EP1112393B1 - Cellule bipolaire a cathodes au carbone servant a la production d'aluminium - Google Patents

Cellule bipolaire a cathodes au carbone servant a la production d'aluminium Download PDF

Info

Publication number
EP1112393B1
EP1112393B1 EP99936904A EP99936904A EP1112393B1 EP 1112393 B1 EP1112393 B1 EP 1112393B1 EP 99936904 A EP99936904 A EP 99936904A EP 99936904 A EP99936904 A EP 99936904A EP 1112393 B1 EP1112393 B1 EP 1112393B1
Authority
EP
European Patent Office
Prior art keywords
iron
electrolyte
aluminium
layer
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99936904A
Other languages
German (de)
English (en)
Other versions
EP1112393A1 (fr
Inventor
Jean-Jacques Duruz
Vittorio De Nora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moltech Invent SA
Original Assignee
Moltech Invent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moltech Invent SA filed Critical Moltech Invent SA
Publication of EP1112393A1 publication Critical patent/EP1112393A1/fr
Application granted granted Critical
Publication of EP1112393B1 publication Critical patent/EP1112393B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes

Definitions

  • This invention relates to bipolar cells for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte provided with bipolar electrodes having carbon cathodes and oxygen-evolving anodes, methods for the fabrication and reconditioning of such electrodes, and the operation of such cells to maintain the anodes dimensionally stable.
  • a major drawback of conventional cells is due to the fact that irregular electromagnetic forces create waves in the molten aluminium pool and the anode-cathode distance (ACD), also called inter-electrode gap (IEG), must be kept at a safe minimum value of approximately 5 cm to avoid short circuiting between the aluminium cathode and the anode or re-oxidation of the metal by contact with the CO 2 gas formed at the anode surface.
  • ACD anode-cathode distance
  • IEG inter-electrode gap
  • the high electrical resistivity of the electrolyte causes a voltage drop in the inter-electrode gap which alone represents as much as 40% of the total voltage drop with a resulting low energy efficiency.
  • bipolar cells In order to make their use economic, bipolar cells need electrodes which are resistant to the products of electrolysed aluminium salts. Using consumable electrodes in bipolar cells is not acceptable as their replacement is much more difficult and their consumption enlarges the anode-cathode gap (ACG) and cannot be compensated by repositioning the electrodes as in Hall-Héroult cells.
  • ACG anode-cathode gap
  • US Patent 3,578,580 discloses bipolar cells, in particular having inclined electrodes, wherein the anodes are made of oxygen-resistant material such as platinum or a conductive oxide or wustite (ferrous oxide FeO).
  • the cathode is made of carbon, or other electrically conductive material resistant to fused melt, such as a carbide of titanium, zirconium, tantalum or niobium.
  • US Patent 3,930,967 (Alder) describes a bipolar cell electrode comprising an anode, an intermediate plate and a cathode plate held together in an alumina or magnesium oxide frame.
  • the anode plate is made of ceramic oxide material, the preferred material being tin oxide with copper oxide and antimony oxide.
  • the cathode is graphite or made of borides, carbides, nitrides, silicides, in particular of metals such as titanium, zirconium or silicon.
  • the intermediate plate for instance made of silver, nickel or cobalt, prevents direct contact between the anode and the cathode plates to avoid any reaction between them when exposed to high temperature.
  • US Patent 5,019,225 discloses a bipolar electrode for an aluminium electrowinning cell having a cerium oxyfluoride anode surface and a cerium hexaboride cathode surface, which was specially designed for use in the process of US Patent 4,614,569 (Duruz/Derivaz/Debely/Adorian) wherein cerium species dissolved in the electrolyte maintain the anode surface stable.
  • US Patent 4,374,050 discloses bipolar electrodes for aluminium electrowinning having a carbon cathode body and an anode layer having an active surface formed by non-stoichiometric multiple oxides, in particular nickel-iron oxides. It is inter-alia mentioned that such multiple oxides can be obtained by oxidising an alloy of suitable composition.
  • Another object of the invention is to provide a bipolar electrode for aluminium electrowinning bipolar cells, which contains carbon but which is not exposed to carbon oxidation so as to eliminate carbon-generated pollution and high costs of carbon consumption.
  • Yet another object of the invention is to provide a bipolar electrode for aluminium electrowinning bipolar cells whose anodic surface has a sufficient operative lifetime to make its use commercially acceptable.
  • An important object of the invention is to provide a bipolar electrode for aluminium electrowinning bipolar cells, which may be maintained dimensionally stable, without excessively contaminating the product aluminium.
  • Yet another object of the invention is to provide an aluminium electrowinning bipolar cell operating under such conditions that the contamination of the product aluminium is limited.
  • the invention relates to a bipolar cell for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte, having a terminal cathode, a terminal anode and thereinbetween at least one bipolar electrode.
  • the bipolar electrode comprises a carbon cathode body having on one side an electrochemically active surface on which aluminium is produced and connected on the other side through an oxygen impermeable barrier layer to an anode layer having a metal oxide outer surface which is electrochemically active for the oxidation reaction of oxygen ions into nascent monoatomic oxygen.
  • the metal oxide may be present in the electrochemically outer surface in a multi-compound mixed oxide, in mixed crystals and/or in a solid solution of oxides.
  • the oxide may be in the form of a simple, double and/or multiple oxide, and/or in the form of a stoichiometric or non-stoichiometric oxide.
  • the anode layer is an oxidised low-carbon high-strength low-alloy (HSLA) steel layer as described below.
  • HSLA oxidised low-carbon high-strength low-alloy
  • the oxygen barrier layer may be made of a metal or an oxidised metal, an intermetallic compound, a mixed perovskite ceramic, a phosphide, a carbide, a nitride such as titanium nitride, or a combination thereof.
  • Suitable metals or oxides of metals acting as a barrier to oxygen may be selected from chromium, chromium oxide, niobium, niobium oxide, nickel and nickel oxide.
  • the oxygen barrier layer may in particular consist of a 5 to 20 micron thick layer of noble metal, such as platinum, palladium, iridium or rhodium.
  • noble metal such as platinum, palladium, iridium or rhodium.
  • Intermetallic compounds such as silver-palladium, chromium-manganese and chromium-molybdenum also act as a barrier to oxygen.
  • the oxygen barrier may contain a mixed perovskite ceramic which may be chosen among zirconate, cobaltite, chromite, chromate, manganate, ruthenate, niobiate, tantalate and tungstate.
  • the perovskite preferably contains strontium zirconate to enhance the conductivity of the oxygen barrier layer.
  • a conductive phosphide resistant to oxygen may be chosen among a phosphide of titanium, chromium and tungsten.
  • a suitable carbide may be selected from a carbide of chromium, titanium tantalum, niobium and/or molybdenum.
  • the bipolar electrode may advantageously comprise an intermediate protective layer, usually made of copper, or a copper nickel alloy, or oxide(s) thereof, which is located between the anode layer and the oxygen barrier layer and protects the oxygen barrier layer by inhibiting its dissolution.
  • an intermediate protective layer usually made of copper, or a copper nickel alloy, or oxide(s) thereof, which is located between the anode layer and the oxygen barrier layer and protects the oxygen barrier layer by inhibiting its dissolution.
  • the oxygen barrier layer may be bonded and secured to the carbon body directly or through at least one inert, electrically conductive, intermediate bonding layer such as a nickel and/or copper layer.
  • the oxygen barrier layer and when present the intermediate bonding layer and/or the intermediate protective layer, may be formed by chemical or electrochemical deposition, chemical vapour deposition (CVD), physical vapour deposition (PVD), plasma or arc spraying, flame spraying, painting, bushing, dipping or slurry dipcoating.
  • CVD chemical vapour deposition
  • PVD physical vapour deposition
  • plasma or arc spraying flame spraying, painting, bushing, dipping or slurry dipcoating.
  • At least one layer selected from the oxygen barrier layer, the anode layer, and when present the intermediate bonding layer and the intermediate protective layer may be obtained by micropyretic reaction to form a porous layer enhancing thermal expansion match. At least two juxtaposed porous layers may be simultaneously produced micropyretically. Two layers may also be joined by a micropyretically obtained joint.
  • the cathode body may be made of petroleum coke, metallurgical coke, anthracite, graphite, amorphous carbon, fullerene and low density carbon.
  • the side of the cathode body which is connected to the anode layer may be impregnated and/or coated with a phosphate of aluminium, such as monoaluminium phosphate, aluminium phosphate, aluminium polyphosphate and aluminium metaphosphate, as described in US Patent 5,534,130 (Sekhar).
  • the side of the cathode body which is connected to the anode layer may be impregnated and/or coated with a boron compound, such as boron oxide, boric acid and tetraboric acid, by following the teachings disclosed in US Patent 5,486,278 (Manganiello/Duruz/Bell ⁇ ).
  • the impregnation and/or coating is usually achieved from a solution or a slurry which is applied into/onto the surface of the cathode body, possibly assisted by vacuum, and heat treated.
  • the carbon of the cathode body may be exposed to the molten cell contents, in particular to produced aluminium.
  • the carbon cathode body may comprise a drained aluminium-wettable outer coating on which aluminium is produced.
  • great care should be taken for designing the electrode to prevent the produced aluminium from draining onto or otherwise coming into contact with the oxide-based anode layer, particularly when containing iron-oxide.
  • An aluminium-wettable cathode coating may for instance comprise a refractory hard metal boride, for example a boride selected from borides of titanium, chromium, vanadium, zirconium, hafnium, niobium, tantalum, molybdenum and cerium, and combinations thereof.
  • a refractory hard metal boride for example a boride selected from borides of titanium, chromium, vanadium, zirconium, hafnium, niobium, tantalum, molybdenum and cerium, and combinations thereof.
  • the aluminium-wettable coating is a non-reactively sintered coating of preformed particulate refractory hard metal boride, as described in US Patent 5,651,874 (de Nora/Sekhar).
  • the aluminium-wettable coating may also be a micropyretically-reacted coating produced from a refractory hard metal boride precursor as described in US Patents 5,310,476 and 5,364,513 (both in the name of Sekhar/de Nora).
  • the aluminium-wettable coating may be a dried and/or heat treated slurry containing refractory hard metal boride and/or a precursor thereof.
  • the slurry may comprise a colloid selected from colloidal silica, alumina, yttria, ceria, thoria, zirconia, magnesia, lithia, tin oxide, zinc oxide, acetates and formates thereof as well as oxides and hydroxides of other metals, cationic species and mixtures thereof, as described in the patents mentioned in the previous paragraph.
  • the aluminium-wettable coating may advantageously be aluminised prior to use.
  • HSLA steels are known for their strength and resistance to atmospheric corrosion especially at lower temperatures (below 0°C) in different areas of technology such as civil engineering (bridges, dock walls, sea walls, piping), architecture (buildings, frames) and mechanical engineering (welded/bolted/riveted structures, car and railway industry, high pressure vessels).
  • civil engineering bridges, dock walls, sea walls, piping
  • architecture buildings, frames
  • mechanical engineering welded/bolted/riveted structures, car and railway industry, high pressure vessels.
  • these HSLA steels have never been proposed for applications at high temperature, especially under oxidising or corrosive conditions, in particular in cells for the electrowinning of aluminium.
  • the rate of formation of the iron oxide-based surface layer (by oxidation of the surface of the HSLA steel) reaches the rate of dissolution or delamination of the surface layer after a transitional period during which the surface layer grows or decreases to reach an equilibrium thickness in the specific environment.
  • High-strength low-alloy (HSLA) steels are a group of low-carbon steels (typically up to 0.5 weight% carbon of the total) that contain small amounts of alloying elements. These steels have better mechanical properties and sometimes better corrosion resistance than carbon steels.
  • the surface of a high-strength low-alloy steel electrochemically active layer may be oxidised in an electrolytic cell or in an oxidising atmosphere, in particular a relatively pure oxygen atmosphere.
  • the surface of the high-strength low-alloy steel layer may be oxidised in a first electrolytic cell and then transferred to an aluminium production cell.
  • oxidation would typically last 5 to 15 hours at 800 to 1000°C.
  • the oxidation treatment may take place in air or in oxygen for 5 to 25 hours at 750 to 1150°C.
  • a high-strength low-alloy steel layer may be tempered or annealed after pre-oxidation.
  • the high-strength low-alloy steel layer may be maintained at elevated temperature after pre-oxidation until immersion into the molten electrolyte of an aluminium production cell.
  • the high-strength low-alloy steel layer comprises 94 to 98 weight% iron and carbon, the remaining constituents being one or more further metals selected from chromium, copper, nickel, silicon, titanium, tantalum, tungsten, vanadium, zirconium, aluminium, molybdenum, manganese and niobium, and optionally a small amount of at least one additive selected from boron, sulfur, phosphorus and nitrogen.
  • iron oxides and in particular hematite have a higher solubility than nickel in molten electrolyte.
  • the contamination tolerance of the product aluminium by iron oxides is also much higher (up to 2000 ppm) than for other metal impurities.
  • Solubility is an intrinsic property of anode materials and cannot be changed otherwise than by modifying the electrolyte composition and/or the operating temperature of a cell.
  • the solubility of iron species in the electrolyte can even be further reduced by keeping therein a sufficient concentration of dissolved alumina, i.e. by maintaining the electrolyte as close as possible to saturation with alumina. Maintaining a high concentration of dissolved alumina in the molten electrolyte decreases the solubility limit of iron species and consequently the contamination of the product aluminium by cathodically reduced iron.
  • an anode coated with an outer layer of iron oxide can be made dimensionally stable by maintaining a concentration of iron species and dissolved alumina, in the molten electrolyte sufficient to suppress the dissolution of the anode coating but low enough not to exceed the commercially acceptable level of iron in the product aluminium, as disclosed in co-pending application PCT/IB99/01360 (Duruz/de Nora/Crottaz).
  • the solubility of iron species in the electrolyte may be also influenced by the presence in the electrolyte of other metal species, such as calcium, lithium, magnesium, nickel, sodium, potassium and/or barium species.
  • the anode layer of the bipolar electrode may be kept dimensionally stable by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina, the cell operating temperature being sufficiently low so that the required concentration of iron species in the electrolyte is limited by the reduced solubility of iron species in the electrolyte at the operating temperature, which consequently limits the contamination of the product aluminium by iron to an acceptable level.
  • the amount of dissolved iron preventing dissolution of the iron oxide-based anode layer may be such that the product aluminium is contaminated by no more than 2000 ppm iron, preferably by no more than 1000 ppm iron, and even more preferably by no more than 500 ppm iron.
  • the operating temperature of the electrolyte may be in the range from 750 to 910°C, preferably from 820 to 870°C.
  • the electrolyte may contain NaF and AlF 3 in a weight ratio NaF/AlF 3 from about 0.74 to 0.82, generally from 0.7 to 0.85.
  • the concentration of alumina dissolved in the electrolyte is below 8 weight%, preferably between 2 weight% and 6 weight%.
  • the cell can comprise means for intermittently or continuously feeding iron into the electrolyte.
  • the iron may be fed in the form of iron metal and/or an iron compound, such as iron oxide, iron fluoride, iron oxyfluoride and/or an iron-aluminium alloy.
  • an iron compound such as iron oxide, iron fluoride, iron oxyfluoride and/or an iron-aluminium alloy.
  • the iron may be intermittently fed into the electrolyte together with alumina.
  • a sacrificial electrode may continuously feed the iron into the electrolyte.
  • the dissolution of such a sacrificial electrode may be controlled and/or promoted by applying a voltage thereto which is lower than the voltage of oxidation of oxygen ions.
  • the voltage applied to the sacrificial electrode may be adjusted so that the resulting current passing through the sacrificial electrode corresponds to a current necessary for the dissolution of the required amount of iron species into the electrolyte replacing the iron which is cathodically reduced and not otherwise compensated.
  • a cell according to the invention may also comprise means to improve the circulation of the electrolyte between the anodes and facing cathodes and/or means to facilitate dissolution of alumina in the electrolyte.
  • Such circulation and/or dissolution may be achieved by moving the electrodes or by an adequate geometry of the cell.
  • the bipolar cell may comprise one or more inert, electrically non-conductive current confinement members arranged to inhibit or reduce current bypass around the edges of the bipolar electrodes.
  • the current confinement member may be in the form of a rim projecting from the periphery of at least one bipolar electrode.
  • the surface of the current confinement member is resistant to the electrolyte and to oxygen where exposed to anodically released gas or to molten aluminium where exposed to the product aluminium and may consist of a non-conductive ceramic and/or a non-conductive oxide, such as silicon nitride, aluminium nitride, boron nitride, magnesium ferrite, magnesium aluminate, magnesium chromite, zinc oxide, nickel oxide and alumina.
  • a non-conductive ceramic and/or a non-conductive oxide such as silicon nitride, aluminium nitride, boron nitride, magnesium ferrite, magnesium aluminate, magnesium chromite, zinc oxide, nickel oxide and alumina.
  • the shape of the anode layer and cathode body of each bipolar may be substantially circular or rectangular, in particular square.
  • the bipolar electrodes may be inclined to the vertical, substantially vertical or substantially horizontal in the bipolar cell.
  • Cells according to the invention may be operated with an electrolyte at conventional temperature, i.e. around 950 to 970°C, or preferably, as stated above, at reduced temperature in order to maintain certain types of anode layers, e.g. iron oxide-based anode layers, dimensionally stable.
  • conventional temperature i.e. around 950 to 970°C, or preferably, as stated above, at reduced temperature in order to maintain certain types of anode layers, e.g. iron oxide-based anode layers, dimensionally stable.
  • the electrolyte when the carbon of the cathode body is directly exposed to the molten cell contents, to inhibit sodium penetration the electrolyte should be operated at reduced temperature, typically below 900°C, preferably from 700 to 870°C, or even lower, but above the melting point of aluminium.
  • the invention also relates to a bipolar electrode of a bipolar cell for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte, comprising an anode layer having an oxide-based outer surface, such as a transition metal oxide-based surface, in particular an iron oxide-based surface, connected to a carbon cathode body as described above.
  • a bipolar electrode of a bipolar cell for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte, comprising an anode layer having an oxide-based outer surface, such as a transition metal oxide-based surface, in particular an iron oxide-based surface, connected to a carbon cathode body as described above.
  • Another aspect of the invention is a method of manufacturing a bipolar electrode as described above comprising a carbon cathode body connected to an HSLA anode layer having an oxide-based outer surface through an oxygen impermeable barrier layer.
  • the method comprises either:
  • This method may also be carried out for reconditioning a bipolar electrode as described above whose anode layer is damaged, the method comprising clearing at least the damaged parts of the anode layer and then reconstituting at least the anode layer.
  • a further aspect of the invention is a method of producing aluminium in a bipolar cell as described above.
  • the method comprises passing an electric current from the active surface of the terminal cathode to the active surface of the terminal anode as ionic current in the electrolyte and as electronic current through the or each bipolar electrode, thereby electrolysing the alumina dissolved in the electrolyte to produce aluminium on the active surfaces of the terminal cathode and of the or each cathode body, and to produce oxygen on the active surface of the terminal anode and of the or each anode layer.
  • a bipolar electrode was made by coating one side of a graphite cathode body (3 x 7 x 1 cm) with a chromium oxide (Cr 2 O 3 ) oxygen barrier layer having a thickness of about 50 micron and forming thereon an anode layer consisting of iron oxide.
  • a graphite cathode body (3 x 7 x 1 cm)
  • a chromium oxide (Cr 2 O 3 ) oxygen barrier layer having a thickness of about 50 micron and forming thereon an anode layer consisting of iron oxide.
  • the oxygen barrier layer was applied onto the cathode body by brushing a precursor slurry and consolidating by heat treatment under an argon atmosphere.
  • the precursor slurry contained a suspended particulate chromium oxide in an inorganic Cr 3+ polymer solution consisting of concentrated chromium hydroxide containing 400 g/l of Cr 2 O 3 equivalent.
  • the anode layer was applied onto the oxygen barrier layer by plasma spraying iron oxide powder to form an iron oxide layer having a thickness of about 1 mm.
  • the bipolar electrode so obtained was then placed between a terminal anode and a terminal cathode in a fluoride-based electrolyte at 850°C containing NaF and AlF 3 in a molar ratio NaF/AlF 3 of 1.9 and approximately 6 weight% alumina, and tested at a current density of about 0.8 A/cm 2 .
  • alumina and iron oxide were intermittently added to the electrolyte to replace the alumina and the iron species which were reduced at the cathode. This maintains in the electrolyte a concentration of iron species of approximately 180 ppm, which is sufficient to saturate or nearly saturate the electrolyte with iron species.
  • the bipolar electrode was extracted from the cell and showed no sign of significant internal or external corrosion after microscopic examination of a cross-section of the electrode specimen.
  • composition of the produced aluminium was also analysed and showed the presence of 800 ppm of iron which is below the tolerated contamination of iron in commercially produced aluminium.
  • a variation of this bipolar electrode can be obtained by replacing the chromium oxide oxygen barrier layer with a layer of platinum having a thickness of about 15 micron applied directly onto the cathode body by electrochemical deposition.
  • the bipolar electrode was tested under the same conditions and showed similar results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (25)

  1. Cuve bipolaire pour l'électro-obtention d'aluminium par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure fondu, ayant une cathode terminale, une anode terminale et entre elles au moins une électrode bipolaire comprenant un corps de cathode en carbone ayant, sur un côté, une surface active sur laquelle l'aluminium est produit, et étant reliée, de l'autre côté, par l'intermédiaire d'une couche d'arrêt imperméable à l'oxygène, à une couche d'anode ayant une surface externe à base d'oxyde métallique qui est électrochimiquement active pour la réaction d'oxydation d'ions oxygène en oxygène monoatomique naissant, ainsi que pour une réaction subséquente pour la formation d'oxygène moléculaire biatomique gazeux,
    caractérisée en ce que la couche anodique est une couche faiblement alliée à haute résistance à faible teneur en carbone (HSLA) oxydée qui comprend 94 à 98% en poids de fer et de carbone, les constituants restants étant un ou plusieurs autres métaux choisis à partir de chrome, cuivre, nickel, silicium, titane, tantale, tungstène, vanadium, zirconium, aluminium, molybdène, manganèse et niobium, et éventuellement une petite quantité d'au moins un additif choisi à partir de bore, soufre, phosphore et azote.
  2. Cuve bipolaire selon la revendication 1, dans laquelle la couche d'arrêt à l'oxygène est réalisée en au moins un métal choisi à partir de chrome, niobium et nickel, ou un oxyde de ceux-ci.
  3. Cuve bipolaire selon la revendication 1, dans laquelle le ou chaque électrode bipolaire comprend une couche de métallisation ou de protection intermédiaire inerte électriquement conductrice, située entre la couche d'arrêt à l'oxygène et la couche anodique ou le corps cathodique, la couche intermédiaire comprenant du cuivre, ou un alliage cuivre-nickel, ou un oxyde(s) de ceux-ci.
  4. Cuve bipolaire selon la revendication 1, dans laquelle le corps cathodique est réalisé en carbone, tel que du coke de pétrole, du coke métallurgique, de l'anthracite, du graphite, du carbone amorphe, du fullerène et du carbone à basse densité.
  5. Cuve bipolaire selon la revendication 1, dans laquelle au moins le côté du corps cathodique qui est relié à la couche anodique est imprégné et/ou enrobé d'un phosphate d'aluminium et/ou d'un composé de bore.
  6. Cuve bipolaire selon la revendication 1, dans laquelle le carbone du corps cathodique est exposé au contenu de cuve fondu.
  7. Cuve bipolaire selon la revendication 1, dans laquelle le corps cathodique comprend un revêtement externe mouillable par l'aluminium drainé, de préférence, comprenant un borure métallique dur réfractaire, sur lequel l'aluminium est produit.
  8. Cuve bipolaire selon la revendication 1, dans laquelle la couche anodique comprend un métal, un alliage, un composé intermétallique ou un cermet.
  9. Cuve bipolaire selon la revendication 1, dans laquelle, pendant le fonctionnement normal dans la cuve, la couche anodique est lentement consumée par oxydation de sa surface et dissolution dans l'électrolyte de l'oxyde de surface formé.
  10. Cuve bipolaire selon la revendication 1, dans laquelle la couche anodique a une surface externe à base d'hématite.
  11. Cuve bipolaire selon la revendication 1, dans laquelle, pendant le fonctionnement, la couche anodique reste stable dimensionnellement en maintenant dans l'électrolyte une concentration suffisante d'espèces de fer, la température de fonctionnement de la cuve étant suffisamment basse de sorte que la concentration requise d'espèces de fer dans l'électrolyte est limitée par la solubilité réduite des espèces de fer dans l'électrolyte à la température de fonctionnement, ce qui limite en conséquence la contamination de l'aluminium produit par des espèces de fer à un niveau acceptable.
  12. Cuve bipolaire selon la revendication 1, comprenant au moins un élément de confinement de courant électriquement non conducteur, inerte, agencé pour inhiber ou réduire la dérivation de courant autour des bords de la couche anodique et du corps cathodique des électrodes bipolaires.
  13. Cuve bipolaire selon la revendication 1, dans laquelle les électrodes bipolaires sont verticales ou inclinées par rapport à la verticale.
  14. Cuve bipolaire selon la revendication 1, dans laquelle les électrodes bipolaires sont sensiblement horizontales.
  15. Electrode bipolaire d'une cuve bipolaire pour l'électro-obtention d'aluminium par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure fondu, comprenant une couche anodique HSLA ayant une surface externe à base d'oxyde métallique reliée à un corps cathodique en carbone comme défini dans la revendication 1.
  16. Procédé pour fabriquer une électrode bipolaire selon la revendication 15, comprenant un corps cathodique en carbone relié à une couche anodique HSLA ayant une surface externe à base d'oxyde métallique par l'intermédiaire d'une couche d'arrêt imperméable à l'oxygène, le procédé consistant soit :
    a) à former la couche d'arrêt à l'oxygène sur le corps cathodique directement ou sur une couche de métallisation intermédiaire formée sur le corps cathodique, et à former la couche anodique sur la couche d'arrêt à l'oxygène directement ou sur une couche de protection intermédiaire formée sur la couche de barrière à l'oxygène ; ou
    b) à former la couche d'arrêt à l'oxygène sur le corps anodique directement ou sur une couche de protection intermédiaire formée sur la couche anodique, et métalliser le corps cathodique directement ou par l'intermédiaire d'une couche de métallisation intermédiaire sur la couche d'arrêt à l'oxygène.
  17. Procédé selon la revendication 16, pour reconditionner une électrode bipolaire selon la revendication 15 dont la couche anodique est endommagée, le procédé consistant à nettoyer au moins les parties endommagées de la couche anodique et, ensuite, à reconstituer au moins la couche anodique.
  18. Procédé pour produire de l'aluminium dans une cuve bipolaire selon la revendication 1, consistant à faire passer un courant électrique de la surface active de la cathode terminale vers la surface active de l'anode terminale comme courant ionique dans l'électrolyte et comme courant électronique par l'intermédiaire de l'électrode bipolaire ou de chaque électrode bipolaire, en électrolysant ainsi l'alumine dissoute dans l'électrolyte pour produire de l'aluminium sur les surfaces actives de la cathode terminale et du corps cathodique ou de chaque corps cathodique, et pour produire de l'oxygène sur les surfaces actives de l'anode terminale et de la couche anodique ou de chaque couche anodique.
  19. Procédé selon la revendication 18, consistant à conserver la couche anodique de l'électrode bipolaire ou de chaque électrode bipolaire dimensionnellement stable pendant l'électrolyse en maintenant une concentration suffisante d'alumine dissoute et d'espèces de fer dans l'électrolyte, et à faire fonctionner la cuve à une température suffisamment basse de sorte que la concentration requise d'espèces de fer dans l'électrolyte est limitée par leur solubilité réduite dans l'électrolyte à la température de fonctionnement, ce qui limite en conséquence la contamination de l'aluminium produit par les espèces de fer à un niveau acceptable.
  20. Procédé selon la revendication 19, dans lequel la cuve bipolaire fonctionne à une température d'électrolyte dans la plage de 820 à 870°C.
  21. Procédé selon la revendication 19, dans lequel la quantité de fer dissous empêchant la dissolution de la couche anodique à base d'oxyde de fer est telle que l'aluminium produit est contaminé par pas plus de 2000 ppm de fer, de préférence, par pas plus de 1000 ppm de fer et, même plus préférablement, par pas plus de 500 ppm de fer.
  22. Procédé selon la revendication 19, dans lequel le fer est fourni de façon intermittente ou continue dans l'électrolyte pour maintenir la quantité d'espèces de fer dans l'électrolyte qui empêche, à la température de fonctionnement, la dissolution de la couche anodique à base d'oxyde de fer.
  23. Procédé selon la revendication 22, dans lequel le fer est fourni dans l'électrolyte sous la forme d'oxyde de fer, fluorure de fer, oxyfluorure de fer et/ou alliage fer-aluminium.
  24. Procédé selon la revendication 22, dans lequel le fer est fourni de façon intermittente ou continue, dans l'électrolyte en même temps que l'alumine.
  25. Procédé selon la revendication 24, dans lequel une électrode soluble fournit de façon continue le fer dans l'électrolyte.
EP99936904A 1998-08-18 1999-08-17 Cellule bipolaire a cathodes au carbone servant a la production d'aluminium Expired - Lifetime EP1112393B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IB9801283 1998-08-18
WOPCT/IB98/01283 1998-08-18
PCT/IB1999/001438 WO2000011243A1 (fr) 1998-08-18 1999-08-17 Cellule bipolaire a cathodes au carbone servant a la production d'aluminium

Publications (2)

Publication Number Publication Date
EP1112393A1 EP1112393A1 (fr) 2001-07-04
EP1112393B1 true EP1112393B1 (fr) 2003-03-12

Family

ID=11004742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936904A Expired - Lifetime EP1112393B1 (fr) 1998-08-18 1999-08-17 Cellule bipolaire a cathodes au carbone servant a la production d'aluminium

Country Status (6)

Country Link
EP (1) EP1112393B1 (fr)
AU (1) AU760052B2 (fr)
CA (1) CA2339854A1 (fr)
DE (1) DE69905913T2 (fr)
NO (1) NO20010806L (fr)
WO (1) WO2000011243A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106254B4 (de) 2011-06-27 2021-11-04 Oberland M & V Gmbh Getränkekasten

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638412B2 (en) * 2000-12-01 2003-10-28 Moltech Invent S.A. Prevention of dissolution of metal-based aluminium production anodes
US20060003084A1 (en) * 2002-08-20 2006-01-05 Nguyen Thinh T Protection of metal-based substrates with hematite-containing coatings
CA2557957C (fr) * 2004-03-18 2012-05-15 Moltech Invent S.A. Anodes exemptes de carbone
US7740745B2 (en) * 2004-03-18 2010-06-22 Moltech Invent S.A. Non-carbon anodes with active coatings
AU2005250240B2 (en) * 2004-06-03 2011-06-30 Rio Tinto Alcan International Limited High stability flow-through non-carbon anodes for aluminium electrowinning
RU2681092C1 (ru) * 2017-12-28 2019-03-04 Федеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук Устройство для очистки расплавленного металла и электролитов от примесей
CN116606561B (zh) * 2023-06-12 2024-02-13 云南点援微晶科技有限公司 电解铝碳素阳极抗氧化防腐蚀涂料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH587929A5 (fr) * 1973-08-13 1977-05-13 Alusuisse
US4374050A (en) * 1980-11-10 1983-02-15 Aluminum Company Of America Inert electrode compositions
US4529494A (en) * 1984-05-17 1985-07-16 Great Lakes Carbon Corporation Bipolar electrode for Hall-Heroult electrolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106254B4 (de) 2011-06-27 2021-11-04 Oberland M & V Gmbh Getränkekasten

Also Published As

Publication number Publication date
NO20010806D0 (no) 2001-02-16
AU760052B2 (en) 2003-05-08
EP1112393A1 (fr) 2001-07-04
DE69905913D1 (de) 2003-04-17
WO2000011243A1 (fr) 2000-03-02
AU5187399A (en) 2000-03-14
NO20010806L (no) 2001-02-16
DE69905913T2 (de) 2003-12-18
CA2339854A1 (fr) 2000-03-02

Similar Documents

Publication Publication Date Title
US6372099B1 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
US6533909B2 (en) Bipolar cell for the production of aluminium with carbon cathodes
US6248227B1 (en) Slow consumable non-carbon metal-based anodes for aluminium production cells
EP1102874B1 (fr) Anodes a base d'un alliage nickel-fer pour cellules d'extraction electrolytique de l'aluminium
US6521116B2 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
EP1112393B1 (fr) Cellule bipolaire a cathodes au carbone servant a la production d'aluminium
EP1105552B1 (fr) Anodes non carbonees lentement fusibles a base de metal pour cellules de production d'aluminium
US6913682B2 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
US6998032B2 (en) Metal-based anodes for aluminium electrowinning cells
EP1149188B1 (fr) Anodes en acier haute resistance faiblement allie pour cellules d'extraction electrolytique de l'aluminium
EP1109952B1 (fr) Anodes multicouches non carbonees a base de metal pour cellules de production d'aluminium
US20040216995A1 (en) Nickel-iron anodes for aluminium electrowinning cells
CA2341233C (fr) Anodes multicouches non carbonees a base de metal pour cellules produisant de l'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20010628

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE ES FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030312

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030312

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69905913

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MOLTECH INVENT S.A.

ET Fr: translation filed
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040728

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050727

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050829

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831