EP1145446A2 - Differenciateur optique - Google Patents

Differenciateur optique

Info

Publication number
EP1145446A2
EP1145446A2 EP00956595A EP00956595A EP1145446A2 EP 1145446 A2 EP1145446 A2 EP 1145446A2 EP 00956595 A EP00956595 A EP 00956595A EP 00956595 A EP00956595 A EP 00956595A EP 1145446 A2 EP1145446 A2 EP 1145446A2
Authority
EP
European Patent Office
Prior art keywords
signal
optical
channel
delay
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00956595A
Other languages
German (de)
English (en)
Other versions
EP1145446A3 (fr
Inventor
Alexandre Shen
Jean-Guy Provost
Fabrice Devaux
Bernd Sartorius
Tolga Tekin
Michael Schlak
Christopher Janz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oclaro North America Inc
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1145446A2 publication Critical patent/EP1145446A2/fr
Publication of EP1145446A3 publication Critical patent/EP1145446A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2914Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using lumped semiconductor optical amplifiers [SOA]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/26Pulse shaping; Apparatus or methods therefor

Definitions

  • the invention relates to the field of devices intended to create a difference signal between two optical signals.
  • the invention is applicable in particular to a device for reconstituting an optical data transmission signal, in particular a rectangular type signal, for example a coded signal without return to zero.
  • the invention is also applicable for the generation of a clock signal at a frequency twice the clock frequency of a first signal.
  • An upstream part of the device described in this article is a fiber optic differentiator making it possible to generate from the signal with the NRZ code, a signal with pseudo return to zero, (PRZ).
  • the signal PRZ thus formed from the signal NRZ is then used in a known manner to lock self-oscillating means.
  • it is a laser fiber cavity in locked mode comprising a non-linear optical loop irror (NOLM).
  • NOLM non-linear optical loop irror
  • the upstream differentiator comprises an asymmetrical Mach Zehnder interferometric structure having two arms, one having a delay ⁇ of 300 ps in the form of an additional fiber length of 6 cm.
  • the NRZ signal is introduced into each of the arms of the asymmetric Mach Zehnder interferometric structure by means of a 3 dB coupler receiving the NRZ signal. It should be clarified for the remainder of the presentation that in the experimental device described in this article the NRZ signal was generated on site by means of a tunable laser diode whose continuous output wave was modulated in a modulator receiving a signal of NRZ modulation delivered by a generator of such a signal.
  • the delay ⁇ represents, as explained in the article in column 1 on page 479, the width at 3dB of the pulses constituting the differential output signal.
  • this delay ⁇ must be equal to an odd number of half periods of the continuous carrier wave.
  • the authors have chosen a diode for generating the continuous wave, tunable with a sufficient resolution to obtain a wavelength adjustment making it possible to obtain a phase shift fulfilling the destruction condition.
  • the experimental device described in this article made it possible to obtain a PRZ signal from an NRZ signal at the rate of 1.5 gigabits per second. This signal PRZ is then used to lock a clock signal reconstituting the clock signal of the NRZ signal.
  • the wavelength of the signal carrier wave is available on site, and therefore it is easy to act on it to adjust it and thus obtain the destructive condition assuming a phase shift of (2k + l) ⁇ between the signals flowing in each of the arms of the interferometer.
  • the device described in this article is hardly susceptible of industrial application because, in practice, one wants to reconstruct the clock signal at the level of a regenerator from a carrier wave of a NRZ signal whose wavelength is a priori unknown.
  • the stability of the carrier wave is likely to be insufficient to guarantee, in the long term, the condition of destruction. This is why there is a need for a device making it possible to differentiate two signals, one of which is delayed with respect to the other, ie a device in which the delay between the two signals can be controlled to maintain a path difference which is permanently equal to or close to (2k + l) ⁇ .
  • the problem of the phase adjustment between a first signal and a second signal delayed with respect to the first, in order to obtain the condition of destructive interference is solved by a device in which there is a means of creation of 'a continuous wave.
  • This continuous wave is sent in a first channel comprising a medium whose refractive index n, is variable according to a characteristic of. signal, for example the frequency or the optical power passing through the medium.
  • This same medium, the refractive index n of which is variable as a function of a characteristic of the signal, for example the frequency or the optical power passing through it receives the first signal so that the index n of the medium is modulated by the levels up and down the characteristic of the first signal.
  • This continuous wave is also sent in a second channel comprising a medium whose refractive index n is variable under the same conditions.
  • This same medium of the second channel receives the second signal so that the index n of the medium is modulated by the high and low levels of the second signal.
  • the index n of the first and / or the second medium is modified, and therefore the time of crossing of this medium by the continuous optical wave which crosses them. We can thus adjust the delay of one of the channels relative to the other to obtain a destructive beat between the first and the second signal.
  • the invention relates to an optical device for differentiating two optical signals, a first and a second, the second signal being the first signal delayed with respect to the first by a delay ⁇ comprising:
  • the first channel comprising a delay means delaying by ⁇ the first signal introduced in this channel, the delayed signal constituting the second signal,
  • the phase shift between the first and the second signal is independent of the wavelength of the carrier wave of the signal.
  • the delay means delaying the first signal by ⁇ can be placed either upstream or downstream of the optical medium with variable index. Given the vocabulary convention adopted, when the delay ⁇ is upstream of the first medium, it is the second signal which is introduced into the first medium, on the other hand if the delay ⁇ is downstream of the first medium, it is the first signal which is introduced into the first medium.
  • the means for introducing the first signal on the first and second channels can be any means of multiplexing a signal arriving on a channel and dividing it between two channels, for example a 3 dB coupler or even a multimode interferometric structure, it goes from even for the output interferometric structure, located downstream of the first and second medium.
  • the first and second media are of variable index depending on the optical power that passes through them and are semiconductor optical amplifiers.
  • An adjustment of the phase delay is obtained by adjusting the bias current of the amplifier, modifying the gain of the amplifier and therefore the power level passing through the optical medium.
  • the variation of the power passing through the optical medium causes the variation of the index of this medium. It can thus be seen that the gain adjustment causes a variation in the propagation time.
  • the control of the phase delay is preferably carried out in a closed loop so as to minimize the average level of the difference signal.
  • FIG. 1 shows: in part A an example of form d a first signal, in part B the signal of the delayed part A, in part C the difference signal between the signals of parts A and B, in part D a clock signal reconstituted from the pseudo clock signal represented in part C;
  • - Figure 2 is a schematic view of a device according to the invention
  • - Figure 3 is a schematic view of a device according to the invention in which multimode interferometers serve as input and output structure respectively in and out of the first and second channels;
  • FIG. 4 is an example of a device for reconstituting a clock signal, for example an NRZ transmission signal.
  • FIG. 1 is intended to explain what a difference signal represents between a first signal and the same delayed signal.
  • Parts A and B of FIG. 1 respectively represent the envelope of a signal and of the same delayed signal. It may for example be an NRZ transmission signal. These signals are carried by an optical carrier wave, not shown, the wavelength of which is very small compared to the period of the signal carried.
  • the difference signal presents as drawn in part C, a pulse whose duration is equal to the delay, each time that the signal of part A presents a rising edge or a falling edge, that is to say, for a digital signal, each time one goes from 0 to 1 or from 1 to 0.
  • the pulses of the difference signal represented in part C represent in this case clock ticks of the NRZ signal.
  • These tops can be used to lock a self-oscillating device, for example a fiber cavity laser in locked mode, as described in the document cited above, or a self-oscillating diode.
  • FIG. 2 represents an example of device 1 according to the invention.
  • the device has two channels 5 and 6.
  • a continuous optical wave generated by a continuous wave generator 2, for example a laser diode is coupled via a coupling means 4, for example a 3 dB coupler at each of channels 5 and 6 respectively.
  • the first signal carried for example by an optical fiber is also coupled via a coupling means 3, for example a 3 dB coupler to each of the channels 5 and 6 respectively.
  • the first channel 5 comprises, arranged in series, a delay means 7 and a medium 10 whose propagation index n is variable as a function of the optical power passing through it.
  • the second channel 6 comprises a medium 11 whose propagation index n is variable as a function of the optical power passing through it.
  • the media 10 and 11 are constituted by semiconductor optical amplifiers.
  • the delay 7 and the semiconductor optical amplifier 10 of the first channel 5 were produced on a single component.
  • BERLIN-DE Heinrich Hertz Institute
  • This device generates a delay of 7 picoseconds which has proved sufficient to obtain a difference signal, for example from a transmission signal at 2.5 gigabits having a bit period of 400 picoseconds or a 10 gigabit transmission signal having a bit period of 100 picoseconds.
  • the delay must be less than the period of the signal carried, that is to say in the two cases cited immediately above less than 400 respectively. and 100 picoseconds.
  • the period of time bit is the maximum duration of the delay, its minimum duration has not been explored.
  • the duration of the delay represents the width of the pulses resulting from the differentiation. These impulses should be perceptible.
  • a delay of between approximately 7 picoseconds and the duration of the bit time may be suitable.
  • the delay means 7 can also be produced from an additional length of fiber on the first channel. In this case, the fiber carrying the signal on the first channel 5 is longer than the fiber carrying the signal on the second channel 6.
  • the delay 7 can also take the form of a specific component 7 and in this case it can be placed on the first channel 5 downstream of the medium 10 or as shown in dotted lines upstream of medium 10, while being downstream of the entry point on this channel, of the continuous wave coming from the continuous wave generator 2. It can also, as also shown in dotted lines, be upstream of this entry point of the continuous wave from the continuous wave generator 2.
  • Means 9 for adjusting a bias current make it possible to adjust the amplification level of the optical amplifier 10, and therefore the time for crossing an optical medium present in a known manner in this amplifier.
  • the adjustment is made in a constant and automatic manner thanks to closed-loop regulation tending to minimize the average value of an optical signal representing the difference signal directly at the output of the interferometric structure 8 or preferably still downstream of a filter 23 centered on the wavelength of the continuous wave coming from the continuous wave generator 2.
  • the loop includes a detector 22 of the optical power at the output of the filter 23. This detector 22 can for example be a photodiode followed by an integrator circuit. Another embodiment will now be described with reference to FIG. 3.
  • the embodiment represented in this figure differs from the previous one by the means for inputting the first signal and the continuous wave on channels 5 and 6.
  • An interferometer multimode 13, for example from Fabry Pérot has two inputs, a first 14 and a second 15.
  • the first input 14 receives the signal.
  • the second input 15 receives the continuous wave from the generator continuous wave 2.
  • Two outputs a first 16 and a second 17 of one multimode interferometer 13 each receive the continuous wave from the continuous wave generator 2, and the signal. These first 16 and second 17 outputs are respectively coupled to the first 5 and to the second 6. channel.
  • the delay 7 is placed upstream or downstream of the medium 10 on the channel 5.
  • the output 19 of the channel 5 and the output 20 of the channel 6 are coupled to a first 19 and to a second 20 input of a multimode output interferometer 18.
  • the inputs of this interferometer have the same references 19, 20 as the outputs of channels 5 and 6 because the outputs of channels 5 and 6 also constitute the inputs of the multimode interferometer 13.
  • the first and the second channel respectively comprise the first medium 10 and the second medium 11. It can also, depending on the variant embodiments, include or not the delay 7.
  • channels 5 and 6 do not comprise not delay 7
  • the structure is asymmetrical when delay 7 is present on channel 5, downstream of the signal and continuous wave inputs on this channel.
  • the medium 10 receives the continuous wave and the first or the second signal so that the index n of the middle 10 is modulated by the high and low levels of the first signal.
  • the continuous wave is also sent into the medium 11, the propagation index n of which is variable as a function of the optical power passing through the medium.
  • This same medium 11 of the second channel receives the first signal so that the index n of the medium is modulated by the high and low levels of the first signal.
  • the device for creating a clock signal 30 comprises a device 1 according to one of the embodiments of the invention.
  • the difference signal present at the output of this device 1 is received by self-oscillating means 31. It may for example be a laser fiber cavity in locked mode, or a self-oscillating diode. In the experimental embodiment, a self-oscillating HHI diode was used.
  • the signal at the input of device 1 according to the invention is a NRZ transmission signal
  • the difference signal present at the output of device 1 is a pseudo signal with return to 0 (PRZ).
  • PRZ pseudo signal with return to 0
  • the difference signal present at the output of the device 1 according to the invention is a clock signal having a frequency twice that of the signal d input clock, since there is an output pulse for each rising or falling edge of the input signal.
  • the width of each clock pulse is an increasing function of the delay ⁇ between the two waves. Note that when the input signal is a clock signal, a double frequency clock signal is obtained directly without the self-oscillating device 31.
  • the device 1 according to the invention can be used to obtain a clock signal having a double frequency of an input signal constituted by a first clock signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Manipulation Of Pulses (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Dispositif (1) optique de différentiation d'un premier signal optique et d'un signal optique retardé par rapport au premier, dans lequel la différentiation est représentée par un signal porté par une onde continue traversant les deux bras (5, 6) d'un interféromètre comportant des milieux dont l'indice est fonction de la puissance optique traversant ces milieux. Le signal retardé est le premier signal bouclé en retour sur l'un des bras au travers d'un retard (7).

Description

DIFFERENCIATEUR OPTIQUE
Domaine de l'invention
L'invention se situe dans le domaine des dispositifs destinés à créer un signal de différence entre deux signaux optiques. L'invention est applicable en particulier à un dispositif de reconstitution d'un signal optique de transmission de données, en particulier un signal de type rectangulaire, par exemple un signal codé sans retour à zéro. L'invention est applicable également pour la génération d'un signal d'horloge à une fréquence double de la fréquence d'horloge d'un premier signal.
Arrière plan technologique
Un article de H. K. LEE et al intitulé "Ail fibre optic clock recovery from non return to zéro format data" paru dans le journal "Electronics letters" vol 34 n° 5 de mars 1998, (document 1) décrit un dispositif de reconstitution d'un signal d'horloge à partir d'un signal optique de transmission de données codées dans un code ne comportant pas de retour à zéro (code NRZ) .
Une partie amont du dispositif décrit dans cet article est un différentiateur à fibre optique permettant de générer à partir du signal au code NRZ, un signal avec pseudo retour à zéro, (PRZ) . Le signal PRZ ainsi constitué à partir du signal NRZ est utilisé ensuite de façon connue pour verrouiller des moyens auto oscillants. Dans le cas décrit dans l'article il s'agit d'une cavité fibre laser en mode verrouillé comportant une boucle optique à miroir non linéaire (non linear optical loop irror ; NOLM) .
Le dispositif différentiateur amont comporte une structure interférométrique asymétrique de Mach Zehnder ayant deux bras, l'un comportant un retard τ de 300 ps sous forme d'une longueur additionnelle de fibre de 6 cm. Le signal NRZ est introduit dans chacun des bras de la structure interférométrique asymétrique de Mach Zehnder au moyen d'un coupleur 3 dB recevant le signal NRZ. Il convient de préciser pour la suite de l'exposé que dans le dispositif expérimental décrit dans cet article le signal NRZ était généré sur place au moyen d'une diode laser accordable dont l'onde continue de sortie était modulée dans un modulateur recevant un signal de modulation NRZ délivré par un générateur d'un tel signal. Il convient encore de rappeler pour une bonne compréhension de la suite de l'exposé que le retard τ représente comme expliqué dans l'article en colonne 1 de la page 479, la largeur à 3dB des impulsions constituant le signal différentiel de sortie. Pour que la condition destructive des signaux présents dans chacun des bras de la structure interférométrique asymétrique de Mach Zehnder soit remplie, il faut que ce retard τ soit égal à un nombre impair de demi périodes de l'onde porteuse continue. Pour obtenir ce résultat, il faut comme expliqué dans l'article en haut de la colonne 2 de la page 479, soit faire varier la longueur d'onde de cette porteuse jusqu'à obtenir la condition de destruction, soit faire varier la longueur de fibre provoquant le retard entre les signaux se propageant dans chacun des bras. Pour des raisons évidentes de simplicité de réalisation lesauteurs ont choisi une diode de génération de l'onde continue, accordable avec une résolution suffisante pour obtenir un réglage de longueur d'onde permettant d'obtenir un déphasage remplissant la condition de destruction.
Le dispositif expérimental décrit dans cet article a permis d'obtenir un signal PRZ à partir d'un signal NRZ au taux de 1,5 gigabits par seconde. Ce signal PRZ est ensuite utilisé pour verrouiller un signal d'horloge reconstituant le signal d'horloge du signal NRZ.
On remarque que dans le dispositif expérimental décrit dans cet article, la longueur d'onde de l'onde porteuse du signal est disponible sur place, et que donc il est facile d'agir sur elle pour la régler et obtenir ainsi la condition destructive supposant un déphasage de (2k +l)π entre les signaux circulant dans chacun des bras de 1 ' interféromètre .
Le dispositif décrit dans cet article est difficilement susceptible d'application industrielle car, en pratique, on veut reconstituer le signal d'horloge au niveau d'un régénérateur à partir d'une onde porteuse d'un signal NRZ dont la longueur d'onde est à priori inconnue. De plus, la stabilité de l'onde porteuse est susceptible d'être insuffisante pour garantir, sur le long terme, la condition de destruction. C'est pourquoi il existe un besoin pour un dispositif permettant de différencier deux signaux dont l'un est retardé par rapport à l'autre, c'est à dire un dispositif dans lequel le retard entre les deux signaux puisse être contrôlé pour maintenir une différence de marche qui soit en permanence égale ou proche de (2k +l)π.
Brève description de l'invention. Selon l'invention le problème de l'ajustement de phase entre un premier signal et un second signal retardé par rapport au premier, pour obtenir la condition d'interférence destructive est résolu par un dispositif dans lequel on dispose d'un moyen de création d'une onde continue. Cette onde continue est envoyée dans une première voie comportant un milieu dont l'indice de réfraction n, est variable en fonction d'une caractéristique du . signal, par exemple la fréquence ou la puissance optique traversant le milieu. Ce même milieu dont l'indice de réfraction n, est variable en fonction d'une caractéristique du signal, par exemple la fréquence ou la puissance optique le traversant reçoit le premier signal en sorte que l'indice n du milieu est modulé par les niveaux haut et bas de la caractéristique du premier signal. Cette onde continue est également envoyée dans une seconde voie comportant un milieu dont l'indice de réfraction n, est variable dans les mêmes conditions. Ce même milieu de la seconde voie reçoit le second signal en sorte que l'indice n du milieu est modulé par les niveaux haut et bas du second signal. En modifiant, par exemple, le niveau de puissance du premier et/ou du second signal, on modifie l'indice n du premier et/ou du second milieu, et donc le temps de traversée de ce milieu par l'onde optique continue qui les traverse. On peut donc de la sorte ajuster le retard d'une des voies par rapport à l'autre pour obtenir un battement destructif entre le premier et le second signal. Lorsque l'on fait interférer l'onde continue ayant suivi la première voie et l'onde continue ayant suivi la seconde voie, ces deux ondes ayant entre elles un déphasage de π, on fait la différence entre une onde modulée par le premier signal et une onde modulée par le second signal. On obtient donc un signal représentatif de la différence entre le premier et le second signal.
En résumé l'invention est relative à un dispositif optique de différentiation de deux signaux optiques un premier et un second, le second signal étant le premier signal retardé par rapport au premier d'un retard τ comprenant :
- deux voies, une première et une seconde, la première voie comportant un moyen de retard retardant de τ le premier signal introduit dans cette voie, le signal retardé constituant le second signal,
- des moyens de génération d'une onde continue,
- dispositif caractérisé en ce qu'il comporte :
- un premier milieu et un second milieu dont les indices optiques de propagation sont variables avec une caractéristique du signal optique traversant ledit milieu, disposé sur la première et la seconde voie respectivement,
- des moyens pour introduire dans le premier milieu d'une part le premier ou le second signal et d'autre part l'onde optique continue, et pour introduire dans le second milieu d'une part le premier signal et d'autre part l'onde optique continue, — des moyens pour faire interférer les premier et second signaux issus du premier et du second milieu respectivement, un signal présent en sortie de ces moyens d'interférence constituant le signal de différence entre le premier et le second signal.
Dans le dispositif selon l'invention, le déphasage entre le premier et le second signal est indépendant de la longueur d'onde de l'onde porteuse du signal .
Les moyens de retard retardant de τ le premier signal peuvent être placés indifféremment en amont ou en aval du milieu optique à indice variable. Etant donné la convention de vocabulaire retenue, lorsque le retard τ est en amont du premier milieu, c'est le second signal qui est introduit dans le premier milieu, par contre si le retard τ est en aval du premier milieu, c'est le premier signal qui est introduit dans le premier milieu.
Les moyens d'introduction du premier signal sur les première et seconde voies peuvent être tout moyen de multiplexer un signal arrivant sur une voie et le répartissant entre deux voies, par exemple un coupleur 3 dB ou encore une structure interférométrique multimode, il en va de même pour la structure interférométrique de sortie, située en aval des premier et second milieu.
Dans le mode préféré de réalisation les premier et second milieux sont à indice variable en fonction de la puissance optique qui les traverse et sont des amplificateurs optiques à semi-conducteur. Un réglage du retard de phase est obtenu par réglage du courant de polarisation de l'amplificateur, modifiant le gain de l'amplificateur et donc le niveau de puissance traversant le milieu optique. La variation de la puissance traversant le milieu optique entraîne la variation de l'indice de ce milieu. On voit ainsi que le réglage du gain entraîne une variation du temps de propagation. Dans ce mode de réalisation le contrôle du retard de phase est de préférence effectué en boucle fermée de façon à minimiser le niveau moyen du signal de différence.
Brève description des dessins.
D'autres avantages de l'invention apparaîtront lors de la description d'un mode préféré de réalisation et de variantes qui sera effectuée ci après en regard des dessins annexés dans lesquels : - la figure 1 représente : en partie A un exemple de forme d'un premier signal, en partie B le signal de la partie A retardée, en partie C le signal de différence entre les signaux des parties A et B, en partie D un signal d'horloge reconstitué à partir du pseudo signal d'horloge représenté en partie C ;
- la figure 2 est une vue schématique d'un dispositif selon l'invention ; - la figure 3 est une vue schématique d'un dispositif selon l'invention dans lequel des interferomètres multimode servent de structure d'entrée et de sortie respectivement dans et hors des première et seconde voies ;
- la figure 4 est un exemple de dispositif de reconstitution d'un signal d'horloge par exemple d'un signal de transmission NRZ.
Description détaillée de modes de réalisation de 1 ' invention.
La figure 1 est destinée à expliquer ce que représente un signal de différence entre un premier signal et le même signal retardé. Les parties A et B de la figure 1 représentent respectivement l'enveloppe d'un signal et du même signal retardé. Il peut s'agir par exemple d'un signal de transmission NRZ. Ces signaux sont portées par une onde porteuse optique non représentée dont la longueur d'onde est très petite par rapport à la période du signal porté. Lorsque le retard entre le premier et le second signal est inférieur à la période du signal porté, le signal de différence présente comme dessiné en partie C, une impulsion dont la durée est égale au retard, chaque fois que le signal de la partie A présente un front montant ou un front descendant, c'est à dire, pour un signal numérique, chaque fois que l'on passe de 0 à 1 ou de 1 à 0. Les impulsions du signal de différence représenté en partie C représentent dans ce cas des tops d'horloge du signal NRZ. Ces tops peuvent être utilisés pour verrouiller un dispositif auto oscillant par exemple une cavité fibre laser en mode verrouillé, comme décrit dans le document cité plus haut ou encore une diode auto oscillante.
La figure 2 représente un exemple de dispositif 1 selon l'invention. Le dispositif comporte deux voies 5 et 6. Une onde optique continue générée par un générateur d'onde continue 2, par exemple une diode laser, est couplée par l'intermédiaire d'un moyen de couplage 4, par exemple un coupleur 3 dB à chacune des voies 5 et 6 respectivement. Le premier signal porté par exemple par une fibre optique est également couplé par l'intermédiaire d'un moyen de couplage 3, par exemple un coupleur 3 dB à chacune des voies 5 et 6 respectivement. La première voie 5 comporte, disposé en série, un moyen de retard 7 et un milieu 10 dont l'indice de propagation n est variable en fonction de la puissance optique qui le traverse. La seconde voie 6 comporte un milieu 11 dont l'indice de propagation n est variable en fonction de la puissance optique qui le traverse. Dans le mode préféré de réalisation les milieux 10 et 11 sont constitués par des amplificateurs optiques à semi-conducteur. Dans ce mode préféré de réalisation le retard 7 et l'amplificateur optique à semi-conducteur 10 de la première voie 5 étaient réalisés sur un seul et même composant. Dans le dispositif expérimental réalisé en laboratoire, il a été utilisé un composant du Heinrich Hertz Institute (HHI) (BERLIN-DE) comportant un interféromètre asymétrique de Mach Zehneder comportant deux amplificateurs optiques à semi-conducteur, quatre guides d'entrée et quatre guides de sortie. Seules les entrées et sorties utilisées sont représentées sur la figure 2. Ce dispositif génère un retard de 7 picosecondes qui s'est révélé suffisant pour obtenir un signal de différence, par exemple à partir d'un signal de transmission à 2,5 gigabits ayant une période de bit de 400 picosecondes ou d'un signal de transmission à 10 gigabits ayant une période de bit de 100 picosecondes.
Il a été signalé plus haut, en liaison avec la description de la figure 1, que le retard devait être inférieur à la période du signal porté, c'est-à-dire dans les deux cas cités immédiatement ci-dessus inférieurs respectivement à 400 et 100 picosecondes. La période du temps bit, est la durée maximum du retard, sa durée minimum n'a pas été explorée. La durée du retard représente la largeur des impulsions résultant de la différentiation. Il convient que ces impulsions soient perceptibles. Compte tenu de ce qui a été réalisé par la demanderesse, on sait maintenant qu'un retard compris entre environ 7 picosecondes et la durée du temps bit peut convenir. Le moyen de retard 7 peut aussi être réalisé à partir d'une longueur supplémentaire de fibre sur la première voie. Dans ce cas la fibre transportant le signal sur la première voie 5 est plus longue que la fibre transportant le signal sur la seconde voie 6. Cette longueur supérieure est mesurée entre les sorties respectives du coupleur 3 et l'entrée d'une structure interférométrique 8 recevant les signaux en aval des milieux 10 et 11. Le retard 7 peut aussi prendre la forme d'un composant spécifique 7 et dans ce cas il peut être placé sur la première voie 5 en aval du milieu 10 ou comme représenté en pointillés en amont du milieu 10, tout en étant en aval du point d'entrée sur cette voie, de l'onde continue en provenance du générateur d'onde continue 2. Il peut aussi comme également représenté en pointillés être en amont de ce point d'entrée de l'onde continue en provenance du générateur d'onde continue 2.
Des moyens 9 de réglage d'un courant de polarisation permettent de régler le niveau d'amplification de l'amplificateur optique 10, et partant le temps de traversée d'un milieu optique présent de façon connue dans cet amplificateur. Dans le mode préféré de réalisation le réglage est effectué de façon constante et automatique grâce à une régulation en boucle fermée tendant à minimiser la valeur moyenne d'un signal optique représentant le signal de différence directement à la sortie de la structure interférométrique 8 ou de préférence encore en aval d'un filtre 23 centré sur la longueur d'onde de l'onde continue en provenance du générateur d'onde continue 2. La boucle comporte un détecteur 22 de la puissance optique en sortie du filtre 23. Ce détecteur 22 peut être par exemple une photodiode suivie d'un circuit intégrateur. Un autre mode de réalisation sera maintenant décrit en référence à la figure 3. Le mode de réalisation représenté sur cette figure diffère du précédent par les moyens d'entrée du premier signal et de l'onde continue sur les voies 5 et 6. Un interféromètre multimode 13, par exemple de Fabry Pérot a deux entrées, une première 14 et une seconde 15. La première entrée 14 reçoit le signal. La seconde entrée 15 reçoit l'onde continue en provenance du générateur d'onde continue 2. Deux sorties une première 16 et une seconde 17 de 1 ' interférometre multimode 13 reçoivent chacune l'onde continue en provenance du générateur d'onde continue 2, et le signal. Ces première 16 et seconde 17 sorties sont couplées respectivement à la première 5 et à la seconde- 6. voie. Le retard 7 est placé en amont ou en aval du milieu 10 sur la voie 5. De même la sortie 19 de la voie 5 et la sortie 20 de la voie 6 sont couplées à une première 19 et à une seconde 20 entrée d'un interférometre multimode de sortie 18. Les entrées de cet interférometre portent les mêmes références 19, 20 que les sorties des voies 5 et 6 car les sorties des voies 5 et 6 constituent aussi les entrées de 1 ' interférometre multimode 13. On notera que dans les modes de réalisation représentés figure 3 et 4 , la première et la seconde voie comportent respectivement le premier milieu 10 et le second milieu 11. Elle peut aussi selon les variantes de réalisation comporter ou non le retard 7. Lorsque les voies 5 et 6 ne comportent pas le retard 7, les voies 5 et 6 et la structure interférométrique 8 ou 18, forment ensemble une structure interférométrique de Mach Zenhder symétrique, la structure est asymétrique lorsque le retard 7 est présent sur la voie 5, en aval des entrées du signal et de l'onde continue sur cette voie .
Le fonctionnement du dispositif a déjà été expliqué plus haut. Le milieu 10 dont l'indice de propagation n, est variable en fonction de la puissance optique le traversant reçoit l'onde continue et le premier ou le second signal en sorte que l'indice n du milieu 10 est modulé par les niveaux haut et bas du premier signal. L'onde continue est également envoyée dans le milieu 11 dont l'indice de propagation n, est variable en fonction de la puissance optique traversant le milieu. Ce même milieu 11 de la seconde voie reçoit le premier signal en sorte que l'indice n du milieu est modulé par les niveaux haut et bas du premier signal. En modifiant le niveau de puissance du signal traversant le premier milieu 10, on modifie l'indice n du premier milieu 10, et donc le temps de traversée de ce milieu 10 par l'onde optique continue qui_ le traverse. On peut donc de la sorte ajuster le déphasage d'une des voies par rapport à l'autre pour obtenir un battement destructif entre le premier et le second signal. Lorsque l'on fait interférer l'onde continue ayant suivi la première voie et l'onde continue ayant suivi la seconde voie, ces deux ondes ayant entre elles un déphasage de π chaque fois que le niveau de puissance est identique dans les deux milieux 10 et 11, on fait la différence entre une onde modulée par le premier signal et une onde modulée par le second signal. On obtient donc en sortie de la structure interférométrique 8 ou 18 un signal représentatif de la différence entre le premier et le second signal. Ce signal de préférence après filtrage par le filtre 23 peut être utilisé pour créer un signal de période constante tel qu'un signal d'horloge.
Un tel dispositif 30, de création d'un signal d'horloge à partir d'un dispositif optique de différentiation 1 tel que représenté figure 2 ou 3 est représenté figure 4. Le dispositif de création d'un signal d'horloge 30 comporte un dispositif 1 selon l'une des formes de réalisation de l'invention. Le signal de différence présent en sortie de ce dispositif 1 est reçu par des moyens auto oscillants 31. Il pourra s'agir par exemple d'une cavité fibre laser en mode verrouillé, ou d'une diode auto oscillante. Dans le mode de réalisation expérimental, il a été utilisé une diode auto oscillante de HHI . Lorsque le signal à l'entrée du dispositif 1 selon l'invention est un signal de transmission NRZ, le signal de différence présent en sortie du dispositif 1 est un pseudo signal avec retour à 0 (PRZ) . Lorsque ce signal PRZ est introduit dans le dispositif auto oscillant 31, on obtient de façon connue en sortie du dispositif auto oscillant 31 le signal d'horloge du signal NRZ.
Lorsque le signal à l'entrée du dispositif 1 selon l'invention est un signal d'horloge, le signal de différence présent en sortie du dispositif 1 selon l'invention est un signal d'horloge ayant une fréquence double de celle du signal d'horloge d'entrée, puisqu'on a une impulsion de sortie pour chaque front montant ou descendant du signal d'entrée. La largeur de chaque impulsion d'horloge est une fonction croissante du retard τ entre les deux ondes . On note que lorsque le signal d'entrée est un signal d'horloge on obtient directement sans dispositif autoscillant 31 un signal d'horloge à fréquence double .
Ainsi, le dispositif 1 selon l'invention peut être utilisé pour obtenir un signal d'horloge ayant une fréquence double d'un signal d'entrée constitué par un premier signal d'horloge.

Claims

REVENDICA IONS
1. Dispositif (1) optique de différentiation de deux signaux optiques un premier et un second, le second signal étant le premier signal retardé par rapport au premier d'un retard τ, dispositif comprenant :
- deux voies (5,6), une première (5) et une seconde (6), chacune de ces voies comportant un premier (10) et un second (11) milieux respectivement, les indices optique de chacun de ces milieux é-tant variable avec une caractéristique d'un signal optique les traversant,
- des moyens (2) de génération d'une onde continue, - des moyens (8) pour faire interférer un signal présent sur la première voie (5) avec un signal présent sur la seconde voie (6), un signal en sortie de ces moyens (8) d'interférence constituant le signal de différence entre le premier et le second signal,
- des moyens (4) d'introduction de l'onde continue sur chacune des deux voies, dispositif caractérisé en ce que la première voie (5) comporte en outre : - un moyen de retard (7) disposé en série avec le premier milieu (10) dont l'indice optique est variable avec une caractéristique du signal le traversant, et
- un moyen (3) d'introduction du premier signal sur chacune des voies, l'introduction sur la première voie se faisant en amont de la série formée par le premier milieu (10) et le moyen de retard (7) .
2. Dispositif selon la revendication 1, caractérisé en ce que une sortie des moyens (4,13) d'introduction de l'onde continue sur la première voie est située en aval du moyen (7) de retard τ.
3. Dispositif selon la revendication 1, caractérisé en ce que une sortie des moyens (4,13) d'introduction de l'onde continue sur la première voie est située en amont du moyen (7) de retard τ.
4. Dispositif selon la revendication - 3, caractérisé en ce que les moyens d'entrée du premier signal sur la première et la seconde voie respectivement comporte une structure (13) interférométrique multimode d'entrée ayant deux entrées (14,15) une première (14) et une seconde (15) et deux sorties (16,17) une première (16) et une seconde (17) la première entrée (14) recevant le premier signal, la seconde entrée (15) recevant l'onde continue, la première sortie (16) étant couplée à la première voie (5), la seconde sortie (17) étant couplée à la seconde voie ( 6) .
5. Dispositif selon l'une des revendications 3 ou 4, caractérisé en ce que les moyens (8) pour faire interférer les signaux issus des première (5) et seconde (6) voies respectivement, comportent une structure interférométrique multimode (18) de sortie ayant deux entrées (19,20) une première (19) et une seconde (20) et une sortie (21) , la première entrée (19) étant couplée à la première voie (5) , la seconde entrée (20) étant couplée à la seconde voie (6) la sortie de cette structure interférométrique multimode (18) de sortie constituant la sortie (21) portant le signal de différence.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens (9) de réglage de l'indice optique de propagation d'un milieu d'indice variable avec la puissance optique du signal optique traversant ledit milieu, lesdits moyens agissant sur le milieu (10,11) d'indice variable de l'une au moins des voies (5,6).
7. Dispositif selon la revendication 6, caractérisé en ce que les premier (10) et second (11) milieu dont l'indice optique de réfraction est variable en fonction de la puissance optique le traversant sont des amplificateurs optiques à semi-conducteur, le moyen de réglage (9) de l'indice optique étant constitué par des moyens de réglage de la valeur d'un courant de polarisation de l'un au moins, desdits amplificateurs
(10,11) .
8. Dispositif selon la revendication 7, caractérisé en ce qu'il comporte en outre en aval de la sortie (21) portant le signal de différence des moyens de détection (22) de la puissance optique du signal de différence, un signal électrique présent en sortie de ces moyens étant couplé en retour sur les moyens de réglage (9) du courant de polarisation de l'un au moins des amplificateurs optique (10,11) de façon à minimiser la valeur de ce signal électrique.
9. Dispositif selon la revendication 1, caractérisé en ce que le premier signal est un signal de données numériques ayant une durée de bit, et en ce que le moyen (7) de retard τ introduit un retard f ' une durée comprise entre environ 7 picosecondes et la durée de bit.
10. Dispositif selon la revendication 9, caractérisé en ce que la durée du retard introduit par les moyens (7) de retard τ est d'environ 7 picosecondes .
11. Dispositif (30) de reconstitution d'un signal d'horloge d'un signal optique de transmission de données caractérisé en ce qu'il comporte un dispositif optique (1) de différentiation de deux signaux optiques selon l'une des revendications 1 à 8, et des moyens (31) optiques auto oscillants déclenchés disposés en aval du dispositif (1) optique de différentiation de deux signaux optiques, ces moyens optiques auto oscillants recevant le signal de différence en provenance du dispositif optique de différentiation de deux signaux optiques, et délivrant le signal d'horloge reconstitué, le premier signal étant dans ce cas le signal optique de transmission.
12. Dispositif (30) de reconstitution d'un signal d'horloge d'un signal optique de transmission de données selon la revendication 9, caractérisé en ce que les moyens (31) optiques auto oscillants comportent une diode laser auto oscillante.
13. Utilisation d'un dispositif (1) optique de différentiation de deux signaux optiques selon l'une des revendications 1 à 8, pour la création d'un signal d'horloge ayant une fréquence double de la fréquence d'un premier signal d'horloge.
EP00956595A 1999-08-03 2000-08-02 Differenciateur optique Withdrawn EP1145446A3 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9910073 1999-08-03
FR9910073A FR2797331B1 (fr) 1999-08-03 1999-08-03 Differenciateur optique
PCT/FR2000/002219 WO2001010045A2 (fr) 1999-08-03 2000-08-02 Differenciateur optique

Publications (2)

Publication Number Publication Date
EP1145446A2 true EP1145446A2 (fr) 2001-10-17
EP1145446A3 EP1145446A3 (fr) 2002-09-11

Family

ID=9548838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956595A Withdrawn EP1145446A3 (fr) 1999-08-03 2000-08-02 Differenciateur optique

Country Status (6)

Country Link
US (2) US6628855B1 (fr)
EP (1) EP1145446A3 (fr)
JP (1) JP2003506726A (fr)
CA (1) CA2345371A1 (fr)
FR (1) FR2797331B1 (fr)
WO (1) WO2001010045A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603904B1 (en) * 2001-03-28 2003-08-05 Jaffalight Holdings Llc All optical narrow pulse generator and switch for dense time division multiplexing and code division multiplexing
US20070189662A1 (en) * 2003-08-21 2007-08-16 Shigeru Nakamura All-optical switch
KR100566195B1 (ko) * 2003-08-27 2006-03-29 삼성전자주식회사 반도체 광 증폭기를 이용한 듀오바이너리 광 전송장치
JP4941852B1 (ja) 2010-01-20 2012-05-30 日本電気株式会社 疑似リターントゥゼロ変調のための装置
CN103760734B (zh) * 2013-08-12 2016-10-05 西南交通大学 基于差分群时延的可重构全光微分器
CN109033015B (zh) * 2017-06-09 2023-05-09 南京农业大学 一种对光信号执行微积分运算的装置
CN113253537B (zh) * 2021-05-19 2022-11-25 东南大学 一种基于soi材料制备的马赫-曾德尔干涉仪型可调分数阶光场微分器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353114A (en) * 1992-11-24 1994-10-04 At&T Bell Laboratories Opto-electronic interferometic logic
US5373383A (en) * 1993-03-02 1994-12-13 The Boeing Company Optical carrier filtering for signal/noise and dynamic range improvement
JPH08163026A (ja) * 1994-11-29 1996-06-21 Nippon Telegr & Teleph Corp <Ntt> 光クロック信号再生装置
JPH08288902A (ja) * 1995-04-14 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> クロック再生装置
EP0854379B1 (fr) * 1996-12-19 2010-11-03 Nortel Networks Limited Interféromètre pour récupération tout optique de signaux d'horloge
CN1155173C (zh) * 1998-02-16 2004-06-23 皇家菲利浦电子有限公司 配有采用全光学时钟恢复接收机的光传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0110045A2 *

Also Published As

Publication number Publication date
US6628855B1 (en) 2003-09-30
EP1145446A3 (fr) 2002-09-11
WO2001010045A2 (fr) 2001-02-08
FR2797331A1 (fr) 2001-02-09
FR2797331B1 (fr) 2002-07-19
WO2001010045A3 (fr) 2001-08-30
JP2003506726A (ja) 2003-02-18
US20040062470A1 (en) 2004-04-01
CA2345371A1 (fr) 2001-02-08

Similar Documents

Publication Publication Date Title
EP0718992B1 (fr) Dispositif de régénération en ligne d&#39;un signal tranmis par solitons via la modulation synchrone des solitons à l&#39;aide d&#39;un miroir optique non-linéaire
EP0813097B1 (fr) Dispositif de mise en forme de signaux optiques binaires et son utilisation pour modifier lesdits signaux
FR2715524A1 (fr) Système de communication de type soliton optique ainsi qu&#39;émetteur et récepteur optiques pour ce système.
EP0835559B1 (fr) Procede et dispositif d&#39;estimation de non-linearite
EP1111820A1 (fr) Dispositif d&#39;application d&#39;un retard en ligne
EP0763912B1 (fr) Doubleur tout optique et régénérateur de solitons utilisant le doubleur
FR2742887A1 (fr) Modulateur optique reglable d&#39;amplitude et de phase, et regenerateur de solitons comprenant un tel modulateur
FR2700895A1 (fr) Procédé et dispositif de génération d&#39;impulsions optiques.
EP0716486B1 (fr) Dispositif convertisseur de longueur d&#39;onde
FR2759790A1 (fr) Convertisseur de longueur d&#39;onde de signaux optiques binaires
EP1145446A2 (fr) Differenciateur optique
WO2007057394A1 (fr) Dispositif de mesure de profil d&#39;impulsions monocoup de tres courte duree
FR2522225A1 (fr) Dispositif de telecommunication a fibre optique unimodale
EP0852436B1 (fr) Régénérateur de solitons à très haut débit
EP0980538A1 (fr) Dispositif et procede de regeneration pour train de solitons
EP1158352A2 (fr) Convertisseur optique de format NRZ-RZ
EP0975106B1 (fr) Dispositif de régénération en ligne d&#39;un signal optique de solitons par une modulation synchrone de ces solitons et système de transmission comportant un tel dispositif
EP0560659B1 (fr) Procédé de transmission optique d&#39;un multiplex de porteuses électriques et dispositif pour la mise en oeuvre de ce procédé
EP0746070B1 (fr) Procédé et dispositif pour combiner des signaux optiques
FR2762104A1 (fr) Procede et dispositif de mise en forme d&#39;un signal binaire
EP0936773A1 (fr) Procédé et dispositif de resynchronisation de signaux optiques
EP1314267A1 (fr) Regenerateur tout-optique pour signaux multiplexes en longuer d&#39;onde
EP1324056B1 (fr) Dispositif de génération d&#39;impulsion optique à fort taux d&#39;extinction et système d&#39;échantillonnage notamment de signaux hyperfréquence
EP0285523A1 (fr) Dispositif de traitement de signal cohérent utilisant une ligne à retard optique, et son application au filtrage, produit de corrélation, et analyse spectrale
FR2914440A1 (fr) Porte optique fibree a haute resolution temporelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010316

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVANEX CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040929