EP1149188B1 - Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium - Google Patents

Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium Download PDF

Info

Publication number
EP1149188B1
EP1149188B1 EP00900036A EP00900036A EP1149188B1 EP 1149188 B1 EP1149188 B1 EP 1149188B1 EP 00900036 A EP00900036 A EP 00900036A EP 00900036 A EP00900036 A EP 00900036A EP 1149188 B1 EP1149188 B1 EP 1149188B1
Authority
EP
European Patent Office
Prior art keywords
anode
layer
electrolyte
iron
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00900036A
Other languages
German (de)
English (en)
Other versions
EP1149188A1 (fr
Inventor
Vittorio De Nora
Jean-Jacques Duruz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moltech Invent SA
Original Assignee
Moltech Invent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moltech Invent SA filed Critical Moltech Invent SA
Publication of EP1149188A1 publication Critical patent/EP1149188A1/fr
Application granted granted Critical
Publication of EP1149188B1 publication Critical patent/EP1149188B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes

Definitions

  • This invention relates to non-carbon, metal-based, anodes for use in cells for the electrowinning of aluminium from alumina dissolved in a fluoride-containing molten electrolyte such as cryolite, and to methods for their fabrication, as well as to electrowinning cells containing such anodes and their use to produce aluminium.
  • the anodes are still made of carbonaceous material and must be replaced every few weeks. During electrolysis the oxygen which should evolve on the anode surface combines with the carbon to form polluting CO 2 and small amounts of CO and fluorine-containing dangerous gases.
  • the actual consumption of the anode is as much as 450 Kg/Ton of aluminium produced which is more than 1/3 higher than the theoretical amount of 333 Kg/Ton.
  • metal anodes in aluminium electrowinning cells would drastically improve the aluminium process by reducing pollution and the cost of aluminium production.
  • US Patent 4,999,097 (Sadoway) describes anodes for conventional aluminium electrowinning cells provided with an oxide coating containing at least one oxide of zirconium, hafnium, thorium and uranium. To prevent consumption of the anode, the bath is saturated with the materials that form the coating. However, these coatings are poorly conductive and have not been used.
  • US Patent 4,504,369 discloses a method of producing aluminium in a conventional cell using anodes whose dissolution into the electrolytic bath is reduced by adding anode constituent materials into the electrolyte, allowing slow dissolution of the anode.
  • this method is impractical because it would lead to a contamination of the product aluminium by the anode constituent materials which is considerably above the acceptable level in industrial production.
  • US Patent 4,614,569 (Duruz/Derivaz/Debely/Adorian) describes metal anodes for aluminium electrowinning coated with a protective coating of cerium oxyfluoride, formed in-situ in the cell or pre-applied, this coating being maintained during electrolysis by the addition of small amounts of a cerium compound to the molten cryolite electrolyte. This made it possible to have a protection of the surface from the electrolyte attack and to a certain extent from gaseous oxygen but not from nascent monoatomic oxygen.
  • EP Patent application 0 306 100 (Nyguen/Lazouni/Doan) describes anodes composed of a chromium, nickel, cobalt and/or iron based substrate covered with an oxygen barrier layer and a ceramic coating of nickel, copper and/or manganese oxide which may be further covered with an in-situ formed protective cerium oxyfluoride layer.
  • US Patents 5,069,771, 4,960,494 and 4,956,068 disclose aluminium production anodes with an oxidised copper-nickel surface on an alloy substrate with a protective barrier layer. However, full protection of the alloy substrate was difficult to achieve.
  • Metal or metal-based anodes are highly desirable in aluminium electrowinning cells instead of carbon-based anodes. Many attempts were made to use metallic anodes for aluminium production, however they were never adopted by the aluminium industry because they had a short life and contaminated the aluminium produced.
  • a major object of the invention is to provide an anode for aluminium electrowinning which has no carbon so as to eliminate carbon-generated pollution and increase the anode life.
  • a further object of the invention is to provide an aluminium electrowinning anode material with a surface having a high electrochemical activity and a low solubility in the electrolyte.
  • Another object of the invention is to provide an anode for the electrowinning of aluminium which is covered with an electrochemically active layer with limited ionic conductivity for oxygen ions.
  • Yet another object of the invention is to provide an anode for the electrowinning of aluminium which is made of readily available material(s).
  • An important object of the invention is to substantially reduce the solubility of the surface layer of an aluminium electrowinning anode, thereby maintaining the anode dimensionally stable.
  • Yet another object of the invention is to provide operating conditions for an aluminium electrowinning cell under which the contamination of the product aluminium is limited.
  • This invention is based on the observation that low-carbon high-strength low-alloy (HSLA) steels such as Cor-TenTM even at high temperature form under oxidising conditions an iron oxide-based surface layer which is dense, electrically conductive, electrochemically active for oxygen evolution and, as opposed to oxide layers formed on standard steels or other iron alloys, is highly adherent and less exposed to delamination and limits diffusion of ionic, monoatomic and molecular oxygen.
  • HSLA low-carbon high-strength low-alloy
  • HSLA steels are used for their strength and resistance to atmospheric corrosion especially at lower temperatures (below 0°C) in different areas of technology such as civil engineering (bridges, dock walls, sea walls, piping), architecture (buildings, frames) and mechanical engineering (welded/bolted/riveted structures, car and railway industry, high pressure vessels).
  • civil engineering bridges, dock walls, sea walls, piping
  • architecture buildings, frames
  • mechanical engineering welded/bolted/riveted structures, car and railway industry, high pressure vessels.
  • these HSLA steels have never been proposed for applications at high temperature, especially under oxidising or corrosive conditions, in particular in cells for the electrowinning of aluminium.
  • the iron oxide-based surface layer grows until its thickness constitutes a sufficient barrier to oxygen and then remains dimensionally stable. If the HSLA steel is exposed to an environment promoting dissolution or delamination of the surface layer, the rate of formation of the iron oxide-based surface layer (by oxidation of the surface of the HSLA steel) reaches the rate of dissolution or delamination of the surface layer after a transitional period during which the surface layer grows or decreases to reach an equilibrium thickness in the specific environment.
  • the invention relates in particular to an anode of a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-containing molten electrolyte.
  • This anode comprises a low-carbon high-strength low-alloy (HSLA) steel body or layer whose surface is oxidised to form a coherent and adherent outer iron oxide-based layer the surface of which is electrochemically active for the evolution of oxygen.
  • the iron oxide-based layer has a low solubility in the molten electrolyte.
  • the thickness of the iron oxide-based layer is such as to reduce or prevent diffusion of oxygen from the electrochemically active surface into the steel body or layer during use.
  • the reduced rate of diffusion through the oxide-based layer can be such that oxygen only diffuses into the steel body or layer in a controlled manner without significant increase of the thickness of the oxide-based layer.
  • High-strength low-alloy (HSLA) steel designates a group of low-carbon steels (typically up to 0.5 weight% carbon of the total) that contain small amounts of alloying elements. These steels have better mechanical properties and sometimes better corrosion resistance than carbon steels.
  • the surface of the high-strength low-alloy steel body or layer may be oxidised in an electrolytic cell or in an oxidising atmosphere, in particular a relatively pure oxygen atmosphere.
  • the surface of the high-strength low-alloy steel body or layer may be oxidised in a first electrolytic cell and then transferred to an aluminium production cell.
  • oxidation would typically last 5 to 15 hours at 800 to 1000°C. Oxidation may also take place in air or in oxygen for 5 to 25 hours at 750 to 1150°C before electrolysis.
  • a high-strength low-alloy steel body or layer may be tempered or annealed after pre-oxidation.
  • the high-strength low-alloy steel body or layer may be maintained at elevated temperature after pre-oxidation until immersion into the molten electrolyte of an aluminium production cell.
  • the high-strength low-alloy steel body or layer may comprise 94 to 98 weight% iron and carbon, the remaining constituents being one or more further metals selected from chromium, copper, nickel, silicon, titanium, tantalum, tungsten, vanadium, zirconium, aluminium, molybdenum, manganese and niobium, and possibly small amounts of at least one additive selected from boron, sulfur, phosphorus and nitrogen.
  • the anode comprises a layer of high-strength low-alloy steel on an oxidation resistant metallic core.
  • the layer of high-strength low-alloy steel may be applied on the metallic core before or after formation of the outer iron oxide-based layer.
  • the metallic core is preferably electrically highly conductive and may be made of copper or a copper alloy.
  • the metallic core may contain minor amounts of at least one oxide, such as alumina, hafnia, yttria and/or zirconia.
  • the metallic core may be coated with at least one metal selected from nickel, chromium, cobalt, iron, aluminium, hafnium, manganese, molybdenum, niobium, silicon, tantalum, titanium, tungsten, vanadium, yttrium and zirconium, and alloys, intermetallic compounds and combinations thereof.
  • the metallic core may be coated with an oxygen barrier layer of chromium and/or niobium.
  • the layer of high-strength low-alloy steel may be plasma sprayed, arc sprayed, slurry-applied or electrodeposited onto the metallic core.
  • the high-strength low-alloy steel layer may be bonded to the metallic core through at least one intermediate layer, in particular a film of silver, typically 0.1 to 10 micron thick, which is in intimate and continuous contact with the metallic core and with the steel layer, and/or at least one layer of nickel and/or copper.
  • the invention also relates to a bipolar electrode of a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-containing electrolyte, comprising on its anodic side an anode as described above.
  • the high strength low allow (HSLA) steel body can also be bonded or connected to an electrically conductive anode structure of special design as disclosed in WO-A-00/40781 and WO-A-00/40782 (both in the name of de Nora).
  • One aspect of the invention is an anode precursor comprising a low-carbon high-strength low-alloy (HSLA) steel body or layer and which can be converted into a fully manufactured anode as described above by oxidising the surface of the steel body or layer to form the coherent and adherent outer iron oxide-based layer.
  • HSLA high-strength low-alloy
  • Another aspect of the invention is a method of manufacturing an anode as described above comprising:
  • a further aspect of the invention is a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-containing molten electrolyte comprising at least one anode having a low-carbon high-strength low-alloy (HSLA) steel body or layer and an electrochemically active outer iron oxide-based layer whose surface is electrochemically active, as described above.
  • HSLA low-carbon high-strength low-alloy
  • the electrochemically active layer of the or each anode may be progressively further formed by surface oxidation of the steel body or layer by controlled oxygen diffusion through the electrochemically active layer, and progressively dissolved into the electrolyte at the electrolyte/anode interface, the rate of formation of the outer iron oxide-based layer being substantially equal to its rate of dissolution into the electrolyte.
  • the concentration of nickel (a frequent component of proposed metal-based anodes) found in aluminium produced in small scale tests at conventional cell operating temperatures is typically comprised between 800 and 2000 ppm, i.e. 4 to 10 times the maximum acceptable level which is 200 ppm.
  • Iron oxides and in particular hematite have a higher solubility than nickel in molten electrolyte.
  • the contamination tolerance of the product aluminium by iron is also much higher (up to 2000 ppm) than for other metal impurities.
  • Solubility is an intrinsic property of anode materials and cannot be changed otherwise than by modifying the electrolyte composition and/or the operating temperature of a cell.
  • an anode covered with an outer layer of iron oxide can be made dimensionally stable by maintaining a concentration of iron species and alumina in the molten electrolyte sufficient to reduce or suppress the dissolution of the iron-oxide layer, the concentration of iron species being low enough not to exceed the commercial acceptable level of iron in the product aluminium.
  • the presence of dissolved alumina in the electrolyte at the anode surface has a limiting effect on the dissolution of iron from the anode into the electrolyte, which reduces the concentration of iron species necessary to substantially stop dissolution of iron from the anode.
  • anodes according to the invention may be kept dimensionally stable by maintaining a sufficient amount of dissolved alumina and iron species in the electrolyte to reduce or prevent dissolution of the outer oxide layer.
  • the cell should be operated at a sufficiently low temperature to limit the solubility of iron species in the electrolyte, thereby limiting contamination of the product aluminium by constituents of the outer iron oxide-based layer of the anode(s) to a commercially acceptable level.
  • the operating temperature of the electrolyte should be below 910°C, usually from 730 to 870°C.
  • the amount of iron species and alumina dissolved in the electrolyte preventing dissolution of the iron oxide-based outside surface layer of the or each anode should be such that the product aluminium is contaminated by no more than 2000 ppm iron, preferably by no more than 1000 ppm iron, and even more preferably by no more than 500 ppm iron.
  • the iron species are intermittently fed into the electrolyte, for instance together with alumina, to maintain the amount of iron species in the electrolyte constant which, at the operating temperature, prevents the dissolution of the iron oxide-based outside surface layer of the anodes.
  • the iron species can also be continuously fed, for instance by dissolving a sacrificial electrode which continuously feeds the iron species into the electrolyte.
  • the iron species may be fed in the form of iron metal and/or an iron compound, in particular iron oxide, iron fluoride, iron oxyfluoride and/or an iron-aluminium alloy.
  • the cell may comprise an aluminium-wettable cathode which can be a drained cathode on which aluminium is produced and from which it continuously drains, as described in US Patent 5,651,874 (de Nora/Sekhar) and 5,683,559 (de Nora).
  • the cell is in a monopolar, multi-monopolar or in a bipolar configuration.
  • the bipolar cell comprises a terminal cathode facing a terminal anode and thereinbetween at least one bipolar electrode, the anode(s) described above forming the anodic side of the or each bipolar electrode and/or of the terminal anode.
  • the cell comprises means to improve the circulation of the electrolyte between the anodes and facing cathodes and/or means to facilitate dissolution of alumina in the electrolyte.
  • means to improve the circulation of the electrolyte between the anodes and facing cathodes can for instance be provided by the geometry of the cell as described in co-pending application WO 99/41429 (de Nora/Duruz) or by periodically moving the anodes as described in co-pending application WO 99/41430 (Duruz/Bell ⁇ ).
  • Yet another aspect of the invention is a method of producing aluminium in a cell as described above.
  • the method comprises dissolving alumina in the electrolyte and passing an ionic electric current between the electrochemically active surface of the anode(s) and the surface of the cathode(s), thereby producing aluminium on the cathode surface(s) and oxygen on the anode surface(s).
  • Yet a further aspect of the invention is a method of manufacturing an anode and producing aluminium in an electrolytic cell comprising inserting an anode precursor as described above into the electrolyte of an electrolytic cell and forming the iron oxide-based layer to produce a fully manufactured anode, and producing oxygen on the surface of the iron oxide-based layer and aluminium on a facing cathode in the same (or nearly the same) or in a different electrolyte.
  • the thus-produced anode may then be transferred from the electrolytic cell in which it was produced to an aluminium electrowinning cell.
  • the composition of the electrolyte in which the anode was produced can be suitably modified, for instance by dissolving alumina and optionally iron species, and electrolysis continued in the same cell to produce aluminium.
  • Electrolysis was carried out in a laboratory scale cell equipped with an anode according to the invention.
  • the anode was made with a Cor-TenTM type low-carbon high-strength (HSLA) steel containing niobium, titanium, chromium and copper in a total amount of less than 4 weight%.
  • the anode was pre-oxidised in air at about 1050°C for 15 hours for the formation of a dense hematite-based outer layer.
  • the anode was then tested in a fluoride-containing molten electrolyte at 850°C and at a current density of about 0.7 A/cm 2 .
  • the electrolyte contained cryolite and 15 weight% excess of AlF 3 , approximately 3 weight% alumina and approximately 200 ppm iron species obtained from the dissolution of iron oxide thereby surely saturating the electrolyte with iron species and inhibiting dissolution of the hematite-based anode surface layer.
  • the alumina feed contained sufficient iron oxide so as to replace the iron which had been deposited into the product aluminium, thereby maintaining the concentration of iron in the electrolyte at the limit of solubility and preventing dissolution of the hematite-based anode surface layer.
  • the produced aluminium was also analysed and showed an iron contamination of about 700 ppm which is below the tolerated iron contamination in commercial aluminium production.
  • the anode was made with a low-carbon high-strength (HSLA) steel containing manganese 0.4 weight%, niobium 0.02 weight%, molybdenum 0.02 weight%, copper 0.3 weight%, nickel 0.45 weight% and chromium 0.8 weight%.
  • the anode was pre-oxidised in air at about 850°C for 12 hours to form a dense hematite-based outer layer.
  • the anode was then tested under similar conditions as in Example 1 and the test results were similar.
  • the anode was made with a low-carbon high-strength (HSLA) steel containing nickel, copper and silicon in a total amount of less than 1.5 weight%.
  • HSLA low-carbon high-strength
  • the anode was pre-oxidised in air at about 850°C for 12 hours to form a dense hematite-based outer layer.
  • the anode was then tested under similar conditions as in Example 1 and the test results were similar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (38)

  1. Anode d'une cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte fondu contenant du fluorure, ladite anode comprenant une couche ou un corps d'acier faiblement allié à haute résistance (HSLA) à faible teneur en carbone, dont la surface est oxydée pour former une couche à base d'oxyde de fer externe, cohérente et adhérente, dont la surface est électrochimiquement active pour le dégagement d'oxygène, ladite couche à base d'oxyde de fer ayant une faible solubilité dans l'électrolyte fondu, l'épaisseur de ladite couche à base d'oxyde de fer étant telle qu'elle réduit ou empêche la diffusion d'oxygène à partir de la surface électrochimiquement active dans le corps ou la couche d'acier.
  2. Anode selon la revendication 1, dans laquelle le corps ou la couche d'acier faiblement allié à haute résistance comprend 94 à 98% en poids de fer et de carbone, les constituants restants étant l'un ou plusieurs des autres métaux choisis à partir du chrome, cuivre, nickel, silicium, titane, tantale, tungstène, vanadium, zirconium, aluminium, molybdène, manganèse et niobium et, éventuellement, de petites quantités d'au moins un additif choisi à partir du bore, soufre, phosphore et azote.
  3. Anode selon la revendication 1, comprenant une couche d'acier faiblement allié à haute résistance sur un noyau métallique résistant à l'oxydation.
  4. Anode selon la revendication 3, dans laquelle le noyau métallique est réalisé en cuivre ou en alliage de cuivre, contenant éventuellement des quantités mineures d'au moins un oxyde renforçant les propriétés mécaniques du noyau métallique.
  5. Anode selon la revendication 4, dans laquelle ledit oxyde de renfort est choisi à partir d'alumine, d'oxyde de hafnium, d'yttria et de zircone.
  6. Anode selon la revendication 3, dans laquelle le noyau métallique est revêtu d'au moins un métal choisi à partir de nickel, chrome, cobalt, fer, aluminium, hafnium, manganèse, molybdène, niobium, silicium, tantale, titane, tungstène, vanadium, yttrium et zirconium, et des alliages, composés intermétalliques et combinaisons de ceux-ci.
  7. Anode selon la revendication 6, dans laquelle le noyau métallique est enrobé d'une couche d'arrêt à l'oxygène de chrome et/ou de niobium.
  8. Anode selon la revendication 3, dans laquelle la couche d'acier faiblement allié à haute résistance est liée au noyau métallique par au moins une couche intermédiaire.
  9. Anode selon la revendication 8, dans laquelle la couche d'acier faiblement allié à haute résistance est liée au noyau métallique par un film d'argent, et/ou au moins une couche de nickel et/ou de cuivre.
  10. Electrode bipolaire d'une cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte contenant du fluorure, comprenant sur son côté anodique une anode telle que définie dans la revendication 1.
  11. Procédé de fabrication d'une anode telle que définie dans la revendication 1 consistant à :
    fournir un corps ou une couche d'acier faiblement allié à haute résistance (HSLA) à faible teneur en carbone ; et
    oxyder la surface du corps ou de la couche d'acier faiblement allié à haute résistance pour former la couche à base d'oxyde de fer externe cohérente et adhérente, dont la surface est électrochimiquement active pour le dégagement d'oxygène.
  12. Procédé selon la revendication 11, consistant à appliquer une couche d'acier faiblement allié à haute résistance sur un noyau métallique résistant à l'oxydation avant ou après la formation de ladite couche à base d'oxyde de fer externe.
  13. Procédé selon la revendication 12, consistant à effectuer une projection au plasma, une projection à l'arc ou un dépôt par électrolyse de la couche d'acier faiblement allié à haute résistance sur le noyau métallique.
  14. Procédé selon la revendication 12, consistant à lier la couche d'acier faiblement allié à haute résistance au noyau métallique via au moins une couche de liaison intermédiaire.
  15. Procédé selon la revendication 11, consistant à oxyder la surface du corps ou de la couche d'acier faiblement allié à haute résistance dans un électrolyte fondu à 800 à 1000°C pendant 5 à 15 heures.
  16. Procédé selon la revendication 15, consistant à oxyder la surface du corps ou de la couche d'acier faiblement allié à haute résistance à 750 à 1150°C pendant 5 à 25 heures dans une atmosphère oxydante telle que de l'air ou de l'oxygène avant électrolyse.
  17. Cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte fondu contenant du fluorure, comprenant au moins une anode ayant un corps ou une couche d'acier faiblement allié à haute résistance (HSLA) à faible teneur en carbone et une couche à base d'oxyde de fer externe, électrochimiquement active, telle que définie dans la revendication 1.
  18. Cuve selon la revendication 17, dans laquelle, pendant le fonctionnement normal, la couche électrochimiquement active de l'anode ou de chaque cathode est progressivement formée encore par oxydation de surface du corps ou de la couche d'acier par diffusion d'oxygène contrôlée via la couche électrochimiquement active, et progressivement dissoute dans l'électrolyte au niveau de l'interface électrolyte/anode, la vitesse de formation de la couche à base d'oxyde de fer externe étant sensiblement égale à sa vitesse de dissolution dans l'électrolyte.
  19. Cuve selon la revendication 17, dans laquelle l'anode ou chaque anode est conservée dimensionnellement stable en maintenant une quantité suffisante d'alumine dissoute et d'espèces de fer dans l'électrolyte pour empêcher la dissolution de la couche d'oxyde externe de l'anode ou de chaque anode.
  20. Cuve selon la revendication 19, qui fonctionne à une température suffisamment basse pour limiter la solubilité de la couche à base d'oxyde de fer, externe, de l'anode(s), en limitant ainsi la contamination de l'aluminium produit par des constituants de la couche à base d'oxyde de fer externe de l'anode(s).
  21. Cuve selon la revendication 17, qui est dans une configuration bipolaire, comprenant une cathode de borne faisant face à une anode de borne et entre elles au moins une électrode bipolaire, et dans laquelle ladite anode(s) forme(nt) le côté anodique de l'électrode bipolaire ou de chaque électrode bipolaire et/ou l'anode de borne.
  22. Procédé pour produire de l'aluminium dans une cuve comme défini dans la revendication 17, le procédé consistant à dissoudre de l'alumine dans l'électrolyte et à faire passer un courant électrique ionique entre la surface électrochimiquement active de l'anode(s) et la surface de la cathode(s), en produisant ainsi de l'aluminium sur la surface(s) de cathode et l'oxygène sur la surface(s) d'anode.
  23. Procédé selon la revendication 22, dans lequel la couche électrochimiquement active de l'anode ou de chaque anode est progressivement formée de plus par oxydation de surface du corps ou de la couche d'acier par diffusion d'oxygène contrôlée à travers la couche électrochimiquement active, et est progressivement dissoute dans l'électrolyte au niveau de l'interface électrolyte/anode, la vitesse de formation de la couche externe à base d'oxyde de fer étant sensiblement égale à sa vitesse de dissolution dans l'électrolyte.
  24. Procédé selon la revendication 22, consistant à conserver l'anode ou chaque anode dimensionnellement stable en maintenant une quantité suffisante d'alumine dissoute et d'espèces de fer dans l'électrolyte pour empêcher la dissolution de la couche d'oxyde externe de l'anode ou de chaque anode.
  25. Procédé selon la revendication 22, consistant à faire fonctionner la cuve à une température suffisamment basse pour limiter la solubilité de la couche externe à base d'oxyde de fer de l'anode(s), en limitant ainsi la contamination de l'aluminium produit par des constituants de la couche externe à base d'oxyde de fer de l'anode(s).
  26. Procédé selon la revendication 25, dans lequel la cuve fonctionne à une température opératoire de l'électrolyte en dessous de 910°C.
  27. Procédé selon la revendication 26, dans lequel la cuve fonctionne à une température d'électrolyte de 730 à 870°C.
  28. Procédé selon la revendication 25, dans lequel la quantité d'espèces de fer et d'alumine dissoute dans l'électrolyte empêchant la dissolution de la couche de surface extérieure à base d'oxyde de fer de l'anode ou de chaque anode, est telle que l'aluminium produit est contaminé par pas plus de 2000 ppm de fer, de préférence, par pas plus de 1000 ppm de fer, et même plus préférablement par pas plus de 500 ppm de fer.
  29. Procédé selon la revendication 24, dans lequel des espèces de fer sont fournies de façon intermittente ou continue dans l'électrolyte pour maintenir la quantité d'espèces de fer dans l'électrolyte qui empêche, à la température de fonctionnement, la dissolution de la couche de surface extérieure à base d'oxyde de fer de l'anode ou de chaque anode.
  30. Procédé selon la revendication 29, dans lequel les espèces de fer sont fournies sous la forme de métal de fer et/ou d'un composé de fer.
  31. Procédé selon la revendication 30, dans lequel les espèces de fer sont fournies dans l'électrolyte sous la forme d'oxyde de fer, de fluorure de fer, d'oxyfluorure de fer et/ou d'un alliage fer-aluminium.
  32. Procédé selon la revendication 29, dans lequel les espèces de fer sont périodiquement fournies dans l'électrolyte en même temps que l'alumine.
  33. Procédé selon la revendication 29, dans lequel une électrode soluble fournit de façon continue les espèces de fer dans l'électrolyte.
  34. Procédé selon la revendication 22, pour produire de l'aluminium sur une cathode mouillable par l'aluminium.
  35. Procédé selon la revendication 34, dans lequel l'aluminium produit est drainé de façon continue à partir de ladite cathode.
  36. Procédé selon la revendication 22, consistant à mettre en circulation l'électrolyte entre les anodes et cathodes en vis-à-vis en améliorant ainsi la dissolution d'alumine dans l'électrolyte et/ou en améliorant l'amenée d'alumine dissoute sous les surfaces actives des anodes.
  37. Utilisation d'un corps ou d'une couche d'acier faiblement allié à haute résistance (HSLA) à faible teneur en carbone, comme un précurseur d'anode qui peut être transformé en une anode d'électro-obtention d'aluminium telle que définie dans la revendication 1 par oxydation de la surface du corps ou de la couche d'acier pour former la couche externe à base de fer, cohérente et adhérente.
  38. Procédé pour fabriquer une anode et produire de l'aluminium dans une cuve électrolytique consistant à insérer un corps ou une couche d'acier faiblement allié à haute résistance (HSLA) à faible teneur en carbone comme un précurseur d'anode dans un électrolyte fondu contenant du fluorure d'une cuve électrolytique, à oxyder in situ la surface du précurseur d'anode pour produire une couche à base d'oxyde de fer électrochimiquement active, en transformant ainsi le précurseur d'anode en une anode telle que définie dans la revendication 1, et à produire de l'oxygène sur la surface de la couche à base d'oxyde de fer et de l'aluminium sur une cathode faisant face dans le même électrolyte ou dans un électrolyte différent.
EP00900036A 1999-01-08 2000-01-10 Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium Expired - Lifetime EP1149188B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IB9900015 1999-01-08
WOPCT/IB99/00015 1999-01-08
PCT/IB2000/000028 WO2000040783A1 (fr) 1999-01-08 2000-01-10 Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium

Publications (2)

Publication Number Publication Date
EP1149188A1 EP1149188A1 (fr) 2001-10-31
EP1149188B1 true EP1149188B1 (fr) 2002-09-11

Family

ID=11004810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00900036A Expired - Lifetime EP1149188B1 (fr) 1999-01-08 2000-01-10 Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium

Country Status (6)

Country Link
EP (1) EP1149188B1 (fr)
AU (1) AU1793200A (fr)
CA (1) CA2360094C (fr)
DE (1) DE60000436T2 (fr)
ES (1) ES2180506T3 (fr)
WO (1) WO2000040783A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002236142B2 (en) * 2001-03-07 2007-04-05 Moltech Invent S.A. Metal-based anodes for aluminium production cells
WO2015026257A1 (fr) 2013-08-19 2015-02-26 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Anode à base de fer pour obtenir de l'aluminium par électrolyse de bains de fusion
CN108588567B (zh) * 2018-07-04 2023-05-05 百色皓海碳素有限公司 消失模铸造阳极钢爪头的方法及阳极钢爪头消失模组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510008A (en) * 1994-10-21 1996-04-23 Sekhar; Jainagesh A. Stable anodes for aluminium production cells

Also Published As

Publication number Publication date
EP1149188A1 (fr) 2001-10-31
AU1793200A (en) 2000-07-24
CA2360094C (fr) 2005-11-29
ES2180506T3 (es) 2003-02-16
WO2000040783A1 (fr) 2000-07-13
DE60000436D1 (de) 2002-10-17
CA2360094A1 (fr) 2000-07-13
DE60000436T2 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
US6521115B2 (en) Nickel-iron alloy-based anodes for aluminium electrowinning cells
US6248227B1 (en) Slow consumable non-carbon metal-based anodes for aluminium production cells
EP1102874B1 (fr) Anodes a base d'un alliage nickel-fer pour cellules d'extraction electrolytique de l'aluminium
US6533909B2 (en) Bipolar cell for the production of aluminium with carbon cathodes
US6521116B2 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
WO2001043208A2 (fr) CELLULES D'ELECTROEXTRACTION D'ALUMINIUM FAISANT APPEL A DES ANODES A METAL
EP1112393B1 (fr) Cellule bipolaire a cathodes au carbone servant a la production d'aluminium
US6436274B2 (en) Slow consumable non-carbon metal-based anodes for aluminium production cells
EP1149188B1 (fr) Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium
US6913682B2 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
US6998032B2 (en) Metal-based anodes for aluminium electrowinning cells
EP1109952B1 (fr) Anodes multicouches non carbonees a base de metal pour cellules de production d'aluminium
US20040216995A1 (en) Nickel-iron anodes for aluminium electrowinning cells
CA2341233C (fr) Anodes multicouches non carbonees a base de metal pour cellules produisant de l'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011127

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60000436

Country of ref document: DE

Date of ref document: 20021017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2180506

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030704

Year of fee payment: 4

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MOLTECH INVENT S.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080111

Year of fee payment: 9

Ref country code: GB

Payment date: 20071227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080115

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090112