EP1148930A1 - Procede pour reduire la concentration de pcdd et de pcdf dans des courants de gaz brules dans une installation d'agglomeration par frittage, et installation pour la mise en oeuvre de ce procede - Google Patents

Procede pour reduire la concentration de pcdd et de pcdf dans des courants de gaz brules dans une installation d'agglomeration par frittage, et installation pour la mise en oeuvre de ce procede

Info

Publication number
EP1148930A1
EP1148930A1 EP99962219A EP99962219A EP1148930A1 EP 1148930 A1 EP1148930 A1 EP 1148930A1 EP 99962219 A EP99962219 A EP 99962219A EP 99962219 A EP99962219 A EP 99962219A EP 1148930 A1 EP1148930 A1 EP 1148930A1
Authority
EP
European Patent Office
Prior art keywords
filter
exhaust gas
sintering
additive
coarsening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99962219A
Other languages
German (de)
English (en)
Inventor
Reinhard Holste
Wolfgang SCHÜTTENHELM
Rüdiger WEMHÖNER
Klaus Kersting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBP Environment GmbH
Original Assignee
BBP Environment GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBP Environment GmbH filed Critical BBP Environment GmbH
Publication of EP1148930A1 publication Critical patent/EP1148930A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds

Definitions

  • the invention relates to a method for reducing the concentration of PCDD and PCDF in the exhaust gas stream of a sintering plant, in particular iron ore sintering plant, in which the PCDD / PCDF initial concentration in the exhaust gas is reduced by adding an adsorbent and the loaded adsorbent together with the dust the sintering process is separated in a filter and returned to the sintering process.
  • PCDD is understood to mean polychlorinated dibenzo-dioxins and PCDF polychlorinated dibenzo-furans.
  • Electrofilters are usually used to clean the sintered exhaust gas from dust.
  • the electrical resistance of the sintered dust is at largest and therefore the dust most difficult to separate under these boundary conditions in the electrostatic filter.
  • S0 3 conditioning of the exhaust gas upstream of the electrostatic precipitator is carried out in some sintering plants.
  • the feedstock required for this in the form of pressure-liquefied S0 2 is expensive and, from the point of view of occupational safety, questionable because of its toxicity. S0 3 conditioning of the exhaust gas upstream of the electrostatic precipitator should therefore be avoided.
  • the dust separated from the sintered exhaust gas in the electrostatic filter essentially consists of iron oxide, potassium, sulfate, chloride, lead and carbon.
  • the content of Si0 2 and silicates and phosphates is extremely low.
  • the maximum temperature in the sinter bed which is built up from a fine ore fuel mixture, is determined by the melting temperature of the iron ore used and, depending on the ore, is between 1300 ° C and 1480 ° C. The maximum possible temperature is only in a small layer thickness of the sintered bed. In a first approximation, the maximum temperature zone on the sintered belt moves linearly over the length of the sintered belt from the surface of the bed on the sintered belt to the underside of the sintered bed.
  • alkali and heavy metal chlorides evaporate, mainly potassium chloride and lead chloride.
  • An integration of these substances in the sintered product does not take place because of the low Si0 2 - or silicate and phosphate content. Due to the steep temperature gradients across the height of the sintered layer, the vaporous alkali and heavy metal chlorides cool down quickly. This leads to the formation of a highly reactive salt melt, which, depending on the alkali content, binds S0 3 from the flue gas as sulfate. After the molten salt has solidified, mineral transformation occurs in some cases by gaseous HCI being expelled from the alkali and heavy metal chlorides through the stored sulfate.
  • the HCl released can then partly react to iron chloride or also partly catalytically react to the existing iron oxides and copper oxides of the sintered bed to form elemental chlorine.
  • the alkali and heavy metal chlorides are sulfated directly with the sulfur dioxide and the oxygen of the sintered exhaust gas in the gas phase at approx. 600 to 700 ° C. Elemental chlorine is released.
  • the SO 2 required for the reaction is typically contained in several hundred mg / m 3 .
  • the mechanism shown should be one of the main contributions to dioxin / furan formation in the sinter exhaust gases.
  • the chlorine formed during the processes described above in turn reacts with the S0 2 and water vapor contained in the exhaust gas to form HCl and S0 3 and makes the sulfates available for integration into the salt melt via this reaction path.
  • the alkali and heavy metal chlorides evaporate and condense several times until they are discharged from the bed with the sintered exhaust gas and separated in dust form in the electrostatic filter. From the electrostatic precipitator, they are fed back into the sintering process via the provided dust recirculation, ie a significant proportion of the dust separated in the electrostatic precipitator results from a circulation enrichment of potassium and lead.
  • a major sink for these substances has so far been the emission to the environment via the residual dust in the sintered exhaust gas after the electrostatic precipitator.
  • the electrostatic filter dust e.g. B. 20 to 30% of the dust separated in the filter as potassium and lead chloride.
  • This object is achieved in that the fine-grained or dust-like solids separated in the filter are subjected to a coarsening process together with at least one additive before being returned to the sintering process.
  • the coarse coarsening can be achieved by a process selected from the group of briquetting, press granulation, pelleting, extrusion.
  • an auxiliary liquid preferably water
  • at least one additive is preferably selected from the group: silicon dioxide, silicates, in particular calcium silicates, phosphates, in particular calcium phosphates, and mixtures thereof.
  • the aggregate should be able to form a liquid slag even at relatively low temperatures, preferably at a temperature lower than or equal to 1200 ° C., but at least at a temperature lower than the maximum temperature in the sintering bed.
  • the additive consists of clay minerals, in particular those clay minerals with a high Si0 2 - and / or high calcium silicate content. In this way, the absolute amount of aggregate can be kept low.
  • a mixture of clay minerals and phosphates preferably calcium phosphates, possibly with the addition of lime, is used as the additive.
  • a coarsening process may also be expedient for a coarsening process to add a substance to lower the melting temperature, preferably borax or a carbon-containing substance.
  • the additive when the additive is added to the solids separated in the filter, the additive is added in an amount of 10-50% by weight, preferably 20-30% by weight.
  • the additive also acts as an adsorbent, albeit with a lower effectiveness for the dioxins / furans compared to the activated coke, and thereby enables a higher purification of the sintered gas from dioxins and furans, so that the further reduction in PCDD- / PCDF concentration can be avoided by catalytic conversion.
  • the grain coarsening is carried out in such a way that it leads to a grain size which essentially corresponds to the grain size sought in the sintering process.
  • z. B pellets of about 2 to 10 mm in diameter and 5 - 30 mm in length, in particular 5 mm in diameter and 10 mm in length, and then fed to the sintering plant.
  • the returned grains or bodies are mixed uniformly into the sintering mixture via conveying and / or mixing devices which already exist for the sintered material.
  • the returned grains are introduced into the lower layer of the sintered bed, since the most favorable temperature conditions for the inclusion of the potassium and lead chlorides in the slag formed with the aid of the tensile impact material are given there.
  • an adsorbent selected from the group: activated coke, preferably hearth furnace coke, activated carbon, zeolites, aluminum oxide, silica gel, diatomaceous earth, clay, layered silicates, diatomaceous earth or mixtures thereof can be used as the adsorbent.
  • the invention is also directed to a sintering system with a sintering belt, an exhaust pipe, an adsorber connected in the exhaust pipe and a filter downstream of the adsorber, and a feedback device for returning solids separated in the filter to the sintering belt.
  • the return device has a device for coarsening the separated solids together with an additive.
  • Fig. 1 shows a system in which the aggregate is mixed with the solids separated from the filter
  • Fig. 2 shows a system in which the aggregate is fed to the exhaust gas stream upstream of the filter.
  • sintered material S in the form of a fine ore fuel mixture is fed to a sintering belt 1.
  • an ignition furnace 2 is assigned to the feed end of the sintering belt 1.
  • Air L is supplied to the top of the sintering belt and the exhaust gas A is collected below the belt in an exhaust pipe 3.
  • Activated coke AK is dosed as adsorbent from a storage silo 4 and mixed with the exhaust gas by a blowing device 5.
  • the adsorbent is loaded with the PCDD and PCDF from the exhaust gas in a reaction section 6 downstream of the blowing device 5 and separated from the exhaust gas in a subsequent electrostatic filter 7.
  • the cleaned exhaust gas is fed to a chimney 9 via a blower 8. If the PCDD and PCDF concentration behind electrostatic filter 7 is still above the legally prescribed values, a burner 10 for increasing the temperature and a downstream oxidation catalytic converter 11 can optionally be provided.
  • the solids F separated in the electrostatic filter 7 are fed to a dust silo 12. Furthermore, a silo 13 for aggregate Z is provided. Solids F and Z are metered out of the silos 12 and 13 into a mixer / extruder 14 fed for coarser coarsening. Water is fed to the mixer / extruder 14 as an auxiliary fluid for the coarsening process via line 15.
  • the grains or bodies K produced in the mixer / extruder 14 are guided to the feed side of the sintered belt by means of suitable conveying means and, together with the sintered material S, are fed to the belt.
  • the task can preferably not be carried out in admixture, but the grains K are first placed on the sintering belt according to FIG. 1 and then covered with the sintered material S so that they lie in a lower layer of the sintered bed come.
  • the additive (s) Z is added from a silo 13 ', from which the additive is blown into the entrained flow reaction path 6 upstream of the electrostatic filter 7 via a suitable blowing device 15 in the flow direction of the exhaust gas A behind the blowing device 5.
  • a suitable blowing device 15 in the flow direction of the exhaust gas A behind the blowing device 5.
  • the blowing device 15 'for the aggregate can also be in front of the blowing device 5 for the adsorbent AK.
  • the solids F could additionally be subjected to leaching in a leaching container 16 in order to increase the effectiveness of the process before the coarsening.
  • the leaching is preferably carried out with water supplied at 17, by slurrying the fine-grained solids F brought in by the electrostatic filter 7 in a ratio of 1 to 1.5 to 1 to 10, preferably 1 to 2, with water.
  • the readily water-soluble alkali chlorides, in particular potassium chloride are preferably converted into the liquid phase.
  • the chloride-depleted filter cake FK can be transferred to a correspondingly designed storage container 12 'and then mixed and extruded in the mixer / extruder 14 with the additive Z.
  • the chloride-containing liquid phase (waste water) originating from the solid / liquid separation 18 can either be fed via line 19 to another waste water stream present at the site of the installation (e.g. waste water from a blast furnace gas cleaning system) and further treated there or via a special one for this wastewater to be installed cleaning system. The cleaned, but still chloride-containing wastewater is discharged into a receiving water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention concerne un procédé destiné à réduire la concentration de PCDD et de PCDF dans des courants de gaz brûlés d'une installation d'agglomération par frittage, notamment de minerai de fer, procédé dans lequel la concentration initiale en PCDD/PCDF dans les gaz brûlés est réduite par adsorption, par addition d'un agent adsorbant (AK), et l'adsorbant chargé est séparé, conjointement avec la poussière provenant du processus de frittage, dans un filtre (7), et est recyclé dans le processus de frittage. En vue de réduire, en aval du filtre, l'émission de poussière fine avec les gaz brûlés, l'invention est caractérisée en ce que les matières solides (F) à grains fins ou sous forme de poussière, séparées dans le filtre, sont soumises, avant recyclage dans le processus de frittage, à un grossissement des grains, conjointement avec au moins un produit ajouté (Z). Le produit ajouté est introduit de préférence dans le courant de gaz brûlés, en amont du filtre. L'invention concerne également une installation d'agglomération par frittage configurée d'une façon correspondante.
EP99962219A 1998-12-07 1999-12-06 Procede pour reduire la concentration de pcdd et de pcdf dans des courants de gaz brules dans une installation d'agglomeration par frittage, et installation pour la mise en oeuvre de ce procede Ceased EP1148930A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19856260A DE19856260C1 (de) 1998-12-07 1998-12-07 Verfahren zur Verringerung der Konzentration von PCDD und PCDF im Abgasstrom einer Sinteranlage und Sinteranlage zur Durchführung des Verfahrens
DE19856260 1998-12-07
PCT/EP1999/009510 WO2000033947A1 (fr) 1998-12-07 1999-12-06 Procede pour reduire la concentration de pcdd et de pcdf dans des courants de gaz brules dans une installation d'agglomeration par frittage, et installation pour la mise en oeuvre de ce procede

Publications (1)

Publication Number Publication Date
EP1148930A1 true EP1148930A1 (fr) 2001-10-31

Family

ID=7890158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99962219A Ceased EP1148930A1 (fr) 1998-12-07 1999-12-06 Procede pour reduire la concentration de pcdd et de pcdf dans des courants de gaz brules dans une installation d'agglomeration par frittage, et installation pour la mise en oeuvre de ce procede

Country Status (5)

Country Link
EP (1) EP1148930A1 (fr)
KR (1) KR20010086081A (fr)
AU (1) AU1862600A (fr)
DE (1) DE19856260C1 (fr)
WO (1) WO2000033947A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133991B4 (de) * 2001-07-12 2012-08-02 Doosan Lentjes Gmbh Vorrichtung zur Reinigung von Verbrennungsabgasen
AT502375B1 (de) * 2006-02-28 2007-03-15 Voest Alpine Ind Anlagen Verfahren zur behandlung von abgas aus sinter- und pelletanlagen
DE102006050986B4 (de) * 2006-10-26 2013-04-11 Rwe Power Ag Verfahren zur trockenen Reinigung von Abgasen aus metallurgischen oder sekundärmetallurgischen Prozessen sowie Sorbens zur trockenen Reinigung von Abgasen
CN108525639B (zh) * 2018-04-27 2019-07-30 福州大学 一种垃圾焚烧中氯吸附材料的制备方法及其应用
CN118477432B (zh) * 2024-04-12 2024-10-29 四川锦美环保股份有限公司 钢铁烧结线混料机尾气干法吸附净化工艺及其使用装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647237A (ja) * 1992-07-28 1994-02-22 Topy Ind Ltd 電気炉排ガスダストの処理方法
DE19623981A1 (de) * 1996-06-15 1998-01-08 Rheinische Braunkohlenw Ag Verfahren zum Entfernen schädlicher Inhaltsstoffe aus Abgasen von Sinteranlagen
DE19651822C2 (de) * 1996-12-13 1999-02-11 Thyssen Stahl Ag Verfahren zur Verringerung der PCDD- und/oder PCDF-Konzentration in Abgasen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0033947A1 *

Also Published As

Publication number Publication date
WO2000033947A1 (fr) 2000-06-15
KR20010086081A (ko) 2001-09-07
AU1862600A (en) 2000-06-26
DE19856260C1 (de) 2000-03-16

Similar Documents

Publication Publication Date Title
EP0487913B1 (fr) Réactifs et compositions ayant une réactivité haute pour l'épuration de gaz d'échappement et d'eau usée, leur préparation et leur utilisation
DE3615027C2 (fr)
EP0405290A1 (fr) Procédé et installation pour l'épuration des composés nocifs contenus dans les effluents gazeux de combustion
EP1916027B1 (fr) Agent de sorption contenant du carbone et son procédé de fabrication
EP0697239B1 (fr) Procédé et dispositif pour la séparation d'hydrocarbures polycycliques et polyhalogénés, en particulier de dioxines et furanes d'un gaz de fumée d'un procédé de frittage
EP0572769A2 (fr) Procédé pour la conversion des résidus de l'incinération de déchets en produit non-polluant et utilisable pour la construction
EP1007746A1 (fr) Procede permettant de faire fonctionner une installation de frittage, et installation de frittage
EP0293982A1 (fr) Procédé pour le traitement de matières minérales contaminées
EP2011558B1 (fr) Installation et procédé pour la suppression de substances toxiques de gaz d'échappement
DE19856260C1 (de) Verfahren zur Verringerung der Konzentration von PCDD und PCDF im Abgasstrom einer Sinteranlage und Sinteranlage zur Durchführung des Verfahrens
EP0481956B1 (fr) Procédé et installation pour la production de l'acier liquide à partir de ferailles
EP0577677B1 (fr) Procede de reduction de la teneur en substances polluantes de gaz de fumee degages pendant des processus thermiques
DE2944989A1 (de) Verfahren zum reinigen von pyrolysegasen
AT406272B (de) Verfahren zur herstellung von direkt reduziertem eisen, flüssigem roheisen und stahl sowie anlage zur durchführung des verfahrens
DE19824237A1 (de) Reagentien für die Reinigung von Abgasen
EP0748766B1 (fr) Granulate à base de carbonates des métaux alcalino-terreux contenant des composées ad- ou absorbants
EP1025894B1 (fr) Procédé ainsi que l'adsorbant pour la purification à sec de gaz d'échappement
DE19901049B4 (de) Mittel zur Reinigung von Gasen und Abgasen und ihre Verwendung
AT393970B (de) Verfahren zur verbrennung von gasen, welche mit staeuben beladen sind
DE19940683B4 (de) Verfahren zur trockenen Reinigung von Abgasen aus Sinteranlagen, Hüttenwerken oder sekundär metallurgischen Schmelzanlagen sowie staubförmiges Sorbens zur trockenen Reinigung solcher Abgase
EP0677319B1 (fr) Procédé et dispositif pour éliminer les dioxines of furanes d'un gaz d'échappement d'un procédé de frittage
DE19651822C2 (de) Verfahren zur Verringerung der PCDD- und/oder PCDF-Konzentration in Abgasen
DE19637848C2 (de) Verfahren zur Verwertung von aluminium- und/oder eisenhaltigen Abfällen
EP0908220A1 (fr) Procédé d'utilisation de catalysateur usé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20021206