booster phase, characterized in that the HS-FET (115 or 116) is switched off to minimize the battery voltage dependence during the fast transitions, third switching means (140, 141) between the first connection of the at least one solenoid valve (100, 101, 102; 200, 201, 202) and a recharge circuit (1; 110, 111, 112, 113, 145) are arranged, the recharge circuit for supplying voltage to the solenoid valve or the solenoid valves (100, 101, 102; 200, 201, 202) the third switching means (140, 141) is used during the booster phase (B) from the energy stored in the storage capacitor and is connected to the first and second connection (U BR , GND) of the battery supply voltage (U BATT ) and a pre-stabilized recharging voltage for the storage capacitor ( 145) generated from the battery supply voltage (U BATT ) and contains the storage capacitor (145) and a fourth switching means (113), which, controlled by the control means (10, 11), the recharging circuit (1; 110, 111, 112, 113, 145) for recharging the storage capacitor (145). Ansteuerschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Ansteuermittel (10, 11) so eingerichtet sind, dass sie das vierte Schaltmittel (113) kontinuierlich takten.Control circuit according to Claim 1, characterized in that the control means (10, 11) are set up in such a way that they continuously clock the fourth switching means (113). Ansteuerschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Nachladeschaltung weiterhin Messmittel (111) aufweist, die einen am Speicherkondensator (145) gemessenen Spannungswert den Ansteuermitteln (10, 11) zuführen, wobei die Ansteuermittel (10, 11) das vierte Schaltmittel (113) zum Nachladen des Speicherkondensators (145) nur ansteuern, wenn die erfasste Spannung am Speicherkondensator (145) einen bestimmten Sollwert unterschreitet.Control circuit according to Claim 1, characterized in that the recharging circuit further comprises measuring means (111) which supply a voltage value measured at the storage capacitor (145) to the control means (10, 11), the control means (10, 11) providing the fourth switching means (113) Activate to recharge the storage capacitor (145) only if the detected voltage across the storage capacitor (145) falls below a certain target value. Ansteuerschaltung nach Anspruch 3, dadurch gekennzeichnet, dass die Messmittel (111) einen Widerstand aufweisen, der in Reihe zwischen dem Speicherkondensator (145) und dem zweiten Anschluss (GND) der Versorgungsspannung (UBATT) geschaltet ist.Control circuit according to Claim 3, characterized in that the measuring means (111) have a resistor which is connected in series between the storage capacitor (145) and the second terminal (GND) of the supply voltage (U BATT ). Ansteuerschaltung nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Nachladeschaltung weiterhin eine in Reihe zum Speicherkondensator (145) geschaltete Drosselspule (110) und eine Diode (112) aufweist, die in Reihe zwischen die Drosselspule (110) und den Speicherkondensator (145) geschaltet ist, und dass ein Verbindungspunkt der Diode (112) mit dem Speicherkondensator (145) mit dem zweiten Anschluss oder den zweiten Anschlüssen des Magnetventils bzw. der Magnetventile in Verbindung steht.Control circuit according to one of claims 1-4, characterized in that the recharging circuit further comprises a choke coil (110) connected in series with the storage capacitor (145) and a diode (112) connected in series between the choke coil (110) and the storage capacitor ( 145), and that a connection point of the diode (112) with the storage capacitor (145) is connected to the second connection or the second connections of the solenoid valve or the solenoid valves. Ansteuerschaltung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das vierte Schaltmittel (113) parallel zur Reihenschaltung der Diode (112) mit dem Speicherkondensator (145) geschaltet ist.Control circuit according to one of the preceding claims, characterized in that the fourth switching means (113) is connected in parallel to the series connection of the diode (112) with the storage capacitor (145). Ansteuerschaltung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltmittel FET-Leistungsschalttransistoren oder ähnliche sind.Drive circuit according to one of the preceding claims, characterized in that the switching means are FET power switching transistors or the like. Ansteuerschaltung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Magnetventile und die ersten, zweiten und dritten Schaltmittel in mehrere Bänke (I, II) gruppiert sind, wobei jede Bank mehrere Magnetventile, einen High-Side-UBATT-Feldeffekttransistor (115, 116) als erstes Schaltmittel, mehrere Low-Side-Feldeffekttransistoren (120, 121, 122; 220, 221, 222) die jeweils den Magnetventilen zugeordnet sind, als zweite Schaltmittel und einen High-Side-Feldeffekttransistor (140, 141) als drittes Schaltmittel aufweisen.Control circuit according to one of the preceding claims, characterized in that the solenoid valves and the first, second and third switching means are grouped into a plurality of banks (I, II), each bank having a plurality of solenoid valves, a high-side U BATT field effect transistor (115, 116) as the first switching means, a plurality of low-side field-effect transistors (120, 121, 122; 220, 221, 222) which are each assigned to the solenoid valves, as second switching means and a high-side field-effect transistor (140, 141) as the third switching means exhibit. Ansteuerschaltung nach Anspruch 8, dadurch gekennzeichnet, dass die von den Magnetventilen abgewendeten Enden der Low-Side-Feldeffekttransistoren jeder Bank einzeln zusammengeschaltet und gemeinsam mit einem Ende je eines Messwiderstands (R1,R2) verbunden sind, dessen anderes Ende mit dem zweiten Anschluss (GND) der Batterieversorgungsspannung (UBATT) verbunden ist, und dass an dem jeweiligen mit den Low-Side-Feldeffekttransistoren verbundenen Ende dieser Messwiderstände ein Spannungswert abgreifbar und den Ansteuermitteln (10, 11) zuführbar ist.Control circuit according to claim 8, characterized in that the ends of the low-side field-effect transistors of each bank facing away from the solenoid valves are individually connected together and connected together to one end of a measuring resistor (R1, R2), the other end of which to the second connection (GND ) the battery supply voltage (U BATT ) is connected, and that a voltage value can be tapped at the respective end of these measuring resistors connected to the low-side field effect transistors and can be supplied to the control means (10, 11).
EP01108113A 2000-05-11 2001-03-30 Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine Withdrawn EP1154140A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10022956A DE10022956A1 (en) 2000-05-11 2000-05-11 Control circuit for controlling at least one solenoid valve for metering fuel in an internal combustion engine
DE10022956 2000-05-11

Publications (2)

Publication Number Publication Date
EP1154140A2 true EP1154140A2 (en) 2001-11-14
EP1154140A3 EP1154140A3 (en) 2003-09-17

Family

ID=7641571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01108113A Withdrawn EP1154140A3 (en) 2000-05-11 2001-03-30 Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine

Country Status (4)

Country Link
US (1) US6526945B2 (en)
EP (1) EP1154140A3 (en)
JP (1) JP2001329898A (en)
DE (1) DE10022956A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009232A (en) * 2013-02-26 2015-10-28 罗伯特·博世有限公司 Method for controlling an injection process of a magnetic injector
WO2016119918A1 (en) * 2015-01-28 2016-08-04 Robert Bosch Gmbh Method for operating a piston pump, control device of a piston pump, and piston pump

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978745B1 (en) 2004-07-13 2005-12-27 Ford Global Technologies, Llc System for controlling electromechanical valves in an engine
ATE353398T1 (en) * 2004-10-08 2007-02-15 Fiat Ricerche DEVICE FOR CONTROLLING ELECTRICAL INJECTION VALVES AND ELECTRICAL VALVES OF AN INTERNAL INTERNAL ENGINE AND A METHOD THEREOF
JP5055050B2 (en) * 2006-10-10 2012-10-24 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JP4871245B2 (en) * 2007-10-26 2012-02-08 日立オートモティブシステムズ株式会社 Internal combustion engine control device
US20090309054A1 (en) * 2008-06-11 2009-12-17 Automatic Switch Company System and method of operating a solenoid valve at minimum power levels
JP5198496B2 (en) * 2010-03-09 2013-05-15 日立オートモティブシステムズ株式会社 Engine control unit for internal combustion engines
US8214132B2 (en) * 2010-09-17 2012-07-03 Caterpillar Inc. Efficient wave form to control fuel system
IL208815A0 (en) * 2010-10-19 2011-01-31 Raphael Valves Ind 1975 Ltd An integrated ultrasonic flowmeter and hydraulic valve
DE102011080858B4 (en) 2011-08-11 2021-04-08 Robert Bosch Gmbh Method for operating a solenoid valve taking a variable into account
KR101498809B1 (en) * 2012-09-05 2015-03-04 나부테스코 가부시키가이샤 Driving circuit for electromagnetic valve
KR20150111469A (en) * 2014-03-25 2015-10-06 (주)엘지하우시스 Electromagnetic wave shielding sheet, and the preparation method for the same
DE102014217145A1 (en) 2014-08-28 2016-03-03 Robert Bosch Gmbh Device for operating at least one electromagnetic actuator
GB2534172A (en) * 2015-01-15 2016-07-20 Gm Global Tech Operations Llc Method of energizing a solenoidal fuel injector for an internal combustion engine
DE102015213831A1 (en) 2015-07-22 2017-01-26 Robert Bosch Gmbh Method for decommissioning an electrically controlled component of a vehicle in the event of a fault of a component unit controlling the component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539071A1 (en) 1995-03-02 1996-09-05 Bosch Gmbh Robert Device for controlling at least one electromagnetic consumer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607030B1 (en) * 1993-01-12 1999-03-24 SILICONIX Incorporated PWM multiplexed solenoid driver
US5515830A (en) * 1995-05-22 1996-05-14 Kokusan Denki Co., Ltd. Fuel injection equipment for internal combustion engine
DE19634342B4 (en) * 1996-08-24 2007-05-16 Bosch Gmbh Robert Device for controlling at least two electromagnetic consumers
JP3828239B2 (en) * 1997-05-22 2006-10-04 三菱電機株式会社 Control device for injector for fuel injection
IT1296664B1 (en) * 1997-12-19 1999-07-14 Fiat Ricerche ELECTRIC ACTUATOR CONTROL DEVICE.
US6005763A (en) * 1998-02-20 1999-12-21 Sturman Industries, Inc. Pulsed-energy controllers and methods of operation thereof
DE19808780A1 (en) * 1998-03-03 1999-09-09 Bosch Gmbh Robert Method of driving load, especially magnetic valve for controlling fuel delivery in IC engine
DE19813138A1 (en) * 1998-03-25 1999-09-30 Bosch Gmbh Robert Method and device for controlling an electromagnetic consumer
JP3534167B2 (en) * 1998-05-25 2004-06-07 国産電機株式会社 Injector driving method and driving circuit
DE19823850C2 (en) * 1998-05-28 2001-04-12 Bosch Gmbh Robert Device for controlling an electromagnetic consumer
DE19833830A1 (en) * 1998-07-28 2000-02-03 Bosch Gmbh Robert System for energizing magnetic valves controlling fuel injection in IC engine, using increased starting voltage and engine operating characteristic(s)
US6367719B1 (en) * 1998-10-22 2002-04-09 Siemens Automotive Corporation Electromechanical valve driver circuit and method
DE19912966A1 (en) * 1999-03-23 2000-10-05 Bosch Gmbh Robert Actuator for vol. control valve for direct injection IC engine, with valve controlling pressure build-up is pressure storage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539071A1 (en) 1995-03-02 1996-09-05 Bosch Gmbh Robert Device for controlling at least one electromagnetic consumer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009232A (en) * 2013-02-26 2015-10-28 罗伯特·博世有限公司 Method for controlling an injection process of a magnetic injector
CN105009232B (en) * 2013-02-26 2018-10-12 罗伯特·博世有限公司 The method controlled for the course of injection to magnetic injectors
WO2016119918A1 (en) * 2015-01-28 2016-08-04 Robert Bosch Gmbh Method for operating a piston pump, control device of a piston pump, and piston pump
US10890167B2 (en) 2015-01-28 2021-01-12 Robert Bosch Gmbh Method for operating a piston pump, control device of a piston pump, and piston pump

Also Published As

Publication number Publication date
DE10022956A1 (en) 2001-11-15
EP1154140A3 (en) 2003-09-17
JP2001329898A (en) 2001-11-30
US20020005187A1 (en) 2002-01-17
US6526945B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
EP0704097B1 (en) Process and device for controlling electromagnetic consumers
EP1154140A2 (en) Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine
DE19652801C1 (en) Driving at least one capacitive positioning element esp. piezoelectrically driven fuel injection valve for IC engine
DE19907505B4 (en) Method and apparatus for controlling a current rise time during multiple fuel injection events
EP0812461B1 (en) Device for controlling at least one electromagnetic consumer
EP1212799A1 (en) Device for controlling at least one capacitive actuator
DE102017221813B4 (en) INJECTION CONTROL UNIT
DE19734895C2 (en) Device and method for controlling at least one capacitive actuator
DE60018549T2 (en) fuel injection system
WO2013139757A2 (en) Method for operating a capacitive actuator
DE10033343A1 (en) Fuel injection system for an internal combustion engine
EP1099260B1 (en) Method and device for controlling at least one capacitive actuator
DE602004004664T2 (en) Device for controlling the electric injection valves and electrovalves of an internal combustion engine and a method therefor
DE19813138A1 (en) Method and device for controlling an electromagnetic consumer
DE102004046192A1 (en) Circuit arrangement and method for charging and discharging at least one capacitive load
DE19728221A1 (en) High speed operation method of electromagnetic load
EP1628010A2 (en) Method and circuit arrangement for driving a piezoelectric actuator
DE60011993T2 (en) Apparatus and method for determining a reduction in capacitance while driving piezoelectric elements
EP0246357B1 (en) System for controlling an electrical injector valve
DE60018385T2 (en) Determining the temperature of a piezoelectric element using an energy balance model of the piezoelectric element
DE19823850C2 (en) Device for controlling an electromagnetic consumer
EP1154141A2 (en) Driving circuit for at least one electromagnetic valve for fuel metering in an internal combustion engine
EP0854281B1 (en) Device for controlling at least one electromagnetic consumer
DE60007836T2 (en) Compensation of the play tolerances in different lots due to the fluctuations in the layer thickness or the number of layers in multilayer piezoelectric elements
DE10058959B4 (en) Method for monitoring a control circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01F 7/18 B

Ipc: 7F 02D 41/20 A

17P Request for examination filed

Effective date: 20040317

AKX Designation fees paid

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20040629

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060503