EP1146300A1 - Thermosiphon boiler-condenser - Google Patents

Thermosiphon boiler-condenser Download PDF

Info

Publication number
EP1146300A1
EP1146300A1 EP01400898A EP01400898A EP1146300A1 EP 1146300 A1 EP1146300 A1 EP 1146300A1 EP 01400898 A EP01400898 A EP 01400898A EP 01400898 A EP01400898 A EP 01400898A EP 1146300 A1 EP1146300 A1 EP 1146300A1
Authority
EP
European Patent Office
Prior art keywords
fluid
pressure
exchanger
temperature
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01400898A
Other languages
German (de)
French (fr)
Other versions
EP1146300B1 (en
Inventor
Benoít Davidian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8849225&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1146300(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1146300A1 publication Critical patent/EP1146300A1/en
Application granted granted Critical
Publication of EP1146300B1 publication Critical patent/EP1146300B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to an exchanger bath type evaporator-condenser and a heat exchange process in a bath type exchanger.
  • the invention relates to an exchanger bath type vaporizer-condenser between a first fluid to be vaporized and a second fluid to condense as well as the use of this type heat exchange.
  • vaporization is meant vaporization partial or total and by condensation is meant condensation partial or total.
  • bath exchangers imposes by its specific characteristics of the limitations on the height of exchange between the first and the second fluid or as for the temperature difference between the primary fluid and the secondary fluid.
  • Figures 1 and 2 represent on the one hand an example of diagram functional of a bath exchanger and on the other hand an example of heat exchange diagram between the primary fluid and the fluid secondary.
  • the tank is shown in a simplified manner external 10 of the heat exchanger inside which is contained a set of passages 12 for the second "hot” fluid F2 which enters the upper part of these passages at 14 and comes out at the part lower in 16.
  • the first “cold” fluid F1 to vaporize it is contained in the external enclosure 10 and circulates by thermosyphon of the lower end 12a of the passages for the second fluid F2 up to its upper end 12b, the height of this heat exchange zone being equal to h.
  • the first fluid F1 at the entrance to the exchange zone is at a temperature T 1.1 and at a pressure P 1.1 .
  • This temperature T 1.1 and this pressure P 1.1 correspond to a sub-cooling state, that is to say to a temperature below the bubble temperature T b1 of the fluid F1 at the pressure P 1.1 due to hydrostatic pressure due to the height of liquid F1 fluid.
  • T b the temperature (bubble) at which the first gas bubble appears in the fluid F1 during the heat exchange (at intermediate pressure between P 1.1 and P 1.2 ). It is understood that the energy used to bring the primary fluid to the bubble temperature T b is "lost" energy to obtain the vaporization of the first liquid.
  • the second fluid F2 has also been shown with its inlet temperature in the exchange zone 12 which is equal to T 2.1 and its outlet temperature equal to T 2.2 .
  • T 2.1 the inlet temperature in the exchange zone 12
  • T 2.2 the outlet temperature
  • thermosyphon effect which allows the circulation of first fluid F1 is made possible by the formation of bubbles of the first fluid. If the height in the exchanger corresponding to the phase too much "subcooling", the thermosyphon effect will be insufficient.
  • the outlet pressure of the first fluid P 1.2 is of the order of 4 bars absolute or greater.
  • the height of the heat exchange passages between the two fluids is at least equal at 3 m.
  • the heat exchange passages between the two fluids are limited by parallel plates, which can be of the type with brazed fins.
  • the passages can be made up of tubes.
  • the means forming enclosure include a single enclosure containing said passages heat exchange and in which the first fluid circulates by thermosyphon.
  • the means forming enclosure include a first enclosure defining a lower volume of entry of the first fluid and a higher volume of first fluid outlet and a second enclosure connected respectively to the upper and lower volumes, this second enclosure that can be reduced to piping.
  • the fluid to be vaporized F1 circulates by thermosyphon in the vertical heat exchange passages.
  • the fluid F1 has at its inlet, that is to say at the lower end 24a of the exchange module, a temperature T 1.1 and a pressure P 1.1 , and a temperature T 1.2 and a pressure P 1.2 at the upper end 24b of the exchange module.
  • the total height of the exchange module is called h, that is to say the length of circulation of the first fluid between the inlet end 24a and the outlet end 24b.
  • the second fluid which is nitrogen gas in the example under consideration, enters at temperature T 2.1 through line 30 and leaves the exchange module in liquid form at temperature T 2.2 .
  • FIG 4 there is shown the heat exchange between the fluid F1 (pure oxygen) and fluid F2 (pure nitrogen).
  • Curve A substantially vertical due to the fact that the fluid F2 is pure nitrogen, shows the evolution of this fluid between its entry and its exit from the exchange module.
  • Curve B shows the evolution of the first fluid (pure oxygen). She has a first part B1 corresponding to the "sub-cooling" of oxygen and part B2 of vaporization partial oxygen from the bubble temperature Tb of oxygen.
  • the pressure P 1.2 at the outlet of the first fluid depends on the pressure at the outlet of the complete installation containing the exchanger bath taking into account the pressure drop due to the switchgear between the outlet of the exchanger and the outlet of the complete installation. If the outlet of the installation is at atmospheric pressure, the pressure at the outlet of the bath exchanger is of the order of 1.3 bar absolute.
  • a bath heat exchanger can be constructed, the height h of the exchange module being equal to 3 or 4 meters, while maintaining a temperature difference of the order 1.2 ° C.
  • FIG. 5 shows an alternative embodiment of the bath exchanger.
  • the exchanger comprises a main enclosure 40 in which is mounted the exchange module 42.
  • the enclosure 40 defines also a lower inlet chamber 44 of the first fluid and a upper chamber 46 for the outlet of the first fluid with a sampling 48 of the first vaporized fluid.
  • the exchanger includes also a chamber 50 for recirculating the first fluid in the state essentially liquid which is connected to the upper chambers and lower by lines 52 and 54. This enclosure could be reduced to simple piping.

Abstract

The exchanger comprises an external enclosure (20) containing a first fluid (F1) to be vaporized. Inside the enclosure is a heat exchange module (24) which defines passages (26) for the circulation of a second fluid (F2) to be condensed which has an outlet temperature from the passages of T2,2. The first fluid which enters the passages from the bottom has an inlet temperature T1,1 and an outlet pressure P1,2. The inlet pressure of the first fluid, P1,1, is greater than a minimum pressure PmS of about 1.3 bar. The height of the passages, h, is 2.5 m and the temperature T2,2 is less than T1,1 + 1.2oC.

Description

La présente invention a pour objet un échangeur vaporiseur-condenseur du type à bain et un procédé d'échange thermique dans un échangeur du type à bain.The present invention relates to an exchanger bath type evaporator-condenser and a heat exchange process in a bath type exchanger.

De façon plus précise, l'invention concerne un échangeur vaporiseur-condenseur du type à bain entre un premier fluide à vaporiser et un deuxième fluide à condenser ainsi que l'utilisation de ce type d'échange thermique. Par vaporisation, on entend une vaporisation partielle ou totale et par condensation, on entend une condensation partielle ou totale.More specifically, the invention relates to an exchanger bath type vaporizer-condenser between a first fluid to be vaporized and a second fluid to condense as well as the use of this type heat exchange. By vaporization is meant vaporization partial or total and by condensation is meant condensation partial or total.

Cette disposition est utilisée notamment, mais non exclusivement, dans les installations de distillation de l'air du type à double colonne où, par exemple, l'oxygène liquide qui se trouve en cuve de la colonne basse pression est vaporisé dans un vaporiseur à bain par échange de chaleur avec l'azote gazeux prélevé en tête de la colonne moyenne pression.This provision is used in particular, but not exclusively in air distillation systems of the type double column where, for example, the liquid oxygen in the tank of the low pressure column is vaporized in a bath vaporizer by heat exchange with nitrogen gas taken from the top of the column medium pressure.

Le fonctionnement des échangeurs à bain impose de par ses caractéristiques propres des limitations quant à la hauteur d'échange entre le premier et le deuxième fluide ou quant à l'écart de température entre le fluide primaire et le fluide secondaire.The operation of bath exchangers imposes by its specific characteristics of the limitations on the height of exchange between the first and the second fluid or as for the temperature difference between the primary fluid and the secondary fluid.

On comprendra mieux ce problème en se référant aux figures 1 et 2 annexées qui représentent d'une part un exemple de schéma fonctionnel d'un échangeur à bain et d'autre part un exemple de diagramme d'échange thermique entre le fluide primaire et le fluide secondaire.This problem will be better understood by referring to Figures 1 and 2 attached which represent on the one hand an example of diagram functional of a bath exchanger and on the other hand an example of heat exchange diagram between the primary fluid and the fluid secondary.

Sur la figure 1, on a représenté de façon simplifiée la cuve externe 10 de l'échangeur à bain à l'intérieur de laquelle est contenu un ensemble de passages 12 pour le deuxième fluide "chaud" F2 qui entre à la partie supérieure de ces passages en 14 et en ressort à la partie inférieure en 16. En ce qui concerne le premier fluide "froid" F1 à vaporiser, il est contenu dans l'enceinte externe 10 et circule par thermosiphon de l'extrémité inférieure 12a des passages pour le deuxième fluide F2 jusqu'à son extrémité supérieure 12b, la hauteur de cette zone d'échange thermique étant égale à h.In Figure 1, the tank is shown in a simplified manner external 10 of the heat exchanger inside which is contained a set of passages 12 for the second "hot" fluid F2 which enters the upper part of these passages at 14 and comes out at the part lower in 16. With regard to the first “cold” fluid F1 to vaporize, it is contained in the external enclosure 10 and circulates by thermosyphon of the lower end 12a of the passages for the second fluid F2 up to its upper end 12b, the height of this heat exchange zone being equal to h.

Comme le montre mieux le diagramme de la figure 2, le premier fluide F1 à l'entrée de la zone d'échange est à une température T1,1 et à une pression P1,1. Cette température T1,1 et cette pression P1,1 correspondent à un état de sous-refroidissement, c'est-à-dire à une température inférieure à la température de bulle Tb1 du fluide F1 à la pression P1,1 en raison de la pression hydrostatique due à la hauteur de fluide F1 liquide. C'est ce que l'on va représenter sur ce diagramme. On notera Tb la température (de bulle) à laquelle apparaít la première bulle de gaz dans le fluide F1 au cours de l'échange thermique (à pression intermédiaire entre P1,1 et P1,2). On comprend que l'énergie utilisée pour amener le fluide primaire à la température de bulle Tb est de l'énergie "perdue" pour obtenir la vaporisation du premier liquide. Sur cette figure 2, on a également représenté le deuxième fluide F2 avec sa température d'entrée dans la zone d'échange 12 qui est égale à T2,1 et sa température de sortie égale à T2,2. On voit que le phénomène de sous-refroidissement entraíne un "effet de pincement" dans les échanges thermiques entre les deux fluides.As best shown in the diagram in FIG. 2, the first fluid F1 at the entrance to the exchange zone is at a temperature T 1.1 and at a pressure P 1.1 . This temperature T 1.1 and this pressure P 1.1 correspond to a sub-cooling state, that is to say to a temperature below the bubble temperature T b1 of the fluid F1 at the pressure P 1.1 due to hydrostatic pressure due to the height of liquid F1 fluid. This is what we will represent on this diagram. Note T b the temperature (bubble) at which the first gas bubble appears in the fluid F1 during the heat exchange (at intermediate pressure between P 1.1 and P 1.2 ). It is understood that the energy used to bring the primary fluid to the bubble temperature T b is "lost" energy to obtain the vaporization of the first liquid. In this FIG. 2, the second fluid F2 has also been shown with its inlet temperature in the exchange zone 12 which is equal to T 2.1 and its outlet temperature equal to T 2.2 . We see that the phenomenon of subcooling causes a "pinch effect" in the heat exchange between the two fluids.

En outre, l'effet de thermosiphon qui permet la circulation du premier fluide F1, est rendu possible par la formation des bulles du premier fluide. Si la hauteur dans l'échangeur correspondant à la phase de "désousrefroidissement" est trop importante, l'effet de thermosiphon sera insuffisant.In addition, the thermosyphon effect which allows the circulation of first fluid F1, is made possible by the formation of bubbles of the first fluid. If the height in the exchanger corresponding to the phase too much "subcooling", the thermosyphon effect will be insufficient.

On comprend que plus la hauteur h de la zone d'échange thermique est importante, plus l'effet de la pression hydrostatique sur le premier fluide à l'entrée de la zone d'échange sera important et donc plus la zone de sous-refroidissement devra l'être également. Pour permettre l'entretien de l'effet de thermosiphon assurant la circulation du premier fluide, le phénomène de "pincement" doit donc être limité. Dans les installations d'échange thermique du type à bain, cette hauteur est donc limitée à 2,5 mètres.We understand that the higher the height h of the exchange zone the greater the effect of the hydrostatic pressure on the first fluid at the entrance to the exchange zone will be important and therefore more the sub-cooling zone must also be. To allow maintenance of the thermosiphon effect ensuring circulation of the first fluid, the phenomenon of "pinching" must therefore be limited. In the bath type heat exchange systems, this height is therefore limited to 2.5 meters.

Un autre inconvénient présent dans ce type d'échangeur à bain est que le "phénomène de pincement" décrit précédemment oblige à prévoir une différence de température entre la température d'entrée T1,1 du fluide froid F1 à vaporiser et la température T2,2 du fluide chaud F2 supérieure à environ 1,2°C pour permettre le fonctionnement de l'échangeur par thermosiphon en raison de "l'effet de pincement". Or, on comprend que l'augmentation de cet écart de température augmente les irréversibilités thermodynamiques, et, par voie de conséquence, diminue le rendement énergétique de l'ensemble de l'installation. Par exemple, dans le cas de la distillation des gaz de l'air à l'aide d'une double colonne, la pression de la colonne dite moyenne pression et, par voie de conséquence, la pression du compresseur d'air d'alimentation, doivent être augmentées, ce qui augmente la consommation d'énergie de l'ensemble de l'installation.Another drawback present in this type of bath heat exchanger is that the "pinching phenomenon" described above makes it necessary to provide a temperature difference between the inlet temperature T 1.1 of the cold fluid F1 to be vaporized and the temperature T 2 , 2 of the hot fluid F2 higher than about 1.2 ° C to allow the operation of the heat exchanger by thermosiphon due to the "pinching effect". However, it is understood that the increase in this temperature difference increases the thermodynamic irreversibilities, and, consequently, decreases the energy efficiency of the entire installation. For example, in the case of the distillation of air gases using a double column, the pressure of the so-called medium pressure column and, consequently, the pressure of the supply air compressor , must be increased, which increases the energy consumption of the entire installation.

Il existe donc un réel besoin de disposer d'échangeurs vaporiseur-condenseur du type à bain ou de procédés d'échange thermique dans une installation du type à bain qui permettent soit d'augmenter la hauteur verticale d'échange thermique pour diminuer l'encombrement au sol de l'installation, soit de diminuer l'écart de température entre le premier fluide et le deuxième fluide, soit encore de permettre une combinaison de ces deux caractéristiques de l'échangeur vaporiseur-condenseur.There is therefore a real need for heat exchangers bath-type vaporizer-condenser or exchange processes thermal in a bath type installation which allow either increase the vertical heat exchange height to decrease the footprint of the installation, i.e. to reduce the temperature between the first fluid and the second fluid, i.e. still allow a combination of these two characteristics of the exchanger vaporizer-condenser.

Pour atteindre ce but selon l'invention, l'échangeur vaporiseur-condenseur du type à bain entre un premier fluide (F1) à vaporiser et un deuxième fluide (F2) à condenser, ledit échangeur présentant une pression minimale de sortie PmS dudit premier fluide pour permettre le fonctionnement de l'installation dans laquelle ledit échangeur est monté, comprend :

  • des moyens pour définir une pluralité de passages d'échange thermique entre les deux fluides pour faire circuler ledit deuxième fluide, ledit deuxième fluide ayant une température T2,2 à la sortie desdits passages,
  • des moyens formant enceinte contenant les moyens formant passage pour faire circuler par thermosiphon ledit premier fluide entre lesdits passages du bas vers le haut sur une hauteur h, ledit premier fluide ayant une température d'entrée T1,1 avec T1,1 < T2,2, ledit premier fluide vaporisé ayant une pression de sortie P1,2,
  • des moyens pour donner à la pression d'entrée P1,1 dudit premier fluide une valeur telle que la pression P1,2 soit supérieure à ladite pression minimale PmS et des moyens pour qu'au moins une des deux conditions suivantes soit remplie :
  • la hauteur h des passages d'échange thermique est au moins égale à 2,5 m ; et
  • la température T2,2 dudit deuxième fluide est inférieure à T1,1 + 1,2°C.
  • To achieve this object according to the invention, the evaporator-condenser exchanger of the bath type between a first fluid (F1) to vaporize and a second fluid (F2) to condense, said exchanger having a minimum outlet pressure P m S of said first fluid to allow the operation of the installation in which said exchanger is mounted, comprises:
  • means for defining a plurality of heat exchange passages between the two fluids for circulating said second fluid, said second fluid having a temperature T 2.2 at the outlet of said passages,
  • enclosure means containing the passage means for circulating by thermosyphon said first fluid between said passages from bottom to top over a height h, said first fluid having an inlet temperature T 1.1 with T 1.1 <T 2.2 , said first vaporized fluid having an outlet pressure P 1.2 ,
  • means for giving the inlet pressure P 1.1 of said first fluid a value such that the pressure P 1.2 is greater than said minimum pressure P m S and means so that at least one of the following two conditions is fulfilled:
  • the height h of the heat exchange passages is at least equal to 2.5 m; and
  • the temperature T 2.2 of said second fluid is less than T 1.1 + 1.2 ° C.
  • On a mis en évidence en effet que, si on augmente la pression de sortie du premier fluide, on modifie l'effet de pincement, ce qui autorise soit à augmenter la hauteur h d'échange thermique, soit à diminuer l'écart de température entre les deux fluides.We have shown that if we increase the pressure output of the first fluid, the pinching effect is modified, which allows either to increase the height h of heat exchange, or to decrease the difference of temperature between the two fluids.

    Selon un deuxième aspect de l'invention, le procédé de vaporisation d'un premier fluide à l'aide d'un échangeur vaporiseur-condenseur à bain comprend les étapes suivantes :

    • on fait circuler un deuxième fluide (F2) dans des passages verticaux d'échange, ledit deuxième fluide ayant une température de sortie T2,2 ;
    • on fait circuler de bas en haut sur une hauteur h par thermosiphon ledit premier fluide entre lesdits passages d'échange thermique, ledit premier fluide ayant une température d'entrée T1,1 (T, < T2,2), la fraction vaporisée dudit premier fluide ayant une pression de sortie P1,2 ;
    • on donne à ladite pression P1,2 une valeur supérieure à la pression minimale de sortie de la fraction vaporisée du premier fluide nécessaire pour permettre le fonctionnement de l'installation dans laquelle est monté ledit échangeur ; et
    • on choisit la hauteur h des passages d'échange thermique et la température T2,2 dudit deuxième fluide de telle manière qu'au moins une des deux conditions suivantes soit remplie :
      • la hauteur h desdits passages d'échange thermique est au moins égale à 2,5 m ; et
      • la température T2,2 dudit deuxième fluide est inférieure à T1,1 + 1,2°C.
    According to a second aspect of the invention, the method of vaporizing a first fluid using a vaporizer-condenser bath exchanger comprises the following steps:
    • a second fluid (F2) is circulated in vertical exchange passages, said second fluid having an outlet temperature T 2.2 ;
    • said first fluid is circulated from bottom to top over a height h by said thermosyphon between said heat exchange passages, said first fluid having an inlet temperature T 1.1 (T, <T 2.2 ), the vaporized fraction said first fluid having an outlet pressure P 1.2 ;
    • said pressure P 1.2 is given a value greater than the minimum outlet pressure of the vaporized fraction of the first fluid necessary to allow the operation of the installation in which said exchanger is mounted; and
    • the height h of the heat exchange passages and the temperature T 2.2 of said second fluid are chosen so that at least one of the following two conditions is met:
      • the height h of said heat exchange passages is at least equal to 2.5 m; and
      • the temperature T 2.2 of said second fluid is less than T 1.1 + 1.2 ° C.

    On comprend que ce procédé permet d'améliorer les caractéristiques de l'échangeur à bain comme cela a été déjà exposé en liaison avec la définition précédente de l'échangeur à bain conforme à l'invention.We understand that this process improves the characteristics of the bath exchanger as already explained in connection with the previous definition of the bath exchanger conforming to the invention.

    Selon un mode préféré de mise en oeuvre, la pression de sortie du premier fluide P1,2 est de l'ordre de 4 bars absolus ou supérieure.According to a preferred embodiment, the outlet pressure of the first fluid P 1.2 is of the order of 4 bars absolute or greater.

    Selon une autre caractéristique, de préférence, la hauteur des passages d'échange thermique entre les deux fluides est au moins égale à 3 m. According to another characteristic, preferably, the height of the heat exchange passages between the two fluids is at least equal at 3 m.

    De préférence, les passages d'échange thermique entre les deux fluides sont limités par des plaques parallèles, celles-ci pouvant être du type à ailettes brasées.Preferably, the heat exchange passages between the two fluids are limited by parallel plates, which can be of the type with brazed fins.

    Selon une variante de mise en oeuvre, les passages peuvent être constitués par des tubes.According to an implementation variant, the passages can be made up of tubes.

    Selon un premier mode de mise en oeuvre, les moyens formant enceinte comprennent une unique enceinte contenant lesdits passages d'échange thermique et dans laquelle le premier fluide circule par thermosiphon.According to a first embodiment, the means forming enclosure include a single enclosure containing said passages heat exchange and in which the first fluid circulates by thermosyphon.

    Selon un deuxième mode de mise en oeuvre, les moyens formant enceinte comprennent une première enceinte définissant un volume inférieur d'entrée du premier fluide et un volume supérieur de sortie du premier fluide et une deuxième enceinte raccordée respectivement aux volumes supérieur et inférieur, cette deuxième enceinte pouvant se réduire à une tuyauterie.According to a second embodiment, the means forming enclosure include a first enclosure defining a lower volume of entry of the first fluid and a higher volume of first fluid outlet and a second enclosure connected respectively to the upper and lower volumes, this second enclosure that can be reduced to piping.

    D'autres caractéristiques et avantages de l'invention apparaítront mieux à la lecture de la description qui suit de plusieurs modes de réalisation de l'invention donnés à titre d'exemple non limitatifs. La description se réfère aux figures annexées sur lesquelles :

  • la figure 1, déjà décrite, est une vue simplifiée d'un échangeur à bain connu ;
  • la figure 2, déjà décrire, montre le diagramme d'échange thermique de l'échangeur à bain de la figure 1 ;
  • la figure 3 montre un premier exemple de réalisation d'un échangeur à bain conforme à l'invention utilisé dans la distillation de l'air ;
  • la figure 4 est un diagramme d'échange thermique de fonctionnement de l'échangeur à bain de la figure 3 ;
  • la figure 5 montre une variante de réalisation de l'échangeur à bain selon l'invention ; et
  • la figure 6 montre la courbe de variation du sous-refroidissement en fonction de la pression du liquide, pour une hauteur hydrostatique de 1 mètre.
  • Other characteristics and advantages of the invention will appear better on reading the following description of several embodiments of the invention given by way of nonlimiting example. The description refers to the appended figures in which:
  • Figure 1, already described, is a simplified view of a known bath exchanger;
  • Figure 2, already described, shows the heat exchange diagram of the heat exchanger of Figure 1;
  • Figure 3 shows a first embodiment of a bath exchanger according to the invention used in the distillation of air;
  • Figure 4 is a heat exchange diagram of operation of the heat exchanger of Figure 3;
  • Figure 5 shows an alternative embodiment of the bath heat exchanger according to the invention; and
  • FIG. 6 shows the variation curve of the sub-cooling as a function of the pressure of the liquid, for a hydrostatic height of 1 meter.
  • En se référant tout d'abord aux figures 3 et 4, on va décrire un premier mode de réalisation de l'échangeur à bain selon l'invention. Dans la description qui suit, on va plus particulièrement considérer le cas où le fluide froid à vaporiser est de l'oxygène liquide et où le fluide chaud est de l'azote gazeux, ce qui est par exemple le cas lors de la distillation cryogénique des gaz de l'air avec un schéma du type double colonne. Cependant, il va de soi que la présente invention peut être appliquée à l'échange thermique entre deux autres fluides par exemple à la séparation cryogénique de gaz de synthèse tel que le méthane, le monoxyde de carbone, l'hydrogène ...Referring first to Figures 3 and 4, we will describe a first embodiment of the bath exchanger according to the invention. In the description which follows, we will more particularly consider the case where the cold fluid to be vaporized is liquid oxygen and where the hot fluid is nitrogen gas, which is for example the case during distillation air gas cryogenic with a double column type scheme. However, it goes without saying that the present invention can be applied to heat exchange between two other fluids for example at separation cryogenic synthesis gas such as methane, carbon monoxide carbon, hydrogen ...

    En se référant tout d'abord aux figures 3 et 4, on va décrire un premier mode de réalisation de l'échangeur à bain. On a représenté l'enceinte externe 20 contenant le premier fluide F1 qui est dans l'exemple considéré de l'oxygène pur. A la partie supérieure de l'enceinte 20, on trouve l'interface 22 entre le premier fluide F1 sous forme liquide et le fluide F1 sous forme de vapeur récupérée à la partie supérieure de l'enceinte. A l'intérieur de cette enceinte, on trouve un module d'échange thermique 24 qui définit de façon connue en soi des passages 26 pour le deuxième fluide "chaud" F2 qui dans l'exemple considéré est de l'azote pur, ces passages s'étendent entre une boíte d'entrée 28 raccordée à la conduite d'entrée 30 et une boíte de sortie 32 raccordée à la conduite de sortie 34. Ces passages, comme cela est connu, peuvent être constitués par des tubes ou encore par des plaques parallèles définissant le circuit du deuxième fluide. Ces passages peuvent être verticaux comme cela est représenté sur la figure 3, horizontaux ou obliques. Le module d'échange thermique 24 définit également des passages verticaux pour la circulation du premier fluide F1, c'est-à-dire de l'oxygène.Referring first to Figures 3 and 4, we will describe a first embodiment of the bath exchanger. We represented the external enclosure 20 containing the first fluid F1 which is in the example considered pure oxygen. At the top of enclosure 20, we finds the interface 22 between the first fluid F1 in liquid form and the F1 fluid in the form of vapor recovered at the top of the enclosure. Inside this enclosure, there is an exchange module thermal 24 which defines in a manner known per se passages 26 for the second "hot" fluid F2 which in the example considered is nitrogen pure, these passages extend between an inlet box 28 connected to the inlet pipe 30 and an outlet box 32 connected to the exit 34. These passages, as is known, can be constituted by tubes or by parallel plates defining the circuit of the second fluid. These passages can be vertical as is shown in Figure 3, horizontal or oblique. The exchange module thermal 24 also defines vertical passages for circulation of the first fluid F1, that is to say oxygen.

    Comme on l'a déjà indiqué, dans ce type d'échangeur à bain, le fluide à vaporiser F1 circule par thermosiphon dans les passages d'échange thermique verticaux. Le fluide F1 présente à son entrée, c'est-à-dire à l'extrémité inférieure 24a du module d'échange, une température T1,1 et une pression P1,1, et une température T1,2 et une pression P1,2 à l'extrémité supérieure 24b du module d'échange. On appelle h la hauteur totale du module d'échange, c'est-à-dire la longueur de circulation du premier fluide entre l'extrémité d'entrée 24a et l'extrémité de sortie 24b.As already indicated, in this type of bath heat exchanger, the fluid to be vaporized F1 circulates by thermosyphon in the vertical heat exchange passages. The fluid F1 has at its inlet, that is to say at the lower end 24a of the exchange module, a temperature T 1.1 and a pressure P 1.1 , and a temperature T 1.2 and a pressure P 1.2 at the upper end 24b of the exchange module. The total height of the exchange module is called h, that is to say the length of circulation of the first fluid between the inlet end 24a and the outlet end 24b.

    Le deuxième fluide, qui est de l'azote gazeux dans l'exemple considéré, entre à la température T2,1 par la conduite 30 et sort du module d'échange sous forme liquide à la température T2,2. The second fluid, which is nitrogen gas in the example under consideration, enters at temperature T 2.1 through line 30 and leaves the exchange module in liquid form at temperature T 2.2 .

    Sur la figure 4, on a représenté l'échange thermique entre le fluide F1 (oxygène pur) et le fluide F2 (azote pur). La courbe A, sensiblement verticale du fait que le fluide F2 est de l'azote pur, montre l'évolution de ce fluide entre son entrée et sa sortie du module d'échange. La courbe B montre l'évolution du premier fluide (oxygène pur). Elle comporte une première partie B1 correspondant au "désousrefroidissement" de l'oxygène et une partie B2 de vaporisation partielle de l'oxygène à partir de la température de bulle Tb de l'oxygène.In Figure 4, there is shown the heat exchange between the fluid F1 (pure oxygen) and fluid F2 (pure nitrogen). Curve A, substantially vertical due to the fact that the fluid F2 is pure nitrogen, shows the evolution of this fluid between its entry and its exit from the exchange module. Curve B shows the evolution of the first fluid (pure oxygen). She has a first part B1 corresponding to the "sub-cooling" of oxygen and part B2 of vaporization partial oxygen from the bubble temperature Tb of oxygen.

    Comme on l'a déjà expliqué, en augmentant la pression de sortie P1,2 du premier fluide, on peut diminuer "l'effet de pincement" ce qui permet d'augmenter la hauteur h d'échange et/ou de diminuer l'écart de température T2,2-T1,1.As has already been explained, by increasing the outlet pressure P 1.2 of the first fluid, it is possible to decrease the "pinching effect" which makes it possible to increase the height h of exchange and / or to decrease the temperature difference T 2.2 -T 1.1 .

    Dans le cas de la distillation cryogénique des gaz de l'air avec un schéma du type double colonne, la pression P1,2 de sortie du premier fluide (oxygène) dépend de la pression en sortie de l'installation complète contenant l'échangeur à bain en prenant en compte la perte de charge due à l'appareillage entre la sortie de l'échangeur et la sortie de l'installation complète. Si la sortie de l'installation est à la pression atmosphérique, la pression à la sortie de l'échangeur à bain est de l'ordre de 1,3 bars absolus.In the case of cryogenic distillation of air gases with a double column type diagram, the pressure P 1.2 at the outlet of the first fluid (oxygen) depends on the pressure at the outlet of the complete installation containing the exchanger bath taking into account the pressure drop due to the switchgear between the outlet of the exchanger and the outlet of the complete installation. If the outlet of the installation is at atmospheric pressure, the pressure at the outlet of the bath exchanger is of the order of 1.3 bar absolute.

    Il va de soi que pour augmenter la pression de sortie P1,2 du premier fluide, il est nécessaire d'augmenter la pression du fluide chaud F2 et par voie de conséquence la pression du gaz à l'entrée de l'installation (par exemple de l'air).It goes without saying that in order to increase the outlet pressure P 1.2 of the first fluid, it is necessary to increase the pressure of the hot fluid F2 and consequently the pressure of the gas at the inlet of the installation (by example of air).

    Si l'on admet une pression P1,2 de 4 bars absolus, on peut construire un échangeur à bain dont la hauteur h du module d'échange est égale à 3 ou 4 mètres, en conservant un écart de température de l'ordre de 1,2°C.If a pressure P 1.2 of 4 bar absolute is allowed, a bath heat exchanger can be constructed, the height h of the exchange module being equal to 3 or 4 meters, while maintaining a temperature difference of the order 1.2 ° C.

    Avec la même pression de sortie de 4 bars absolus et en maintenant une hauteur h de 2 mètres, on peut ramener l'écart de température à 0,4 ou 0,5°C.With the same outlet pressure of 4 bar absolute and in now a height h of 2 meters, we can reduce the difference of temperature at 0.4 or 0.5 ° C.

    Sur la figure 5, on a représenté une variante de réalisation de l'échangeur à bain.FIG. 5 shows an alternative embodiment of the bath exchanger.

    L'échangeur comprend une enceinte principale 40 dans laquelle est monté le module d'échange 42. L'enceinte 40 définit également une chambre inférieure d'entrée 44 du premier fluide et une chambre supérieure 46 de sortie du premier fluide avec un prélèvement 48 du premier fluide vaporisé. L'échangeur comprend également une enceinte 50 de recirculation du premier fluide à l'état essentiellement liquide qui est raccordée aux chambres supérieure et inférieure par des conduites 52 et 54. Cette enceinte pourrait se réduire à une simple tuyauterie.The exchanger comprises a main enclosure 40 in which is mounted the exchange module 42. The enclosure 40 defines also a lower inlet chamber 44 of the first fluid and a upper chamber 46 for the outlet of the first fluid with a sampling 48 of the first vaporized fluid. The exchanger includes also a chamber 50 for recirculating the first fluid in the state essentially liquid which is connected to the upper chambers and lower by lines 52 and 54. This enclosure could be reduced to simple piping.

    Sur la figure 6, on a représenté les variations ΔTb du sous-refroidissement induit par une hauteur hydrostatique de 1 m en fonction de la pression P pour l'oxygène pur (courbe I) et pour le méthane pur (courbe II). On voit que plus la pression (P) est élevée, plus l'effet de sous-refroidissement est faible. Ces courbes permettent de mieux comprendre l'effet favorable de l'augmentation de la pression du premier fluide sur "l'effet de pincement". En effet, plus la pression de sortie P1,2 est élevée, plus on pourra augmenter la hauteur h d'échange, c'est-à-dire la pression hydrostatique (P1,2-P1,1) tout en conservant la même variation du sous-refroidissement ΔTb.In FIG. 6, the variations ΔTb of the sub-cooling induced by a hydrostatic height of 1 m have been shown as a function of the pressure P for pure oxygen (curve I) and for pure methane (curve II). It can be seen that the higher the pressure (P), the weaker the sub-cooling effect. These curves make it possible to better understand the favorable effect of the increase in the pressure of the first fluid on the "pinching effect". In fact, the higher the outlet pressure P 1.2 , the more it will be possible to increase the height h of exchange, that is to say the hydrostatic pressure (P 1.2 -P 1.1 ) while retaining the same variation in sub-cooling ΔTb.

    Claims (12)

    Echangeur vaporiseur-condenseur du type à bain entre un premier fluide (F1) à vaporiser et un deuxième fluide (F2) à condenser, ledit échangeur présentant une pression minimale de sortie PmS dudit premier fluide pour permettre le fonctionnement de l'installation dans laquelle ledit échangeur est monté, ledit échangeur comprenant : des moyens (24) pour définir une pluralité de passages (26) d'échange thermique entre les deux fluides pour faire circuler ledit deuxième fluide, ledit deuxième fluide ayant une température T2,2 à la sortie desdits passages ; des moyens formant enceinte (20) contenant les moyens formant passage (24) pour faire circuler par thermosiphon ledit premier fluide entre lesdits passages du bas vers le haut sur une hauteur h, ledit premier fluide ayant une température d'entrée T1,1 avec T1,1 < T2,2, ledit premier fluide vaporisé ayant une pression de sortie P1,2 ; des moyens pour donner à la pression d'entrée P1,1 dudit premier fluide une valeur telle que la pression P1,2 soit supérieure à ladite pression minimale PmS et des moyens pour qu'au moins une des deux conditions suivantes soit remplie : la hauteur h des passages d'échange thermique est au moins égale à 2,5 m ; et la température T2,2 dudit deuxième fluide est inférieure à T1,1 + 1,2°C. Bath-type evaporator-condenser exchanger between a first fluid (F1) to vaporize and a second fluid (F2) to condense, said exchanger having a minimum outlet pressure P m S of said first fluid to allow operation of the installation in which said exchanger is mounted, said exchanger comprising: means (24) for defining a plurality of heat exchange passages (26) between the two fluids for circulating said second fluid, said second fluid having a temperature T 2.2 at the outlet of said passages; enclosure means (20) containing the passage means (24) for circulating by thermosiphon said first fluid between said passages from bottom to top over a height h, said first fluid having an inlet temperature T 1.1 with T 1.1 <T 2.2 , said first vaporized fluid having an outlet pressure P 1.2 ; means for giving the inlet pressure P 1.1 of said first fluid a value such that the pressure P 1.2 is greater than said minimum pressure P m S and means so that at least one of the following two conditions is fulfilled: the height h of the heat exchange passages is at least equal to 2.5 m; and the temperature T 2.2 of said second fluid is less than T 1.1 + 1.2 ° C. Echangeur vaporiseur-condenseur selon la revendication 1, caractérisé en ce que ladite pression minimale PmS étant de l'ordre de 1,3 bars absolus, la pression de sortie P1,2 dudit premier fluide à vaporiser est de l'ordre de 4 bars absolus ou supérieure.Vaporizer-condenser exchanger according to claim 1, characterized in that said minimum pressure P m S being of the order of 1.3 bar absolute, the outlet pressure P 1.2 of said first fluid to be vaporized is of the order of 4 bars absolute or higher. Echangeur vaporiseur-condenseur selon les revendications 1 et 2, caractérisé en ce que la hauteur desdits passages, d'échange (26) est au moins égale à 3 mètres.Vaporizer-condenser exchanger according to claims 1 and 2, characterized in that the height of said exchange passages (26) is at least equal to 3 meters. Echangeur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite température T2,2 du second fluide est comprise entre T1,1 + 1,2°C et T1,1 + 0,4°C. Exchanger according to any one of claims 1 to 3, characterized in that said temperature T 2.2 of the second fluid is between T 1.1 + 1.2 ° C and T 1.1 + 0.4 ° C. Echangeur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits passages d'échange thermique (26) sont limités par des plaques parallèles.Exchanger according to any one of claims 1 to 4, characterized in that said heat exchange passages (26) are limited by parallel plates. Echangeur selon la revendication 5, caractérisé en ce que lesdites plaques parallèles sont du type à ailettes brasées.Exchanger according to claim 5, characterized in that said parallel plates are of the type with brazed fins. Echangeur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits passages d'échange thermique (26) sont des tubes.Exchanger according to any one of claims 1 to 4, characterized in that said heat exchange passages (26) are tubes. Echangeur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que lesdits moyens formant enceinte comprennent une unique enceinte (20) contenant lesdits passages d'échange thermique (26) et dans laquelle ledit premier fluide circule par thermosiphon.Exchanger according to any one of claims 1 to 7, characterized in that said enclosure means comprise a single enclosure (20) containing said heat exchange passages (26) and in which said first fluid circulates by thermosyphon. Echangeur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que lesdits moyens formant enceinte comprennent une première enceinte (40) définissant un volume inférieur d'entrée (44) du premier fluide et un volume supérieur de sortie (46) du premier fluide et une deuxième enceinte (50) raccordée respectivement auxdits volumes supérieur et inférieur.Exchanger according to any one of claims 1 to 7, characterized in that said enclosure means comprise a first enclosure (40) defining a lower inlet volume (44) of the first fluid and an upper outlet volume (46) of the first fluid and a second enclosure (50) connected respectively to said upper and lower volumes. Procédé de vaporisation d'un premier fluide (F1) à l'aide d'un échangeur vaporiseur-condenseur à bain comprenant les étapes suivantes : on fait circuler un deuxième fluide (F2) dans des passages verticaux d'échange, ledit deuxième fluide ayant une température de sortie T2,2 ; on fait circuler de bas en haut sur une hauteur h par thermosiphon ledit premier fluide entre lesdits passages d'échange thermique, ledit premier fluide ayant une température d'entrée T1,1 (T1,1 < T2,2), la fraction vaporisée dudit premier fluide ayant une pression de sortie P1,2 ; on donne à ladite pression P1,2 une valeur supérieure à la pression minimale de sortie de la fraction vaporisée du premier fluide nécessaire pour permettre le fonctionnement de l'installation dans laquelle est monté ledit échangeur ; et on choisit la hauteur h des passages d'échange thermique et la température T2,2 dudit deuxième fluide de telle manière qu'au moins une des deux conditions suivantes soit remplie : la hauteur h desdits passages d'échange thermique est au moins égale à 2,5 m ; et la température T2,2 dudit deuxième fluide est inférieure à T1,1 + 1,2°C. Method for vaporizing a first fluid (F1) using a bath vaporizer-condenser exchanger comprising the following steps: a second fluid (F2) is circulated in vertical exchange passages, said second fluid having an outlet temperature T 2.2 ; said first fluid is circulated from bottom to top over a height h by said thermosyphon between said heat exchange passages, said first fluid having an inlet temperature T 1.1 (T 1.1 <T 2.2 ), the vaporized fraction of said first fluid having an outlet pressure P 1.2 ; said pressure P 1.2 is given a value greater than the minimum outlet pressure of the vaporized fraction of the first fluid necessary to allow the operation of the installation in which said exchanger is mounted; and the height h of the heat exchange passages and the temperature T 2.2 of said second fluid are chosen so that at least one of the following two conditions is met: the height h of said heat exchange passages is at least equal to 2.5 m; and the temperature T 2.2 of said second fluid is less than T 1.1 + 1.2 ° C. Application de l'échangeur selon l'une quelconque des revendications 1 à 9 à la séparation cryogénique des gaz de l'air.Application of the exchanger according to any one of claims 1 to 9 to cryogenic separation of gases from air. Application de l'échangeur selon l'une quelconque des revendications 1 à 9 à la séparation cryogénique de gaz de synthèse.Application of the exchanger according to any one of Claims 1 to 9 for the cryogenic separation of synthesis gas.
    EP01400898A 2000-04-13 2001-04-06 Thermosiphon boiler-condenser Revoked EP1146300B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0004765 2000-04-13
    FR0004765A FR2807826B1 (en) 2000-04-13 2000-04-13 BATH TYPE CONDENSER VAPORIZER

    Publications (2)

    Publication Number Publication Date
    EP1146300A1 true EP1146300A1 (en) 2001-10-17
    EP1146300B1 EP1146300B1 (en) 2005-01-19

    Family

    ID=8849225

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01400898A Revoked EP1146300B1 (en) 2000-04-13 2001-04-06 Thermosiphon boiler-condenser

    Country Status (6)

    Country Link
    US (2) US6622784B2 (en)
    EP (1) EP1146300B1 (en)
    JP (1) JP2001355976A (en)
    CN (1) CN1144012C (en)
    DE (1) DE60108438T2 (en)
    FR (1) FR2807826B1 (en)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
    FR2891901B1 (en) * 2005-10-06 2014-03-14 Air Liquide METHOD FOR VAPORIZATION AND / OR CONDENSATION IN A HEAT EXCHANGER
    FR2935472A1 (en) * 2008-08-28 2010-03-05 Air Liquide Gaseous mixture i.e. air, separating method for low pressure column of double air separation column, involves generating magnetic field of electromagnet to partially compensate hydrostatic pressure of liquid bath
    FR2956900B1 (en) * 2010-03-01 2012-06-01 Air Liquide APPARATUS AND METHOD FOR SEPARATING A MIXTURE CONTAINING CARBON DIOXIDE BY DISTILLATION
    ES2762736T3 (en) * 2011-12-20 2020-05-25 Conocophillips Co Procedure to reduce the impact of movement in a shell core heat exchanger
    CN102865759A (en) * 2012-09-29 2013-01-09 河南开元空分集团有限公司 Integral main cold hot siphon evaporator
    JP6509223B2 (en) 2013-12-05 2019-05-08 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Heat exchanger with collecting passage for discharging liquid phase
    EP2944909A1 (en) * 2014-05-13 2015-11-18 Linde Aktiengesellschaft Heat exchanger with channels for damping movements of liquids
    US11740033B2 (en) * 2020-12-22 2023-08-29 Lane Lawless Heat exchanger, exchanger plate, and method of construction

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1551583A1 (en) * 1966-09-19 1970-06-18 Hitachi Ltd Rectifying column of an air separation plant
    FR2364423A1 (en) * 1976-09-09 1978-04-07 Union Carbide Corp HEAT EXCHANGE METHOD AND DEVICE
    US4617036A (en) * 1985-10-29 1986-10-14 Air Products And Chemicals, Inc. Tonnage nitrogen air separation with side reboiler condenser
    US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus
    US5901574A (en) * 1996-02-14 1999-05-11 Linde Aktiengesellschaft Device and process for evaporating a liquid

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3835920A (en) * 1972-02-22 1974-09-17 Gen Motors Corp Compact fluid heat exchanger
    US4113435A (en) * 1973-07-16 1978-09-12 Massachusetts Institute Of Technology Cryogenically controlled direct fluorination apparatus
    US4582121A (en) * 1977-06-09 1986-04-15 Casey Charles B Apparatus for and method of heat transfer
    EP0063195B1 (en) * 1981-04-09 1990-03-14 Heat Exchanger Industries, Inc. Exhaust gas treatment method and apparatus
    FR2547898B1 (en) 1983-06-24 1985-11-29 Air Liquide METHOD AND DEVICE FOR VAPORIZING A LIQUID BY HEAT EXCHANGE WITH A SECOND FLUID, AND THEIR APPLICATION TO AN AIR DISTILLATION INSTALLATION
    US4715433A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with doubly-enhanced plates
    US5167274A (en) * 1988-08-26 1992-12-01 Cominco Ltd. Method and apparatus for cooling particulate solids
    US5031693A (en) 1990-10-31 1991-07-16 Sundstrand Corporation Jet impingement plate fin heat exchanger
    US5122174A (en) * 1991-03-01 1992-06-16 Air Products And Chemicals, Inc. Boiling process and a heat exchanger for use in the process
    FR2703762B1 (en) 1993-04-09 1995-05-24 Maurice Grenier Method and installation for cooling a fluid, in particular for liquefying natural gas.
    US5362454A (en) * 1993-06-28 1994-11-08 The M. W. Kellogg Company High temperature heat exchanger
    JP3681187B2 (en) * 1994-03-31 2005-08-10 大陽日酸株式会社 Air liquefaction separation method and apparatus
    US5775412A (en) * 1996-01-11 1998-07-07 Gidding Engineering, Inc. High pressure dense heat transfer area heat exchanger

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1551583A1 (en) * 1966-09-19 1970-06-18 Hitachi Ltd Rectifying column of an air separation plant
    FR2364423A1 (en) * 1976-09-09 1978-04-07 Union Carbide Corp HEAT EXCHANGE METHOD AND DEVICE
    US4617036A (en) * 1985-10-29 1986-10-14 Air Products And Chemicals, Inc. Tonnage nitrogen air separation with side reboiler condenser
    US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus
    US5901574A (en) * 1996-02-14 1999-05-11 Linde Aktiengesellschaft Device and process for evaporating a liquid

    Also Published As

    Publication number Publication date
    EP1146300B1 (en) 2005-01-19
    DE60108438D1 (en) 2005-02-24
    CN1317677A (en) 2001-10-17
    CN1144012C (en) 2004-03-31
    US6761213B2 (en) 2004-07-13
    US6622784B2 (en) 2003-09-23
    FR2807826A1 (en) 2001-10-19
    DE60108438T2 (en) 2006-01-12
    US20010030042A1 (en) 2001-10-18
    JP2001355976A (en) 2001-12-26
    US20030150602A1 (en) 2003-08-14
    FR2807826B1 (en) 2002-06-14

    Similar Documents

    Publication Publication Date Title
    EP1146300B1 (en) Thermosiphon boiler-condenser
    EP0677483A1 (en) Process and apparatus for the separation of a gaseous mixture
    CA2876619C (en) Method and apparatus for purifying a carbon dioxide-rich mixture at a low temperature
    FR2805339A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC RECTIFICATION
    EP0550748A1 (en) Solid/gas reaction cooling plant having a reactor equipped with cooling means.
    EP2265855B1 (en) Method for vaporizing cryogenic liquid through heat exchange using calorigenic fluid
    EP1966554B1 (en) Air separating device by means of cryogenic distillation
    FR2573185A1 (en) HEAT EXCHANGER WITH DIRECT HEATING
    FR2710370A1 (en) Method and assembly for compressing a gas.
    EP0507649B1 (en) Method for the evaporation of a liquid, heat exchanger for carrying out the method, and use in an air distillation plant with a double column
    BE1009886A5 (en) Method and device for the production of water condensation this moisture in air air.
    EP3812675A1 (en) Method and device for air separation by cryogenic distillation
    EP0706632B1 (en) Method for producing very low temperatures
    EP4279848A1 (en) Method and apparatus for cooling a co2-rich flow
    EP2938414A2 (en) Method and apparatus for separating a carbon dioxide-rich gas
    WO2023174601A1 (en) Method and apparatus for cooling hydrogen
    EP1697690A2 (en) Method and installation for enriching a gas stream with one of the components thereof
    FR3033397A1 (en) PROCESS FOR COMPRESSING AND COOLING A GASEOUS MIXTURE
    WO2009136076A2 (en) Method and apparatus for separating air by cryogenic distillation
    WO2016132086A1 (en) Method and apparatus for separation at sub-ambient temperature
    FR3065065A1 (en) METHOD FOR CONTROLLING THE TEMPERATURE OF FLOW FLOW
    FR2756621A1 (en) THERMO-FRIGOPOMPE
    FR3110917A3 (en) Integration of a reforming / partial oxidation unit with an electrolyser operating discontinuously.
    FR2930326A1 (en) Air e.g. low pressure low purity oxygen, separating method, involves dividing fluid issued from cryogenic distillation into two parts, and utilizing part of refrigerating capacity of turbines by cooling compressor
    FR2546283A1 (en) METHOD AND INSTALLATION OF HYDROGEN CONCENTRATION

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    17P Request for examination filed

    Effective date: 20020225

    AKX Designation fees paid

    Free format text: DE FR GB

    17Q First examination report despatched

    Effective date: 20030723

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60108438

    Country of ref document: DE

    Date of ref document: 20050224

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050414

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: LINDE AKTIENGESELLSCHAFT

    Effective date: 20051019

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    PLCK Communication despatched that opposition was rejected

    Free format text: ORIGINAL CODE: EPIDOSNREJ1

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APAW Appeal reference deleted

    Free format text: ORIGINAL CODE: EPIDOSDREFNO

    APAY Date of receipt of notice of appeal deleted

    Free format text: ORIGINAL CODE: EPIDOSDNOA2O

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110510

    Year of fee payment: 11

    Ref country code: DE

    Payment date: 20110421

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20110421

    Year of fee payment: 11

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R064

    Ref document number: 60108438

    Country of ref document: DE

    Ref country code: DE

    Ref legal event code: R103

    Ref document number: 60108438

    Country of ref document: DE

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20111008

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Effective date: 20111008

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R107

    Ref document number: 60108438

    Country of ref document: DE

    Effective date: 20120405